
Estimating Single-Node PageRank in �̃�
(︁
min{𝑑𝑡 ,

√
𝑚}

)︁
Time

Hanzhi Wang

Renmin University of China

Beijing, China

hanzhi_wang@ruc.edu.cn

Zhewei Wei

Renmin University of China

Beijing, China

zhewei@ruc.edu.cn

ABSTRACT
PageRank is a famous measure of graph centrality that has numer-

ous applications in practice. The problem of computing a single

node’s PageRank has been the subject of extensive research over

a decade. However, existing methods still incur large time com-

plexities despite years of efforts. Even on undirected graphs where

several valuable properties held by PageRank scores, the problem of

locally approximating the PageRank score of a target node remains

a challenging task. Two commonly adopted techniques, Monte-

Carlo based random walks and backward push, both cost𝑂 (𝑛) time

in the worst-case scenario, which hinders existing methods from

achieving a sublinear time complexity like𝑂 (
√
𝑚) on an undirected

graph with 𝑛 nodes and𝑚 edges.

In this paper, we focus on the problem of single-node PageRank

computation on undirected graphs. We propose a novel algorithm,

SetPush, for estimating single-node PageRank specifically on undi-

rected graphs. With non-trival analysis, we prove that our SetPush
achieves the �̃�

(︁
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︁
time complexity for estimating the

target node 𝑡 ’s PageRank with constant relative error and constant

failure probability on undirected graphs. We conduct comprehen-

sive experiments to demonstrate the effectiveness of SetPush.
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1 INTRODUCTION
PageRank is first proposed by Google [33] to rank the importance

of web pages in the search engine. It is formulated based on two

intuitive arguments: (i) highly linked pages are more important

than the pages with fewer links; (ii) the page that linked by an

important page is also important. If we convert the web structure

to a graph, the PageRank scores of all pages in the web correspond

to the probability distribution of simulating random walks on the
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graph. Specifically, consider a graph𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 nodes

and |𝐸 | =𝑚 edges. We select a node 𝑠 from the graph’s vertex set𝑉

uniformly at random, and simulate an 𝛼-random walk from node 𝑠 .

The PageRank score of node 𝑡 ∈ 𝑉 is equal to the probability that an

𝛼-random walk simulated from node 𝑠 terminates at node 𝑡 . Here

we call 𝑠 the source node. 𝛼-random walk refers to the random walk

process that at each step (e.g., at node𝑢), the walk either terminates

at 𝑢 with probability 𝛼 , or moves to a randomly selected neighbor

of 𝑢 with probability 1 − 𝛼 . We call 𝛼 the teleport probability or the
damping factor, which is a constant satisfying 𝛼 ∈ (0, 1).

Over the last decade, PageRank has emerged as one of the most

well-adopted graph centrality measure [18]. The applications of

PageRank has been far beyond its origin in web search, cover-

ing a wide range of research domains, such as social networks,

recommender systems, databases, as well as biology, chemistry,

neuroscience and etc. For example, in social networks, PageRank

serves as a classic role in evaluating the centrality of individuals.

Kwak et al. [24] use PageRank to characterize the properties of

Twitter. In recommender systems, the PageRank scores of items are

adopted to find potential predictions [9]. Moreover, for the problem

of database queries, the PageRank score indicates a query direc-

tion to the frequently retrieved results, and thus accelerates the

query efficiency [6]. Additionally, PageRank are adopted to study

molecules in chemistry [31], gene in biology [32] and brain regions

in neuroscience [43]. More applications of PageRank can be found

in the comprehensive survey summarized by Gleich [18].

At the same time, a plethora of variants stem from PageRank,

including Personalized PageRank [33], heat kernel PageRank [14],

reverse PageRank [7], weighted PageRank [41] and so on. For

example, Personalized PageRank, one of the most famous variant

of PageRank, has been an essential node proximity metric adopted

in various web search and representation tasks [8, 19, 22]. Recall

that PageRank serves as a global centrality measure in a graph. In

comparison, the Personalized PageRank value of a node indicates a

localized score, reflecting the relative importance of the node with

respect to a given source node. Likewise, the heat kernel PageRank

has a successful history in the local clustering scenario. A series of

algorithms [14, 23, 42] leverage the scores of Heat Kernel PageRank

to identify a well-connected cluster around the given seed node.

These variants and their wide-spread applications also demonstrate

the prominence of PageRank in graph analysis and mining tasks.

Given the huge success achieved by PageRank, the problem of

computing PageRank scores has been the subject of extensive re-

search for more than a decade [2, 7, 10, 17, 27–29]. One particular

interest is the problem of single-node PageRank computation, which
aims to compute a single node’s PageRank on large-scale graphs.

Such problem is an important primitive in graph analysis and learn-

ing tasks of both practical and theoretical interest.
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From the theoretical aspect, the query time complexity of single-

node PageRank has a close connection to various graph analysis

problems. For example, as we shall show in Section 2, node 𝑡 ’s

PageRank is equal to the average over all nodes 𝑢’s 𝝅𝑢 (𝑡), where
𝝅𝑢 (𝑡) denotes the Personalized PageRank (PPR) score of node 𝑡 with
respect to node 𝑢. We call such problem single-target PPR queries,

in which we aim to estimate 𝝅𝑢 (𝑡) of every node 𝑢 ∈ 𝑉 . The theo-

retical insight for single-node PageRank computation can therefore

be used for single-target PPR queries by definition. Moreover, Bres-

san et al. [10] propose a novel method called SubgraphPush for

single-node PageRank computation, and adapt the SubgraphPush

method to computing single-node Heat Kernel PageRank (HKPR)

by leveraging the analogue between PageRank and HKPR.

On the other hand, in many practical cases, all we need is an

approximation of a few nodes’ PageRank scores. For example, in the

application scenario of web search, the changes in the importance

of a few popular websites (e.g., the top-10 most popular websites

ranked last year) is of particular interest. Since websites’ global

importance can be reflected from their PageRank scores, the PageR-

ank scores of the ten websites are therefore frequently requested.

Note that it would be prohibitively slow to score all nodes in the

graph every time, especially on large-scale graphs with millions or

even billions of nodes and edges. Therefore, an ideal solution is a

local algorithm, which is able to efficiently return the target node’s

approximation scores by only exploring a small fraction of graph

edges around the target node. However, as pointed out by [10],

most of existing approaches require an Ω(𝑛) time complexity for

the single-node PageRank computation. Designing an efficient local

algorithm with 𝑜 (𝑛) query time complexity remains a challenge.

Single-Node PageRank Computation on Undirected Graphs.
Existing methods for single-node PageRank computation mainly

focus on directed graphs, which, however, incur large query time

complexity despite decades of efforts due to the hardness. In this

paper, we settle for a slightly less ambitious target to efficiently

estimate single-node PageRank on undirected graphs. Note that

the problem of single-node PageRank computation on undirected

graphs is still of great importance from both practical and theoreti-

cal aspects. Specific reasons are illustrated in the following.

• From the theoretical aspect, a number of existing algorithms

do not offer any worst-case guarantee on directed graphs with-

out considering a uniform random choice of the target node.

For these methods, meaningful complexity bounds can only be

derived on undirected graphs when we consider an arbitrary tar-

get node (e.g., the LocalPush [28], FastPPR [29], and BiPPR [27]

methods as listed in Table 1). On the other hand, there are several

crucial properties of the PageRank scores that are only held on

undirected graphs. This motivates us to study the problem of

single-node PageRank computation specifically on undirected

graphs for achieving better complexity results by utilizing these

crucial properties delicately.

• Second, from the practical aspect, many downstream graph min-

ing and learning tasks are only defined on undirected graphs. For

example, in the scenario of local clustering, the celebrated local

clustering method [3] employs (Personalized) PageRank vector

to identify local clusters, while the well-adopted conductance
metric to measure the quality of identified clusters is defined on

a bad case for 

Monte-Carlo sampling 

u

a bad case for

reverse explorations

given u as the target node
given v as the target node

v

Figure 1: A special case.

undirected graphs. Therefore, in local clustering, all we need is

the PageRank scores on undirected graphs. Additionally, Graph

Neural Networks (GNNs) have drawn increasing attention in

recent years. A plethora of GNN models leverage PageRank com-

putation to propagate node features [8, 13, 22]. Since the graph

Laplacian matrix for feature propagation is only applicable to

undirected graphs, this line of research invokes PageRank com-

putation algorithms only on undirected graphs.

Limitations of Existing Methods on Undirected Graphs. Be-
low we briefly illustrate the limitations of existing methods for

the single-node PageRank computation on undirected graphs. A

simplified problem formulation is given as follows. A formal def-

inition can be found in Section 2. Specifically, the inputs to the

single-node PageRank problem are an undirected graph𝐺 = (𝑉 , 𝐸)
and a target node 𝑡 ∈ 𝑉 . The goal is to estimate the target node

𝑡 ’s PageRank 𝝅 (𝑡) within a constant relative error. We also allow

a constant failure probability for scalability. For the single-node

PageRank computation problem, existing methods can be broadly

classified into three categories:

• The Monte-Carlo method [16, 17, 27] estimate 𝝅 (𝑡) by repeat-

edly simulating 𝛼-random walks in the graph. However, accord-

ing to the Pigeonhole principle, the lower bound of the required

number of random walks is Ω (1/𝑛). Thus, in the worse-case sce-

nario where 𝝅 (𝑡) = 𝑂 (1/𝑛), the Monte-Carlo method requires

at least 𝑂 (𝑛) computational time for estimating a single node’s

PageRank. In Figure 1, we provide a toy example to illustrate

the hard instance by regarding node 𝑣 as the given target node

which satisfies 𝝅 (𝑣) = Θ (1/𝑛).
• The reverse exploration method attempts to derive an estimate

of 𝝅 (𝑡) by reversely exploring the graph from the target node

𝑡 to its ancestors. A primitive operation commonly adopted in

these methods is backward push, which deterministically pushes

the probability mass initially at the target node 𝑡 reversely to its

ancestors step by step. Unfortunately, in each backward push

operation (e.g., at node 𝑢), we at least require 𝑂 (𝑑𝑢 ) time to re-

versely push the probabilitymass currently at𝑢 to every neighbor

of 𝑢, where 𝑑𝑢 denotes the degree of node 𝑢. Thus, in the worst

case where 𝑑𝑢 = Ω(𝑛), we cost 𝑂 (𝑛) time only after one step of

backward push. Figure 1 provides a toy example for this bad case

where 𝑑𝑢 = Θ(𝑛).
• The hybrid method combines the Monte-Carlo method and the

reverse exploration method together. However, a simple com-

bination cannot resolve the limitations of the Monte-Carlo and

reverse exploration methods as mentioned above. In fact, despite

years of efforts, the problem of computing single-node PageRank

on undirected graphs has not been well solved.
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Table 1: Comparison of algorithms for solving the problem of single-node PageRank computation on undirected graphs under
constant relative error and failure probability. 𝑑 and 𝑑max denotes the average and maximum degree of graph 𝐺 , respectively.
The complexity results marked by ★ are only applicable on undirected graphs.

Query Time Complexity
Baseline Methods

Query Time Complexities Improvement of SetPush over Baselines

of Our SetPush of Baseline Methods (the larger, the better)

�̃�
(︁
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︁
★

The Power Method [33] �̃� (𝑚) max

{︁
𝑚/𝑑𝑡 ,

√
𝑚

}︁
Monte-Carlo [17] �̃� (𝑛) max

{︂
𝑛/𝑑𝑡 ,

√︁
𝑛/𝑑

}︂
LocalPush [28] �̃� (min {𝑛 · 𝑑𝑡 ,𝑚})★

√
𝑚

RBS [36] �̃� (𝑛) max

{︂
𝑛/𝑑𝑡 ,

√︁
𝑛/𝑑

}︂
FastPPR [29] �̃�

(︂√
𝑛 · 𝑑𝑡

)︂
★ max

{︂√︁
𝑛/𝑑𝑡 ,

√︁
𝑑𝑡/𝑑

}︂
BiPPR [26, 27] �̃�

(︂√
𝑛 · 𝑑𝑡

)︂
★ max

{︂√︁
𝑛/𝑑𝑡 ,

√︁
𝑑𝑡/𝑑

}︂
SubgraphPush [10] �̃�

(︃
min

{︃
𝑚2/3 ·𝑑1/3

max

𝑑2/3 , 𝑚
4/5

𝑑3/5

}︃)︃
max

{︃
min

{︃
𝑛

2

3 ·𝑑1/3
max

𝑑𝑡
, 𝑛

4

5 ·𝑑
1

5

𝑑𝑡

}︃
,min

{︃
𝑛

1

6 ·𝑑1/3
max

𝑑
1

2

, 𝑛
3

10

𝑑
3

10

}︃}︃
1.1 Our Contributions
In this paper, we consider the problem of single-node PageRank

computation on undirected graphs. We propose a novel algorithm

called SetPush, which achieves the �̃�
(︁
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︁
query time

complexity for the single-node PageRank computation under con-

stant relative error and failure probability. Here 𝑚 denotes the

number of edges in the graph, 𝑑𝑡 denotes the degree of the given

target node 𝑡 . Additionally, �̃� is a variant of the Big-Oh notation that

ignores poly-logarithmic factors [10, 35, 36]. Detailed contributions

achieved by this paper are summarized as below.

• Theoretical Improvements. We theoretically demonstrate the

superiority of our SetPush over existing methods on undirected

graphs. Specifically, in the last column of Table 1, we present the

theoretical improvements of our SetPush over existing methods.

In particular, the value of “Improvement" equals the query time

complexity of a baseline method over that of our SetPush. Thus,
the value of “Improvement" is the larger, the better. It’s worth

mentioning that the complexity results of FastPPR, BiPPR, Lo-

calPush and our SetPush given in Table 1 are only applicable to

undirected graphs, while the other complexities hold both on

directed and undirected graphs. We observe that the expected

time complexity of our SetPush is no worse than that of each

baseline method listed in Table 1. Actually, except on a compete

graph where the average node degree 𝑑 = 𝑛, the time complexity

of our SetPush is asymptotically better than that of every method

listed in Table 1.

• A Novel Push Operation. The core of our SetPush is a novel

push operation, which simultaneously mixes the deterministic

backward push and randomized Monte-Carlo sampling in an

atomic step. Benefit from this push operation, we cost Θ(𝑑𝑢 )
time only at the node 𝑢 with small 𝑑𝑢 , and randomly sample a

fraction of 𝑢’s neighbors to push probability mass if 𝑑𝑢 is large.

As a result, we successfully remove the 𝑂 (𝑑𝑢 ) term introduced

by the vanilla push operation at node 𝑢, and achieve a superior

time complexity over the baseline method.

• Algorithm Development on Undirected Graphs. Our Set-
Push algorithm is designed specifically on undirected graphs.

We show that by making full use of the theoretical properties

Table 2: Table of notations.

Notation Description

𝐺 = (𝑉 , 𝐸 ) undirected graph with vertex set𝑉 and edge set 𝐸

𝑛,𝑚 the numbers of nodes and edges in𝐺

𝑁 (𝑢 ) the adjacency list of node 𝑢

A the adjacency matrix of𝐺

𝑑𝑢 the degree of node 𝑢

𝑑 the average node degree of the graph

𝑑max the maximum node degree of the graph

D the diagonal degree matrix that 𝐷𝑢𝑢 = 𝑑𝑢

P = AD−1 the transitional probability matrix

𝛼 the teleport probability that an 𝛼-discounted

random walk terminates at each step

𝝅 (𝑡 ), �̂� (𝑡 ) the true and estimated PageRank of node 𝑡 .

𝝅𝑡 , �̂�𝑡 the true and estimated Personalized PageRank

vectors with regard to node 𝑡 .

𝑐 constant relative error

�̃� the Big-Oh natation ignoring the log factors

held by PageRank values on undirected graphs, we can achieve

a better time complexity for single-node PageRank computation

compared to existing methods on undirected graphs.

2 PRELIMINARIES
This section introduces several basic concepts that are frequently

adopted in the single-node PageRank computation. Table 2 shows

the notations that are frequently used in this paper.

2.1 PageRank
Given an undirected and unweighted graph 𝐺 = (𝑉 , 𝐸) with 𝑛

nodes and 𝑚 edges, the PageRank vector 𝝅 is an 𝑛-dimensional

vector, which can be mathematically formulated as:

𝝅 = (1 − 𝛼)AD−1 · 𝝅 + 𝛼

𝑛
· 1. (1)
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Here A denotes the adjacency matrix of the graph, D is the diagonal

degree matrix that D𝑢𝑢 = 𝑑𝑢 , 1 ∈ R𝑛 denotes an all-one vector,

and 𝛼 is a constant damping factor, which is strictly less than 1

(i.e., 𝛼 ∈ (0, 1)). For each node 𝑡 ∈ 𝑉 , we use 𝝅 (𝑡) to denote the

PageRank value of node 𝑡 . According to the definition formula given

in Equation (1), the PageRank value of node 𝑡 satisfies the following

recurrence relation:

𝝅 (𝑡) = (1 − 𝛼)
∑︂

𝑢∈𝑁 (𝑡 )

𝝅 (𝑢)
𝑑𝑢
+ 𝛼

𝑛
, (2)

where 𝑢 is one of the neighbor of node 𝑡 , and 𝑑𝑢 denotes the degree

of node 𝑢. In particular, Equation (2) also indicates a lower bound

of any node’s PageRank that 𝝅 (𝑡) ≥ 𝛼
𝑛 for each 𝑡 ∈ 𝑉 .

𝛼-random walk. By the definition formula of PageRank vector 𝝅
given in Equation (1), we can further derive:

𝝅 =

(︂
I − (1 − 𝛼)AD−1

)︂−1
·
(︂𝛼
𝑛
· 1

)︂
. (3)

As pointed out in [25], Equation (3) can be solved using a power

series expansion [4]:

𝝅 =

∞∑︂
𝑖=0

𝛼 (1 − 𝛼)𝑖 · (AD−1)𝑖 · 1
𝑛
· 1, (4)

where 𝝅 corresponds to a random walk probability distribution.

Specifically, a random walk on the graph is a sequence of nodes

𝑊 = {𝑤0,𝑤1,𝑤2, . . .} that the 𝑖-th step (i.e., the node 𝑤𝑖 ) in the

walk is selected uniformly at random from the neighbor of node

𝑤𝑖−1. The PageRank value of node 𝑡 equals to the probability that

a so called 𝛼-random walk (or 𝛼-discounted random walks in some

literature) [36, 37] simulated from a uniformly selected source node

𝑠 terminates at node 𝑡 . Note that in each step (e.g., currently at node

𝑢), an 𝛼-random walk:

• with probability (1−𝛼), select a neighbor 𝑣 uniformly at random

from the adjacency list 𝑁 (𝑢) of node 𝑢, and moves from 𝑢 to 𝑣 ;

• with probability 𝛼 , terminates at the current node 𝑢.

Therefore, the length 𝐿 of an 𝛼-random walk is a geometrical ran-

dom number following the geometric distribution 𝐿 ∼ 𝐺 (𝛼). The
expectation of 𝐿 is therefore a constant that E [𝐿] = 1

𝛼 .

Problem Definition. In this paper, we concern the problem of

single-node PageRank computation. Specifically, given a target node

𝑡 , a relative error parameter 𝑐 , and a failure probability parameter

𝑝 𝑓 , we aim to derive a (𝑐, 𝑝 𝑓 ) approximation of 𝝅 (𝑡), which is

formally defined as follows.

Definition 1 ((𝑐, 𝑝 𝑓 )-Approximation of Single-Node PageR-

ank). Given a target node 𝑡 in the graph 𝐺 = (𝑉 , 𝐸), �̂� (𝑡) is an
(𝑐, 𝑝 𝑓 )-approximation of the single-node PageRank 𝝅 (𝑡) if

|�̂� (𝑡) − 𝝅 (𝑡) | ≤ 𝑐 · 𝝅 (𝑡)
holds with probability at least 1 − 𝑝 𝑓 .

Note that in a line of research [10, 29, 36], 𝑐 is set as a constant and
thus is omitted in the Big-Oh notation. In this paper, we assume 𝑐 is

a constant following this convention. Additionally, we assume 𝑝 𝑓 is

also a constantwithout loss of generality. It’s worth mentioning that

a constant failure probability 𝑝 𝑓 can be easily reduced to arbitrarily

small with only adding a log factor to the running time by utilizing

the Median-of-Mean trick [12].

2.2 Personalized PageRank
Apart from PageRank, the seminal paper [33] also propose a variant

of PageRank, called Personalized PageRank (PPR), to evaluate the

personalized centrality of graph vertices with respect to a given

source node. The definition formula of PPR is analogous to that of

PageRank except for the initial distribution:

𝝅𝑠 = (1 − 𝛼)AD−1 · 𝝅𝑠 + 𝛼𝒆𝑠 . (5)

Specifically, 𝝅𝑠 ∈ R𝑛 is called the single-source PPR vector, where

𝝅𝑠 (𝑡) denotes the PPR value of node 𝑡 with respect to node 𝑠 . 𝒆𝑠 is
an one-hot vector that 𝒆𝑠 (𝑠) = 1 and 𝒆𝑠 (𝑢) = 0 if𝑢 ≠ 𝑠 . Analogously,

by applying the power series expansion [4], we can derive:

𝝅𝑠 =
∞∑︂
ℓ=0

𝛼 (1 − 𝛼)ℓ
(︂
AD−1

)︂ℓ
· 𝒆𝑠 . (6)

Equation (6) provides a probabilistic interpretation on the PPR score.

Specifically, the PPR value 𝝅𝑠 (𝑢) corresponds to the probability

that an 𝛼-random walk generated from node 𝑠 terminates at node

𝑢. Additionally, by comparing Equation (6) with Equation (4), we

note that the PageRank score 𝝅 (𝑡) is actually an average over all

𝝅𝑢 (𝑡) for ∀𝑢 ∈ 𝑉 :

𝝅 (𝑡) = 1

𝑛
·
∑︂
𝑠∈𝑉

𝝅𝑠 (𝑡). (7)

In particular, on undirected graphs, PPR vectors exhibit an under-

lying reversibility property that for any node-pair (𝑢, 𝑣) ∈ 𝑉 2
[26]:

𝝅𝑢 (𝑣) · 𝑑𝑢 = 𝝅𝑣 (𝑢) · 𝑑𝑣 . (8)

ℓ-hop PPR. Given a source node 𝑠 , a target node 𝑡 and an integer

ℓ ≥ 0, the ℓ-hop PPR 𝝅 (ℓ )𝑠 (𝑡) corresponds to the probability that an

𝛼-random walk generated from node 𝑠 terminates at node 𝑡 exactly

in its ℓ-th step. The ℓ-hop PPR vector 𝝅 (ℓ )𝑠 is defined as below.

𝝅 (ℓ )𝑠 = 𝛼 (1 − 𝛼)ℓ ·
(︂
AD−1

)︂ℓ
𝒆𝑠 . (9)

By Equation (9) and Equation (4), we can thus derive𝝅𝑠 =
∑︁∞
ℓ=0 𝝅

(ℓ )
𝑠 .

Moreover, the ℓ-hop PPR value 𝝅 (ℓ )𝑠 (𝑢) admits the following recur-

sive equation that for each node 𝑣 ∈ 𝑉 and each integer ℓ ≥ 1:

𝝅 (ℓ+1)𝑡 (𝑣) =
∑︂

𝑢∈𝑁 (𝑣)

(1 − 𝛼)
𝑑𝑢

· 𝝅 (ℓ )𝑡 (𝑢) . (10)

Moreover, the ℓ-hop PPR vector also exhibits the reversibility prop-

erty on undirected graphs. More specifically, for every two nodes

𝑢, 𝑣 in an undirected 𝐺 and every ℓ ∈ {0, 1, . . .}, we have:

𝝅 (ℓ )𝑠 (𝑡) · 𝑑𝑠 = 𝝅 (ℓ )𝑡 (𝑠) · 𝑑𝑡 . (11)

3 ANALYSIS OF EXISTING METHODS
In this section, we present a brief review on existing approaches

for single-node PageRank computation. Specifically, we classify

existing methods into four categories: the power method [33], the

Monte-Carlo method [17], the reverse exploration method [2, 28]

and the hybrid method [10, 27, 29, 36]. Figure 2 provides a sketch

to illustrate the differences among these methods.
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Figure 2: Comparison of existing methods.

3.1 The Power Method
The power method [33] is an iterative method for computing PageR-

ank values of all nodes in the graph. It defines an 𝑛-dimensional

vector �̂� as an approximation of the PageRank vector 𝝅 , where
�̂� (𝑡) is an estimate of node 𝑡 ’s PageRank 𝝅 (𝑡). The power method

initially sets �̂� as
1

𝑛 · 1, and iteratively updates �̂� according to the

definition formula given in Equation (1) until �̂� merely converges.

As demonstrated in [20], the convergence rate of the power method

is given by (1 − 𝛼). For the typical setting that 𝛼 = 0.2, the conver-

gence rate of PageRank becomes 0.8, which turns out to be every

fast even on large-scale graphs.

However, a major drawback of the power method is that the

power method involves a multiplication between the transition

matrix P = AD−1 and the PageRank vector 𝝅 in each iteration.

Note that P is an 𝑛 × 𝑛 matrix with 𝑚 nonzero entries and 𝝅 is

an 𝑛-dimensional vector. Thus, the power method requires at least

𝑂 (𝑚) time in each iteration, which is time-costly especially for

single-node PageRank queries on large-scale graphs.

3.2 The Monte-Carlo Method
Recall that the PageRank score of node 𝑡 equals the probability

that an 𝛼-random walk simulated from a uniformly selected source

node terminates at node 𝑡 . Thus, the Monte-Carlo method [17]

generates 𝑛𝑟 𝛼-random walks in the graph, where the source node

of each walk is independently selected from𝑉 uniformly at random.

Then the Monte-Carlo method computes
1

𝑛𝑟
· ∑︁𝑛𝑟

𝑤=1
I (𝑤 ) (𝑡) as

an estimate of 𝝅 (𝑡), where I (𝑤 ) (𝑡) is an indicator variable that

I𝑤 (𝑡) = 1 if the 𝑤-th random walk terminates at node 𝑡 . By the

Chernoff bound, the number of 𝛼-random walks that is required

to derive a (𝑐, 𝑝 𝑓 )-approximation of 𝝅 (𝑡) can be bounded as 𝑛𝑟 =

�̃�

(︂
1

𝜀2

)︂
. Recall that the expected length 𝐿 of an 𝛼-random walk is

E[𝐿] = 1

𝛼 , which is a constant. Consequently, the expected time cost

of the Monte-Carlo method for achieving the (𝑐, 𝑝 𝑓 )-approximation

of single-node PageRank is bounded by 𝑂 (𝑛𝑟 ) = �̃� (𝑛).

3.3 The Reverse Exploration Method
Another line of research [2, 21, 28] computes single-node PageRank

via reverse explorations. Specifically, given a target node 𝑡 , this line

of methods aim to estimate the contribution that each node makes

to node 𝑡 ’s PageRank. Specifically, as a well-known reverse explo-

ration method, LocalPush [28] reversely explores the graph from

the target node 𝑡 to its ancestors, propagating the probability mass

initially at the target node 𝑡 to its neighbors step by step. To be more

specific, the LocalPush method repeatedly conducts backward push
operations, updating two variables 𝒓𝑏 (𝑣) and �̂�𝑏 (𝑣) for each node

𝑣 in graph 𝐺 during the query phase. In particular, 𝒓𝑏 (𝑣) is called
the (reverse) residue of node 𝑣 , which records the probability mass

that is to be reversely pushed from node 𝑣 to its ancestors. �̂�𝑏 (𝑣) is
called the (reverse) reserve of 𝑣 , which records the probability mass

that has been received by node 𝑣 so far. Initially, LocalPush sets

𝒓𝑏 (𝑣) = �̂�𝑏 (𝑣) = 0 for every 𝑣 ∈ 𝑉 except 𝒓𝑏 (𝑡) = 1. During the

query phase, LocalPush repeatedly conducts the following back-

ward push operations from all nodes 𝑣 with 𝒓𝑏 (𝑣) ≥ 𝜀. Specifically,

in the backward push operation at node 𝑣 , LocalPush updates �̂�𝑏 (𝑣)
and 𝒓𝑏 (𝑣) as follows:
• convert 𝛼 fraction of the probability mass currently at 𝒓𝑏 (𝑣) to

its reserve: �̂�𝑏 (𝑣) ← �̂�𝑏 (𝑣) + 𝛼 · 𝒓𝑏 (𝑣);
• reversely push the remained mass at 𝒓𝑏 (𝑣) to the neighbors of

node 𝑣 : for each 𝑢 ∈ 𝑁 (𝑣), 𝒓𝑏 (𝑢) ← 𝒓𝑏 (𝑢) + (1 − 𝛼) · 𝒓
𝑏 (𝑣)
𝑑𝑢

;

• set 𝒓𝑏 (𝑣) as 0: 𝒓𝑏 (𝑣) ← 0.

When no node in graph 𝐺 has the residue that is larger than 𝜀 ∈
(0, 1), the algorithm terminates. LocalPush then uses �̂� (𝑡) = 1

𝑛 ·∑︁
𝑢∈𝑉 �̂�𝑏 (𝑢) as an estimate of 𝝅 (𝑡).
In particular, Lofgren et al. [28] prove that throughout the back-

ward push process, �̂�𝑏 (𝑣) is always an underestimate of 𝝅𝑣 (𝑡) that
𝝅𝑣 (𝑡) − �̂�𝑏 (𝑣) ≤ 𝜀, where 𝝅𝑣 (𝑡) denotes the PPR of 𝑡 (w.r.t node

𝑣), and �̂�𝑏 (𝑣) is the reserve of node 𝑣 . Hence, by setting the push

threshold 𝜀 = 𝑐𝛼
𝑛 , we can derive:

𝝅 (𝑡) − �̂� (𝑡) = 1

𝑛

∑︂
𝑣∈𝑉

(︂
𝝅𝑣 (𝑡) − �̂�𝑏 (𝑣)

)︂
≤ 1

𝑛

∑︂
𝑣∈𝑉

𝑐𝛼

𝑛
≤ 𝑐𝝅 (𝑡) (12)

when the LocalPush algorithm terminates. In the last inequality

of Equation (12), we also adopt the lower bound 𝝅 (𝑡) ≥ 𝛼
𝑛 , as

shown in Equation (4). In other words, by setting 𝜀 = 𝑐𝛼
𝑛 , the

estimate �̂� (𝑡) derived by LocalPush is a (𝑐, 𝑝 𝑓 )-approximation of

𝝅 (𝑡). Furthermore, Lofgren et al. [28] bound the worst-case time

complexity of reverse exploration method as

∑︁
𝑢∈𝑉

𝝅𝑢 (𝑡 ) ·𝑑𝑢
𝜀 . By

plugging into 𝜀 = 𝑐𝛼
𝑛 and the reversibility property 𝝅𝑢 (𝑡) · 𝑑𝑢 =

𝝅𝑡 (𝑣) · 𝑑𝑡 as shown in Equation (11), we have:∑︂
𝑣∈𝑉

𝝅𝑣 (𝑡) · 𝑑𝑣 · 𝑛
𝑐𝛼

=
𝑛

𝑐𝛼
·
(︄∑︂
𝑣∈𝑉

𝝅𝑡 (𝑣) · 𝑑𝑡

)︄
=
𝑛 · 𝑑𝑡
𝑐𝛼

= 𝑂 (𝑛 · 𝑑𝑡 )
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Note that the 𝑂 (𝑛 · 𝑑𝑡 ) complexity may become 𝑂 (𝑛2) on some

dense graphs where 𝑑𝑡 → 𝑛. To circumvent this problem, Lofgren

and Goel [28] use a priority queue ordered by the residue 𝒓𝑏 (𝑣) of
node 𝑣 . Each time we pop off the node 𝑣 with the greatest 𝒓𝑏 (𝑣)
on the graph and conduct the backward push at node 𝑣 . As a re-

sult, the worse-case time complexity of LocalPush is improved to

�̃� (min {𝑛 · 𝑑𝑡 ,𝑚}) for deriving a (𝑐, 𝑝 𝑓 )-approximation of 𝝅 (𝑡).

3.4 The Hybrid Method
Another set of papers [10, 27, 29, 36] prove some novel results by

combining the Monte-Carlo method and the reverse exploration

method together. The key idea is first proposed in FastPPR [29],

which introduces a bi-directional approximation algorithm for

single-node PageRank:

𝝅 (𝑡) =
∑︂

𝑣∈𝐵 (𝑡 )
Pr {𝑅𝑊 (𝛼) = 𝑣} · 𝝅𝑣 (𝑡). (13)

Here 𝐵(𝑡) is a blanket set of the target node 𝑡 that all 𝛼-random
walks to node 𝑡 pass through set 𝐵(𝑡). Additionally, Pr {𝑅𝑊 (𝛼) = 𝑣}
denotes the probability that node 𝑣 is the first node in 𝐵(𝑡) hit by
a randomly simulated 𝛼-random walk. FastPPR first invokes the

reverse exploration method to estimate all the PPR values 𝝅𝑣 (𝑡)
for 𝑣 ∈ 𝑉 . Then FastPPR simulates 𝛼-random walks to collect these

estimators according to Equation (13). As a result, to achieve an

𝜀-absolute error of 𝝅 (𝑡), FastPPR first allows an

√
𝜀 absolute er-

ror for each �̂�𝑣 (𝑡) derived in the reverse exploration phase, and

only take
1√
𝜀
𝛼-random walks in the Monte-Carlo simulation phase.

Thus, the query time complexity of FastPPR can be bounded by

1

𝛼𝑐2
·
√︂

𝑑𝑡 ·𝑛
𝛼 ·

√︃
log (1/𝑝𝑓 ) ·log (𝑛/𝛼 )

log (1/(1−𝛼 ) ) = �̃�

(︂√
𝑛 · 𝑑𝑡

)︂
for achieving a

(𝑐, 𝑝 𝑓 )-approximation of 𝝅 (𝑡). The result is subsequently improved

by BiPPR [26, 27] to
1

𝛼𝑐 ·
√︂

𝑑𝑡 ·𝑛
𝛼 ·

√︂
log (1/𝑝 𝑓 ) = �̃�

(︂√
𝑛 · 𝑑𝑡

)︂
. Fur-

thermore, Bressan et al. [10] proposed the SubgraphPush method,

which optimizes the complexity result to �̃�

(︃
min

{︃
𝑚2/3𝑑1/3

max

𝑑2/3 , 𝑚
4/5

𝑑3/5

}︃)︃
.

Here 𝑑 and 𝑑max denote the average and maximum degree of all

the nodes in the graph, respectively.

The RBS Method. Reviewing the hybrid methods mentioned

above, the Monte-Carlo sampling phase and the reverse exploration

phase serve as two separate phases and are conducted sequentially.

In comparison, a recent method, RBS [36], proposes to mix the

two phases in a more flexible way. Specifically, the RBS method

follows the framework of the reverse exploration, which reversely

propagates the probability mass from the given target node 𝑡 to its

ancestors in the graph. The difference is, in each backward push

step (e.g. at node 𝑣), the RBS method only deterministically pushes

the probability mass at 𝒓𝑏 (𝑣) to a small fraction of 𝑣 ’s neighbors

(i.e., deterministically increase the residue of𝑢 ∈ 𝑁 (𝑣) if the residue
increment

(1−𝛼 )𝒓𝑏 (𝑣)
𝑑𝑢

≥ 𝜃 , where 𝜃 is a threshold for determinis-

tic push). For the other neighbors 𝑢, the RBS method generates a

uniform random 𝑟𝑎𝑛𝑑 ∈ (0, 1) and only updates the residues 𝒓𝑏 (𝑢)
if
(1−𝛼 )𝒓𝑏 (𝑣)

𝑑𝑢
≥ 𝑟𝑎𝑛𝑑 · 𝜃 . By this means, the RBS method avoids

to touch all neighbors, and successfully reduces an 𝑂 (𝑑) gap be-

tween the time complexity of LocalPush [2] and the lower bound

for single-target PPR queries. Here 𝑑 denotes the average node

degree in the graph. For the single-node PageRank computation,

the expected time complexity of RBS can be bounded by �̃� (𝑛) by
setting 𝜃 =

𝑐2 ·𝝅 (𝑡 )
12·log

1−𝛼 (𝑐𝛼/2𝑛)
.

The theoretical insight introduced by RBS is encouraging, which

enlightens us that we may flexibly mix the deterministic reverse

exploration and the randomized Monte-Carlo sampling in each step,

instead of separately performing the two phases one by one.

4 ALGORITHM
This section presents our SetPush algorithm. Before introducing

the details, we first illustrate the reasons why existing methods

are unable to achieve the �̃�
(︁
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︁
time complexity for the

single-node PageRank computation on undirected graphs.

4.1 Limitations of Existing Methods
• For the Monte-Carlo method, the lower bound of the query

time complexity for deriving a (𝑐, 𝑝 𝑓 )-approximation of 𝝅 (𝑡)
is Ω

(︂
1

𝝅 (𝑡 )

)︂
. By the definition formula of PageRank, the initial

probability distribution of simulating 𝛼-random walks is
1

𝑛 · 1.
Therefore, in the worst-case scenario where 𝝅 (𝑡) = 𝑂

(︂
1

𝑛

)︂
(e.g.,

the node 𝑣 in Figure 1), the Monte-Carlo method needs to simu-

late at least Ω (𝑛) 𝛼-random walks in order to hit node 𝑡 once.

• For the reverse exploration method, we require at least 𝑂 (𝑑𝑡 )
time to reversely push the probability mass initially at node 𝑡 to

all of its neighbors (i.e., the 𝑑𝑡 neighbors). Consider the node 𝑢

in Figure 1, where the neighborhood size of 𝑢 is 𝑂 (𝑛). When we

conduct backward push operations from node 𝑢, the time cost

has reached Ω(𝑛) only after the first backward push operation.

• For the hybrid method, the abovementioned limitations still exist.

Exceptions are the SubgraphPush [10] and RBS [36] methods.

– The SubgraphPush method defines a blacklist to record all

high-degree nodes in the graph. In the reverse exploration

phase, the SubgraphPush method only performs the backward

push operations from the nodes that are excluded from the

blacklist. By this means, the SubgraphPush method effectively

mitigates the limitations of the backward push operations as

mentioned above. However, the SubgraphPush method still

includes a Monte-Carlo sampling phase to simulate 𝛼-random

walks from a uniformly selected source node. Thus, the lower

bound of Ω (1/𝝅 (𝑡)) for the query time complexity of the

Monte-Carlo sampling methods still exists, which hinders the

SubgraphPush method from achieving the �̃�
(︁
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︁
time complexity for the single-node PageRank computation

on undirected graphs.

– For RBS, its major drawback comes from the sampling op-

eration that RBS adopts in each backward push operation.

Specifically, the sampling operation adopted in each back-

ward push operation of RBS is non-independent. Consider

the bad case scenario as shown in Figure 2. The residue incre-

ment
(1−𝛼 )𝒓𝑏 (𝑣)

𝑑𝑢
of each neighbor 𝑢 ∈ 𝑁 (𝑡) is identical. As a

result, for all neighbors 𝑢 ∈ 𝑁 (𝑡), the conditions to conduct
a randomized push (i.e.,

(1−𝛼 )𝒓𝑏 (𝑣)
𝑑𝑢

≥ 𝑟𝑎𝑛𝑑 · 𝜃 ) are satisfied
simultaneously, which, again, leads to the 𝑂 (𝑑𝑡 ) = 𝑂 (𝑛) time

cost in such bad case scenario.
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In the following, we shall describe our SetPush in details and explain
the superiority of our SetPush over existing methods. Specifically,

we first define a concept called truncated PageRank in Section 4.2.

Our SetPush is based on a

(︂
𝑐
2
, 𝑝 𝑓

)︂
-approximation of the truncated

PageRank. After that, in Section 4.3 and 4.4, we provide the high-

level ideas and detailed algorithm structure of SetPush.

4.2 Truncated PageRank
Given a target node 𝑡 in an undirected graph𝐺 = (𝑉 , 𝐸), a constant
damping factor 𝛼 ∈ (0, 1), and a constant relative error 𝑐 , we refer

to �̄� (𝑡) as the truncated PageRank of node 𝑡 if

�̄� (𝑡) = 1

𝑛
·
∑︂
𝑠∈𝑉

𝐿∑︂
ℓ=0

𝝅 (ℓ )𝑠 (𝑡), (14)

where 𝐿 = log
1−𝛼

𝑐𝛼
2𝑛 = 𝑂 (log𝑛). Analogously, we call the 𝑛-

dimensional vector �̄� = 1

𝑛 ·
∑︁
𝑠∈𝑉

∑︁𝐿
ℓ=0 𝝅

(ℓ )
𝑠 the truncated PageR-

ank vector. By Equation (6), Equation (7) and Equation (9), we can

further derive:

𝝅 =
1

𝑛
·
∑︂
𝑠∈𝑉

∞∑︂
ℓ=0

𝝅 (ℓ )𝑠 = �̄� + 1

𝑛
·
∑︂
𝑠∈𝑉

∞∑︂
ℓ=𝐿+1

𝛼 (1 − 𝛼)ℓ ·
(︂
AD−1

)︂ℓ
· 𝒆𝑠 .

Therefore, for every 𝑡 ∈ 𝑉 , we have:

𝝅 (𝑡) = �̄� (𝑡) + 1

𝑛
·
∑︂
𝑠∈𝑉

∞∑︂
ℓ=𝐿+1

𝛼 (1 − 𝛼)ℓ · 𝒆⊤𝑡 ·
(︂
AD−1

)︂ℓ
· 𝒆𝑠 .

We note that for each ℓ ∈ {0, 1, 2, . . .},
(︂
𝒆⊤𝑡 ·

(︁
AD−1

)︁ℓ · 𝒆𝑠 )︂ ∈ [0, 1].
Thus, we have

1

𝑛 ·
∑︁
𝑠∈𝑉 𝒆⊤𝑡 ·

(︁
AD−1

)︁ℓ · 𝒆𝑠 ≤ 1. As a consequence,

we can derive 𝝅 (𝑡) ≤ �̄� (𝑡) +∑︁∞
ℓ=𝐿+1 𝛼 (1−𝛼)

ℓ = �̄� (𝑡) + (1−𝛼)𝐿+1.
Recall that 𝐿 = log

1−𝛼
𝑐𝛼
2𝑛 . Then it follows:

𝝅 (𝑡) ≤ �̄� (𝑡) + 𝑐

2

· 𝛼
𝑛
≤ �̄� (𝑡) + 𝑐

2

· 𝝅 (𝑡), (15)

where we apply the lower bound of 𝝅 (𝑡) that 𝝅 (𝑡) ≥ 𝛼
𝑛 as shown

in Equation (2). Furthermore, Lemma 1 implies that deriving a

(𝑐, 𝑝 𝑓 )-approximation of 𝝅 (𝑡) can be achieved by deriving a ( 𝑐
2
, 𝑝 𝑓 )-

approximation of �̄� (𝑡).

Lemma 1. Given a target node 𝑡 in the graph 𝐺 = (𝑉 , 𝐸), �̂� (𝑡) is
a (𝑐, 𝑝 𝑓 )-approximation of node 𝑡 ’s PageRank 𝝅 (𝑡) if

|�̂� (𝑡) − �̄� (𝑡) | ≤ 𝑐

2

· 𝝅 (𝑡)

holds with probability at least 1 − 𝑝 𝑓 .

Proof. For each node 𝑡 ∈ 𝑉 , we observe:

|�̂� (𝑡) − 𝝅 (𝑡) | = |�̂� (𝑡) − �̄� (𝑡) + �̄� (𝑡) − 𝝅 (𝑡) |

≤ |�̂� (𝑡) − �̄� (𝑡) | + |�̄� (𝑡) − 𝝅 (𝑡) | ≤ |�̂� (𝑡) − �̄� (𝑡) | + 𝑐

2

· 𝝅 (𝑡),

where we plugging Equation (15) into the last inequality. Thus, if

|�̂� (𝑡)−�̄� (𝑡) | ≤ 𝑐
2
· 𝝅 (𝑡) holds with probability at least 1 − 𝑝 𝑓 , �̂� (𝑡)

is a (𝑐, 𝑝 𝑓 )-approximation of 𝝅 (𝑡), which proves the lemma. □

4.3 Key Idea of SetPush
Given an undirected graph 𝐺 = (𝑉 , 𝐸) and a target node 𝑡 , our

SetPush computes a (𝑐, 𝑝 𝑓 )-approximation of node 𝑡 ’s PageRank by

deriving a (𝑐/2, 𝑝 𝑓 )-approximation �̂� (𝑡) of �̄� (𝑡) following

�̂� (𝑡) = 1

𝑛
·
∑︂
𝑠∈𝑉

𝐿∑︂
ℓ=0

𝑑𝑡

𝑑𝑠
· �̂� (ℓ )𝑡 (𝑠) . (16)

In particular, �̂� (ℓ )𝑡 (𝑠) is an unbiased estimator of the ℓ-hop PPR

value 𝝅 (ℓ )𝑡 (𝑠). To understand Equation (16), recall that 𝝅
(ℓ )
𝑡 (𝑠) ·𝑑𝑡 =

𝝅 (ℓ )𝑠 (𝑡) · 𝑑𝑠 as shown in Equation (11). Thus, if for each 𝑠 ∈ 𝑉 ,

�̂� (ℓ )𝑡 (𝑠) is an unbiased estimator of the ℓ-hop PPR value 𝝅 (ℓ )𝑡 (𝑠),
then

𝑑𝑡
𝑑𝑠
· �̂� (ℓ )𝑡 (𝑠) is an unbiased estimator of �̂� (ℓ )𝑠 (𝑡). According to

the definition formula of the truncated PageRank �̄� (𝑡) as shown in

Equation (14), �̂� (𝑡) is therefore an unbiased estimator of 𝝅 (𝑡).
To compute �̂� (ℓ )𝑡 (𝑠), we maintain a variable called ℓ-hop residue

𝒓 (ℓ )𝑡 (𝑢) for each node 𝑢 in 𝐺 . Initially, we set 𝒓 (ℓ )𝑡 = 0 for ∀ℓ ∈
{1, 2, . . . , 𝐿} and 𝒓 (0)𝑡 = 𝒆𝑡 , where 0 is an𝑛-dimensional all zero vector.

During the query phase, we repeatedly conduct the following steps

to update 𝒓 (ℓ+1)𝑡 based on 𝒓 (ℓ )𝑡 by iterating ℓ from 0 to 𝐿−1:

• Pick a node 𝑢 with nonzero 𝒓 (ℓ )𝑡 (𝑢);
• If (1−𝛼) ·𝒓 (ℓ )𝑡 (𝑢) ≥ 𝜃 ·𝑑𝑢 , we uniformly distribute (1−𝛼) ·𝒓 (ℓ )𝑡 (𝑢)

to the (ℓ +1)-hop residue 𝒓 (ℓ+1)𝑡 (𝑣) of each 𝑣 ∈ 𝑁 (𝑢). To be more

specific, for ∀𝑣 ∈ 𝑁 (𝑢), 𝒓 (ℓ+1)𝑡 (𝑣) ← 𝒓 (ℓ+1)𝑡 (𝑣) + (1−𝛼 )
𝑑𝑢
· 𝒓 (ℓ )𝑡 (𝑢).

Note that 𝜃 ∈ (0, 1) is a tunable threshold and we provide a

detailed analysis to the choice of 𝜃 in Section 5.

• Otherwise, we independently select some neighbors of 𝑢, and

only distribute the probability mass at 𝒓 (ℓ )𝑡 (𝑢) to those sam-

pled neighbors. Notably, for each 𝑣 ∈ 𝑁 (𝑢), the expectation of

𝒓 (ℓ+1)𝑡 (𝑣)’s increment is still guaranteed to be
(1−𝛼 )
𝑑𝑢
· 𝒓 (ℓ )𝑡 (𝑢).

After all the 𝐿 iterations have been processed, we return �̂� (𝑡) =
1

𝑛 ·
∑︁
𝑠∈𝑉

∑︁𝐿
ℓ=0

𝑑𝑡
𝑑𝑠
· 𝛼 · 𝒓 (ℓ )𝑡 (𝑠) as an estimator of 𝝅 (𝑡).

As we shall demonstrate in Section 5, the ℓ-hop residue vector

𝒓 (ℓ )𝑡 is an unbiased estimate of
1

𝛼 ·𝝅
(ℓ )
𝑡 . In otherwords, E

[︂
𝒓 (ℓ )𝑡 (𝑢)

]︂
=

1

𝛼 · 𝝅
(ℓ )
𝑡 (𝑢) holds for each 𝑢 ∈ 𝑉 . To see this, we observe that

𝝅 (0)𝑡 = 𝛼 · 𝒆𝑡 holds by definition. Recall that we set 𝒓 (0)𝑡 = 𝒆𝑡 as

mentioned above. Therefore, E

[︂
𝒓 (ℓ )𝑡

]︂
= 1

𝛼 · 𝝅
(ℓ )
𝑡 holds when ℓ = 0.

Furthermore, let us assume 𝒓 (ℓ )𝑡 = 1

𝛼 · 𝝅
(ℓ )
𝑡 holds for any 𝑖 ∈ [0, ℓ].

Then for each 𝑣 ∈ 𝑉 , the expectation of 𝒓 (ℓ+1)𝑡 (𝑣) satisfies:

E

[︂
𝒓 (ℓ+1)𝑡 (𝑣)

]︂
=

∑︂
𝑢∈𝑁 (𝑣)

(1 − 𝛼)
𝑑𝑢

· E
[︂
𝒓 (ℓ )𝑡 (𝑢)

]︂
=

∑︂
𝑢∈𝑁 (𝑣)

(1 − 𝛼)
𝑑𝑢

·
𝝅 (ℓ )𝑡 (𝑢)

𝛼
.

By Equation (10), we can therefore derive E

[︂
𝒓 (ℓ+1)𝑡 (𝑣)

]︂
= 1

𝛼 ·

𝝅 (ℓ+1)𝑡 (𝑣). Consequently, for every ℓ ∈ {1, . . . , 𝐿}, E
[︂
𝒓 (ℓ )𝑡

]︂
= 1

𝛼 ·𝝅
(ℓ )
𝑡

holds by induction. The formal proof can be found in Section 5.

Furthermore, it can be proved that �̂� (𝑡) is also an unbiased

estimator of the truncated PageRank �̄� (𝑡). Specifically, recall that
�̂� (𝑡) = 1

𝑛 ·
∑︁
𝑠∈𝑉

∑︁𝐿
ℓ=0

𝑑𝑡
𝑑𝑠
· 𝛼 · 𝒓 (ℓ )𝑡 (𝑠) according to Algorithm 1. By
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applying the linearity of expectation, we can thus derive

E [�̂� (𝑡)] = 1

𝑛
·
∑︂
𝑠∈𝑉

𝐿∑︂
ℓ=0

𝑑𝑡

𝑑𝑠
· 𝛼 · E

[︂
𝒓 (ℓ )𝑡 (𝑠)

]︂
=

1

𝑛
·
∑︂
𝑠∈𝑉

𝐿∑︂
ℓ=0

𝑑𝑡

𝑑𝑠
· 𝝅 (ℓ )𝑡 (𝑠).

Recall that in Equation (11), we show that
𝑑𝑡
𝑑𝑠
· 𝝅 (ℓ )𝑡 (𝑠) = 𝝅 (ℓ )𝑠 (𝑡),

following E [�̂� (𝑡)] = 1

𝑛 ·
∑︁
𝑠∈𝑉

∑︁𝐿
ℓ=0 𝝅

(ℓ )
𝑠 (𝑡) = �̄� (𝑡).

Advantages of the Push Operation Adopted in SetPush. Note

that the ℓ-hop residue 𝒓 (ℓ )𝑡 (𝑢) defined above is similar in spirit to

the one used in the vanilla backward push operation adopted in

the reverse exploration method (see Section 3.3), but differs in two

crucial aspects as described below.

• To distribute the probability mass maintained at 𝒓 (ℓ )𝑡 (𝑢), the
backward push operation (except in RBS [36]) touches every

neighbor 𝑣 of 𝑢 to update the residue of 𝑣 , which costs 𝑂 (𝑑𝑢 )
deterministically. In comparison, for the node 𝑢 with (1 − 𝛼) ·
𝒓 (ℓ )𝑡 (𝑢) ≤ 𝜃 · 𝑑𝑢 , we only select some neighbors 𝑣 ∈ 𝑁 (𝑢) to
update 𝒓 (ℓ+1)𝑡 (𝑣). Therefore, the time cost of each update process

is only proportional to the size of the sampled outcomes. By this

means, we successfully avoid the𝑂 (𝑑𝑢 ) term of time complexity

introduced by the vanilla backward push.

• Compared to the RBS method, we independently sample the

neighbors 𝑣 from 𝑁 (𝑢) to update 𝒓 (ℓ+1)𝑡 (𝑣). As a consequence,
the increment of 𝒓 (ℓ+1)𝑡 (𝑣) for each 𝑣 ∈ 𝑉 is independent with

each other. In contrast, the sampling technique adopted in the

RBS method [36] is non-independent, resulting in either large

variance or expensive time cost. For example, consider the graph

shown in Figure 2 with node 𝑡 as the given target node. For the

RBS method, the sampling condition of each 𝑢 ∈ 𝑁 (𝑡) is satis-
fied simultaneously, which costs either 𝑂 (𝑛) time or unbounded

approximation error. Instead, in SetPush, we can independently

some 𝑢 ∈ 𝑁 (𝑡) to update 𝒓 (ℓ )𝑡 (𝑢).

4.4 The SetPush Algorithm
Algorithm 1 illustrates the pseudocode of SetPush. Consider an
undirected graph 𝐺 = (𝑉 , 𝐸), a target node 𝑡 , a constant damping

factor 𝛼 ∈ (0, 1) and a threshold parameter 𝜃 ∈ (0, 1). Initially,
we set 𝒓 (0)𝑡 = 𝒆𝑡 and iteratively conduct the update process as

described in Section 4.3 from ℓ = 0 to 𝐿−1, where 𝐿 = log
1−𝛼

𝑐𝛼
2𝑛 . In

particular, for the node𝑢 with 0 < (1−𝛼) ·𝒓 (ℓ )𝑡 (𝑢) ≤ 𝜃 ·𝑑𝑢 , we adopt
a geometric sampling operation to independently select neighbors 𝑣

from 𝑁 (𝑢). Specifically, we independently sample every 𝑣 ∈ 𝑁 (𝑢)

with probability 𝑝∗ =
(1−𝛼 ) ·𝒓 (ℓ )𝑡 (𝑢 )

𝑑𝑢 ·𝜃 . For each sampled 𝑣 ∈ 𝑁 (𝑢), we
increase the residue 𝒓 (ℓ+1)𝑡 (𝑣) by 𝜃 . By this means, the expectation

of 𝒓 (ℓ+1)𝑡 (𝑣)’s increment is still
(1−𝛼 )
𝑑𝑢
·𝒓 (ℓ )𝑡 (𝑢). It’s worth noting that

we aim to complete the above described sampling process using

the time of 𝑂 (𝑑𝑢 · 𝑝∗). In other words, we require the expected

time cost of the above described sampling process is asymptotically

the same to the expected size of the sampling outcomes (i.e., the

expected number of 𝑢’s neighbors that are successfully sampled).

To achieve this goal, we define a variable 𝑖𝑑𝑥 for referring to the

index of 𝑢’s neighbor in 𝑁 (𝑢) that is successfully sampled. Initially,

we set 𝑖𝑑𝑥 as 0. Moreover, we define a geometric random number 𝑟𝑔,

Algorithm 1: The SetPush Algorithm

Input: Undirected graph 𝐺 = (𝑉 , 𝐸), target node 𝑡 ∈ 𝑉 ,

constant damping factor 𝛼 , threshold 𝜃

Output: Estimator of 𝝅 (𝑡)
1 Initialize two 𝑛-dimensional vectors 𝒓 (0)𝑡 ← 𝒆𝑡 and �̂�𝑡←𝛼𝒆𝑡 ;

2 𝐿 ← log
1−𝛼

𝑐𝛼
2𝑛 ;

3 for ℓ from 0 to 𝐿 − 1 do
4 Initialize an 𝑛-dimensional vector 𝒓 (ℓ+1)𝑡 ← 0;

5 for each 𝑢 ∈ 𝑉 with nonzero 𝒓 (ℓ )𝑡 (𝑢) do
6 if (1 − 𝛼) · 𝒓 (ℓ )𝑡 (𝑢) ≥ 𝜃 · 𝑑𝑢 then
7 for each 𝑣 ∈ 𝑁 (𝑢) do
8 𝒓 (ℓ+1)𝑡 (𝑣) ← 𝒓 (ℓ+1)𝑡 (𝑣) + (1−𝛼 )

𝑑𝑢
· 𝒓 (ℓ )𝑡 (𝑢);

9 else

10 Let 𝑖𝑑𝑥 ← 0, and 𝑝∗ ← (1−𝛼 ) ·𝒓 (ℓ )𝑡 (𝑢 )
𝑑𝑢 ·𝜃 ;

11 while true do
12 Generate a geometrical random 𝑟𝑔 ∼ 𝐺 (𝑝∗);
13 𝑖𝑑𝑥 ← 𝑖𝑑𝑥 + 𝑟𝑔;
14 if 𝑖𝑑𝑥 > 𝑑𝑢 then
15 break;

16 Let 𝑣 denote the 𝑖𝑑𝑥-th node in 𝑁 (𝑢);
17 𝒓 (ℓ+1)𝑡 (𝑣) ← 𝒓 (ℓ+1)𝑡 (𝑣) + 𝜃 ;

18 Clear 𝒓 (ℓ )𝑡 ;

19 �̂�𝑡 ← �̂�𝑡 + 𝛼 · 𝒓 (ℓ+1)𝑡 ;

20 �̂� (𝑡) ← 1

𝑛 ·
∑︁
𝑠∈𝑉

𝑑𝑡
𝑑𝑠
· �̂�𝑡 (𝑠);

21 return �̂� (𝑡) as an estimator of 𝝅 (𝑡);

and repeatedly generate 𝑟𝑔 according to the geometric distribution

𝐺 (𝑝∗). According to [11, 15], a geometric random number can be

generated in𝑂 (1) time. We repeatedly generate 𝑟𝑔 ∼ 𝐺 (𝑝∗), update
𝑖𝑑𝑥 ← 𝑖𝑑𝑥 + 𝑟𝑔 and increase the residue 𝒓 (ℓ+1)𝑡 (𝑣) of the 𝑖𝑑𝑥-th
neighbor 𝑣 in 𝑁 (𝑢) by 𝜃 , until 𝑖𝑑𝑥 > 𝑑𝑢 .

To understand the sampling process mentioned above, recall that

a geometric random number 𝑟𝑔 ∼ 𝐺 (𝑝∗) indicates the number of

Bernoulli trials needed to get one success, where each Bernoulli

trial has two Boolean-valued outcomes: success (with probability

𝑝∗) and failure (with probability 1 − 𝑝∗). Therefore, by generating

𝑟𝑔 ∼ 𝐺 (𝑝∗), we are able to derive the index of the first sampled node

in 𝑁 (𝑢), using only 𝑂 (1) time. We iteratively generate 𝑟𝑔 ∼ 𝐺 (𝑝∗)
to derive the index of the next sampled node from the index of

the last sampled neighbor (recorded by 𝑖𝑑𝑥). By this means, we

are able to independently select each neighbor 𝑣 from 𝑁 (𝑢) with

probability 𝑝∗ using only 𝑂 (𝑑𝑢 · 𝑝∗) = 𝑂

(︃
(1−𝛼 ) ·𝒓 (ℓ )𝑡 (𝑢 )

𝜃

)︃
time in

expectation. By carefully setting the value of 𝜃 (see Section 5 for

details), the expected time cost of SetPush can be consequently

bounded by𝑂
(︁
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︁
. Additionally, after the ℓ-th iteration

(∀ℓ ∈ {0, 1, . . . , 𝐿 − 1}), we clear the ℓ-hop residue vector 𝒓 (ℓ )𝑡 to

save memory. Finally, we return �̂� (𝑡) = 1

𝑛 ·
∑︁
𝑠∈𝑉

∑︁𝐿
ℓ=0

𝑑𝑡
𝑑𝑠
·𝛼𝒓 (ℓ )𝑡 (𝑠)

as the estimator of 𝝅 (𝑡).
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5 THEORETICAL ANALYSIS
In this section, we analyze the theoretical properties of our SetPush.

5.1 Correctness
Recall that we have presented some intuitions on E

[︂
𝒓 (ℓ )𝑡 (𝑢)

]︂
=

1

𝛼 · 𝝅
(ℓ )
𝑡 (𝑢) and E [�̂� (𝑡)] = �̄� (𝑡) in Section 4.3. The following

Lemmas further provide formal proofs on these intuitions. Due to

the page limit, we defer the proofs of Lemma 2 and Lemma 3 to our

Technical Report [1].

Lemma 2. For each ℓ ∈ {0, 1, . . . , 𝐿} The residue vector 𝒓 (ℓ )𝑡 ob-

tained in Algorithm 1 is an unbiased estimator of 1

𝛼 · 𝝅
(ℓ )
𝑡 , such that

for each 𝑣 ∈ 𝑉 ,

E

[︂
𝒓 (ℓ )𝑡 (𝑣)

]︂
=

1

𝛼
· 𝝅 (ℓ )𝑡 (𝑣) .

Based on Lemma 2, we are able to prove that Algorithm 1 returns

an unbiased estimator of the truncated PageRank �̄� (𝑡).
Lemma 3. Algorithm 1 returns an unbiased estimator �̂� (𝑡) of the

truncated PageRank score of node 𝑡 . Specifically, E[�̂� (𝑡)] = �̄� (𝑡).
Up to now, we have proved that �̂� (𝑡) is an unbiased estimator of

the truncated PageRank 𝝅 (𝑡). Next, we shall bound the variance of

�̂� (𝑡) and utilize the following Chebyshev Inequality [30] to bound

the failure probability for deriving a ( 𝑐
2
, 𝑝 𝑓 )-approximation of �̄� (𝑡).

Fact 1 (Chebyshev’s Ineqality [30]). Let 𝑋 denote a random
variable. For any real number 𝜀 > 0, Pr {|𝑋 − E[𝑋 ] | ≥ 𝜀} ≤ Var[𝑋 ]

𝜀2
.

5.2 Variance Analysis
We claim that the variance of �̂� (𝑡) can be bounded by

𝐿𝜃𝑑𝑡
𝑛 · 𝝅 (𝑡),

which is formally demonstrated in Theorem 1.

Theorem 1 (Variance). The variance of the estimator �̂� (𝑡) re-
turned by Algorithm 1 can be bounded as Var[�̂� (𝑡)] ≤ 𝐿𝜃𝑑𝑡

𝑛 · 𝝅 (𝑡).
To prove Theorem 1, we need several technical lemmas. Specifi-

cally, in Lemma 4, we bound the variance of 𝒓 (ℓ+1)𝑡 (𝑣) conditioned
on 𝒓 (ℓ )𝑡 that is derived in the ℓ-th iteration.

Lemma 4. For each node 𝑣 ∈ 𝑉 and each ℓ ∈ {0, 1, . . . , 𝐿 − 1}, the
variance of 𝒓 (ℓ+1)𝑡 (𝑣) can be bounded as

Var

[︂
𝒓 (ℓ+1)𝑡 (𝑣)

|︁|︁ 𝒓 (ℓ )𝑡

]︂
≤

∑︂
𝑢∈𝑁 (𝑣)

𝜃 ·
(1 − 𝛼) · 𝒓 (ℓ )𝑡 (𝑢)

𝑑𝑢
,

where Var
[︂
𝒓 (ℓ+1)𝑡 (𝑣)

|︁|︁ 𝒓 (ℓ )𝑡

]︂
denotes the variance of 𝒓 (ℓ+1)𝑡 (𝑣) condi-

tioned on the value of 𝒓 (ℓ )𝑡 that has been derived in the ℓ-th iteration.

In the second step, we prove:

Lemma 5. The variance of the estimator �̂� (𝑡) obtained by Algo-
rithm 1 can be computed as:

Var [�̂� (𝑡)] = 𝛼2

𝑛2
· Var

[︄
𝐿∑︂
ℓ=0

∑︂
𝑠∈𝑉

𝑑𝑡

𝑑𝑠
· 𝒓 (ℓ )𝑡 (𝑠)

]︄
=
𝛼2

𝑛2
·
𝐿−2∑︂
ℓ=0

E

[︄
Var

[︄ ∑︂
𝑣∈𝑉

(︄∑︂
𝑠∈𝑉

𝑑𝑡

𝑑𝑠
·
𝐿−ℓ−1∑︂
𝑖=0

𝝅 (𝑖 )𝑣 (𝑠)
𝛼

)︄
·𝒓 (ℓ+1)𝑡 (𝑣)

|︁|︁|︁|︁|︁ 𝒓 (ℓ )𝑡

]︄ ]︄
.

To prove Lemma 5, recall that �̂� (𝑡) = 1

𝑛

∑︁
𝑠∈𝑉

𝑑𝑡
𝑑𝑠
· �̂�𝑡 (𝑠), and

�̂�𝑡 (𝑠) =
∑︁𝐿
ℓ=0 𝛼𝒓

(ℓ )
𝑡 (𝑠) according to Algorithm 1. Thus, the variance

of �̂� (𝑡) derived by Algorithm 1 can be computed as:

Var[�̂� (𝑡)] =Var
[︄
1

𝑛
·
∑︂
𝑠∈𝑉

𝑑𝑡

𝑑𝑠
·
𝐿∑︂
ℓ=0

𝛼 ·𝒓 (ℓ )𝑡 (𝑠)
]︄
=
𝛼2

𝑛2
·Var

[︄∑︂
𝑠∈𝑉

𝑑𝑡

𝑑𝑠
·
𝐿∑︂
ℓ=0

𝒓 (ℓ )𝑡 (𝑠)
]︄
,

For the second equality in Lemma 5, we can prove it by repeatedly

applying the law of total variance. Details of the law of total variance

are given as below.

Fact 2 (Law of Total Variance [40]). For two random variables
𝑋 and 𝑌 , the law of total variance states:

Var [𝑌 ] = E [Var [𝑌 | 𝑋 ]] + Var [E [𝑌 | 𝑋 ]]

holds if the two variables 𝑋 and 𝑌 are on the same probability space
and the variance of 𝑌 is finite.

Furthermore, we plug the variance bound derived in Lemma 4

into Lemma 5, which follows Lemma 6.

Lemma 6. For all ℓ ∈ [0, 𝐿], the residue vectors 𝒓 (ℓ ) obtained by
Algorithm 1 in the ℓ-th iterations satisfy:

𝐿−1∑︂
ℓ=1

E

[︄
Var

[︄∑︂
𝑣∈𝑉

(︄∑︂
𝑠∈𝑉

𝑑𝑡

𝑑𝑠
·
𝐿−ℓ∑︂
𝑖=0

𝝅 (𝑖 )𝑣 (𝑠)
𝛼

)︄
·𝒓 (ℓ )𝑡 (𝑣)

|︁|︁|︁|︁|︁ 𝒓 (ℓ−1)𝑡

]︄ ]︄
≤ 𝐿𝜃𝑑𝑡 ·𝑛𝝅 (𝑡)

𝛼2
.

Finally, by putting Lemma 5 and 6 together, we can conclude that

Var [�̂� (𝑡)] ≤ 𝐿 ·𝜃 ·𝑑𝑡
𝑛2
· 𝑛�̂� (𝑡), following Theorem 1. Detailed proofs

of the above theorem and lemmas can be found in the Technical

Report [1] due to the page limit of the main text.

5.3 Time Cost
In the following, we analyze the expected time cost of the SetPush
algorithm.Moreover, Theorem 2 provides the theoretical guarantees

of the SetPush algorithm for achieving a (𝑐, 𝑝 𝑓 )-approximation of

the single-node PageRank.

Lemma 7. The expected time cost of Algorithm 1 can be bounded

by 1

𝛼𝜃
= 𝑂

(︂
1

𝜃

)︂
.

Proof. Let 𝐶𝑜𝑠𝑡 (ℓ+1) (𝑢, 𝑣) denote the time cost of increasing

𝒓 (ℓ+1)𝑡 (𝑣) during the update process conducted at node 𝑢 with

nonzero 𝒓 (ℓ )𝑡 (𝑢). According to Algorithm 1, 𝐶𝑜𝑠𝑡 (ℓ+1) (𝑢, 𝑣) = 1

holds deterministically if
(1−𝛼 )
𝑑𝑢
· 𝒓 (ℓ )𝑡 (𝑢) ≥ 𝜃 . On the other hand,

if
(1−𝛼 )
𝑑𝑢
· 𝒓 (ℓ )𝑡 (𝑢) < 𝜃 , 𝐶𝑜𝑠𝑡 (ℓ+1) (𝑢, 𝑣) = 1 (i.e., pushing probability

mass from node 𝑢 to 𝑣) holds with probability
(1−𝛼 )
𝑑𝑢 ·𝜃 · 𝒓

(ℓ )
𝑡 (𝑢), or

𝐶𝑜𝑠𝑡 (ℓ+1) (𝑢, 𝑣) = 0 holds with probability 1− (1−𝛼 )
𝑑𝑢 ·𝜃 · 𝒓

(ℓ )
𝑡 (𝑢). Thus,

given the ℓ-hop residue vector 𝒓 (ℓ )𝑡 , the expectation of𝐶𝑜𝑠𝑡 (ℓ+1) (𝑢, 𝑣)
can be bounded as:

E

[︂
𝐶𝑜𝑠𝑡 (ℓ+1) (𝑢, 𝑣)

|︁|︁ 𝒓 (ℓ )𝑡

]︂
≤ 1 · (1 − 𝛼)

𝑑𝑢 · 𝜃
· 𝒓 (ℓ )𝑡 (𝑢) .

Furthermore, let 𝐶𝑜𝑠𝑡 (ℓ+1) denote the time cost of updating the

(ℓ + 1)-hop residue vector 𝒓 (ℓ+1)𝑡 based on the ℓ-hop residue vector
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𝒓 (ℓ )𝑡 . Then we have 𝐶𝑜𝑠𝑡 (ℓ+1) =
∑︁
(𝑢,𝑣) ∈𝐸 𝐶𝑜𝑠𝑡

(ℓ+1) (𝑢, 𝑣). It follows:

E

[︂
𝐶𝑜𝑠𝑡 (ℓ+1)

|︁|︁ 𝒓 (ℓ )𝑡

]︂
=
∑︂
(𝑢,𝑣) ∈𝐸

E

[︂
𝐶𝑜𝑠𝑡 (ℓ+1) (𝑢, 𝑣)

|︁|︁ 𝒓 (ℓ )𝑡

]︂
=
∑︂
(𝑢,𝑣) ∈𝐸

(1−𝛼)
𝑑𝑢 ·𝜃

· 𝒓 (ℓ )𝑡 (𝑢).

By the property of expectation, we further have:

E

[︂
𝐶𝑜𝑠𝑡 (ℓ+1)

]︂
= E

[︂
E

[︂
𝐶𝑜𝑠𝑡 (ℓ+1)

|︁|︁ 𝒓 (ℓ )𝑡

]︂ ]︂
=

∑︂
(𝑢,𝑣) ∈𝐸

(1−𝛼)
𝑑𝑢 ·𝜃

· E
[︂
𝒓 (ℓ )𝑡 (𝑢)

]︂
=

1

𝛼𝜃
·
∑︂
𝑣∈𝑉

∑︂
𝑢∈𝑁 (𝑣)

(1−𝛼)
𝑑𝑢

· 𝝅 (ℓ )𝑡 (𝑢) =
1

𝛼𝜃
·
∑︂
𝑣∈𝑉

𝝅 (ℓ+1)𝑡 (𝑣),

where we apply Lemma 2 in the third equality given above. We

also apply Equation (10) in the last equality as shown above. Fur-

thermore, let 𝐶𝑜𝑠𝑡 =
∑︁𝐿−1
ℓ=0 𝐶𝑜𝑠𝑡 (ℓ+1) denote the total time cost of

Algorithm 1. Thus, we can derive:

E [𝐶𝑜𝑠𝑡] =
𝐿−1∑︂
ℓ=0

E

[︂
𝐶𝑜𝑠𝑡 (ℓ+1)

]︂
=

1

𝛼𝜃
·
∑︂
𝑣∈𝑉

𝐿−1∑︂
ℓ=0

𝝅 (ℓ+1)𝑡 (𝑣) ≤ 1

𝜃
= 𝑂

(︃
1

𝜃

)︃
,

by applying

∑︁𝐿−1
ℓ=0 𝝅 (ℓ+1)𝑡 (𝑣) ≤ 𝝅𝑡 (𝑣), and

∑︁
𝑣∈𝑉 𝝅 (ℓ+1)𝑡 (𝑣) = 𝛼 .

Therefore, the lemma follows. □

In the end, we employ the bound of variance Var [�̂� (𝑡)] derived
in Theorem 1 to the Chebyshev’s Inequality given in Fact 1, to

derive an appropriate setting of the threshold 𝜃 .

Theorem 2. By setting 𝜃 = max

{︃
𝛼𝑐2

12𝐿 ·𝑑𝑡 ,
𝛼𝑐2

12𝐿
·
√︂

2(1−𝛼 )
𝑚

}︃
, Algo-

rithm 1 returns a (𝑐, 𝑝 𝑓 )-approximation �̂� (𝑡) of 𝝅 (𝑡), such that
|𝝅 (𝑡) − �̂� (𝑡) | ≤ 𝑐 · 𝝅 (𝑡) holds with constant probability. The ex-
pected time cost of Algorithm 1 is bounded by

12 ·
(︁
log

1−𝛼
𝑐𝛼
2𝑛

)︁
𝛼2𝑐2

·min

{︃
𝑑𝑡 ,

√︃
𝑚

2(1 − 𝛼)

}︃
= �̃�

(︂
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︂
.

Proof. Recall that the variance of �̂� (𝑡) obtained by Algorithm 1

is bounded by
𝐿 ·𝜃 ·𝑑𝑡

𝑛 · �̂� (𝑡) as shown in Theorem 1. Plugging into

the Chebyshev’s Inequality, we can further derive:

Pr

{︂
�̂� (𝑡) − �̄� (𝑡) ≥ 𝑐

2

· 𝝅 (𝑡)
}︂
≤ 4 · Var [�̂� (𝑡)]

𝑐2 · (𝝅 (𝑡))2
≤ 4𝐿𝜃𝑑𝑡

𝑐2 · 𝑛𝝅 (𝑡)
.

Thus, by setting 𝜃 =
𝑐2 ·𝑝𝑓 ·𝑛𝝅 (𝑡 )

4𝐿𝑑𝑡
, �̂� (𝑡) − �̄� (𝑡) ≤ 𝑐

2
·𝝅 (𝑡) holds with

probability at least 𝑝 𝑓 . In particular, we note

𝑐2 ·𝑝𝑓 ·𝑛𝝅 (𝑡 )
4𝐿𝑑𝑡

≥ 𝛼𝑐2 ·𝑝𝑓

4𝐿𝑑𝑡
based on the fact that 𝝅 (𝑡) ≥ 𝛼

𝑛 as illustrated in Equation (2). If

we set 𝜃 =
𝛼𝑐2 ·𝑝𝑓

4𝐿𝑑𝑡
, then according to Lemma 7, the expected time

cost of Algorithm 1 can be bounded by
1

𝛼𝜃
=

4𝐿𝑑𝑡
𝛼2𝑐2 ·𝑝𝑓

= �̃� (𝑑𝑡 ),
where 𝛼, 𝑐, 𝑝 𝑓 are all constants, and 𝐿 = log

1−𝛼
𝑐𝛼
2𝑛 (see Section 4.2

for the details of setting 𝐿). Moreover, as we shall prove below,

𝑛𝝅 (𝑡 )
𝑑𝑡
≥ 𝛼 ·

√︂
2(1−𝛼 )

𝑚 holds for any 𝑡 ∈ 𝑉 . Thus, by setting 𝜃 =

𝛼𝑐2 ·𝑝𝑓

4𝐿
·
√︂

2(1−𝛼 )
𝑚 , the expected time cost of Algorithm 1 is bounded

by
1

𝛼𝜃
= 4𝐿

𝛼2𝑐2 ·𝑝𝑓
·
√︂

𝑚
2(1−𝛼 ) = �̃� (

√
𝑚).

Table 3: Datasets
Dataset 𝒏 𝒎 𝒎/𝒏
Youtube(YT) 1,138,499 5,980,886 5.25

IndoChina (IC) 7,414,768 301,969,638 40.73

Orkut-Links (OL) 3,072,441 234,369,798 76.28

Friendster (FR) 68,349,466 3,623,698,684 53.02

Now we present the proof of
𝑛𝝅 (𝑡 )
𝑑𝑡
≥ 𝛼 ·

√︂
2(1−𝛼 )

𝑚 . By Equa-

tion (2), we have:

𝝅 (𝑡) ≥ (1 − 𝛼)
∑︂

𝑢∈𝑁 (𝑡 )

𝝅 (𝑢)
𝑑𝑢
+ 𝛼

𝑛
≥ (1 − 𝛼)

∑︂
𝑢∈𝑁 (𝑡 )

1

𝑑𝑢
· 𝛼
𝑛
+ 𝛼

𝑛
.
(17)

We note

∑︁
𝑢∈𝑁 (𝑡 )

1

𝑑𝑢
≥ 𝑑2

𝑡

2𝑚 since

(︂∑︁
𝑢∈𝑁 (𝑡 )

1

𝑑𝑢

)︂
·
(︂∑︁

𝑢∈𝑁 (𝑡 ) 𝑑𝑢
)︂
≥(︂∑︁

𝑢∈𝑁 (𝑡 ) 1
)︂
2

= 𝑑2𝑡 holds by the Cauchy-Schwarz Inequality [34].

Plugging into Inequality (17), we can further derive:

𝝅 (𝑡) ≥ 𝛼

𝑛
·
(︄
(1 − 𝛼)𝑑2𝑡

2𝑚
+1

)︄
=
𝛼𝑑𝑡

𝑛
·
(︄
(1 − 𝛼)𝑑𝑡 + 2𝑚𝑑𝑡

2𝑚

)︄
≥ 𝛼𝑑𝑡

𝑛
·
√︃

2(1−𝛼)
𝑚

,

where we apply the fact that (1 − 𝛼)𝑑𝑡 + 2𝑚
𝑑𝑡
≥ 2 ·

√︁
(1 − 𝛼)2𝑚 by

the AM-GM Inequality. Consequently,
𝑛𝝅 (𝑡 )
𝑑𝑡
≥𝛼 ·

√︂
2(1−𝛼 )

𝑚 holds

for each 𝑡 ∈ 𝑉 , and the theorem follows. □

6 EXPERIMENTS
This section presents the empirical results of SetPush. All experi-
ments are conducted on a machine with an Intel(R) Xeon(R) Gold

6126@2.60GHz CPU and 500GB memory with the Linux OS. We

implement all algorithms in C++ compiled by g++ with the O3

optimization turned on.

Datasets. We use four large-scale real-world datasets in the exper-

iments
1 2

, including Youtube (YT), IndoChina (IC), Orkut-Links

(OL) and Friendster (FR). The Youtube, Orkut-Links and Friendster

datasets are all originated from social networks, where the nodes

in the graph correspond to the users in the website, and edges in-

dicates friendship between users. Additionally, the IndoChina is a

web dataset for the country domains in Indochina. We summarize

the statistics of all the datasets in Table 3.

Query Sets. We generate two sets of query nodes, denoted as 𝑄1

and 𝑄2, in the experiments. First, for the 𝑄1 query set, we select 10

nodes from the graph’s vertex set 𝑉 uniformly at random. For the

second query set 𝑄2, we select 10 query nodes from𝑉 according to

the node degree distribution. The larger the node’s degree is, the

more likely the node is selected into 𝑄2. Note that the PageRank

distribution of a real-world network is experimentally observed

to follow the power-law distribution [5, 27, 38, 39]. In particular,

the power-law exponent of the PageRank distribution is the same

as that of the degree distribution of the network. Therefore, by

sampling query nodes according to the degree distribution, we

are more likely to obtain the query nodes with relatively large

PageRank scores.

Parameters. We compare our SetPush against five competitors:

MC [17], LocalPush [28], FastPPR [29], RBS [36] and Subgraph-

Push [10]. Among them, MC is a Monte-Carlo method. LocalPush

1
http://snap.stanford.edu/data

2
http://law.di.unimi.it/datasets.php
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Figure 3: Query time (seconds) of each algorithm with uniformly selected query node, 𝑐 = 0.1
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Figure 4: Query time (seconds) of each algorithm with uniformly selected query node, 𝑐 = 0.5
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Figure 5: Query time (seconds) of each algorithm with degree distributed query nodes, 𝑐 = 0.1

SetPush

LocalPush RBS
FastPPR

SubgraphPush MC10−1

100

101

102

qu
er

y 
tim

e 
(s

)

YT

SetPush

LocalPush RBS
FastPPR

SubgraphPush MC
100

101

102

103

qu
er

y 
tim

e 
(s

)

IC

SetPush

LocalPush RBS
FastPPR

SubgraphPush MC
100

101

102

103

qu
er

y 
tim

e 
(s

)

OL

SetPush RBS
FastPPR

SubgraphPush MC101

102

103

104

qu
er

y 
tim

e 
(s

)

FR

Figure 6: Query time (seconds) of each algorithm with degree distributed query nodes, 𝑐 = 0.5

is a reverse exploration method. FastPPR [29], RBS [36] and Sub-

graphPush [10] are all hybrid methods. We set the parameters

of these competitors strictly according to the theoretical analysis.

Specifically, for the MC method [17], it has one parameter 𝑛𝑟 , the

number of 𝛼-random walks. We set 𝑛𝑟 =
2

3
𝑐+2

𝑐2 ·𝝅 (𝑡 ) · ln
1

𝑝𝑓
according

to the analysis. The LocalPush method [28] has one parameter:

the push threshold 𝜀. We set 𝜀 = 𝑐𝛼
𝑛 . The FastPPR method has

two parameters: the push threshold 𝑟max and the number of ran-

dom walks 𝑛𝑟 . We set 𝑟max = 𝑐 ·
√︃

𝛼𝑑𝑡 ·log (1/(1−𝛼 ) )
𝑛·log (1/𝑝𝑓 ) ·log (𝑛/𝛼 ) , and 𝑛𝑟 =

45 log
1−𝛼 (𝑐𝛼/2𝑛)

𝑐 ·
√︃

𝑛·𝑑𝑡 ·log (1/(1−𝛼 ) ) log (2/𝑝𝑓 )
𝛼 ·log (𝑛/𝛼 ) according to the de-

scriptions in FastPPR [29]. For RBS, recall that RBS can achieve the

�̃� (𝑛) time complexity by setting the threshold 𝜃 =
𝑐2 ·𝝅 (𝑡 )

12·log
1−𝛼 (𝑐𝛼/2𝑛)

.

However, we do not know the real value of 𝝅 (𝑡) in advance. Thus,

the value of 𝝅 (𝑡) can be only in place of the lower bound
𝛼
𝑛 of

𝝅 (𝑡) as indicated in Equation (2). Thus, in the experiments of RBS,

we set 𝜃 = 𝑐2𝛼
12𝑛·log

1−𝛼 (𝑐𝛼/2𝑛)
. For the SubgraphPush method, it has

three parameters: the number of random walks 𝑛𝑟 , the number of

subgraphs 𝑘 , and the maximum iteration number 𝐿. We set 𝑛𝑟 =

min

{︃
𝑛

2

3 · 𝑑1/3
max
·
(︂
ln

𝑛
𝑝𝑓

)︂ 1

3·
(︂
ln

1

𝑝𝑓

)︂ 1

3· 𝑐−
4

3 , 𝑛
4

5𝑑
1

5 ·
(︂
ln

𝑛
𝑝𝑓

)︂ 1

5·
(︂
ln

1

𝑝𝑓

)︂ 2

5· 𝑐−
6

5

}︃
,

𝑘 =
𝑛·log 1/𝑝𝑓

𝑐2 ·𝑛𝑟 , and 𝐿 = ln(𝑐/𝑛) following [10]. In all experiments,

we set the failure probability 𝑝 𝑓 = 0.1, the relative error parameter

𝑐 = 0.1, and the damping factor 𝛼 = 0.2 unless otherwise specified.

Average Overall Query Time. We first compare the empirical

query time of all methods. Specifically, for each method, we issue

one single-node PageRank query for each query node in the 𝑄1

query set, and report the average query time of each method over

all the query nodes in 𝑄1 in Figure 3 and Figure 4. In particular,

we set the relative error parameter 𝑐 = 0.1 and 𝑐 = 0.5 in Figure 3

and Figure 4, respectively. From Figure 3 and Figure 4, we observe

that our SetPush consistently outperforms other competitors, which

demonstrates the superiority of our SetPush. It’s worth mentioning

that we omit the MC method on the FR dataset in Figure 3 since

the query time of MC on the FR dataset exceeds one day.

Moreover, in Figure 5 and Figure 6, we report the average query

time of each method over all the query nodes in the query set
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Figure 8: Experiments on the empirical errors of SetPush.

𝑄2. We omit the LocalPush method in both Figure 5 and Figure 6,

and the MC method in Figure 5 because the query time of these

methods exceed one day. We note that our SetPush still consistently

outperforms other competitors when 𝑐 = 0.1. When 𝑐 = 0.5, the

empirical query time of our SetPush outperforms other competitors

(except the SubgraphPush method) by up to an order of magnitude

on all datasets. However, on the YT and OL datasets, the Subgraph-

Push method slightly outperforms our SetPush. We attribute the

superiority of SubgraphPush as shown in Figure 6 to the blacklist

trick adopted in the SubgraphPush method. In Figure 7, we report

the increment of the query time of each method with increasing

𝑑𝑡 and fixed 𝑐 = 0.1. We observe that our SetPush can consistently

outperform SubgraphPush on all datasets. This demonstrates the

superiority and robustness of our SetPush.
𝒅𝒕 v.s. Average Overall Query Time. In Figure 7, we show the

trade-off lines between 𝑑𝑡 (i.e., the degree of the target node 𝑡 )

and the empirical query time. We leverage such experiments to ob-

serve the relationship between the query time of each method

and the value of 𝑑𝑡 . Specifically, we partition the vertex set 𝑉

into five subsets 𝑉1,𝑉2,𝑉3,𝑉4,𝑉5, such that the average node de-

grees 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5 of 𝑉1,𝑉2,𝑉3,𝑉4,𝑉5 satisfy 𝑑1 ≥ 100𝑑 , 𝑑2 ∈
[10𝑑, 100𝑑), 𝑑3 ∈ [𝑑, 10𝑑), 𝑑4 ∈ [0.1𝑑, 𝑑), and 𝑑5 ∈ [0.01𝑑, 0.1𝑑), re-
spectively, where 𝑑 denotes the average node degree in the graph𝐺 .

In each subset (i.e.,𝑉1, . . . ,𝑉5), we select five query nodes uniformly

at random, and report the average query time of each method over

the five query nodes. We omit LocalPush and RBS on the FR dataset

when 𝑑𝑡/𝑑 ≥ 10 because their query time exceeds one day. We set

𝑐 = 0.1 and 𝑝 𝑓 = 0.1 in these experiments. From Figure 7, we note

that our SetPush consistently outperforms all baseline methods on

all datasets for all query sets. In particular, for law-degree query

nodes, our SetPush achieves 10× ∼ 1000× improvements on the

query time over existing methods. For high-degree query nodes,

the superiority of SetPush is gradually weakened, but still exists.

Additionally, we observe:

• The query time of the Monte-Carlo method, RBS, and the Sub-

graphPush method nearly remain unchanged with the increment

of 𝑑𝑡 . This concurs with our analysis that the three methods do

not include 𝑑𝑡 in their complexity results.

• The query time of FastPPR and BiPPR increase slowly with the

increment of 𝑑𝑡 , while the query time of our SetPush and Local-

Push grows linearly to 𝑑𝑡 . This concurs with our analysis that

the time complexities of FastPPR and BiPPR are both �̃�

(︂√
𝑛 · 𝑑𝑡

)︂
,

while the time complexities of SetPush and LocalPush both have

a linear dependence on 𝑑𝑡 .

Empirical Errors of SetPush. In Figure 8, we evaluate the empiri-

cal error of our SetPush. Specifically, we adopt the powermethod [33]

with the maximum iteration times 𝐿 = 100 to compute the ground

truth of PageRank. Furthermore, on each dataset, we fix the relative

error parameter 𝑐 = 0.1 and run our SetPush for each query node

in the set 𝑄1. Then we compute the empirical relative error 𝑐𝑒𝑚𝑝

for each query node following 𝑐𝑒𝑚𝑝 =
|�̂� (𝑡 )−𝝅 (𝑡 ) |

𝝅 (𝑡 ) . We report the

average of the values

(︂
𝑐𝑒𝑚𝑝

𝑐

)︂
over all query nodes in Figure 8. Note

that

(︂
𝑐𝑒𝑚𝑝

𝑐

)︂
≤ 1 implies that the empirical relative error of SetPush

meets the requirement of the (𝑐, 𝑝 𝑓 )-approximation of 𝝅 (𝑡). From
Figure 8, we observe that the empirical relative errors of SetPush
on all datasets are consistently smaller than 𝑐 . In particular, on

the IC datasets, the empirical relative errors of SetPush are smaller

than 𝑐 by up to two orders of magnitude. This demonstrates the

correctness and query efficiency of our SetPush.

7 CONCLUSION
In this paper, we study the problem of single-node PageRank com-

putation on undirected graphs.We propose a novel method, SetPush,
which achieves the �̃�

(︁
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︁
expected time complexity for

estimating the target node 𝑡 ’s PageRank with constant relative error

and constant success probability.We prove that this is the best result

among existing methods on undirected graphs. We also empirically

demonstrate the effectiveness of SetPush on large-scale real-world

datasets. For the future work, we note that the lower bound for

the problem of single-node PageRank computation on undirected

graphs is still unclear. Since we have already achieved the com-

plexity bound �̃�
(︁
min

{︁
𝑑𝑡 ,
√
𝑚

}︁)︁
, a natural question is whether this

complexity matches the lower bound for the problem.
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