
Linearly Constrained Bilevel Optimization: A Smoothed
Implicit Gradient Approach

Prashant Khanduri * 1 Ioannis Tsaknakis * 2 Yihua Zhang 3 Jia Liu 4 Sijia Liu 3 Jiawei Zhang 5 Mingyi Hong 2

Abstract

This work develops analysis and algorithms for
solving a class of bilevel optimization prob-
lems where the lower-level (LL) problems have
linear constraints. Most of the existing ap-
proaches for constrained bilevel problems rely on
value function-based approximate reformulations,
which suffer from issues such as non-convex and
non-differentiable constraints. In contrast, in this
work, we develop an implicit gradient-based ap-
proach, which is easy to implement, and is suit-
able for machine learning applications. We first
provide an in-depth understanding of the problem,
by showing that the implicit objective for such
problems is in general non-differentiable. How-
ever, if we add some small (linear) perturbation to
the LL objective, the resulting implicit objective
becomes differentiable almost surely. This key
observation opens the door for developing (deter-
ministic and stochastic) gradient-based algorithms
similar to the state-of-the-art ones for uncon-
strained bi-level problems. We show that when
the implicit function is assumed to be strongly-
convex, convex, and weakly-convex, the resulting
algorithms converge with guaranteed rate. Finally,
we experimentally corroborate the theoretical find-
ings and evaluate the performance of the proposed
framework on numerical and adversarial learning
problems.

*Equal contribution 1Department of CS, Wayne State
University, Detroit, MI 48202, USA 2Department of ECE,
University of Minnesota, Minneapolis, MN 55455, USA
3Department of CSE, Michigan State University, East Lansing,
MI 48824, USA 4Department of ECE, The Ohio State Uni-
versity, Columbus, OH 43210, USA 5Laboratory for Informa-
tion & Decision Systems, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, USA. Correspondence to: Ioan-
nis Tsaknakis <tsakn001@umn.edu>, Prashant Khanduri <khan-
duri.prashant@wayne.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Bilevel optimization problems (Colson et al., 2005; Dempe
& Zemkoho, 2020) can be used to model an important class
of hierarchical optimization tasks with two levels of hier-
archy, the upper-level (UL) and the lower-level (LL). The
key characteristics of bilevel problems are: 1) the solution
of the UL problem requires access to the solution of the
LL problem and, 2) the LL problem is parametrized by
the UL variable. Bilevel optimization problems arise in a
wide range of machine learning applications, such as meta-
learning (Rajeswaran et al., 2019; Franceschi et al., 2018),
data hypercleaning (Shaban et al., 2019), hyperparameter op-
timization (Sinha et al., 2020; Franceschi et al., 2018; 2017;
Pedregosa, 2016), adversarial learning (Li et al., 2019; Liu
et al., 2021a; Zhang et al., 2022), as well as in other ap-
plication domains such as network optimization (Migdalas,
1995), economics (Cecchini et al., 2013), and transport re-
search (Didi-Biha et al., 2006; Kalashnikov et al., 2010). In
this work, we focus on a special class of stochastic bilevel
optimization problems, where the LL problem involves the
minimization of a strongly convex objective over a set of
linear inequality constraints. More precisely, we consider
the following formulation:

min
x∈X

{
G(x) := f(x,y∗(x)) := Eξ[f̃(x,y

∗(x); ξ)]
}
, (1a)

s.t. y∗(x) ∈ argmin
y∈Rdℓ

{
h(x,y)

∣∣ Ay ≤ b
}
, (1b)

where ξ ∼ D represents a stochastic sample of the objective
f(·, ·), X ⊆ Rdu is a convex and closed set, f : X ×Rdℓ →
R is the UL objective, h : X ×Rdℓ → R is the LL objective,
and f, h are smooth functions; note that the UL objective
is stochastic, while the LL one is not. We focus on the
problems where h(x,y) is strongly convex with respect
to y. The matrices A ∈ Rk×dℓ , B ∈ Rk×du and vector
b ∈ Rk define the linear constraints. In the following, we
refer to (1a) as the UL problem, and to (1b) as the LL one.

The success of the bilevel formulation and its algorithms
in many machine learning applications can be attributed to
the use of the efficient (stochastic) gradient-based methods
(Liu et al., 2021a). These methods take the following form,
in which an (approximate) gradient direction of the UL

1

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

problem is computed (using chain rule), and then the UL
variable is updated using gradient descent (GD):

∇̂G(x) ≈ ∇xf(x,y
∗(x)) + [∇y∗(x)]T∇yf(x,y

∗(x))

GD Update:x+ = x− β∇̂G(x).

The gradient of G(x) is often referred to as the implicit
gradient. However, computing this implicit gradient not
only requires access to the optimal y∗(x), but also assumes
differentiability of the mapping y∗(x) : X → Rdℓ . One can
potentially solve the LL problem approximately and obtain
an approximation ŷ(x) such that ŷ(x) ≈ y∗(x), and use it
to compute the implicit gradient (Ghadimi & Wang, 2018).
Unfortunately, not all solutions y∗(x) are differentiable, and
when they are not the above approach cannot be applied.

It is known that when the LL problem is strongly convex
and unconstrained, then ∇y∗(x) can be easily evaluated us-
ing the implicit function theorem (Ghadimi & Wang, 2018).
This is the reason that the majority of recent works have
focused on developing algorithms for the class of uncon-
strained bilevel problems (Ghadimi & Wang, 2018; Hong
et al., 2023; Ji et al., 2021; Khanduri et al., 2021b; Chen
et al., 2021a). However, when the LL problem is con-
strained, ∇y∗(x) might not even exist. In that case, most
works adopt a value function-based approach to solve prob-
lems with LL constraints (Liu et al., 2021b; Sow et al.,
2022; Liu et al., 2021c). Value-function-based methods
typically transform the original problem into a single-level
problem with non-convex and non-differentiable constraints.
To resolve the latter issue these approaches regularize the
problem by adding a strongly-convex penalty term, alter-
ing the problem’s structure. In contrast, we introduce a
perturbation-based smoothing technique, which at any given
x ∈ X makes y∗(x) differentiable almost surely, without
practically changing the landscape of the original problem
(see Lu et al. (2020, pg. 5)). It is important to note that
the value function-based approaches are more suited for
deterministic implementations, and therefore it is difficult to
use such algorithms for large scale applications and/or when
the data sizes are large. On the other hand, the gradient-
based algorithms developed in our work can easily handle
stochastic problems. Finally, there is a line of work (Amos
& Kolter, 2017; Agrawal et al., 2019; Donti et al., 2017;
Gould et al., 2021) about implicit differentiation in deep
learning literature. However, in these works the setting (e.g.
layers of neural network described by optimization tasks)
and the focus (e.g., on gradient computation and implemen-
tation, rather than on algorithms and analysis) is different.
For more details see Appendix A. Below, we list the major
contributions of our work.

Contributions. In this work, we study a class of bilevel
optimization problems with strongly convex objective and
linear constraints in the LL. Major challenges for solving

such problems are the following: 1) How to ensure that
the implicit function G(x) is differentiable? and 2) Even
if the implicit function is differentiable, how to compute
its (approximate) gradient in order to develop first-order
methods? Our work addresses these challenges and devel-
ops first-order methods to tackle such constrained bilevel
problems. Specifically, our contributions are the following:

– We provide an in-depth understanding of bilevel prob-
lems with strongly convex linearly constrained LL prob-
lems. Specifically, we first show with an example
that the implicit objective G(x) is in general non-
differentiable. To address the non-differentiability, we
propose a perturbation-based smoothing technique that
makes the implicit objective G(x) differentiable in an
almost sure sense, and we provide a way to compute the
(approximate) implicit gradient that involves a closed-
form expression and an (approximate) solution of the LL
problem.

– The smoothed problem we obtain is challenging, since
its implicit objective does not have Lipschitz continu-
ous gradients. Therefore, conventional gradient based
algorithms may no longer work. To address this issue,
we propose the Deterministic Smoothed Implicit Gra-
dient ([D]SIGD) method that utilizes an (approximate)
line search-based algorithm and establish asymptotic con-
vergence guarantees. We also analyze [S]SIGD for the
stochastic version of problem (1) and establish finite-time
convergence guarantees in a neighborhood around a sta-
tionary solution for the cases when the implicit function
is weakly-convex, strongly-convex, and convex (but not
Lipschitz smooth).

– Finally, we evaluate the performance of the proposed
algorithmic framework via experiments on quadratic
bilevel and adversarial learning problems.

The bilevel problem (1) captures several important applica-
tions. Below we provide two such applications.

Adversarial Training. The problem of robustly train-
ing a model ϕ(x; c), where x denotes the model param-
eters and c the input to the model; let {(ci,di)}Ni=1 with
ci ∈ Rdℓi ,di ∈ R be the training set (Zhang et al., 2022;
Goodfellow et al., 2014). It can be formulated as the follow-
ing bilevel problem:

min
x∈Rdu

{ N∑
i=1

fi(ϕ(x; ci + y∗
i (x)),di)

}
(2)

s.t. y∗(x) ∈

argmin
yi∈Rdℓi

N∑
i=1

hi(ϕ(x; ci + yi),di)

s.t. − b ≤ y ≤ b

where y = [yT
1 , . . . ,y

T
N]T ∈ Rdℓ ; with yi ∈ Rdℓi denotes

the attack on the ith example and we have
∑N

i=1 dℓi = dℓ.

2

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Moreover, fi : R × R → R denotes the loss function for
learning the model parameter x, while hi : R × R → R
denotes the adversarial objective used to design the optimal
attack y. Note that the linear constraints in the LL problem
−b ≤ y ≤ b models the attack budget.

Distributed Optimization. In distributed optimization
(Chang et al., 2020; Yang et al., 2019), a set of N agents
aim to jointly minimize an objective function G(x) over an
undirected graph G = (V,E). We consider the following
distributed bilevel problem

min
{xi∈X|Ax=0}

{
G(x) :=

N∑
i=1

fi(xi,y
∗
i (xi))

}
s.t. y∗(x) ∈ argmin

y∈Rdℓ

{ N∑
i=1

hi(xi,yi) s.t. Ay = 0
}
,

where x = [x1, . . . ,xN] and y = [y1, . . . ,yN]. Each agent
i ∈ [N] has access to fi and hi. The constraint Ay = 0
(resp. Ax = 0) is introduced to ensure the consensus of
LL (resp. UL) variables. Such problems arise in signal
processing and sensor networks (Yousefian, 2021). This for-
mulation also models a decentralized meta learning problem
where the training and validation data is distributed among
agents while each agent aims to solve the meta learning
problem globally (Ji et al., 2021).

2. Properties and Implicit Gradient of (1)

2.1. Preliminaries

In this section we study the properties of problem 1. First,
let us define the necessary notations. Let A(y) be the ma-
trix that contains the rows S(y) ⊆ {1, . . . , k} of A that
correspond to the active constraints of inequality Ay ≤ b
in the LL problem, that is we have A(y)y = b(y), where
b(y) contains the elements of b with indices in S(y). Also,
we denote with λ

∗
(x) the Lagrange multipliers vector that

corresponds to the active constraints at y∗(x). Next, we
introduce some basic assumptions.

Assumption 2.1. We assume that the following conditions
hold for problem (1):

(a) f(x,y) is continuously differentiable, and h(x,y) is
twice continuously differentiable.

(b) X is closed and convex; Y =
{
y ∈ Rdℓ

∣∣ Ay ≤ b
}

is
a compact set.

(c) h(x,y) is µh-strongly convex in y, for every x ∈ X .

(d) There exists y ∈ Rdℓ such that Ay < b.

(e) A(y∗(x)) is full row rank, for every x ∈ X 1.
1This is the LICQ condition (Bertsekas, 1998) of the LL problem. It is used to

ensure that the optimal solutions satisfy the KKT conditions.

The Assumptions 2.1(a), (b) and (c) are standard assump-
tions in bilevel optimization literature and are required to
ensure the continuity of the implicit function (Proposition
2.2). Assumption 2.1(c) ensures that the implicit function
G(x) is well defined as the LL problem returns a single
point. Assumption 2.1(d) ensures strict feasibility of the
LL problem, while Assumption 2.1(e) implies that the rows
of A corresponding to the active constraints are linearly
independent. Note that this assumption is necessary to en-
sure the differentiability of the implicit function (Lemma
2.3, 2.4). Also note that there are some special cases in
which Assumption 2.1(e) is automatically satisfied. For
instance, consider a problem where the LL problem has
box constraints, i.e., a ≤ y ≤ b. Then for any y ∈ Y
the only possible non-zero values in the matrix A(y) are
+1,−1, and there is only one non-zero value at each column.
Therefore, A(y) is full row rank. Next, we utilize the above
assumptions to analyze the properties of mapping y∗(x).
Proposition 2.2 (Appendix D.1.1). Under Assumption 2.1,
the mapping y∗(x) : X → Rdℓ and the implicit function
G(x) are both continuous.
Proposition 2.2 ensures that y∗(x) and G(x) are both con-
tinuous. Now if we can ensure differentiability of y∗(x),
then we can implement a gradient-based update rule to solve
(1). However, as the following example illustrates, y∗(x)
and thus G(x) are not differentiable in general.

Example. Consider the following problem

min
x∈[0,1]

x+ y∗(x) (3)

s.t. y∗(x) ∈ argmin
y∈R

{
(y2 − x2)2

∣∣ √3/5 ≤ y ≤ 1
}
. (4)

0.70 0.75 0.80 0.85
x

0.78

0.80

0.82

0.84

y
(x

)

Original Problem

Figure 1: Plot of y∗(x).

The mapping y∗(x)
is y∗(x) = x, if
x ∈ [

√
3/5, 1], and

y∗(x) =
√
3/5, if

x ∈ [0,
√
3/5). In

Figure 1, we plot this
mapping. Notice that
at the point x =√

3/5 the mapping
(and thus the implicit function) is non-differentiable.

To address the non-differentiability issue, let us introduce a
perturbation-based “smoothing” technique, where for any
fixed x ∈ X , the LL objective h(x,y) is augmented by
an additional linear perturbation term qTy, where q is a
random vector sampled from some continuous distribution
Q. Specifically, let us define:

g(x,y) := h(x,y) + qTy and (5)
y∗(x) := argmin

y∈Rdℓ

{g(x,y) | Ay ≤ b}. (6)

3

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Also, we denote F (x) := f(x,y∗(x)) as the respective
“smoothed” implicit function. Such a perturbation is used
to ensure that at a given x ∈ X , the strict complementarity
(SC) property holds for the LL problem with probability 1
(w.p. 1); see the lemma below for the formal statement.

Lemma 2.3. (Lu et al., 2020, Prop. 1) For a given x ∈ X ,
if y∗(x) is a KKT point of problem miny∈Rdℓ g(x,y), q
is generated from a continuous measure, and A(y∗(x)) is
full row rank, then the SC condition holds at x, with prob-
ability 1 (w.p. 1), i.e., A(y∗(x))y∗(x) = b(y∗(x)) =⇒
λ(y∗(x)) > 0 where λ(y∗(x)) is the corresponding vector
of Lagrange multipliers.

Combining SC ensured by Lemma 2.3 with Assumption
1, we can show that the implicit mapping y∗(x) is (almost
surely) differentiable, which further implies that the implicit
function F (x) is differentiable at a given x ∈ X , and the
corresponding gradient has a closed-form expression (please
see Lemma 2.4 below). We would like to stress that the prop-
erties mentioned above (i.e., SC and differentiability) are
defined locally, at a given point x ∈ X . These properties
will be used later to design algorithms that approximately
optimize the original problem (1). Finally, it is worth noting
that, in the absence of such a perturbation term, we would
have to introduce the SC property as an assumption, how-
ever since it is considered a strong assumption we choose
to modify the problem instead such this property follows
naturally.

2.2. Implicit Gradient

In this section, we derive a closed-form expression for the
gradient of the implicit function F (x).

Lemma 2.4 (Implicit Gradient, Appendix D.1.2). Under
Assumption 2.1, for any given x ∈ X , we have

∇y∗(x) =
[
∇2

yyg(x,y
∗(x))

]−1

·
[
−∇2

xyg(x,y
∗(x))−A

T∇λ
∗
(x)

]
(7)

∇λ
∗
(x) = −

[
A
[
∇2

yyg(x,y
∗(x))

]−1
A

T]−1 (8)

·
[
A
[
∇2

yyg(x,y
∗(x))

]−1∇2
xyg(x,y

∗(x))
]
,

where we set A := A(y∗(x)).

Note that when LL problem (1b) does not have the LL con-
straints, the implicit gradient derived in Lemma 2.4 becomes
exactly same as the one in Ghadimi & Wang (2018); Ji et al.
(2021). Moreover, if the LL problem has only linear equal-
ity constraints, the differentiability of y∗(x) follows from
the implicit function theorem under Assumptions 2.1(a) and
2.1(c) along with full row rankness of A. In fact, the expres-
sion of the implicit gradient stays the same as in Lemma 2.4
with A and λ∗(x) replaced by A and λ∗(x), respectively

(i.e., we use the full matrix A). Finally, using Lemma 2.4
we now have an expression of the implicit gradient as

∇F (x) = ∇xf(x,y
∗(x)) + [∇y∗(x)]T∇yf(x,y

∗(x)). (9)

From a practical perspective, the implicit gradient compu-
tation involves two parts, the (approximate) solution of the
lower-level problem y∗(x) and the computation of the for-
mulas (7), (8). For the solution of the LL problem there
are several efficient solution methods, as it is a (strongly)
convex optimization problem. For instance, we can solve
it using a number of projected gradient descent steps; for
more details about methods for solving the LL problem
see appendix B. Furthermore, the computation of (7), (8)
can be computationally intensive since these formulas in-
volve Jacobians and Hessian inverses of the LL objective g.
As these computations are also encountered in the uncon-
strained case (i.e., the LL problem has no constraints), we
expect that in practice some of the known approximations
from the relevant literature (Ghadimi & Wang, 2018; Hong
et al., 2023) can also be applied in our case in order to re-
duce the complexity. For instance, we can use the Neumann
series approximation for the Hessian inverse computation
similar to the way it is used in the unconstrained case (e.g.
see (Ghadimi & Wang, 2018, Lemma 3.1)).

2.2.1. APPROXIMATE IMPLICIT GRADIENT

Note that computing ∇F (x) requires the precise knowledge
of y∗(x) which is not possible for many problems of interest.
Therefore, in practice we define the approximate implicit
gradient as

∇̂F (x) = ∇xf(x, ŷ(x)) + [∇̂y∗(x)]T∇yf(x, ŷ(x)), (10)

where ∇̂y∗(x) is defined by setting the approximate LL
solution ŷ(x) in place of the exact one y∗(x) in expressions
(7) and (8). In order to ensure that (10) returns a useful
approximation of the (exact) implicit gradient, we impose a
few assumptions on the quality of the estimate ŷ(x).
Assumption 2.5. The approximate solution of (perturbed)
LL problem (5) ŷ(x) satisfies the following ∀x ∈ X :

(a) ∥ŷ(x)− y∗(x)∥ ≤ δ for δ > 0,

(b) ŷ(x) is a feasible point, i.e., Aŷ(x) ≤ b,

(c) It holds that A(y∗(x)) = A(ŷ(x)).

The LL problem requires the solution of a strongly convex
linearly constrained task. As a result, Assumptions 2.5(a),(b)
can be easily satisfied. Specifically, we can obtain approxi-
mate feasible solutions of given accuracy with known meth-
ods, such as projected gradient descent, or by using some
convex optimization solver; in section B of the Appendix
we provide one such method. Moreover, Assumption 2.5(c)

4

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

will be satisfied if we find a “sufficiently accurate” solution
ŷ(x). Specifically, from Calamai & Moré (1987, Theorem
4.1) we know that if ŷk(x) ∈ Y is an arbitrary sequence
that converges to a non-degenerate (i.e., Assumption 1(e)
and SC holds) stationary solution y∗(x), then there exists
an integer k0 such that A(y∗(x)) = A(ŷk(x)), ∀k > k0.
Remark 2.6. There are certain special cases where we can
obtain an upper bound for k0. For instance, in the case
of non-negative constraints y ≥ 0 it can be shown2 that
Lh

µh
log
(
2Lh∥y0 − y∗(x)∥/τ

)
iterations of the projected

gradient descent method suffice to ensure that the active set
of the approximate solution ŷ(x) coincides with the active
set of the exact one y∗(x) (see Nutini et al. (2019, Corollary
1)), where τ = mini∈S(y∗(x)) ∇yi

g(x,y∗(x)) and y0 is the
algorithm’s initialization. A similar result can be derived
for the case with bound constraints a ≤ y ≤ b.

Next, we introduce additional assumptions that are required
to analyze the properties of (10).
Assumption 2.7. We assume that the following holds for
problem (1), ∀x,x ∈ X and y,y ∈ Rdℓ :

(a) f has bounded gradients, i.e., ∥∇f(x,y)∥ ≤ Lf .

(b) f has Lipschitz continuous gradients, i.e.,

∥∇f(x,y)−∇f(x,y)∥ ≤ Lf∥[x;y]− [x;y]∥.

(c) h has Lipschitz continuous gradient in y, i.e.,
∥∇yh(x,y)−∇yh(x,y)∥ ≤ Lh∥y − y∥.

(d) h has Lipschitz continuous Hessian in y, i.e.,
∥∇2

yyh(x,y)−∇2
yyh(x,y)∥ ≤ Lhyy

∥y − y∥.

(e) h has Lipschitz continuous Jacobian, i.e.,
∥∇2

xyh(x,y) − ∇2
xyh(x,y)∥ ≤ Lhxy

∥y − y∥.

(f) h has a bounded Jacobian, ∥∇2
xyh(x,y)∥ ≤ Lhxy

.

Assumption 2.7 is standard in bilevel optimization literature
(Ghadimi & Wang, 2018; Hong et al., 2023; Chen et al.,
2021a; Ji et al., 2021) and is used to derive some useful
properties of the (approximate) implicit gradient (Lemma
2.8, Appendix D.1.3). It is easy to see that Assumptions
2.1(a),(c) and 2.7 hold directly for the perturbed objective (5)
with constants µg = µh, Lh = Lg, Lgyy

= Lhyy
, Lgxy

=

Lhxy , Lgxy = Lhxy ; we also assume that Assumption 2.1(e)
holds for the perturbed LL problem (5).
Lemma 2.8 (Appendix D.1.3). Suppose that Assumptions
2.1,2.5,2.7 hold. Then, for every x ∈ X the following holds

∥∇̂F (x)−∇F (x)∥ ≤ LF · δ

∥∇F (x)∥ ≤ LF and ∥∇̂F (x)∥ ≤ LF ,

where LF = Lf + Ly∗Lf + LfLy∗ , and LF =(
1 + Ly∗

)
Lf ; the constants Ly∗ , Ly∗ are defined in Lem-

mas D.7,D.9, respectively, provided in the Appendix.
2Assuming that ∇yig(x,y

∗(x)) > 0, ∀i ∈ S(y∗(x)).

2.2.2. STOCHASTIC IMPLICIT GRADIENT

In the stochastic setting, the (approximate) stochastic im-
plicit gradient is computed as:

∇̂F (x; ξ) = ∇xf̃(x, ŷ(x); ξ) + [∇̂y∗(x)]T∇y f̃(x, ŷ(x); ξ).
(11)

Also, we make the following assumption on the stochastic
gradients of the UL problem.

Assumption 2.9. We assume that the stochastic gradients
are unbiased, i.e. Eξ[∇f̃(x,y; ξ)] = ∇f(x,y) and have
bounded variance, i.e., Eξ∥∇f̃(x,y; ξ)−∇f(x,y)∥2 = σ2

f

for some σf > 0.

Assumption 2.9 is a typical assumption required to ensure
that the approximate implicit stochastic gradient is also
unbiased and has finite variance (Ghadimi & Wang, 2018;
Hong et al., 2023; Chen et al., 2021a) as shown in Lemma
2.10 below.

Lemma 2.10 (Appendix D.1.4). Under Assumptions
2.1,2.5,2.7 and 2.9, the stochastic gradient estimate in (11)
is unbiased, i.e.,

Eξ[∇̂F (x; ξ)] = ∇̂F (x)

and has bounded variance , i.e.,

Eξ∥∇̂F (x; ξ)− ∇̂F (x)∥ ≤ σ2
F

where σ2
F = 2σ2

f+2Ly∗σ2
f ; where Ly∗ is defined in Lemma

D.7 in the Appendix.

3. The SIGD Algorithms and Convergence
3.1. The Proposed Algorithms

In this section, we develop gradient-based methods for solv-
ing problem (1) by leveraging the smoothing-based tech-
nique introduced in the previous section. Recall that for any
x ∈ X , we can introduce a perturbation to make the optimal
solution y∗(x) of the perturbed LL problem differentiable
(w.p. 1) by ensuring that the SC holds (w.p. 1). Notably, SC
allows us to compute the implicit gradient in closed form
as demonstrated in Lemma 2.4. Next, to proceed with the
algorithm design, two choices are available for the pertur-
bation q. First, generate a perturbation for each x ∈ X
encountered in the algorithm. This approach will make the
problem stochastic w.r.t. the perturbation q since sampling
a q at each iteration would correspond to sampling a (bi-
ased) stochastic sample. The second option is to generate
a single perturbation at the beginning of the algorithm and
use it throughout the execution of the algorithm. It is worth
mentioning that, both approaches perform equally well in
our numerical experiments. For ease of analysis, we adopt
the second approach. However, to justify such an approach,

5

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Algorithm 1 [Deterministic] Smoothed Implicit Gradient
Descent ([D]SIGD)

1: Input: Initial parameter x0, # of iteration T , LL solu-
tion accuracy, δr, σ, measure Q

2: Sample q ∼ Q and perturb LL problem
3: for r = 0, 1, . . . , T − 1 do
4: Find an approximate solution ŷ(xr) s.t. Assumption

2.5 is satisfied.
5: Compute ∇̂F (xr) using (10), d̂r = x̃r − xr with

x̃r = projX (xr − ∇̂F (xr))
6: Select ar s.t. the following Armijo-type rule condi-

tion is satisfied

F̂ (xr)− F̂ (xr + ard̂r)

≥ −σ · ar[∇̂F (xr)]T d̂r − ϵ(δ; r) (12)

where ϵ(δ; r) depends on δr, αr and problem-
dependent parameters; F̂ (·) = f(·, ŷ(·)).

7: Projected gradient step: xr+1 = xr + ar · d̂r

8: end for

Algorithm 2 [Stochastic] Smoothed Implicit Gradient De-
scent ([S]SIGD)

1: Input: Initial parameter x0, # of iterations T , step-
sizes {βr}T−1

r=0 , LL solution accuracy δ
2: Sample q ∼ Q and perturb LL problem
3: for r = 0, 1, . . . , T − 1 do
4: Find an approximate solution ŷ(xr) s.t. Assumption

2.5 is satisfied.
5: Compute ∇̂F (xr; ξr) using (11)
6: Perform one stochastic projected gradient descent

step: xr+1 = projX (xr − βr∇̂F (xr; ξr))
7: end for

we need to establish that F (·) will be differentiable (w.p. 1)
at the sequence of iterates encountered during the execution
of the algorithm.

Towards this end, let us introduce some additional notations.
Let us define X̄G := {x̄ : G(x) is non-differentiable at x̄}
as the set of non-differentiable points of the implicit function
of the unperturbed problem (1a); define X̄F similarly. We
denote ϵ̄(x̄;q) : X̄ × Rdℓ → Rdu as the set mapping that
maps the non-differentiable points of G(·), together with
a given perturbation q, to the non-differentiable points of
F (·)3. Next, we show that under certain assumptions on

3Lemma 2.3 states that given any x ∈ X , adding a perturba-
tion q makes the implicit function differentiable at that point (i.e.,
∇G(x) exists w.p.1.). However, after a perturbation is added the
perturbed implicit function F (·) might still have non-differentiable
points, that depend on the non-differentiable points of G(·). There-
fore, we define the set mapping ϵ̄ as a function of both x̄ ∈ X̄ and
q. Please see Appendix D.2 for an example illustrating this.

the sets X̄G, X̄F and ϵ̄(x̄;q) the iterates generated by a
gradient-based algorithm will be differentiable w.p. 1.

Lemma 3.1 (Appendix D.2.1). Assuming that the set X̄G is
countable and the mapping ϵ̄(x̄; ·) is continuous. Further
assume X̄F ⊆ {ϵ̄(x̄; ·) | x̄ ∈ X̄G}. Then the implicit
function F (·) is differentiable at all the points {xr}Tr=0

generated by a gradient-based algorithm w.p. 1.

We note that the above lemma implies that even if the orig-
inal function G(·) has a countable, but an infinite set of
non-differentiable points, a gradient-based algorithm would
generate a sequence of iterates that are differentiable w.p.
1. We remark that a key step in showing Lemma 3.1 is by
exploring the structure of the linearly constrained bilevel
problem. Specifically, observe that the active set in the
expression of the implicit gradient is a discrete random vari-
able as a function of q since the support of the active set is
finite. This implies that the iterates generated by any gradi-
ent based algorithm will in general be mixed random vari-
ables (i.e., their CDF will be piecewise continuous). This
fact combined with the assumption that ϵ̄(x̄; ·) is continuous
leads to Lemma 3.1.

Let us discuss the two assumptions in the above lemma.
First, since the function G(·) is continuous, Rademacher’s
theorem implies that the set of non-differentiable points has
zero measure. Although we cannot find sufficient conditions
to guarantee that the set of non-differentiable points is count-
able, we believe that it is a reasonable assumption; see, e.g.,
Appendix D.2 for a simple example illustrating this. Sec-
ond, the condition on the continuity of ϵ̄(x̄; ·) is mild since
q is a linear perturbation and naturally its magnitude will
determine the perturbations in the non-differentiable points
of the original function G(·). Please see Appendix D.2 for
a simple example illustrating the continuity of ϵ̄(x̄; ·).

Due to this result, in the following analysis, we assume that
the iterates generated by our algorithms are differentiable
almost surely. Further, our algorithm design is guided by
the fact that unlike bilevel programs with unconstrained LL
tasks (see Lemma 2.2(c) in (Ghadimi & Wang, 2018)), the
implicit gradient ∇F (x) in (9) is not Lipschitz smooth in
general. This implies that algorithms that provably converge
only under the Lipschitz assumption, will not work in our
case, particularly when the implicit function is non-convex.
Towards this end, we propose the [Deterministic] Smoothed
Implicit Gradient Descent ([D]SIGD) method (Alg. 1), a
deterministic line-search-based method, which does not re-
quire Lipschitz smoothness or another special structure (e.g.,
convexity), and show asymptotic convergence (Theorem
3.3). Moreover, for the cases where the implicit function
is weakly-convex, convex or strongly convex (but still not
Lipschitz smooth) the [Stochastic] Smoothed Implicit Gra-
dient Descent ([S]SIGD) method (Alg. 2) is developed,
a stochastic gradient-based method, for which finite-time

6

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

convergence guarantees are derived (Theorem 3.6,3.8,3.9).

3.2. Convergence Analysis

As discussed above, in the context of algorithm design and
analysis we sample a single perturbation q, and keep it fixed
during the algorithm execution. As a result, the algorithm
is effectively optimizing the following smooth surrogate of
the original problem (1):

min
x∈X

{
F (x) = f(x,y∗(x)) = Eξ[f̃(x,y

∗(x); ξ)]
}

(13a)

s.t. y∗(x) ∈ argmin
y∈Rdℓ

{
g(x,y) = h(x,y) + qTy

∣∣ Ay ≤ b
}
,

(13b)

where q ∈ Rdℓ is generated from a continuous measure
only once and thus is considered fixed. Next, we show
that the original problem (1) and the smoothed surrogate
problem (13) are “close”. Specifically, we show below
that the original implicit function G(x) and the "smoothed"
implicit function F (x) differ by a quantity that is controlled
by the size of the perturbation vector q.

Proposition 3.2 (Appendix D.2.2). Under Ass. 2.1 and 2.7,
we have:

|G(x)− F (x)| ≤ Lf
∥q∥
µg

, ∀ x ∈ X .

Note that the only requirement on q is that it is gener-
ated from a continuous measure. Therefore we can always
choose a distribution such that ∥q∥ is arbitrarily small. In
the following two subsections, we will analyze the conver-
gence for Alg. 1 and 2, respectively. Next, let us analyze
Alg. 1. We have the following asymptotic result.

Theorem 3.3 (Appendix D.2.3). Suppose Ass. 2.1, 2.7
hold. At each iteration r of Alg. 1 we find 0 < ar < 1
such that the Armijo-type condition (12) is satisfied with
ϵ(δ; r) = Lfδ

r + LFLFa
rδr + Lfδ

r+1 + L2
Fσa

r (δr)
2
+

2LFLFσa
rδr. Further, we select δr such that Ass. 2.5

is satisfied, limr→∞ δr = 0, and it holds that δr/ar ∼
O (cr), where cr is some sequence with limr→∞ cr = 0.
In addition, the sequence d̂r is selected such that it is
gradient related to ∇̂F (xr), i.e., “for any subsequence
{xr}r∈R converging to a non-stationary point, the corre-
sponding subsequence {d̂r}r∈R is bounded and satisfies

lim supr→∞,r∈R

[
∇̂F (xr)

]T
d̂r < 0” (Bertsekas, 1998,

eq. 1.13). Then w.p. 1 the limit point x̄ of the sequence of
iterates generated by [D]SIGD Alg. 1 is a stationary point.

Note that in Theorem 3.3 only asymptotic convergence is
guaranteed. However, this is the best we can do since we
do not impose any Lipschitz smoothness or convexity as-
sumptions. On the other hand, in the special cases where

the implicit function is weakly-convex, strongly convex or
convex (but still not Lipschitz smooth), it is possible to de-
rive finite-time convergence guarantees as presented next.
Towards this end, we need to impose the additional assump-
tion that the set X is bounded; combining this property
with Assumption 2.1 implies that X is compact. So, in the
following results we assume that X is a compact set with
diameter DX := supx,x̄∈X ∥x− x̄∥.

Weakly Convex Objective. We make the following assump-
tion on the implicit function F (·).
Assumption 3.4. We assume that for some ρ > 0 the im-
plicit function F (x) satisfies: F (z) ≥ F (x)+⟨∇F (x), z−
x⟩ − ρ

2∥z− x∥2 ∀ x, z ∈ Rdu .

Assumption 3.4 implies that the function F (x)+ ρ̂
2∥x∥

2 for
ρ̂ = ρ is convex while for ρ̂ > ρ is strongly convex with
modulus ρ̂ − ρ. Many problems of practical interest sat-
isfy the weak-convexity, for example, phase retrieval (Davis
et al., 2020), covariance matrix estimation (Chen et al.,
2015), dictionary learning (Davis & Drusvyatskiy, 2019),
Robust PCA (Candès et al., 2011) etc. (please see (Davis &
Drusvyatskiy, 2019) and (Drusvyatskiy, 2017) for more de-
tails). For providing guarantees for the [S]SIGD algorithm
we utilize a Moreau envelope based analysis. For this pur-
pose, we first rephrase the UL problem as an unconstrained
one: minx∈Rdu H(x) := F (x) + IX (x), where IX (x) is
the indicator function of set X defined as: IX (x) := 0 if
x ∈ X and IX (x) := ∞ if x /∈ X . Below we define the
Moreau envelope of H(x).

Definition 3.5. Given λ > 0, the Moreau envelope of H(x)
is defined as

Hλ(x) := min
z∈Rdu

{
H(z) +

1

2λ
∥x− z∥2

}
= min

z∈X

{
F (z) +

1

2λ
∥x− z∥2

}
,

where the second equality follows from the definition of
H(x). Moreover, we denote the proximal map of H(x) as
x̂ := proxλH(x) which is defined as

x̂ := argmin
z∈Rdu

{
H(z) +

1

2λ
∥x− z∥2

}
= argmin

z∈X

{
F (z) +

1

2λ
∥x− z∥2

}
.

The norm of the gradient of the Moreau envelope satisfies
the following:

∥x− x̂∥ = λ∥∇Hλ(x)∥, H(x̂) ≤ H(x), (14)
and dist(0; ∂H(x̂)) ≤ ∥∇Hλ(x)∥, (15)

where dist(0; ∂H(x̂)) = − infv:∥v∥≤1 H
′(x;v) and

H ′(x;v) denotes the directional derivative of H at x in

7

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

direction v. Note that a small gradient ∥∇Hλ(x)∥ implies
that x is near some point x̂ that is nearly stationary (Davis
& Drusvyatskiy, 2019). Then we have the following result.

Theorem 3.6 (Appendix D.2.4). Under Ass. 2.1, 2.5, 2.7,
2.9 and 3.4, with step-sizes βr = β for all r ∈ {0, . . . , T −
1} and for any constant ρ̂ > 3ρ

2 , the iterates generated by
Algorithm 2 satisfy (w.p. 1)

1

T

T−1∑
r=0

E∥∇H1/ρ̂(x
r)∥2 ≤ 2ρ̂

2ρ̂− 3ρ

[
H1/ρ̂(x

0)−H∗

βT

+ βρ̂
(
σ2
F + L

2

F

)
+

ρ̂

2ρ
L2
F δ

2

]
.

Theorem 3.6 implies that with the choice of β = O(1/
√
T),

the [S]SIGD algorithm converges to a stationary point at a
rate of O(1/

√
T) with an additive error determined by the

accuracy of the LL problem’s solution δ (see Ass. 2.5).

Strongly Convex and Convex Objective. Next, we pro-
vide the guarantees for the case when the implicit function
is strongly convex. We make the following assumption.

Assumption 3.7. We assume that the objective F (x) is µF -
strongly convex, i.e., F (z) ≥ F (x) + ⟨∇F (x), z − x⟩ +
µF

2 ∥x−z∥2 ∀z,x ∈ X . Note that for µF = 0, the objective
becomes convex.

Theorem 3.8 (Appendix D.2.5). Under the Assumptions
2.1, 2.5, 2.7, 2.9 and 3.7, with µF > 0 and the choice of step-
sizes βr = 1

µF (r+1) the iterates generated by Algorithm 2
satisfy the following (w.p. 1),

E[F (x)− F ∗] ≤ (σ2
F + L

2

F)

µF

log(T)

T
+DXLF δ.

Theorem 3.9 (Appendix D.2.6). Under Assumption 2.1, 2.5,
2.7, 2.9 and 3.7, with µF = 0, and step-sizes βr = β for
r ∈ {0, . . . , T − 1}, the iterates generated by Algorithm 2
satisfy the following (w.p. 1),

E[F (x)− F ∗] ≤ ∥x1 − x∗∥2

βT
+ 2β(σ2

F + L
2

F) +DXLF δ,

where x = 1
T

∑T−1
r=0 xr.

The results of Theorems 3.8 and 3.9 imply that the implicit
function F (x) converges to the optimal value at a rate of
O(log(T)/T) for strongly-convex objectives with dimin-
ishing step-sizes, and at a rate of O(1/

√
T) for convex

objectives with β = O(1/
√
T). Note that convergence is

shown to a neighborhood of the optimal solution where its
size is determined by the size of the LL error δ.

4. Experiments
In this section, we evaluate the performance of Algorithms
1 and 2 via numerical experiments. First, we compare the

0 20 40 60 80
iterations

0

5

10

15

20

||
F(

x)
||

[S]SIGD
[D]SIGD
PDBO

Figure 2: ∥∇F (x)∥ vs # of iterations.

performance of [D]SIGD to the recently proposed PDBO
(Sow et al., 2022) for constrained bilevel optimization on
a quadratic bilevel problem. Then in the second set of ex-
periments, we evaluate the performance of [S]SIGD against
popular adversarial training algorithms.

Quadratic Bilevel Optimization. Consider the quadratic
bilevel problem of the form (1) with

f(x,y)=
1

4
∥x∥2+10xTy− 1

4
∥y∥2 + 1Tx+ 1Ty + 1 (16)

and h(x,y) = xTy +
1

2
∥y∥2 + x1 + y2, (17)

and linear constraints of the form |yi| ≤ 1, i ∈ {1, 2}. Here,
x = [x1, x2]

T , y = [y1, y2]
T with xi, yi ∈ R for i ∈ {1, 2},

and 1 = [1, 1]T . The evaluation criterion is the stationarity
gap ∥∇F (x)∥.

On this problem we execute [D]SIGD (Algorithm 1),
[S]SIGD (Algorithm 2), and PDBO (Sow et al., 2022). In
the first two cases, we solve the inner-level problem using
10 steps of projected gradient descent with stepsize 10−1.
For the stepsize of [S]SIGD, we choose β = 0.1, while in
[D]SIGD we find the proper Armijo step-size by succes-
sively adapting (by increasing m) the quantity ar = (0.9)m

until condition (12) is met. In PDBO we select 10−1 for the
stepsizes of both the primal and dual steps, and the number
of inner iterations is set to 10. In Figure 2, we plot the
convergence curves for the three algorithms with respect to
number of iterations; the results are averaged over 10 runs.
Note that the line search [D]SIGD method outperforms the
fixed step-size [S]SIGD and PDBO while [S]SIGD performs
similar to PDBO.

Adversarially Robust Learning.4 We consider an adver-
sarial learning problem of the form given in (2). For the
perturbation, we focus on the ϵ-tolerant ℓ∞-norm attack
constraint, namely Y = {y ∈ Rdℓ

∣∣ ∥y∥∞ ≤ ϵ}, which
can easily be expressed as a linear inequality constraint

4The code can be found in the following link:
https://anonymous.4open.science/r/icml23-bilevel-gaussian/

8

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

CIFAR-100, ϵ = 8/255

Metrics AT TRADES [S]SIGD (Gaussian variance σ2)
2e−5 4e−5 6e−5 8e−5 1e−4

SA 53.83±0.19 53.33±0.18 53.88±0.22 54.01±0.24 53.79±0.14 54.44±0.18 57.74±0.22

RA 27.36±0.24 28.44±0.17 27.43±0.12 28.22±0.10 28.12±0.14 27.14±0.21 25.22±0.15

ϵ = 16/255

SA 42.06±0.17 42.19±0.23 44.06±0.19 45.66±0.25 46.57±0.22 47.11±0.32 47.46±0.44

RA 15.10±0.28 16.59±0.26 15.51±0.17 14.18±0.22 13.92±0.25 13.54±0.18 13.42±0.26

Table 1: Performance overview of different methods on CIFAR-100 (Krizhevsky et al., 2009) with ResNet-18 (He et al., 2016). The
result a±b represents the mean a standard deviation b over 5 trials.

as in the LL problem of (2). Differently, though than the
bilevel problems we are considering in this work, the robust
learning problem is more challenging as the LL objective
is not necessarily strongly-convex in y. We consider two
widely accepted adversarial learning methods as our base-
lines, namely AT (Madry et al., 2018) and TRADES (Zhang
et al., 2019b). Also, we consider two representative datasets
CIFAR-10/100 (Krizhevsky et al., 2009) and adopt the
ResNet-18 (He et al., 2016) model; the results for CIFAR-10
are provided in Appendix C. In particular, we studied two
widely used, (Madry et al., 2018; Wong et al., 2020) attack
budget choices ϵ ∈ {8/255, 16/255}. In the implementa-
tion of our [S]SIGD method, we adopt a perturbation gener-
ated by a Gaussian random vector q with variances from the
following list σ2 ∈ {2e−5, 4e−5, 6e−5, 8e−5, 1e−4, }, in
order to study different levels of smoothness 5. Moreover,
for solving the LL problem in each iteration we select a
fixed batch of samples. We choose fi to be cross-entropy
loss and hi = −fi + λ∥yi∥2 for hyper-parameter λ > 0.
For [S]SIGD, we follow the implementation of (Zhang et al.,
2022) but with perturbations in the LL problem. We evalu-
ate the robustly trained model with two metrics, namely the
standard accuracy (SA) and robust accuracy (RA), where
we evaluate the accuracy of the robustified model on the
clean and attacked test set, respectively; the attacked set is
generated using PGD-50-10 (Madry et al., 2018) (i.e., 50-
step PGD attack with 10 restarts). Desirably, a well-trained
model possesses high RA while maintaining simultaneously
the SA at a high level.

Table 1 shows the performance overview of our experiments.
We make the following observations. First, a low level of
perturbation variance (e.g., σ2 ∈ {2e−5, 4e−5}) in gen-

5Note that in practice the [S]SIGD algorithm also works with-
out the addition of a perturbation, potentially though with inferior
performance. However, in our experiments, we are perturbing the
LL problem in order to be consistent with the theory and study the
effect of different perturbation levels. Please see Appendix C.2
for additional experiments, in which the case where there is no
perturbation is also considered.

eral improves both SA as well as RA, which presents an
enhanced RA-SA trade-off. For example, in the setting
(CIFAR-100, ϵ = 16/255), our algorithm boosts the RA
by over 0.3% and the SA by 2%. Second, a high level of
perturbation variance harms the robustness but results in
high SA. This is reasonable, since the stochastic gradient
becomes too noisy with large variances. Third, our method
outperforms AT and closely matches the performance of
the stronger baseline TRADES. However, we would like
to stress that the intent of our work is not to design a spe-
cialized adversarial learning method, and thus robustness
gap between our method and the strong baseline does not
diminish the value of our method. Additional details are
provided in Appendix C.2.

5. Conclusion
In this work we develop a framework for the solution of a
special class of constrained bilevel problems where the LL
task has linear constraints and strongly convex objective.
The key challenge we are dealing with in this problem class
is the non-differentiability of the implicit function, which is
addressed with the use of a perturbation-based smoothing
technique. This allows us to compute the gradient of the
implicit function, and develop first-order algorithms to find
its stationary points. In the future we would be interested in
studying other special classes of constrained bilevel prob-
lems (i.e., problems with different constraint sets) and their
properties.

Acknowledgements.

I. Tsaknakis and M. Hong are supported in part by NSF
grants CIF-1910385, CMMI-1727757.

9

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

References
Abedi, A., Hesamzadeh, M. R., and Romerio, F. An acopf-

based bilevel optimization approach for vulnerability as-
sessment of a power system. International Journal of
Electrical Power & Energy Systems, 125:106455, 2021.
ISSN 0142-0615.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,
and Kolter, J. Z. Differentiable convex optimization lay-
ers. Advances in neural information processing systems,
32, 2019.

Allende, G. B. and Still, G. Solving bilevel programs with
the kkt-approach. Mathematical Programming, 138:309–
332, 2013.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In International
Conference on Machine Learning, pp. 136–145. PMLR,
2017.

Andriushchenko, M. and Flammarion, N. Understanding
and improving fast adversarial training. Advances in Neu-
ral Information Processing Systems, 33:16048–16059,
2020.

Arias, D. A., Mota, A. A., Mota, L. T. M., and Castro, C. A.
A bilevel programming approach for power system opera-
tion planning considering voltage stability and economic
dispatch. In 2008 IEEE/PES Transmission and Distribu-
tion Conference and Exposition: Latin America, pp. 1–6,
2008. doi: 10.1109/TDC-LA.2008.4641718.

Bertrand, Q., Klopfenstein, Q., Blondel, M., Vaiter, S.,
Gramfort, A., and Salmon, J. Implicit differentiation
of lasso-type models for hyperparameter optimization.
In International Conference on Machine Learning, pp.
810–821. PMLR, 2020.

Bertrand, Q., Klopfenstein, Q., Massias, M., Blondel, M.,
Vaiter, S., Gramfort, A., and Salmon, J. Implicit differen-
tiation for fast hyperparameter selection in non-smooth
convex learning. Journal of Machine Learning Research,
23(149):1–43, 2022.

Bertsekas, D. P. Nonlinear programming, 2nd ed. Athena
Scientific Belmont, MA, 1998.

Calamai, P. H. and Moré, J. J. Projected gradient meth-
ods for linearly constrained problems. Mathematical
programming, 39(1):93–116, 1987.

Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal
component analysis? Journal of the ACM (JACM), 58(3):
1–37, 2011.

Cecchini, M., Ecker, J., Kupferschmid, M., and Leitch,
R. Solving nonlinear principal-agent problems using
bilevel programming. European Journal of Operational
Research, 230(2):364–373, 2013.

Chang, T.-H., Hong, M., Wai, H.-T., Zhang, X., and Lu, S.
Distributed learning in the nonconvex world: From batch
data to streaming and beyond. IEEE Signal Processing
Magazine, 37(3):26–38, 2020. doi: 10.1109/MSP.2020.
2970170.

Chen, T., Sun, Y., and Yin, W. A single-timescale
stochastic bilevel optimization method. arXiv preprint
arXiv:2102.04671, 2021a.

Chen, T., Sun, Y., and Yin, W. Tighter analysis of alternating
stochastic gradient method for stochastic nested problems.
arXiv preprint arXiv:2106.13781, 2021b.

Chen, Y., Chi, Y., and Goldsmith, A. J. Exact and stable co-
variance estimation from quadratic sampling via convex
programming. IEEE Transactions on Information Theory,
61(7):4034–4059, 2015.

Colson, B., Marcotte, P., and Savard, G. Bilevel program-
ming: A survey. 4or, 3(2):87–107, 2005.

Davis, D. and Drusvyatskiy, D. Stochastic model-based
minimization of weakly convex functions. SIAM Journal
on Optimization, 29(1):207–239, 2019.

Davis, D., Drusvyatskiy, D., and Paquette, C. The non-
smooth landscape of phase retrieval. IMA Journal of
Numerical Analysis, 40(4):2652–2695, 2020.

Dempe, S. and Zemkoho, A. Bilevel optimization. Springer,
2020.

Didi-Biha, M., Marcotte, P., and Savard, G. Path-based
formulations of a bilevel toll setting problem, pp. 29–50.
Springer US, Boston, MA, 2006. ISBN 978-0-387-34221-
4. doi: 10.1007/0-387-34221-4_2.

Donti, P., Amos, B., and Kolter, J. Z. Task-based end-to-end
model learning in stochastic optimization. Advances in
neural information processing systems, 30, 2017.

Drusvyatskiy, D. The proximal point method revisited.
arXiv preprint arXiv:1712.06038, 2017.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M.
Forward and reverse gradient-based hyperparameter opti-
mization. In International Conference on Machine Learn-
ing, pp. 1165–1173. PMLR, 2017.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. In International Conference on
Machine Learning, pp. 1568–1577. PMLR, 2018.

10

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Friesz, T. and Bernstein, D. Foundations of Network Opti-
mization and Games. Complex Networks and Dynamic
Systems. Springer US, 2015. ISBN 9781489975942.

Ghadimi, S. and Wang, M. Approximation methods for
bilevel programming. arXiv preprint arXiv:1802.02246,
2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Gould, S., Hartley, R., and Campbell, D. Deep declarative
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(8):3988–4004, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-
timescale stochastic algorithm framework for bilevel
optimization: Complexity analysis and application to
actor-critic. SIAM Journal on Optimization, 33(1):147–
180, 2023. doi: 10.1137/20M1387341. URL https:
//doi.org/10.1137/20M1387341.

Ji, K., Yang, J., and Liang, Y. Bilevel optimization: Con-
vergence analysis and enhanced design. In Interna-
tional Conference on Machine Learning, pp. 4882–4892.
PMLR, 2021.

Kalashnikov, D. V., Camacho-Vallejo, J.-F., Askin, R., and
Kalashnykova, N. Comparison of algorithms for solving
a bi-level toll setting problem. International journal of
innovative computing, information & control: IJICIC, 6:
3529–3549, 08 2010.

Khanduri, P., Zeng, S., Hong, M., Wai, H.-T., Wang, Z.,
and Yang, Z. A momentum-assisted single-timescale
stochastic approximation algorithm for bilevel optimiza-
tion, 2021a.

Khanduri, P., Zeng, S., Hong, M., Wai, H.-T., Wang, Z., and
Yang, Z. A near-optimal algorithm for stochastic bilevel
optimization via double-momentum. Advances in Neural
Information Processing Systems, 34, 2021b.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lebourg, G. Generic differentiability of lipschitzian func-
tions. Transactions of the American Mathematical Soci-
ety, 256:125–144, 1979.

Lecture. 5: Correspondences and berge’s maximum theo-
rem. Math Camp Notes, Department of Economics, Yale
University, 2017.

Li, Y., Song, L., Wu, X., He, R., and Tan, T. Learning a
bi-level adversarial network with global and local per-
ception for makeup-invariant face verification. Pattern
Recognition, 90:99–108, 2019.

Lin, G.-H., Xu, M., and Ye, J. J. On solving simple bilevel
programs with a nonconvex lower level program. Math.
Program., 144(1–2):277–305, April 2014.

Liu, R., Gao, J., Zhang, J., Meng, D., and Lin, Z. Investigat-
ing bi-level optimization for learning and vision from a
unified perspective: A survey and beyond. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 44
(12):10045–10067, 2021a.

Liu, R., Liu, X., Yuan, X., Zeng, S., and Zhang, J. A value-
function-based interior-point method for non-convex bi-
level optimization. In International Conference on Ma-
chine Learning, pp. 6882–6892. PMLR, 2021b.

Liu, R., Liu, X., Zeng, S., Zhang, J., and Zhang, Y. Value-
function-based sequential minimization for bi-level opti-
mization. arXiv preprint arXiv:2110.04974, 2021c.

Lu, S., Razaviyayn, M., Yang, B., Huang, K., and Hong,
M. Finding second-order stationary points efficiently
in smooth nonconvex linearly constrained optimization
problems. Advances in Neural Information Processing
Systems, 33:2811–2822, 2020.

Luo, Z.-Q., Pang, J.-S., and Ralph, D. Mathematical pro-
grams with equilibrium constraints. Cambridge Univer-
sity Press, 1996.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant
to adversarial attacks. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=rJzIBfZAb.

Mairal, J., Bach, F., and Ponce, J. Task-driven dictionary
learning. IEEE transactions on pattern analysis and
machine intelligence, 34(4):791–804, 2011.

Marcotte, P., Savard, G., and Zhu, D. A trust region algo-
rithm for nonlinear bilevel programming. Oper. Res. Lett.,
29:171–179, 11 2001. doi: 10.1016/S0167-6377(01)
00092-X.

Migdalas, A. Bilevel programming in traffic planning: Mod-
els, methods and challenge. Journal of global optimiza-
tion, 7(4):381–405, 1995.

Mirrlees, J. A. The theory of moral hazard and unobservable
behaviour: Part i. The Review of Economic Studies, 66
(1):3–21, 1999.

11

https://doi.org/10.1137/20M1387341
https://doi.org/10.1137/20M1387341
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Moosavi-Dezfooli, S.-M., Fawzi, A., Uesato, J., and
Frossard, P. Robustness via curvature regularization, and
vice versa. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9078–
9086, 2019.

Nutini, J., Schmidt, M., and Hare, W. “active-set com-
plexity” of proximal gradient: How long does it take to
find the sparsity pattern? Optimization Letters, 13(4):
645–655, 2019.

Parise, F. and Ozdaglar, A. Sensitivity analysis for network
aggregative games. In 2017 IEEE 56th Annual Confer-
ence on Decision and Control (CDC), pp. 3200–3205.
IEEE, 2017.

Pedregosa, F. Hyperparameter optimization with approxi-
mate gradient. In International conference on machine
learning, pp. 737–746. PMLR, 2016.

Raghunathan, A. U. and Biegler, L. T. Mathematical pro-
grams with equilibrium constraints (mpecs) in process
engineering. Computers & Chemical Engineering, 27
(10):1381–1392, 2003. ISSN 0098-1354.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-learning with implicit gradients. In Advances in
Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019.

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. Trun-
cated back-propagation for bilevel optimization. In The
22nd International Conference on Artificial Intelligence
and Statistics, pp. 1723–1732. PMLR, 2019.

Sinha, A., Malo, P., and Deb, K. A review on bilevel opti-
mization: from classical to evolutionary approaches and
applications. IEEE Transactions on Evolutionary Com-
putation, 22(2):276–295, 2017.

Sinha, A., Khandait, T., and Mohanty, R. A gradient-based
bilevel optimization approach for tuning hyperparameters
in machine learning. arXiv preprint arXiv:2007.11022,
2020.

Sow, D., Ji, K., Guan, Z., and Liang, Y. A constrained opti-
mization approach to bilevel optimization with multiple
inner minima. arXiv preprint arXiv:2203.01123, 2022.

Von Stackelberg, H. and Von, S. H. The theory of the market
economy. Oxford University Press, 1952.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free:
Revisiting adversarial training. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=BJx040EFvH.

Xiao, Q., Shen, H., Yin, W., and Chen, T. Alternating pro-
jected sgd for equality-constrained bilevel optimization.
In International Conference on Artificial Intelligence and
Statistics, pp. 987–1023. PMLR, 2023.

Yang, J., Ji, K., and Liang, Y. Provably faster algorithms
for bilevel optimization. Advances in Neural Information
Processing Systems, 34, 2021.

Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong,
Y., Wang, H., Lin, Z., and Johansson, K. H. A survey of
distributed optimization. Annual Reviews in Control, 47:
278–305, 2019.

Ye, J. and Zhu, D. Optimality conditions for bilevel pro-
gramming problems. Optimization, 33(1):9–27, 1995.

Yousefian, F. Bilevel distributed optimization in directed
networks. In 2021 American Control Conference (ACC),
pp. 2230–2235. IEEE, 2021.

Zhang, D., Zhang, T., Lu, Y., Zhu, Z., and Dong, B. You
only propagate once: Accelerating adversarial training
via maximal principle. Advances in Neural Information
Processing Systems, 32, 2019a.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019b.

Zhang, Y., Zhang, G., Khanduri, P., Hong, M., Chang, S.,
and Liu, S. Revisiting and advancing fast adversarial
training through the lens of bi-level optimization. In In-
ternational Conference on Machine Learning, pp. 26693–
26712. PMLR, 2022.

12

https://openreview.net/forum?id=BJx040EFvH
https://openreview.net/forum?id=BJx040EFvH

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

A. Related Literature
Bilevel optimization problems, initially encountered in the context of Stackelberg (leader-follower) games (Von Stackelberg
& Von, 1952), find applications in a multitude of areas, including machine learning (Liu et al., 2021a), economics (Mirrlees,
1999), power systems (Abedi et al., 2021; Arias et al., 2008), chemical industry (Raghunathan & Biegler, 2003), transport
research (Didi-Biha et al., 2006; Kalashnikov et al., 2010); see (Colson et al., 2005; Dempe & Zemkoho, 2020; Sinha et al.,
2017; Liu et al., 2021a) for a number of survey papers. The “classical” approaches for solving bilevel problems include the
use of approximate descent methods (Shaban et al., 2019; Ghadimi & Wang, 2018; Franceschi et al., 2017), penalty methods
(Lin et al., 2014), KKT reformulations-based approaches (Allende & Still, 2013), value function-based methods (Ye & Zhu,
1995; Sow et al., 2022), and trust-region algorithms (Marcotte et al., 2001). In addition, bilevel problems are known to be
related to mathematical programs with equilibrium constraints (MPEC) (Luo et al., 1996).

Recently, motivated by machine learning applications, gradient-based approaches have gained popularity for solving bilevel
optimization problems (Liu et al., 2021a), e.g., in hyperparameter optimization (Shaban et al., 2019; Franceschi et al., 2017;
2018), and meta learning (Rajeswaran et al., 2019; Franceschi et al., 2018). The majority of those works are focused on
solving bilevel problems with unconstrained strongly convex LL problem, for both stochastic and deterministic objectives
(Ghadimi & Wang, 2018; Hong et al., 2023; Khanduri et al., 2021a;b; Chen et al., 2021a; Ji et al., 2021; Chen et al., 2021b;
Yang et al., 2021). An attractive property of such problems is the existence and easy computability of the implicit gradient.
Moreover, under mild assumptions, the implicit gradient for these problems can be shown to be Lipschitz smooth (e.g.,
see (Ghadimi & Wang, 2018, Lemma 2.2) and (Khanduri et al., 2021b, Lemma 3.1)). In a recent work (Xiao et al., 2023)
the authors develop an implicit gradient method for problems with equality constraints in the LL. In this case, similarly to
the unconstrained one, the implicit gradient is differentiable and Lipschitz continuous. In contrast, for bilevel problems
with linear inequality LL constraints the implicit gradient in general might not exist, and even if it exists computing it in
closed-form is a challenging task. As discussed earlier, we develop a perturbation-based smoothing framework for that
constrained LL problem that ensures the existence of the implicit gradient in an almost sure sense, and allows us to compute
an expression for the implicit gradient.

In Liu et al. (2021c) and Sow et al. (2022) the authors have considered bilevel optimization with (general) constraints in the
LL problem. Both papers develop a value function-based framework that leads to a single level problem with non-convex
constraints. In Liu et al. (2021c) a sequential minimization approach is followed where the value-function and the LL
constraints are incorporated into the objective using penalty or barrier functions. In Sow et al. (2022) a primal-dual-based
framework is proposed in which the problem is regularized with the addition of a strongly-convex penalty term, while a
constant error term is added to make the constraint set strictly feasible. In contrast, our approach relies only on a small
linear perturbation which can be made arbitrarily small without practically changing the landscape of the LL problem.

There is also a line of works (Amos & Kolter, 2017; Agrawal et al., 2019; Donti et al., 2017; Gould et al., 2021) about
implicit differentiation in deep learning literature. These works Deep-Learning-type (DL-type) are indeed related to ours, in
the sense that at the core of both of them lies the computation of the gradient/Jacobian of the solution of an optimization
problem. However, there are some key differences. First, in our work we consider a constrained bilevel optimization problem
and we are interested in analyzing this problem from an optimization perspective. On the other hand, in the DL-type works
the optimization problems that are studied describe the input-output relationships of neural networks layers and the main
focus lies in deriving Jacobians for the backward pass. Secondly, in our work we study a special bilevel problem (the
constraints are linear) and derive a closed form expression (assuming that we have access to the solution of the LL problem)
for the implicit gradient. On the contrary, in the DL-type works the underlying problems have more general constraints and
the Jacobian is usually computed using numerical methods (e.g., solving iteratively a system of KKT equations), rather
than analytically. Finally, in our work the focus is on studying the properties of the bilevel problem (e.g. differentiability,
approximation errors), developing (deterministic and stochastic) algorithms, and performing a convergence analysis. On the
other hand, DL-type works focus mainly on the Jacobian computation and its implementation.

Finally, there is a number of works on implicit differentiation on non-smooth problems (Mairal et al., 2011; Bertrand et al.,
2022; 2020). However, these works typically deal with special (non-smooth) LL problems, e.g., in (Mairal et al., 2011;
Bertrand et al., 2020) the non-smooth term in the LL is the ℓ1-norm, and in (Bertrand et al., 2022) the non-smooth term is
separable. On the contrary, in our work we are considering smooth LL problems and general linear inequality constraints.

13

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

B. Solution methods for the LL problem
The LL problem is a strongly convex linearly constrained optimization task. As a result, there exist many efficient ways to
find its solutions. In order to discuss about them, we consider two different classes of problems depending on the exact
form of the linear constraints and the difficulty of computing the respective projection operator: 1) the projection has a
closed-form solution, 2) the projection requires the solution of an optimization problem. Before we proceed, we would like
to stress that the problem we are solving, i.e., the bilevel problem with linear constraints in the LL, is a very challenging one,
regardless of the specific form and the exact way we approach the solution of the LL problem.

In the first class of problems, where the projection can be computed in closed form, we have problems with special linear
constraints. One characteristic example is box constraints, i.e. constraints of the form a ≤ y ≤ b, where the inequalities
apply in a component-wise manner. These constraints appear in applications, such as adversarial learning (see the motivating
applications in the main text). In this case, we can use some first-order iterative algorithm to solve the LL problem and
project each iterate onto the constraint set using the closed-form expression (which only incurs a constant cost per iteration).
For instance, we can use the projected gradient descent method which probably converges to the optimal solution with a
linear rate.

In the second class of problems, the projection operator does not possess a closed-form expression. In this case we can
approach the LL problem as a convex optimization task, and solve it using some convex optimization solver (e.g. employing
interior-point methods) to obtain a highly accurate solution with a complexity of O (p(dℓ, k) log(dℓ/ϵ)), where p(·) is
some polynomial and ϵ is solution accuracy. Alternatively, as mentioned in the previous case, we can use a projected
gradient descent-type method that enjoys a linear convergence rate guarantee. Differently from the previous case though the
projection operator computed at each iteration requires the solution of an optimization problem. Nonetheless, the projection
task we are referring to is a (strongly convex) quadratic linearly constrained problem, that is a special quadratic programming
task, which is easy to solve in practice. In algorithm 3 we describe the solution of the LL using a projected gradient descent
algorithm.

Algorithm 3 Projected Gradient Descent (PGD)

1: Input: Initial parameter y0, Current iterate x, # iter T , step-sizes {γr}T−1
r=0 , Constraints A,b

2: for r = 0, 1, . . . , T − 1 do
3: yr+1 = yr − γr∇yg(x,y

r)
4: Project yr+1 to Y = {y ∈ Rdℓ |Ay ≤ b} by solving the following QP:

min
y∈Rdℓ

∥y − yr+1∥2 s.t. Ay ≤ b (18)

5: end for

C. Additional Experiments
In this section, we include additional experiments on quadratic bilevel optimization problems and Adversarial training along
with the implementation details. First, we evaluate the performance of the [D]SIGD and [S]SIGD on quadratic bilevel
optimization problems.

C.1. Numerical Results

We consider the following linearly constrained quadratic bilevel problems of the form (1) with the UL and the LL objectives
defined as:

f(x,y) =
1

4
∥x∥2 + 5xTy − 1

4
∥y∥2 , h(x,y) = 1

4
∥x∥2 + 1

2
xTy +

1

4
∥y∥2 (19)

f(x,y) =
1

2
∥x∥2 + 2xTy − 1

2
∥y∥2 , h(x,y) = xTy +

1

2
∥y∥2. (20)

f(x,y) =
1

4
∥x∥2 + 2xTy − 1

4
∥y∥2 + 1 , h(x,y) = xTy +

1

2
∥y∥2 + 1Tx+ 1Ty. (21)

14

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

0 20 40 60 80
iterations

0

2

4

6

8

10

12

||
F(

x)
||

[S]SIGD
[D]SIGD
PDBO

0 10 20 30 40 50
iterations

0

1

2

3

4

5

||
F(

x)
||

[S]SIGD
[D]SIGD
PDBO

0 20 40 60 80
iterations

0

5

10

15

||
F(

x)
||

[S]SIGD
[D]SIGD
PDBO

Figure 3: Convergence curves w.r.t. number of iterations. Left: problem (19); Center: problem (20); Right: problem (21).

Algorithm/Runtime(s) Problem (19) Problem (20) Problem (21) Problem (16)
[D]SIGD 7.13 10.34 9.12 6.73
[S]SIGD 1.34 1.39 3.90 1.28
PDBO 1.32 1.51 4.62 1.27

Table 2: The average runtime of the three algorithms we use in our experiments. The [D]SIGD is slower compared to
the other two algorithms. However we would like to stress that the [D]SIGD was designed to handle difficult problems
(e.g. without the convexity and Lipschitz gradients assumptions), rather than having speed in mind. On the other hand the
[S]SIGD and PDBO algorithms (which enjoy convergence under stronger assumptions) achieve similar performance in
terms of speed, with the exception of problem (21) where [S]SIGD appear to have a small edge.

In the first two cases, we have du = dl = 2, and the linear constraints in the LL are of the form −1 ≤ yi ≤ 1, i ∈ {1, 2}.
In the third example, we have du = dl = 2, and the linear constraints in the LL are of the form −5 ≤ yi ≤ 5, i ∈
{1, 2}, −5 ≤ y1 + y2 ≤ 5. We compare the performance of SIGD algorithms to recently proposed PDBO (Sow et al.,
2022). In Figure 3 we present the evolution of the stationarity gap ∥∇F (x)∥ during the execution of the three algorithms,
for the problems (19), (20) and (21), respectively. The results are averaged over 10 random runs, and the variance of the
results across these runs is reflected on the shaded region across the convergence curves. Also, the average runtime is
presented in table 2. In our experiments, we choose the step-size using the backtracking line search for [D]SIGD as stated in
Algorithm 1, while for [S]SIGD we choose a constant step-size. Note that since all problems are deterministic [S]SIGD
utilizes a gradient estimator with zero variance.

In problem (19), we solve the LL problem using 10 steps of projected gradient descent with stepsize 0.1; in the case of
[D]SIGD the stepsize is 1. For the stepsize of [S]SIGD, we choose β = 0.1, while in [D]SIGD we find the proper Armijo
step-size by successively adapting (by increasing m) the quantity ar = (0.9)m until condition (12) is met. In PDBO we
select 0.1 for the stepsizes of both the primal and dual steps, and the number of inner iterations is set to 10. In problem
(20), we solve the LL problem using 20 steps of projected gradient descent with stepsize 0.1; in the case of [D]SIGD the
number of steps is 10 and the stepsize is 1. For the stepsize of [S]SIGD, we choose β = 0.1, while in [D]SIGD we find the
proper Armijo step-size by successively adapting (by increasing m) the quantity ar = (0.95)m until condition (12) is met.
In PDBO we select 0.1 for the stepsizes of both the primal and dual steps, and the number of inner iterations is set to 20. In
problem (21), we solve the LL problem (of both [D]SIGD and [S]SIGD) using 10 steps of projected gradient descent with
stepsize 0.1. For the stepsize of [S]SIGD, we choose β = 0.1, while in [D]SIGD we find the proper Armijo step-size by
successively adapting (by increasing m) the quantity ar = (0.9)m until condition (12) is met. In PDBO we select 0.1 for
the stepsizes of both the primal and dual steps, and the number of inner iterations is set to 10.

C.2. Adversarial Learning

In this section, we present some additional results along with the implementation details for the adversarial learning
problem. As noted earlier, we consider the adversarial learning problem of form (2). For learning the perturbation
y∗(x), we focus on the ϵ-tolerant ℓ∞-norm attack constraint, i.e., Y = {y ∈ Rdℓ

∣∣ ∥y∥∞ ≤ ϵ}. Note that this constraint
can easily be expressed as a linear inequality constraint as in the LL problem in (2). In particular, we evaluate the
performance of [S]SIGD on two widely used attack budget choices of ϵ ∈ {8/255, 16/255} (Madry et al., 2018; Zhang
et al., 2019b; Wong et al., 2020; Andriushchenko & Flammarion, 2020; Zhang et al., 2019a). In the implementation of our

15

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

CIFAR-10, ϵ = 8/255

Metrics AT TRADES [S]SIGD (Gaussian variance σ2)
2e−5 4e−5 6e−5 8e−5 1e−4

SA 80.78±0.23 80.23±0.23 80.70±0.14 81.20±0.22 81.52±0.21 83.19±0.24 85.08±0.44

RA 50.71±0.21 51.17±0.19 50.78±0.21 51.15±0.19 50.59±0.18 49.83±0.23 47.83±0.13

ϵ = 16/255

SA 70.31±0.11 70.22±0.29 71.43±0.14 72.79±0.24 73.50±0.09 73.98±0.35 75.31±0.33

RA 32.12±0.18 33.35±0.14 32.72±0.25 31.73±0.10 29.97±0.14 29.39±0.15 27.67±0.07

Table 3: Performance overview of different methods on CIFAR-10 (Krizhevsky et al., 2009) with ResNet-18 (He et al., 2016). The result
a±b represents the mean value a with a standard deviation of b over 5 random trials.

[S]SIGD method, we adopt a perturbation generated by a Gaussian random vector q with variances from the following list
σ2 ∈ {2e−5, 4e−5, 6e−5, 8e−5, 1e−4, }, in order to study different levels of smoothness. We choose fi to be cross-entropy
loss and hi = −fi + λ∥yi∥2 with λ > 0 as a hyper-parameter. For solving (2), in each iteration we select a fixed batch of
samples for both the UL and LL problems. Also, note that the ReLU-based neural networks commonly lead to a piece-wise
linear decision boundary w.r.t. the inputs (Moosavi-Dezfooli et al., 2019). This implies that the implicit gradient in (11) can
be further approximated using a Hessian-free implementation, where the Hessian of the LL problem can be approximated by
λI (Zhang et al., 2022, Eq. (25)). Note that these approximations are common in practice and do not lead to performance
degradation compared to the case when full Hessian is used to compute the implicit-gradient (Zhang et al., 2022, Table
5). Next, we analyze the effect of adding different perturbations q in the LL problem on the performance of [S]SIGD.
Specifically, we choose q ∼ N (0, σ2I) and evaluate the performance of [S]SIGD with σ2.

In Figure 4, we plot the robust accuracy (RA) and the standard accuracy (SA) with respect to the variance of the Gaussian
perturbation vector used in the LL problem. As can be seen, the RA increases as the variance increases within a certain
range. However, with stronger noise (i.e., σ2 > 10−4), the RA drops sharply, while the SA increases. This is reasonable,
since high variance makes the true LL gradient noisy. For easier observation, in Figure 5 we zoom in the part of Figure 4
where σ2 ∈ [0, 8 · 10−5]. It can be clearly seen that adding a small perturbation q helps in improving the RA.

0 2e-5 4e-5 6e-5 8e-5 1e-4 5e-4 1e-3
Gaussian Noise Variance 2

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Robust Test Accuracy
Standard Test Accuracy

0 1e-5 2e-5 4e-5 6e-5 8e-5 1e-4 5e-4 1e-3
Gaussian Noise Variance 2

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Robust Test Accuracy
Standard Test Accuracy

(a) ϵ = 8/255 (b) ϵ = 16/255

Figure 4: The influence of Gaussian variance on the RA and SA. The experiments are based on CIFAR-10 with ResNet-18 model.

Next, we compare the performance of [S]SIGD against two widely accepted adversarial learning methods as baselines,
namely AT (Madry et al., 2018) and TRADES (Zhang et al., 2019b). Here, we present the results for CIFAR-10 dataset
(Krizhevsky et al., 2009) and adopt the ResNet-18 (He et al., 2016). In Table 3, we compare the performance of [S]SIGD for
different perturbation variances with classical AT (Madry et al., 2018) algorithm and TRADES (Zhang et al., 2019b); in
Table 4 the runtime per epoch is presented. Note that for appropriate choice of perturbation variance [S]SIGD outperforms

16

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

0 2e-5 4e-5 6e-5 8e-5
Gaussian Noise Variance 2

82.4

82.6

82.8

83.0

83.2

83.4

83.6

83.8

84.0

Te
st

 A
cc

ur
ac

y

Standard Test Accuracy

0 2e-5 4e-5 6e-5 8e-5
Gaussian Noise Variance 2

50.6

50.8

51.0

51.2

51.4

51.6

51.8

52.0

Te
st

 A
cc

ur
ac

y

Robust Test Accuracy

(a) ϵ = 8/255, CIFAR-10

0 1e-5 2e-5 4e-5 6e-5 8e-5
Gaussian Noise Variance 2

71.00

71.25

71.50

71.75

72.00

72.25

72.50

72.75

73.00

Te
st

 A
cc

ur
ac

y

Standard Test Accuracy

0 1e-5 2e-5 4e-5 6e-5 8e-5
Gaussian Noise Variance 2

30.5

31.0

31.5

32.0

32.5

Te
st

 A
cc

ur
ac

y

Robust Test Accuracy

(b) ϵ = 16/255, CIFAR-10

Figure 5: The influence of Gaussian variance on the RA and SA.

Method AT TRADES [S]SIGD (Gaussian variance σ2)
2e−5 4e−5 6e−5 8e−5 1e−4

Runtime (s/epoch) 29.6 31.4 38.8 38.6 38.7 38.6 38.7

Table 4: Average runtime (in seconds) per epoch on CIFAR-10 (Krizhevsky et al., 2009) with ResNet-18 (He et al., 2016).

the classical AT algorithm while performs is only slightly worse compared to TRADES, especially, for higher attack budget
of ϵ = 16/255. Finally, in terms of runtime (per epoch) the proposed [S]SIGD is slower to the other baselines. However,
it should be noted that AT and TRADES are methods tailored for the adversarial experiments we consider in this section,
whereas [S]SIGD, under certain assumptions, can be applied to any bilevel problem of the form (1).

D. Proofs
D.1. Proofs of Section 2

D.1.1. PROOF OF PROPOSITION 2.2

Note that the goal of Proposition 2.2 is to establish the continuity of the mapping y∗(x) and the implicit function
G(x) := f(x,y∗(x)). In the following, we will show that under Assumption 2.1, y∗(x) is in fact continuous, which will
then utilize to establish the continuity of G(x). Before starting the proof we need a few definitions. Consider the LL problem
(1b) and let us denote the set Y = {y ∈ Rdℓ |Ay ≤ b}. Note that in general the constraint set Y can depend on the UL
variable x ∈ X . For such cases, Y(x) is a set valued map Y : X → Rdℓ and is referred to as a correspondence. However,
for the bilevel problem in (1a) and (1b) the correspondence Y is independent of x ∈ X and is a fixed set. Also, we define

17

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

the upper-semi continuity (USC) and the lower-semi continuity (LSC) for the correspondence Y(x). To define these notions
of continuity, we will utilize the notion of an ϵ-ball defined below.

Definition D.1 (ϵ-Ball). For Y ⊂ Rdℓ , and given ϵ > 0, we define the open ball about Y as

Bϵ(Y) :=
{
y ∈ Rdℓ

∣∣ ∥y − y′∥ < ϵ, for some y′ ∈ Y
}
,

where ∥ · ∥ is the standard Euclidean norm.

Using the ϵ-ball we define the Upper Semi-Continuity (USC) of the correspondence Y .

Definition D.2 (Upper Semi-Continuity (USC)). The correspondence Y : X → Rdℓ is USC if for every x ∈ X and ϵ > 0,
there exists a δ > 0 such that Y(x′) ⊂ Bϵ(Y(x))), if x′ ∈ X and ∥x− x′∥ < δ.

Next, we define the notion of Lower Semi-Continuity (LSC).

Definition D.3 (Lower Semi-Continuity (LSC)). The correspondence Y : X → Rdℓ is LSC if for any sequence xn in X
that converges to a point x ∈ X , and y ∈ Y(x), there exists a sequence yn such that yn ∈ Y(xn), for all n ∈ N, and
limn→∞ yn = y.

Theorem D.4 (Berge’s Theorem of Maximum (Lecture, 2017)). Let X ⊂ Rdu be a non-empty set. Also, let Y : X → Rdℓ

be a correspondence such that the set Y(x) is compact and non-empty for all x ∈ X , and Y is USC and LSC. Then, if
g : X × Rdℓ → R is a continuous function with y∗(x) defined as

y∗(x) ∈ argmin
y∈Rdℓ

{
g(x,y)

∣∣ y ∈ Y(x)
}
,

the correspondence y∗(x) is non-empty for all x ∈ X , and USC.

Remark D.5. If y∗(x) is singleton, then USC implies the continuity of the map y∗(x) : X → Y .

Next, we present the proof of Proposition 2.2.

Proof. The proof of proposition 2.2 follows from the application of Berge’s theorem.

To begin with, note that for our problem the set Y is a fixed set independent of x ∈ X . We are going to verify the conditions
of Theorem D.4. First, note from Assumption 2.1(b) that the set Y is non-empty and compact. Then, it is easy to see that
Y ⊂ Bϵ(Y), for every ϵ > 0, and that implies the USC of Y . Moreover, since the set Y is independent of x ∈ X and
compact, for every sequence xn → x in X , we can always find a sequence yn → y, such that yn,y ∈ Y . Therefore, Y is
LSC. Finally, using Assumption 2.1(a) we see that the function g(x,y) is continuous. Then, Theorem D.4 implies that the
set y∗(x) is non-empty and the correspondence USC.

Using the strong-convexity of g(x,y) with respect to y (Assumption 2.1(c)) we claim that y∗(x) will be a singleton, and
thereby a continuous mapping. Then, the continuity of y∗(x) implies the continuity of G(x) := f(x,y∗(x)), since the
composition of two continuous functions is continuous. The proof is now complete.

D.1.2. PROOF OF LEMMA 2.4

Proof. In this proof we follow a reasoning similar to Parise & Ozdaglar (2017, Thm. 1). However, differently from that
work we consider bilevel problems rather than Nash games. To begin with, consider the Lagrangian of problem (5), i.e.,

L(x,y,λ) = g(x,y) + λT (Ay − b) .

Then, for some fixed x ∈ X , consider a KKT point (y∗(x),λ∗(x)) of (5), for which it holds that,

• ∇yL(x,y
∗(x),λ∗(x)) = ∇yg(x,y

∗(x)) +ATλ∗(x) = 0

• [λ∗(x)]
T
(Ay∗(x)− b) = 0

• λ∗(x) ≥ 0

• Ay∗(x)− b ≤ 0.

18

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Now, consider the active constraints at (y∗(x),λ∗(x)), and to simplify notation let us set A := A(y∗(x)). Using the
notations defined in Section 2 and the SC property, the KKT conditions given above can be equivalently rewritten as

∇yg(x,y
∗(x)) +A

T
λ
∗
(x) = 0, Ay∗(x)− b = 0, λ

∗
(x) > 0, (22)

where λ
∗
(x) is the subvector of λ∗(x) that contains only the elements whose indices correspond to the active constraints at

y = y∗(x). Moreover, notice that the point (y∗(x),λ∗(x)) is unique. The uniqueness of y∗(x) follows from the strong
convexity of g(x, ·); the uniqueness of λ∗(x) results from the fact that matrix A has full row rank (which guarantees
regularity, e.g., see (Bertsekas, 1998)).

As mentioned in section 2, the SC condition (from Lemma 2.3) combined with Assumption 2.1 implies that the mapping
y∗(x) is differentiable almost surely (Friesz & Bernstein, 2015, Theorem 2.22). As a result, at any given point x, we can
consider a sufficiently small neighborhood around it, such that the active constraints A remain unchanged. Then, we can
compute the gradient of (22) using the implicit function theorem as follows

∇2
xyg(x,y

∗(x)) +∇2
yyg(x,y

∗(x))∇y∗(x) +A
T∇λ

∗
(x) = 0 (23)

A∇y∗(x) = 0. (24)

Solving the (23) for ∇y∗(x) yields

∇y∗(x) =
[
∇2

yyg(x,y
∗(x))

]−1
[
−∇2

xyg(x,y
∗(x))−A

T∇λ
∗
(x)
]
, (25)

where we exploited the fact that the Hessian matrix ∇2
yyg(x,y

∗(x)) is positive definite and thus invertible. Substituting
(25) into (24) gives

A
[
∇2

yyg(x,y
∗(x))

]−1
[
−∇2

xyg(x,y
∗(x))−A

T∇λ
∗
(x)
]
= 0

=⇒ ∇λ
∗
(x) = −

[
A
[
∇2

yyg(x,y
∗(x))−1

]
A

T
]−1 [

A
[
∇2

yyg(x,y
∗(x))

]−1∇2
xyg(x,y

∗(x))
]
.

Finally, note that the KKT point y∗(x) corresponds to the unique global minimum of (5), due to the strong convexity of
g(x, ·). The proof is now complete.

D.1.3. THE PROOF OF LEMMA 2.8

The proof of Lemma 2.8 requires several intermediate results which we provide below. Note that under Assumption 2.5(c) it
holds that A(y∗(x)) = A(ŷ(x)); for simplicity we will denote these matrices as A in the derivations of this subsection.
Moreover, for any given matrix A we will denote with LA the maximum value of the quantity ∥A (ŷ(x)) ∥, across all
x ∈ X .
Lemma D.6. Suppose that Assumption 2.1,2.5,2.7 hold. Then for any x ∈ X , we have:

(a)
∥∥∥[∇2

yyg(x,y)
]−1
∥∥∥ ≤ 1

µg
, ∀y ∈ Rdℓ .

(b)
∥∥∥[∇2

yyg(x,y
∗(x))

]−1 −
[
∇2

yyg(x, ŷ(x))
]−1
∥∥∥ ≤

(
1
µg

)2
Lgyyδ.

(c)
∥∥∥∥[A [∇2

yyg(x,y)
]−1

A
T
]−1
∥∥∥∥ ≤ LA, ∀y ∈ Rdℓ .

(d)
∥∥∥∥[A [∇2

yyg(x,y
∗(x))

]−1
A

T
]−1

−
[
A
[
∇2

yyg(x, ŷ(x))
]−1

A
T
]−1
∥∥∥∥ ≤ L2

AL
2

A
1
µ2
g
Lgyy

δ.

Proof. a) We know that g(x,y) is strongly convex in y with modulus µg . Therefore, for any x ∈ X we have

∇2
yyg(x,y) ⪰ µgI ≻ 0,∀y ∈ Rdℓ

=⇒ 0 ≺
[
∇2

yyg(x,y)
]−1 ⪯ 1

µg
I, ∀y ∈ Rdℓ

=⇒
∥∥∥[∇2

yyg(x,y)
]−1
∥∥∥ ≤ 1

µg
,∀y ∈ Rdℓ . (26)

19

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

b) To begin with, notice that for arbitrary square invertible matrices P,Q we have∥∥P−1 −Q−1
∥∥ =

∥∥P−1(Q− P)Q−1
∥∥ ≤

∥∥Q−1(P −Q)
∥∥ ∥∥P−1

∥∥ ≤
∥∥Q−1

∥∥ ∥P −Q∥
∥∥P−1

∥∥ . (27)

Then, using the above inequality we get∥∥∥[∇2
yyg(x,y

∗(x))
]−1 −

[
∇2

yyg(x, ŷ(x))
]−1
∥∥∥

≤
∥∥∥[∇2

yyg(x,y
∗(x))

]−1
∥∥∥∥∥∇2

yyg(x,y
∗(x))−∇2

yyg(x, ŷ(x))
∥∥∥∥∥[∇2

yyg(x, ŷ(x))
]−1
∥∥∥

≤
(

1

µg

)2

Lgyy
∥y∗(x)− ŷ(x)∥

≤
(

1

µg

)2

Lgyy
δ,

where in the second inequality we used the result from Lemma D.6(a) and the Lipschitz Hessian property of g in yy
(Assumption 2.7(d)); in the third inequality we use the Assumption 2.5(a) for y(x).

c) In our problem we have that g strongly convex in y and Lipschitz gradient in y. Thus, for any x ∈ X we have

LyI ⪰ ∇2
yyg(x,y

∗) ⪰ µgI ≻ 0

=⇒ 0 ≺ 1

Ly
I ⪯

[
∇2

yyg(x,y)
]−1 ⪯ 1

µg
I, ∀y ∈ Rdℓ .

Also, for every x ∈ X , we have that∥∥∥AT
z
∥∥∥2 = zTAA

T
z ≥ λmin(AA

T
)∥z∥2,∀z ∈ Rdℓ .

Using the above two lower bound we get

zTA
[
∇2

yyg(x,y)
]−1

A
T
z ≥ 1

Ly
λmin(AA

T
)∥z∥2 > 0,∀z ∈ Rdℓ \ {0},

where the last inequality follows from the fact that A is full row rank which implies that λmin(AA
T
) > 0,∀x ∈ X .

Since the above inequality holds for every z ∈ Rdℓ \ {0}, it ∀x ∈ X we get that

A
[
∇2

yyg(x,y)
]−1

A
T ⪰ λmin(AA

T
)

Ly
I ≻ 0[

A
[
∇2

yyg(x,y)
]−1

A
T
]−1

⪯ Ly

λmin(AA
T
)
I∥∥∥∥[A [∇2

yyg(x,y)
]−1

A
T
]−1
∥∥∥∥ ≤ Ly

λmin(AA
T
)
.

Finally, for the given matrix A, consider the submatrix A = A(ŷ(x)) generated by considering only the subset of its rows
corresponding to the active constraints at ŷ(x). From Assumption 2.1(c) we know that A(ŷ(x)) is full row rank for every
x ∈ X , and so we can ensure that λmin

(
A (ŷ(x))A (ŷ(x))

T
)
> 0,∀x ∈ X . Then, we denote with λmin the minimum

value of the quantity λmin

(
A (ŷ(x))A (ŷ(x))

T
)

across all x ∈ X . Therefore, we conclude that

∥∥∥∥[A [∇2
yyg(x,y)

]−1
A

T
]−1
∥∥∥∥ ≤ Ly

λmin
:= LA.

20

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

d) Applying formula (27) with P = A
[
∇2

yyg(x,y
∗(x))

]−1
A

T
, Q = A

[
∇2

yyg(x, ŷ(x))
]−1

A
T

we get∥∥∥∥[A [∇2
yyg(x,y

∗(x))
]−1

A
T
]−1

−
[
A
[
∇2

yyg(x, ŷ(x))
]−1

A
T
]−1
∥∥∥∥

≤
∥∥∥∥[A [∇2

yyg(x,y
∗(x))

]−1
A

T
]−1
∥∥∥∥∥∥∥A [∇2

yyg(x,y
∗(x))

]−1
A

T −A
[
∇2

yyg(x, ŷ(x))
]−1

A
T
∥∥∥∥∥∥∥[A [∇2

yyg(x, ŷ(x))
]−1

A
T
]−1
∥∥∥∥

≤
∥∥∥∥[A [∇2

yyg(x,y
∗(x))

]−1
A

T
]−1
∥∥∥∥∥∥∥A [[∇2

yyg(x,y
∗(x))

]−1 −
[
∇2

yyg(x, ŷ(x))
]−1
]
A

T
∥∥∥∥∥∥∥[A [∇2

yyg(x, ŷ(x))
]−1

A
T
]−1
∥∥∥∥

≤
∥∥∥∥[A [∇2

yyg(x,y
∗(x))

]−1
A

T
]−1
∥∥∥∥∥∥A∥∥∥∥∥[∇2

yyg(x,y
∗(x))

]−1 −
[
∇2

yyg(x, ŷ(x))
]−1
∥∥∥∥∥∥AT

∥∥∥∥∥∥∥[A [∇2
yyg(x, ŷ(x))

]−1
A

T
]−1
∥∥∥∥

≤ L2
AL

2

A

(
1

µg

)2

Lgyy
δ,

where in the final inequality we used the bounds derived in Lemma D.6(b), D.6(c), and the bound ∥A∥ ≤ LA.

The proof is now complete.

Now let us bound the norm of the gradients of the mappings λ∗(x) and y∗(x).
Lemma D.7. Under Assumptions 2.1,2.5,2.7, the gradients of the mappings λ∗(x) and y∗(x) satisfy the following bounds
for every x ∈ X ,

∥∇λ
∗
(x)∥ ≤ Lλ∗ ,

∥∥∥∇̂λ
∗
(x)
∥∥∥ ≤ Lλ∗

∥∇y∗(x)∥ ≤ Ly∗ , ∥∇̂y∗(x)∥ ≤ Ly∗

where Lλ∗ = 1
µg

LALALgxy
and Ly∗ = 1

µy

(
Lgxy

+ LALλ∗
)
. Note that ∇̂λ

∗
(x) and ∇̂y∗(x) are obtained by substituting

the estimate ŷ(x) in place of y∗(x) in the expressions ∇λ
∗
(x) and ∇y∗(x), respectively (Please see Lemma 2.4).

Proof. From Lemma 2.4 we have

∇λ
∗
(x) = −

[
A
[
∇2

yyg(x,y
∗(x))

]−1
A

T
]−1 [

A
[
∇2

yyg(x,y
∗(x))

]−1 ∇2
xyg(x,y

∗(x))
]

Then, taking the norm of this quantity we get,∥∥∥∇λ
∗
(x)
∥∥∥ =

∥∥∥∥[A [∇2
yyg(x,y

∗(x))
]−1

A
T
]−1 [

A
[
∇2

yyg(x,y
∗(x))

]−1 ∇2
xyg(x,y

∗(x))
]∥∥∥∥

≤
∥∥∥∥[A [∇2

yyg(x,y
∗(x))

]−1
A

T
]−1
∥∥∥∥∥∥A∥∥∥∥∥[∇2

yyg(x,y
∗(x))

]−1
∥∥∥∥∥∇2

xyg(x,y
∗(x))

∥∥
≤ LALA

1

µg
Lgxy

:= Lλ∗ ,

where in the last inequality we used Lemma D.6(a), D.6(c) and Assumption 2.7(f).

Similarly, for ∥∇̂λ
∗
(x)∥ we have that∥∥∥∇̂λ
∗
(x)
∥∥∥ =

∥∥∥∥[A [∇2
yyg(x, ŷ(x))

]−1
A

T
]−1 [

A
[
∇2

yyg(x, ŷ(x))
]−1 ∇2

xyg(x, ŷ(x))
]∥∥∥∥

≤ LALA
1

µg
Lgxy

= Lλ∗ .

21

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Moving to the bound of ∥∇y∗(x)∥, we know from Lemma 2.4 that the formula of the gradient of y∗(x) is

∇y∗(x) =
[
∇2

yyg(x,y
∗(x))

]−1
[
−∇2

xyg(x,y
∗(x))−A

T∇λ
∗
(x)
]
. (28)

Then, we have that

∥∇y∗(x)∥ =
∥∥∥[∇2

yyg(x,y
∗(x))

]−1
[
−∇2

xyg(x,y
∗(x))−A

T∇λ
∗
(x)
]∥∥∥

≤
∥∥∥[∇2

yyg(x,y
∗(x))

]−1
∥∥∥∥∥∥[−∇2

xyg(x,y
∗(x))−A

T∇λ
∗
(x)
]∥∥∥

≤ 1

µg

(∥∥∇2
xyg(x,y

∗(x))
∥∥+ ∥∥A∥∥ ∥∥∥∇λ

∗
(x)
∥∥∥)

≤ 1

µg

(
Lgxy

+ LALλ∗
)
:= Ly∗ ,

where in the second inequality we used we used Lemma D.6(a); the third inequality follows from Assumption 2.7(f) and the
bound for

∥∥∥∇λ
∗
(x)
∥∥∥ we derived above.

Similarly, for
∥∥∥∇̂y(x)

∥∥∥ we can obtain the following bound∥∥∥∇̂y(x)
∥∥∥ =

∥∥∥[∇2
yyg(x, ŷ(x))

]−1
[
−∇2

xyg(x, ŷ(x))−A
T ∇̂λ

∗
(x)
]∥∥∥

≤ 1

µg

(∥∥∇2
xyg(x, ŷ(x))

∥∥+ ∥∥A∥∥∥∥∥∇̂λ
∗
(x)
∥∥∥)

≤ 1

µg

(
Lgxy + LALλ∗

)
= Ly∗ .

The proof is now complete.

In the next two results we are going to present bounds for the difference of the exact and approximate gradients of the
mappings λ

∗
(x) and ∇y∗(x).

Lemma D.8. Suppose that Assumptions 2.1,2.5,2.7 hold. Then, the following bound holds

∥∇λ
∗
(x)− ∇̂λ

∗
(x)∥ ≤ Lλ∗δ,

where Lλ∗ =
(

1
µg

)3
L
2

AL
3
ALgyy

Lgxy
+ 1

µg
LALALgxy

+
(

1
µg

)2
LALALgyy

Lgxy
.

Proof. Using the derivation of ∇λ
∗
(x) from Lemma 2.4, and its approximation ∇̂λ

∗
(x) where we substitute y∗(x) with

ŷ(x) in the formula of the former, that is,

∇̂λ
∗
(x) = −

[
A
[
∇2

yyg(x, ŷ(x))
]−1

A
T
]−1 [

A
[
∇2

yyg(x, ŷ(x))
]−1 ∇2

xyg(x, ŷ(x))
]
,

we obtain∥∥∥∇λ
∗
(x)− ∇̂λ

∗
(x)
∥∥∥ =

∥∥∥∥ [A [∇2
yyg(x,y

∗(x))
]−1

A
T
]−1 [

A
[
∇2

yyg(x,y
∗(x))

]−1 ∇2
xyg(x,y

∗(x))
]

−
[
A
[
∇2

yyg(x, ŷ(x))
]−1

A
T
]−1 [

A
[
∇2

yyg(x, ŷ(x))
]−1 ∇2

xyg(x, ŷ(x))
] ∥∥∥∥.

Below, we use the following notation in order to simplify the derivations.

H(x) =
[
A
[
∇2

yyg(x,y
∗(x))

]−1
A

T
]
, G(x) =

[
∇2

yyg(x,y
∗(x))

]−1
, M(x) = ∇2

xyg(x,y
∗(x))

Ĥ(x) =
[
A
[
∇2

yyg(x, ŷ(x))
]−1

A
T
]
, Ĝ(x) =

[
∇2

yyg(x, ŷ(x))
]−1

, M̂(x) = ∇2
xyg(x, ŷ(x))

22

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Then, we have that

∥∇λ
∗
(x)− ∇̂λ

∗
(x)∥ =

∥∥∥H−1(x)AG(x)M(x)− Ĥ−1(x)AĜ(x)M̂(x)
∥∥∥

(a)

≤
∥∥∥H−1(x)AG(x)M(x)− Ĥ−1(x)AG(x)M(x)

∥∥∥
+
∥∥∥Ĥ−1(x)AG(x)M(x)− Ĥ−1(x)AĜ(x)M̂(x)

∥∥∥
≤
∥∥∥H−1(x)− Ĥ−1(x)

∥∥∥∥∥A∥∥ ∥G(x)∥ ∥M(x)∥

+
∥∥∥Ĥ−1(x)

∥∥∥∥∥A∥∥∥∥∥G(x)M(x)− Ĝ(x)M̂(x)
∥∥∥

(b)

≤
∥∥∥H−1(x)− Ĥ−1(x)

∥∥∥∥∥A∥∥ ∥G(x)∥ ∥M(x)∥

+
∥∥∥Ĥ−1(x)

∥∥∥∥∥A∥∥ [∥∥∥G(x)M(x)−G(x)M̂(x)
∥∥∥+ ∥∥∥G(x)M̂(x)− Ĝ(x)M̂(x)

∥∥∥]
≤
∥∥∥H−1(x)− Ĥ−1(x)

∥∥∥∥∥A∥∥ ∥G(x)∥ ∥M(x)∥

+
∥∥∥Ĥ−1(x)

∥∥∥∥∥A∥∥ ∥G(x)∥
∥∥∥M(x)− M̂(x)

∥∥∥+ ∥∥∥Ĥ−1(x)
∥∥∥∥∥A∥∥∥∥∥G(x)− Ĝ(x)

∥∥∥∥∥∥M̂(x)
∥∥∥

(c)

≤ L
2

AL
2
A

(
1

µg

)2

LgyyδLA
1

µg
Lgxy + LALA

1

µg
Lgxyδ + LALA

(
1

µg

)2

LgyyδLgxy

=

((
1

µg

)3

L
2

AL
3
ALgyy

Lgxy
+

1

µg
LALALgxy

+

(
1

µg

)2

LALALgyy
Lgxy

)
δ.

In (a) we add and subtract the term Ĥ−1(x)AG(x)M(x) and apply the triangle inequality. In (b) we add and subtract
the term G(x)M̂(x) and apply the triangle inequality. In (c) we use Lemma D.6(d) for ∥H−1(x)− Ĥ−1(x)∥, the bound
∥A∥ ≤ LA, Lemma D.6(a) for ∥G(x)∥, Lemma D.6(c) for ∥H−1(x)∥ and ∥Ĥ−1(x)∥, Assumption 2.7(f) for ∥M(x)∥ and
∥M̂(x)∥, Assumption 2.7(e) for ∥M(x)− M̂(x)∥, and finally Lemma D.6(b) for ∥G(x)− Ĝ(x)∥.

The proof is now complete.

Lemma D.9. Suppose that Assumptions 2.1,2.5,2.7 hold. Then, the following bound holds

∥∇y∗(x)− ∇̂y(x)∥ ≤ Ly∗δ,

where Ly∗ =
(

1
µg

)2
Lgyy

Lgxy
+ 1

µg
Lgxy

+
(

1
µg

)2
Lgyy

LALλ∗ + 1
µg

LALλ∗ .

Proof. From Lemma 2.4 we have that

∇y∗(x) =
[
∇2

yyg(x,y
∗(x))

]−1
[
−∇2

xyg(x,y
∗(x))−A

T∇λ
∗
(x)
]
.

We can also get ∇̂y(x) by substituting ŷ(x) in place of y∗(x) in the above formula, i.e.,

∇̂y(x) =
[
∇2

yyg(x, ŷ(x))
]−1

[
−∇2

xyg(x, ŷ(x))−A
T ∇̂λ

∗
(x)
]
.

23

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Then, we have that

∥∥∥∇y∗(x)− ∇̂y(x)
∥∥∥ =

∥∥∥∥ [∇yyg(x,y
∗(x))]

−1
[
−∇xyg(x,y

∗(x))−A
T∇λ

∗
(x)
]

−
[
∇2

yyg(x, ŷ(x))
]−1

[
−∇xyg(x, ŷ(x))−A

T ∇̂λ
∗
(x)
] ∥∥∥∥

(a)

≤
∥∥∥[∇2

yyg(x,y
∗(x))

]−1 ∇xyg(x,y
∗(x))−

[
∇2

yyg(x, ŷ(x))
]−1 ∇xyg(x, ŷ(x))

∥∥∥
+
∥∥∥[∇2

yyg(x,y
∗(x))

]−1
A

T∇λ
∗
(x)−

[
∇2

yyg(x, ŷ(x))
]−1

A
T ∇̂λ

∗
(x)
∥∥∥

(b)

≤
∥∥∥[∇2

yyg(x,y
∗(x))

]−1 ∇xyg(x,y
∗(x))− [∇yyg(x, ŷ(x))]

−1 ∇xyg(x,y
∗(x))

∥∥∥
+
∥∥∥[∇2

yyg(x, ŷ(x))
]−1 ∇xyg(x,y

∗(x))−
[
∇2

yyg(x, ŷ(x))
]−1 ∇xyg(x, ŷ(x))

∥∥∥
+
∥∥∥[∇2

yyg(x,y
∗(x))

]−1
A

T∇λ
∗
(x)−

[
∇2

yyg(x, ŷ(x))
]−1

A
T∇λ

∗
(x)
∥∥∥

+
∥∥∥[∇2

yyg(x, ŷ(x))
]−1

A
T∇λ

∗
(x)−

[
∇2

yyg(x, ŷ(x))
]−1

A
T ∇̂λ

∗
(x)
∥∥∥

≤
∥∥∥[∇2

yyg(x,y
∗(x))

]−1 −
[
∇2

yyg(x, ŷ(x))
]−1
∥∥∥ ∥∇xyg(x,y

∗(x))∥

+
∥∥∥[∇2

yyg(x, ŷ(x))
]−1
∥∥∥ ∥∇xyg(x,y

∗(x))−∇xyg(x, ŷ(x))∥

+
∥∥∥[∇2

yyg(x,y
∗(x))

]−1 −
[
∇2

yyg(x, ŷ(x))
]−1
∥∥∥ ∥∥∥AT

∥∥∥∥∥∥∇λ
∗
(x)
∥∥∥

+
∥∥∥[∇2

yyg(x, ŷ(x))
]−1
∥∥∥∥∥∥AT

∥∥∥ ∥∥∥∇λ
∗
(x)− ∇̂λ

∗
(x)
∥∥∥

(c)

≤
(

1

µg

)2

Lgyy
δLgxy

+
1

µg
Lgxy

δ +

(
1

µg

)2

Lgyy
δLALλ∗ +

1

µg
LALλ∗δ

=

((
1

µg

)2

Lgyy
Lgxy

+
1

µg
Lgxy

+

(
1

µg

)2

Lgyy
LALλ∗ +

1

µg
LALλ∗

)
δ.

In (a) the triangle inequality was used. In (b) we add and subtract the expressions [∇yyg(x, ŷ(x))]
−1 ∇xyg(x,y

∗(x))

and
[
∇2

yyg(x, ŷ(x))
]−1

A
T∇λ

∗
(x) in the first and second terms, respectively. In (c) we apply Lemma D.6(a), D.6(b),

Assumption 2.7(e), 2.7(f), the bound ∥A∥ ≤ LA, Lemmas D.7 and D.8.

The proof is now complete.

Now we have all the results needed to prove Lemma 2.8.

Proof of Lemma 2.8. To begin with, the exact and approximate (due to the inexact solution of the LL problem) implicit
gradients of the objective F (x), are given below.

∇F (x) = ∇xf(x,y
∗(x)) + [∇y∗(x)]

T ∇yf(x,y
∗(x))

∇̂F (x) = ∇xf(x, ŷ(x)) +
[
∇̂y(x)

]T
∇yf(x, ŷ(x)).

24

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Then, we can compute the norm of their difference.

∥∇̂F (x)−∇F (x)∥ = ∥∇xf(x, ŷ(x)) + [∇ŷ(x)]
T ∇yf(x, ŷ(x))

−∇xf(x,y
∗(x))− [∇y∗(x)]

T ∇yf(x,y
∗(x))∥

(a)

≤ ∥∇xf(x, ŷ(x))−∇xf(x,y
∗(x))∥

+ ∥[∇̂y(x)]T∇yf(x, ŷ(x))− [∇y∗(x)]
T ∇yf(x,y

∗(x))∥
(b)

≤ ∥∇xf(x, ŷ(x))−∇xf(x,y
∗(x))∥

+ ∥[∇̂y(x)]T∇yf(x, ŷ(x))− [∇y∗(x)]
T ∇yf(x, ŷ(x))∥

+ ∥ [∇y∗(x)]
T ∇yf(x, ŷ(x))− [∇y∗(x)]

T ∇yf(x,y
∗(x))∥

(c)

≤ Lf∥ŷ(x)− y∗(x))∥+ ∥∇̂y(x)−∇y∗(x))∥∥∇yf(x, ŷ(x))∥
+ ∥∇y∗(x))∥∥∇yf(x, ŷ(x))−∇yf(x,y

∗(x))∥
(d)

≤ Lf∥ŷ(x)− y∗(x))∥+ ∥∇̂y(x)−∇y∗(x))∥∥∇yf(x, ŷ(x))∥
+ Lf∥∇y∗(x))∥∥ŷ(x)− y∗(x)∥

(e)

≤ Lfδ + Ly∗δLf + LfLy∗δ

=
(
Lf + Ly∗Lf + LfLy∗

)
δ := LF δ, (29)

where LF = Lf + Ly∗Lf + LfLy∗ . Also, in inequality (a) above we apply the triangle inequality; in (b) we add and
subtract the term [∇y∗(x)]

T ∇yf(x, ŷ(x)), and use triangle inequality; in (c) and (d) we use the Lipschitz gradient property
of f (Assumption 2.5(b)); in (e) we apply Assumptions 2.7(a) and 2.5(a), and Lemmas D.7 and D.9.

Now consider the expression ∥∇F (x)∥. We have that

∥∇F (x)∥ =
∥∥∥∇xf(x,y

∗(x)) + [∇y∗(x)]
T ∇yf(x,y

∗(x))
∥∥∥

≤ |∇xf(x,y
∗(x))∥+ ∥∇y∗(x)∥ ∥∇yf(x,y

∗(x))∥
≤
(
1 + Ly∗

)
Lf := LF ,

where we applied Assumption 2.7(a) and Lemma D.7. Similarly, we can see that∥∥∥∇̂F (x)
∥∥∥ =

∥∥∥∥∇xf(x, ŷ(x)) +
[
∇̂y(x)

]T
∇yf(x, ŷ(x))

∥∥∥∥
≤ ∥∇xf(x, ŷ(x))∥+

∥∥∥∇̂y(x)
∥∥∥ ∥∇yf(x, ŷ(x))∥

≤
(
1 + Ly∗

)
Lf = LF .

Therefore, the proof is completed.

D.1.4. PROOF OF LEMMA 2.10

Proof. From the definition of the stochastic gradient in (11) we have

∇̂F (x; ξ) = ∇xf(x, ŷ(x); ξ) + [∇̂y∗(x)]T∇yf(x, ŷ(x); ξ).

Taking expectation on both sides and utilizing Assumption 2.9, we get

Eξ[∇̂F (x; ξ)] = Eξ

[
∇xf(x, ŷ(x); ξ) + [∇̂y∗(x)]T∇yf(x, ŷ(x); ξ)

]
= Eξ

[
∇xf(x, ŷ(x); ξ)

]
+ [∇̂y∗(x)]TEξ

[
∇yf(x, ŷ(x); ξ)

]
= ∇xf(x, ŷ(x); ξ) + [∇̂y∗(x)]T∇yf(x, ŷ(x); ξ)

= ∇̂F (x).

25

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Similarly, for the variance of the stochastic implicit gradient, we have

Eξ∥∇̂F (x; ξ)− ∇̂F (x)∥2 = Eξ

∥∥∇xf(x, ŷ(x); ξ) + [∇̂y∗(x)]T∇yf(x, ŷ(x); ξ)

−
[
∇xf(x, ŷ(x)) + [∇̂y∗(x)]T∇yf(x, ŷ(x))

]∥∥2
(a)

≤ 2 Eξ∥∇xf(x, ŷ(x); ξ)−∇xf(x, ŷ(x))∥2

+ 2 ∥∇̂y∗(x)]∥2 Eξ∥∇yf(x, ŷ(x); ξ)−∇yf(x, ŷ(x))∥2

(b)

≤ 2σ2
f + 2Ly∗σ2

f := σ2
F ,

where (a) follows from ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2 and (b) results from Assumption 2.9 and the application of Lemma
D.7.

Therefore, we have the proof.

D.2. Proofs of Section 3

Example. Before introducing the proofs, we present the following example

min
x∈[0,1]

x+ y∗(x) where y∗(x) ∈ argmin
y∈R

{
(x− y)2

∣∣∣1/2 ≤ y ≤ 1
}

Note that for the above problem, we have

y∗(x) =

{
1/2 for x ≤ 1/2

x for x > 1/2
.

Therefore, y∗(x) is non-differentiable at x̄ = 1/2.

Now, let us consider the perturbed version of the above problem

min
x∈[0,1]

x+ y∗(x) where y∗q (x) ∈ argmin
y∈R

{
(x− y)2 + qy

∣∣∣1/2 ≤ y ≤ 1
}

where q is sampled from a continuous distribution. For the perturbed problem the mapping y∗q (x) becomes

y∗q (x) =

{
1/2 for x ≤ (1 + q)/2

x for x > (1 + q)/2
.

Note that adding the perturbation makes the mapping y∗(x) differentiable at the original non-differentiable point x = 1/2
and this point of non-differentiability got perturbed to a random point ϵ̄(x̄; q) = x̄+ q/2. Note that this set mapping ϵ̄(x̄; q)
can be empty when the point x̄+ q/2 /∈ [0, 1].

Note from the above example we can observe that the mapping ϵ̄(x̄; q) is continuous in q and is a function of the non-
differentiable points of the original unperturbed problem.

D.2.1. PROOF OF LEMMA 3.1

In this section, we provide the proof of Lemma 3.1 when the iterates {xr}∞r=0 are generated using GD updates with constant
learning rate. We note that the proof can be easily extended to the iterates generated by Algorithm 1 with the expense of a
much more complicated notation.

Proof. Let the iterates {xr}Tr=0 with xr ∈ X be a countable sequence generated according to the following update rule:

xr+1 = xr − η∇̂F (xr),

where η is a fixed step-size and ∇̂F (xr) is the approximate implicit gradient defined in (10). First, note that a direct
consequence of Lemma 2.3 is that F (·) is differentiable w.p. 1 at iterate x0 ∈ X (since the perturbation is added to the

26

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

original bilevel problem (1a) for x = x0). Next, we note that x1 is generated using: x1 = x0 − η∇̂F (x0). Naturally,
x1 will be a random variable dependent on the perturbation q. This dependence of x1 on q comes through the gradient
∇̂F (x1), where ∇̂F (x1) depends on q through the active set A and the mapping ŷ(x1). Please recall that ŷ(x1) is the
approximate solution of the perturbed LL problem in (5). Also recall that the definition of ∇̂F (x1) was given in (10), and
provided below for convenience:

∇̂F (x1) = ∇xf(x
1, ŷ(x1)) + [∇̂y∗(x1)]T∇yf(x

1, ŷ(x1)), (30)

where

∇̂y∗(x) =
[
∇2

yyg(x, ŷ(x))
]−1 ·

[
−∇2

xyg(x, ŷ(x))−A
T ∇̂λ

∗
(x)
]

(31)

∇̂λ
∗
(x) = −

[
A
[
∇2

yyg(x, ŷ(x))
]−1

A
T]−1 ·

[
A
[
∇2

yyg(x, ŷ(x))
]−1∇2

xyg(x, ŷ(x))
]
. (32)

Next, we make the following key observation:
• The active set A of the LL problem is a discrete random variable with finite support. Note that this is a direct

consequence of the fact that as q varies A can only take values in a finite set depending on the set of active constraints
at the approximate solution ŷ(x1) of the LL problem.

Now let us look at the expression of the implicit gradient ∇̂F (x1) given in (30). The set of assumptions stated in Assumption
2.7 implies that ∇̂F (x1) is a smooth composition of terms involving the active set A and the approximate LL solution
ŷ(x1) that depend on q. The observation above implies that ∇̂F (x1) will be random variable with piecewise continuous
cumulative distribution function (CDF) since ∇̂F (x1) is composition of a discrete random variable A with a (possibly either
discrete or continuous) random variable ŷ(x1). We refer to such a random variable as a mixed random variable since it is a
composition of a discrete random variable (A) and a potentially continuous random variable (ŷ(x1)). This further implies
that the iterate x1 = xr − η∇̂F (xr) will also be a mixed random variable. Applying this argument successively to iterates
{xr}Tr=2, we can conclude that the random variables {xr}Tr=2 will also be mixed random variables since each gradient
update is a composition of two mixed random variables.

Next, let us consider the probability of the event that the sequence of random variables {xr}Tr=0 will be non-differentiable.
This is equivalent to saying that xr for any r ∈ [T] belongs to the set of non-differentiable points, XF , of the implicit function
F (·). Recall that from the Assumption in Lemma 3.1 the set of non-differentiable points of F (·), XF , are characterized by
the mapping ϵ̄(x̄;q) where x̄ ∈ X̄G (Please see the Example above).

Therefore, we are interested in the probability of the event that we have ϵ̄(x̄,q) = xr for any x̄ ∈ X̄G and {xr}Tr=0, which
is same as the following probability:

P
[⋃
x̄∈X̄G,r∈[T]

ϵ̄(x̄,q) = xr
]
.

To evaluate this probability we consider the event that for any given x̄ ∈ X̄G and r ∈ [T] we have ϵ̄(x̄,q) = xr. The
probability of this event can be evaluated as:

P [ϵ̄(x̄,q) = xr] = P[ϵ̄(x̄,q)− xr = 0] = 0.

The last equality follows from the fact that ϵ̄(x̄,q) is a continuous random variable (see Lemma 3.1) while xr is a mixed
random variable6. Specifically, note that the CDF of the two random variables are different which implies that the random
variable ϵ̄(x̄,q)− xr is a composition of a continuous and a mixed random variable and the probability that it takes a fixed
value is zero.

Now, using this we evaluate

P
[⋃
x̄∈X̄ ,r∈[T]

ϵ̄(x̄,q) = xr
]
≤
∑
x̄∈X̄

∑
r∈[T]

P
[
ϵ̄(x̄,q) = xr

]
= 0,

where the first inequality follows from the union bound and the fact that the set X̄ is countable. Hence, the lemma is
proved.

6In this statement, we have made an implicit assumption that the functions ϵ̄(x̄, ·) and xr as a function of q do not share common
support of non-zero measure.

27

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

D.2.2. PROOF OF PROPOSITION 3.2

Proof. From Assumption 2.1 we know that h(x,y) (and thus g(x,y)) is strongly convex in y with modulus µg = µh. As a
result we have that

h(x,y∗(x)) ≥ h(x,y∗(x)) + ⟨∇yh(x,y
∗(x)),y∗(x)− y∗(x)⟩+ µg

2
∥y∗(x)− y∗(x)∥2 (33)

g(x,y∗(x)) ≥ g(x,y∗(x)) + ⟨∇yg(x,y
∗(x)),y∗(x)− y∗(x)⟩+ µg

2
∥y∗(x)− y∗(x)∥2. (34)

By definition y∗(x) is the global minimum of the objective h(x,y), and so it holds that ⟨∇yh(x,y
∗(x)),y∗(x)− y∗(x)⟩ ≥

0. Similarly, y∗(x) is the global minimum of the objective g(x,y), and so it holds that ⟨∇yg(x,y
∗(x)),y∗(x)− y∗(x)⟩ ≥

0. Then, using the above inequalities and adding (33) and (34), we get

h(x,y∗(x)) + g(x,y∗(x)) ≥ h(x,y∗(x)) + g(x,y∗(x)) + µg∥y∗(x)− y∗(x)∥2

µg∥y∗(x)− y∗(x)∥2 ≤ [h(x,y∗(x))− g(x,y∗(x))] + [g(x,y∗(x))− h(x,y∗(x))]

µg∥y∗(x)− y∗(x)∥2 ≤ −qTy∗(x) + qTy∗(x)

∥y∗(x)− y∗(x)∥2 ≤ qT (y∗(x)− y∗(x))

µg

∥y∗(x)− y∗(x)∥2 ≤ ∥qT ∥∥y∗(x)− y∗(x)∥
µg

∥y∗(x)− y∗(x)∥ ≤ ∥q∥
µg

.

Using the above bound and the fact that f is Lipschitz continuous (it follows from the bounded gradient assumption 2.7(a))
it is easy to see that

|F (x)−G(x)| = |f(x,y∗(x))− f(x,y∗(x))| ≤ Lf∥y∗(x)− y∗(x)∥ ≤ Lf
∥q∥
µg

.

Therefore, the proof is complete.

D.2.3. PROOF OF THEOREM 3.3

Lemma D.10. Under Assumption 2.1, 2.5, 2.7, ∇F (x) is almost surely continuous at a neighborhood around x, for any
given x ∈ X .

Proof. To begin with, we already established in Lemma 2.4 that F is almost surely differentiable at any given x ∈ X .
Therefore, for any x ∈ X there exists (almost surely) a neighborhood around it such that the matrix A corresponding to the
active constraints at y∗(x) remains unchanged, where the gradient ∇y∗(x) is defined in eq. (7), (8). Further, since A is
locally (i.e., around any given x) constant, and the formulas in (7), (8) can be seen as the results of a number of continuous
operations over continuous functions, it is implied that ∇y∗(x) is also a continuous function at a neighborhood around
x almost surely. As a result, ∇F (x) = ∇xf(x,y

∗(x)) + [∇y∗(x)]T∇yf(x,y
∗(x)) is almost surely continuous locally

around any given x ∈ X .

Proof of Theorem 3.3. Here we follow a reasoning similar to the proof of Bertsekas (1998, Prop. 1.2.1). However, there are
a number of differences that make this proof more challenging. First, in our setting we are optimizing an inexact version of
the objective F̂ (x) = f(x, ŷ(x)), using an approximate version of the gradient ∇̂F (x). Since the approximate gradient
we are using is not the gradient of the objective F̂ (x) (the gradient of this function might not even exist), we consider
a modification of the standard Armijo rule where an additional error term is present. Secondly, in the proof below the
(classical) mean value theorem (Bertsekas, 1998, Prop. 1.23) cannot be applied, since we cannot ensure that F is (surely)
differentiable at any given interval over x. As we are going to show below, we use an alternative mean value theorem that
does not require such assumption.

28

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

To begin with, we know that for the exact implicit objective F (x) and gradient ∇F (x) (quantities to which we do not have
access to) we can find at each iteration r a step-size ar such that the following condition holds

F (xr)− F (xr + ardr) ≥ −σar [∇F (xr)]
T
dr, (35)

where dr = x̃r − xr with x̃r = projX (xr −∇F (xr)).

Next, the difference between the (approximate) objective values of two successive iterates (for simplicity we will use the
notation xr+1 = xr + ardr, x̂r+1 = xr + ard̂r; d̂r is defined in Algorithm 1) is

F̂ (xr)− F̂ (x̂r+1) = F̂ (xr)− F (xr) + F (xr)− F (xr+1) + F (xr+1)− F (x̂r+1) + F (x̂r+1)− F̂ (x̂r+1)

= f(xr, ŷ(xr))− f(xr,y∗(xr)) + F (xr)− F (xr+1) + F (xr+1)− F (x̂r+1)

+ f(x̂r+1,y∗(x̂r+1))− f(x̂r+1, ŷ(x̂r+1))

≥ −Lf∥y∗(xr)− ŷ(xr)∥+ F (xr)− F (xr+1)− LF ∥xr+1 − x̂r+1∥
− Lf∥y∗(xr+1)− ŷ(xr+1)∥

≥ −Lfδ
r − σar [∇F (xr)]

T
dr − LFa

r∥dr − d̂r∥ − Lfδ
r+1

≥ −Lfδ
r − σar [∇F (xr)]

T
dr − LFLFa

rδr − Lfδ
r+1

= −σar [∇F (xr)]
T
dr − ϵ1(δ; r), (36)

where we set ϵ1(δ; r) = Lfδ
r + LFLFa

rδr + Lfδ
r+1. In the first inequality, we used the Lipschitz continuity of f and

F ; in the second inequality Assumption 2.5(a) and condition (35) were applied; in the third inequality the non-expansive
property of the projection operator was used.

Also, we have that

∇TF (xr)dr =
(
∇F (xr)− ∇̂F (xr) + ∇̂F (xr)

)T (
dr + d̂r − d̂r

)
=
(
∇F (xr)− ∇̂F (xr)

)T (
dr − d̂r

)
+
(
∇F (xr)− ∇̂F (xr)

)T
d̂r

+
[
∇̂F (xr)

]T (
dr − d̂r

)
+
[
∇̂F (xr)

]T
d̂r

≤ ∥∇F (xr)− ∇̂F (xr)∥∥dr − d̂r∥+ ∥∇F (xr)− ∇̂F (xr)∥∥d̂r∥

+ ∥∇̂F (xr)∥∥dr − d̂r∥+
[
∇̂F (xr)

]T
d̂r

≤ L2
F (δr)

2
+ LFLF δ

r + LFLF δ
r +

[
∇̂F (xr)

]T
d̂r

=
[
∇̂F (xr)

]T
d̂r + ϵ2(δ; r), (37)

where ϵ2(δ; r) = L2
F (δr)

2
+ 2LFLF δ

r. Notice that the results in the second inequality follow from Lemma 2.8.

Then, combining (36) and (37) we get

F̂ (xr)− F̂ (x̂r+1) ≥ −σar
[
∇̂F (xr)

]T
d̂r − ϵ1(δ; r)− σarϵ2(δ; r)

= −σar
[
∇̂F (xr)

]T
d̂r − ϵ(δ; r),

where ϵ(δ; r) = ϵ1(δ; r) + σarϵ2(δ; r); notice that lim
δ→0

ϵ(δ) = 0. In conclusion, we can follow this (inexact) Armijo-type

rule in our inexact problem; the existence of the (Armijo) step-size is guaranteed by its existence for the exact problem (35).

Now let us move to the main part of the proof, which follows the reasoning used in Bertsekas (1998, Prop. 1.2.1). Let
{xr} ∈ X be the iterate sequence of our algorithm, and let x̄ ∈ X be a limit point; the existence of such point is guaranteed
by the closedness of the set X . Moreover, it is established in Proposition 2.2 that F (x) is continuous, and as a result it

29

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

holds that limr→+∞ F (xr) = F (x̄). The latter results combined with the fact that all convergent sequences are also Cauchy
sequences, implies that limr→+∞(F (xr)− F (xr+1)) = 0.

We want to show that x̄ is a stationary point of F (x). We are going to show that by assuming that the opposite holds, i.e., x̄
is not a stationary point of F (x), and arriving at a contradiction. From the Armijo rule of our problem we have that

F̂ (xr)− F̂ (x̂r+1) ≥ −σar
[
∇̂F (xr)

]T
d̂r − ϵ(δ; r). (38)

Then, consider the following

F̂ (xr)− F̂ (x̂r+1) = F̂ (xr)− F (xr) + F (xr)− F (xr+1) + F (xr+1)− F (x̂r+1) + F (x̂r+1)− F̂ (x̂r+1)

= f(xr, ŷ(xr))− f(xr,y∗(xr)) + F (xr)− F (xr+1) + F (xr+1)− F (x̂r+1)

+ f(x̂r+1,y∗(x̂r+1))− f(x̂r+1, ŷ(x̂r+1))

≤ Lf∥y∗(xr)− ŷ(xr)∥+ F (xr)− F (xr+1) + LF ∥xr+1 − x̂r+1∥
+ Lf∥y∗(xr+1)− ŷ(xr+1)∥

≤ Lfδ
r + F (xr)− F (xr+1) + LFa

r∥dr − d̂r∥+ Lfδ
r+1

≤ F (xr)− F (xr+1) + Lfδ
r + LFLFa

rδr + Lfδ
r+1

= F (xr)− F (xr+1) + ϵ1(δ; r).

In the first inequality, we used the Lipschitz continuity of f and F ; in the second inequality Assumption 2.5(a) and condition
(35) were applied; in the third inequality the non-expansive property of the projection operator was used. Using the above
derivation we can bound the left-hand side of inequality (38) as follows

F (xr)− F (xr+1) + ϵ1(δ; r) ≥ F̂ (xr)− F̂ (x̂r+1) ≥ −σar
[
∇̂F (xr)

]T
d̂r − ϵ(δ; r).

It is easy to see that the left-hand side in the above inequality tends to 0. Therefore,

limr→+∞

(
−σar

[
∇̂F (xr)

]T
d̂r − ϵ(δ; r)

)
≤ 0. In addition, we know that limr→+∞ ϵ(δ; r) = 0 and

−σar
[
∇̂F (x)

]T
d̂r ≥ 0,∀x ∈ X . From the above statements we can conclude that

lim
r→+∞

σar
[
∇̂F (xr)

]T
d̂r = 0. (39)

Moreover, from the gradient-related assumption we know that for a non-stationary point x̄ we have that

lim sup
r→∞,r∈R

[
∇̂F (xr)

]T
d̂r < 0, (40)

where{xr}R is subsequence with lim
r→∞,r∈R

xr = x̄. Then, the conditions (39), (40) imply that

lim
r→∞,r∈R

ar = 0.

In the subsequence R we can find an index r̄ ≥ 0 such that

F̂ (xr)− F̂

(
xr +

(
ar

β

)
d̂r

)
< −σ

(
ar

β

)
∇̂TF (xr)d̂r − ϵ(δ; r),∀r ∈ R, r ≥ r̄. (41)

Similarly with the proof of Bertsekas (1998, Prop. 1.2.1) let us introduce the following sequences:

p̂r =
d̂r

∥d̂r∥
, ār =

ar∥d̂r∥
β

30

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

The first sequence {p̂r} is bounded and so it admits a limit point p̄ with ∥p̄∥ = 1, that is limr→+∞,r∈R pr = p̄, where R
denotes the indices of a subsequence of R. In addition, taking into account the facts that limr→+∞,r∈R ar = 0 and the fact
that the sequence {∥dr∥}R is bounded we can easily see that limr→+∞,r∈R ār = 0.

Dividing both sides of (41) by ār and using the definitions of p̂r and ār from above we get

F̂ (xr)− F̂ (xr + ārp̂r)

ār
< −σ

[
∇̂F (xr)

]T
p̂r − ϵ(δ; r),∀r ∈ R, r > r̄. (42)

Then, we have that (for convenience we adopt the notation x̂r+1 = xr + ārp̂r)

F̂ (xr)− F̂ (x̂r+1) = F̂ (xr)− F (xr) + F (xr)− F (x̂r+1) + F (x̂r+1)− F̂ (x̂r+1)

= f(xr, ŷ(xr))− f(xr,y∗(xr)) + F (xr)− F (x̂r+1)

+ f(x̂r+1,y∗(x̂r+1))− f(x̂r+1, ŷ(x̂r+1))

≥ −Lf∥y∗(xr)− ŷ(xr)∥ − Lf∥y∗(x̂r+1)− ŷ(x̂r+1)∥+ F (xr)− F (x̂r+1)

≥ F (xr)− F (x̂r+1)− Lfδ
r − Lfδ

r+1, (43)

where the first inequality above follows the Lipschitz continuity of f , and the second inequality is an application of
Assumption 2.5(a). Incorporating inequality (43) into (42) results to

F (xr)− F (xr + ārp̂r)

ār
− Lf

δr + δr+1

ār
< −σ

[
∇̂F (xr)

]T
p̂r − ϵ(δ; r),∀r ∈ R, r > r̄. (44)

Lebourg’s mean value theorem (Lebourg, 1979, Theorem 1.7) implies that

F (xr)− F (xr + ārp̂r)

ār
= uTp̂r

with u ∈ ϑF(xr + ãrp̂r) and ãr ∈ [0, ār], where ϑF (·) is the Clarke subdifferntial of F . We know that F is almost surely
continuously differentiable (Lemma D.10) at any xr + ãrp̂r ∈ X , and so the Clarke subdifferential at xr + ārp̂r becomes
w.p. 1 equal to ∇F (xr + ãrp̂r). Note that the we cannot use here the (classical) mean value theorem (Bertsekas, 1998, Prop.
1.23), as in the proof of Bertsekas (1998, Prop. 1.2.1), because it requires that the function F (x) is (surely) differentiable on
the interval [xr,xr + ārp̂r].

Then, we can rewrite the expression in (44) as follows

−Lfβ
δr + δr+1

ar∥d̂r∥
− [∇F (xr + ãrp̂r)]

T
p̂r < −σ

[
∇̂F (xr)

]T
p̂r − ϵ(δ; r),∀r ∈ R, r > r̄,

where ãr ∈ [0, ār].

Using the assumption that 0 ≤ δr

ar ∼ O(cr), where cr is some sequence with limr→∞,r∈R cr = 0, and the fact that

limr→∞,r∈R ∥d̂r∥ ≠ 0 (because of the assumption that the sequence xr converges to a non-stationary point), we compute
the limit in the above expression and get

− [∇F (x̄)]
T
p̄ < −σ [∇F (x̄)]

T
p̄

0 < (1− σ) [∇F (x̄)]
T
p̄

0 < [∇F (x̄)]
T
p̄. (45)

However, note that
[
∇̂F (xr)

]T
p̂r = ∇̂TF (xr)d̂r

∥d̂r∥
and therefore if we take limits in both sides we obtain

[∇F (x̄)]
T
p̄r ≤

lim supr→∞,r∈R ∇̂TF (xr)d̂r

lim supr→∞,r∈R ∥d̂r∥
< 0, (46)

due to the gradient-related assumption. We notice that expressions (45) and (46) lead to a contradiction. Therefore, x̄ is a
stationary point of F (x).

The proof is now complete.

31

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

D.2.4. WEAKLY-CONVEX OBJECTIVE: PROOF OF THEOREM 3.6

Proof. Define x̂r = argmin
z∈Rdu

{
H(z) +

ρ̂

2
∥xr − z∥2

}
. Using the definition of Moreau envelope, we have

E[H1/ρ̂(x
r+1)] ≤ E

[
F (x̂r) +

ρ̂

2
∥xr+1 − x̂r∥2

]
(a)
= E

[
F (x̂r) +

ρ̂

2
∥projX (xr − β∇̂F (xr; ξr))− projX (x̂r)∥2

]
(b)

≤ E
[
F (x̂r) +

ρ̂

2
∥xr − β∇̂F (xr; ξr)− x̂r∥2

]
= F (x̂r) +

ρ̂

2
E
[
∥xr − x̂r∥2 − 2⟨xr − x̂r, β∇̂F (xr; ξr)⟩+ β2∥∇̂F (xr; ξr)∥2

]
(c)

≤ F (x̂r) +
ρ̂

2
E
[
∥xr − x̂r∥2 − 2⟨xr − x̂r, β∇̂F (xr; ξr)⟩

+ 2β2∥∇̂F (xr; ξr)− ∇̂F (xr)∥2 + 2β2∥∇̂F (xr)∥2
]

(d)

≤ F (x̂r) +
ρ̂

2

[
∥xr − x̂r∥2 − 2β⟨xr − x̂r, ∇̂F (xr)⟩+ 2β2

(
σ2
F + L

2

F

)]
≤ F (x̂r) +

ρ̂

2

[
∥xr − x̂r∥2 + 2β ⟨x̂r − xr,∇F (xr)⟩︸ ︷︷ ︸

Term I

+ 2β ⟨x̂r − xr, ∇̂F (xr)−∇F (xr)⟩︸ ︷︷ ︸
Term II

+2β2
(
σ2
F + L

2

F

)]
, (47)

where (a) follows from the fact that xr+1 ∈ X and x̂r ∈ X ; (b) results from the non-expansiveness of the projection
operator; (c) uses ∥a− b∥2 = 2∥a∥2 + ∥b∥2; and (d) results from the application of Lemmas 2.8 and 2.10.

Next, considering Term I and Term II separately in (47) above. For Term I, we get using the weak convexity of F (·)

Term I = ⟨x̂r − xr,∇F (xr)⟩ ≤ F (x̂r)− F (xr) +
ρ

2
∥xr − x̂r∥2

We bound Term II using the Young’s inequality as

Term II = ⟨x̂r − xr, ∇̂F (xr)−∇F (xr)⟩

≤ ρ

2
∥xr − x̂r∥2 + 1

2ρ
∥∇̂F (xr)−∇F (xr)∥2

(e)

≤ ρ

2
∥xr − x̂r∥2 + 1

2ρ
L2
F δ

2

where (e) follows from Lemma 2.8. Next, substituting the bounds of Term I and Term II in (47) and using the definition of
x̂r, we get

E[H1/ρ̂(x
r+1)] ≤ F (x̂r) +

ρ̂

2
∥xr − x̂r∥2 + ρ̂β

[
F (x̂r)− F (xr) + ρ∥xr − x̂r∥2

]
+

ρ̂β

2ρ
L2
F δ

2 + β2ρ̂
(
σ2
F + L

2

F

)
≤ H1/ρ̂(x

r) + ρ̂β
[
F (x̂r)− F (xr) + ρ∥xr − x̂r∥2

]
︸ ︷︷ ︸

Term III

+
ρ̂β

2ρ
L2
F δ

2 + β2ρ̂
(
σ2
F + L

2

F

)
. (48)

Next, we bound Term III in (48) above.

Term III = F (x̂r)− F (xr) + ρ∥xr − x̂r∥2

= F (x̂r) +
ρ̂

2
∥xr − x̂r∥2 − F (xr) +

2ρ− ρ̂

2
∥xr − x̂r∥2

≤ 3ρ− 2ρ̂

2
∥xr − x̂r∥2 ≤ 3ρ− 2ρ̂

2ρ̂2
∥∇H1/ρ̂(x

r)∥2,

32

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

where the last equality follows from (14) and the first inequality follows from the fact that F (x) + ρ̂
2∥x

r − x∥2 is
(ρ̂− ρ)-strongly convex. This implies the following

F (x̂r) +
ρ̂

2
∥xr − x̂r∥2 − F (xr) ≤ −⟨∇F (x̂r) + ρ̂(xr − x̂r), xr − x̂r⟩ − ρ̂− ρ

2
∥xr − x̂r∥2

≤ ρ− ρ̂

2
∥xr − x̂r∥2,

where the second inequality results from the definition of x̂r.

Finally, substituting Term III in (48) and rearranging the terms we get:

β

[
2ρ̂− 3ρ

2ρ̂

]
∥∇H1/ρ̂(x

r)∥2 ≤ E
[
H1/ρ̂(x

r)−H1/ρ̂(x
r+1)

]
+ β2ρ̂

(
σ2
F + L

2

F

)
+

ρ̂β

2ρ
L2
F δ

2.

Summing over all r ∈ {0, 1, . . . , T − 1} and dividing by T , we get

1

T

T−1∑
r=0

∥∇H1/ρ̂(x
r)∥2 ≤

[
2ρ̂

2ρ̂− 3ρ

][
H1/ρ̂(x

0)−H∗

βT
+ βρ̂

(
σ2
F + L

2

F

)
+

ρ̂

2ρ
L2
F δ

2

]
.

Therefore, we have the result.

D.2.5. STRONGLY-CONVEX OBJECTIVE: PROOF OF THEOREM 3.8

Proof. Using the update rule of the Algorithm 2, we have

E∥xr+1 − x∗∥2 = E∥projX(xr − βr∇̂F (xr; ξr))− x∗∥2

= E∥projX(xr − βr∇̂F (xr; ξr))− projX(x∗)∥2

(a)

≤ E∥xr − βr∇̂F (xr; ξr)− x∗∥2

= E
[
∥xr − x∗∥2 + (βr)2∥∇̂F (xr; ξr)∥2 − 2βr⟨xr − x∗, ∇̂F (xr; ξr)⟩

]
(b)

≤ E
[
∥xr − x∗∥2 + 2(βr)2∥∇̂F (xr; ξr)− ∇̂F (xr)∥2

+ 2(βr)2∥∇̂F (xr)∥2 − 2βr⟨xr − x∗, ∇̂F (xr)⟩
]

(c)

≤ E
[
∥xr − x∗∥2 + 2(βr)2(σ2

F +B2
F)− 2βr⟨xr − x∗, ∇̂F (xr)⟩

]
≤E
[
∥xr − x∗∥2 + 2(βr)2(σ2

F +B2
F)− 2βr⟨xr − x∗,∇F (xr)⟩

− 2βr⟨xr − x∗, ∇̂F (xr)−∇F (xr)⟩
]

(d)

≤ E
[
∥xr − x∗∥2 + 2(βr)2(σ2

F +B2
F)− 2βr[F (xr)− F ∗]− µFβ

r∥xr − x∗∥2

+ 2βr∥xr − x∗∥∥∇̂F (xr)−∇F (xr)∥
]

(e)

≤ E
[
(1− µFβ

r)∥xr − x∗∥2 + 2(βr)2(σ2
F +B2

F)− 2βr[F (xr)− F ∗] + 2βrDXLF δ
]

where in (a) the non-expansive property of the projection operator is applied, in (b) we add and subtract the term ∇̂F (xr),
use the well-known inequality ∥a+b∥2 ≤ 2∥a∥2 +2∥b∥2, and in the last term we utilize Lemma 2.10; (c) results from the
application of Lemmas 2.8 and 2.10; (d) uses strong-convexity (Assumption 3.7) of F (·) and Cauchy-Schwartz inequality;
finally, (e) results from the application of Lemma 2.8 and Assumption 2.1(b).

33

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Rearranging the terms, we get

2βrE[F (xr)− F ∗] ≤ E
[
(1− µFβ

r)∥xr − x∗∥2 − ∥xr+1 − x∗∥2 + 2(βr)2(σ2
F +B2

F) + 2βrDXLF δ
]

E[F (xr)− F ∗] ≤ E
[(

1

2βr
− µF

2

)
∥xr − x∗∥2 − 1

2βr
∥xr+1 − x∗∥2 + βr(σ2

F +B2
F) +DXLF δ

]
.

Summing over r ∈ {0, . . . , T − 1}, multiplying by 1/T and using the fact that βr = 1
µF (r+1) , we get

1

T

T−1∑
r=0

E[F (xr)− F ∗] ≤ µF

2T

T−1∑
r=0

E
[
r∥xr − x∗∥2 − (r + 1)∥xr+1 − x∗∥2

]

+
1

T

T−1∑
r=0

βr(σ2
F +B2

F) +DXLF δ.

Telescoping the sum we get the following

1

T

T−1∑
r=0

E[F (xr)− F ∗] ≤ −µF

2
∥xT − x∗∥2 + (σ2

F +B2
F)

µF

log(T)

T
+DXLF δ

≤ (σ2
F +B2

F)

µF

log(T)

T
+DXLF δ.

Therefore, we have the proof.

D.2.6. CONVEX OBJECTIVE: PROOF OF THEOREM 3.9

Proof. From the update rule of Algorithm 2, we have for βr = β for all r ∈ {0, 1, . . . , T − 1}

E[∥xr+1 − x∗∥2] = E[∥projX (xr − β∇̂F (xr; ξr))− x∗∥2]
(a)
= E[∥projX (xr − β∇̂F (xr); ξr)− projX (x∗)∥2]
(b)

≤ E[∥xr − β∇̂F (xr; ξr)− x∗∥2]
(c)
= E[∥xr − x∗∥2 + β2∥∇̂F (xr; ξr)∥2 − 2β⟨xr − x∗, ∇̂F (xr; ξr)⟩]
(d)

≤ E[∥xr − x∗∥2 + 2β2∥∇̂F (xr; ξr)− ∇̂F (xr)∥2 + 2β2∥∇̂F (xr)∥2

− 2β⟨xr − x∗,∇F (xr)⟩ − 2β⟨xr − x∗, ∇̂F (xr)−∇F (xr)⟩]
(e)

≤ E[∥xr − x∗∥2 + 2β2σ2
F + 2β2L

2

F − 2β(F (xr)− F ∗)

+ 2β∥xr − x∗∥ ∥∇̂F (xr)−∇F (xr)∥]
(f)

≤ E[∥xr − x∗∥2 + 2β2(σ2
F + L

2

F)− 2β(F (xr)− F ∗) + 2βDXLF δ]

where (a) follows from the fact that x∗ ∈ X ; (b) results from the non-expansiveness of the projection operator; (c) uses
∥a − b∥2 = ∥a∥2 + ∥b∥2 − 2⟨a,b⟩; (d) utilizes the fact that ∥a − b∥2 = 2∥a∥2 + 2∥b∥2 and unbiased gradient from
Lemma 2.10; (e) results from Lemmas 2.8 and 2.10, the convexity assumption of the implicit function (Assumption 3.7
with µF = 0) and the Cauchy-Schwartz inequality; and (f) results from Assumption 2.1(b) and Lemma 2.8.

Summing over r ∈ {0, 1 . . . , T − 1}, multiplying by 1/T and rearranging the terms, we get

1

T

T−1∑
r=0

E[F (xr)− F ∗] ≤ ∥x1 − x∗∥2

2βT
+ β(σ2

F + L
2

F) +DXLF δ.

34

Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach

Using Jensen’s inequality and denoting x = 1
T

∑T−1
r=0 xr, we get

E[F (x)− F ∗] ≤ ∥x1 − x∗∥2

2βT
+ β(σ2

F + L
2

F) +DXLF δ.

Therefore, we have the proof.

35

