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ABSTRACT

[Circuit decomposition and counterfactual-based pruning have become the corner-
stone framework for mechanism interpretability. However, the unfaithfulness to
the output due to cumulative bias in the pruning process hinders more complex and
detailed mechanism exploration. To address this, we propose a novel circuit dis-
covery framework that faithfully identifies circuit graphs. This framework contains
three steps: firstly, the language model is decomposed into a fully linear graph
consisting of disentangled “memory circuits”; secondly, greedy search is adopted
to prune while ensuring output faithfulness; finally, we adopt causal analysis on the
pruned circuit graph to identify salient circuit graph, estimated by counterfactuals
and interventions. Our framework facilitates the discovery of complete circuit
graphs and dissection of more complex mechanisms. To demonstrate this, we
explored three generic language skills (Previous Token Skill, Induction Skill and
In-Context Learning Skill). Using the circuit graphs discovered through our frame-
work, we identify the complete skill paths of these skills.] Our experiments on
various datasets confirm the correspondence between our identified skill paths and
language skills, and validate three longstanding hypotheses: 1) Language skills are
identifiable through circuit dissection; 2) Simple language skills reside in shallow
layers, whereas complex language skills are found in deeper layers; 3) Complex lan-
guage skills are formed on top of simpler language skills. Our codes are available
at: https://anonymous.4open.science/r/language_skill.

1 INTRODUCTION

[Mechanism interpretability (Elhage et al] 2021}, [Conmy et al} 2023) is becoming crucial for
understanding how language models work. A common approach (Conmy et al} [2023} [Yao et al]

[2024}; [Syed et al} 2023} [Bhaskar et al|, [2024)) involves breaking down the model into disentangled,
more linear components organized as a computational graph. By applying counterfactual techniques
and pruning, less important connections are removed, leaving behind a smaller “circuit graph” that
highlights the key components contributing to the model’s output.]

[However, existing circuit discovery methods often fail to faithfully represent the output of the model.
Specifically, substituting the model’s forward process with a circuit graph does not ensure that the
predicted output token remains consistent with the original output of the language model. This lack
of faithfulness indicates that other yet-undiscovered circuits may significantly influence the output,
undermining the argument that the circuit graph fully captures the underlying mechanisms. The core
issue lies in the pruning strategies employed by these methods, which are typically optimized for
counterfactual scenarios. Decisions to remove an edge are based on the changes in logits between the
original output and a ‘corrupted output.” As a result, the cumulative effect of removing many edges
introduces biases that can ultimately alter the model’s output.]

[To address this challenge, we propose a two-stage discovery process, decoupling faithful pruning and
causal discovery. In the first stage, we employ a greedy search algorithm to identify non-contributing
edges in the original circuit graph, under the condition that the original output remains the same
after performing each pruning step. This stage ensures a faithful pruning result, keeping the outputs
unchanged. The second stage identifies salient circuit graph using counterfactual and intervention
techniques. Additionally, to achieve more precise discovery, we completely dissect the transformer
model into fully disentangled and linear components, known as “memory circuits”, with the addition


https://anonymous.4open.science/r/language_skill

Under review as a conference paper at ICLR 2025

of “compensation circuits” to account for the non-linearity of the MLP module within the transformer,
which has not been accomplished in previous works. In summary, our framework encompasses three
steps: complete linear circuit decomposition, faithful pruning, and causal analysis.]

[Compared to existing methods, our approach has distinct advantages: the lossless and linear
decomposition holds the potential to identify all components responding to a pattern, while faithful
pruning and causal analysis enable us to dissect more complex patterns. To show the potential ability
for discovering new insights, We select three generic and progressively complex skills which have
been introduced in 2024} [Ren et al} 2024} [Edelman et al} 2024} [Olsson et all 2022): a) Previous
Token skill which is responsible for receiving information from the previous token; b) Induction Skill
which duplicates tokens with the same prefix; and c) /CL Skill which perform inference based on
similar patterns appeared in demonstrations. Utilizing the circuit graph obtained from our three-step
framework, we unveil the complete skill paths of these skills. These skill paths have confirmed some
conjectures that have long remained unverified:]

1. Identifiability: Language skills are identifiable through circuit dissection and correspond to
different circuit paths.

2. Stratification: Simple language skills reside in shallow layers, whereas complex language
skills are found in deeper layers.

3. Inclusiveness: Complex language skills are formed on top of simpler language skills. For
example, the Induction skill, dealing with text formatted as “A B ... A” and producing “B” at
the end, requires the Previous Token skill to carry information from “A” to “B”. The ICL
Skill likewise consists of the Induction Skill as an essential mechanism.

In summary, our contributions are 3-fold:

* We propose a complete and faithful circuit discovery framework, providing a theoretical
basis for addressing the research gap in mechanism interpretability.

* We devise a 3-step framework to extract the paths of generic language skills in language
models.

* Our analysis and experiments verify three properties among the Previous Token Skill,
Induction Skill, and ICL Skill, which include identifiability, stratification and inclusiveness.

2 A COMPARISON WITH RELATED WORK

[Existing methods have proposed various pruning strategies, including greedy search, such as
ACDC (Conmy et al} 2023} [Yao et al.| [2024)), attribute patching, such as EAP [2023), and
optimization search, such as Opt-Prun (Bhaskar et al.| [2024). However, these pruning strategies cannot
guarantee to reproduce the original output of the model, and hence not faithful in their discoveries.]
[Table [I] shows the comparison between

the results obtained using the output of the

pruned graph and the original LLM out- Table 1: Can existing pruning strategies really recover
put results on several commonly used cir- the original outputs? ‘linear mlp’ represents whether
cuit datasets: IOI, greater than, and induc- their components can decouple the influence on the
tion. (For specific experimental details, see MLP into a linear combination, and ‘recover rate of
Appendix [A]) The circuit graphs obtained original output (%)’ represents the percentage of the
by these methods cannot fully recover the pruning output that is the same as the original model
model’s original output under lossless cir- output under our lossless decomposition.

cuit decomposition. Theoretically, these

pruning strategies decide whether to delete method

recover rate of original output (%)

an edge by calculating its importance score, 101 greater than  induction
which is related to the change in the final

loit. H this d . . ACDC 56% 31% 67%
ogit. However, this does not guarantee Opt-Prun  59%  29% 62%

that the logits of other candidates will not
exceed the original output. Therefore, we
adopt a more direct approach, conducting a
greedy search under the condition that the
top n candidates remain unchanged. ]

EAP 41%  22% 55%
Ours 100% 100% 100%
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3 METHOD

In this paper we propose a novel 3-step framework to extract the target language skills.

» Step 1 (Section [3.1)): We decouple the architecture of transformer language models into a
combination of individual “Memory Circuits”, which independently represents the minimum
unit for reading memory. This results in a Complete Circuit Graph, G.

* Step 2 (Section[3.2)): Keeping the destination token unchanged, we adopt greedy search to
remove redundant edges in G, retaining only those paths necessary for predicting the last
(destination) token and resulting in an Irreducible Circuit Graph, Gx.

* Step 3 (Section[3.3): We estimate the causal effect of each path in Gx on the target skill
and select those paths rendering most significant changes as the skill paths. The final graph
formed by the skill paths is named as Skill Circuit Graph, denoted as G°.

3.1 MEMORY CIRCUIT

Building on the foundation of the Transformer Circuit (Elhage et al.,2021), we propose a complete
decomposition of the transformer model including the MLP layers. Using tensor products (&), we
can represent any layer of the transformer model:

output = (Id + 1d @ Wypp) - (Id + Z AM QW) - X
heH

=Id+ > A"@Why + Id@Wyrp + Y A" @ WapWhy) - X
heH heH

ey

where X represents the input representation in each layer and H represents the number of attention
heads. Matrix A is given by the attention mechanism A = softmax((XWgq)(XWgk)T), and
W, p involves the MLP operation with activation given by atv(X Wy )Wase. Woy = WoWy
refers to an “output-value” matrix which computes how each token affects the output if attended to,
while W, Wi, Wy, are parameter matrices for query, key and value. Wy and W2 are weight
parameters in two linear layers. This equation simplifies both the attention and MLP modules
into linear matrix mappings, describing how the paths from input to output for each layer are
decoupled into four independent circuits: 1) C*/ = Id - X;2) C*'" =% . A @ WS, - X;
3)C™P = Td @ Wypp - X; 4) Cotintmie =57 AM @ WapWh,, - X. Moreover, three of
these circuits can be further factorized as:

cotr = N (X)) - Wov @)
heH
where f%g;{ (X) = softmaz(XWq)(XWk)T)X
cmir = f%ff;l (X) - W 3
where f%l\fl (X) = atv(X W)
gettntmie = N s (X) - W @)
heH

where f&ﬁ;@f&q}?‘/ W (X) = atv(fﬁfg; (X)Wov W)

We use f to represent a function that can be considered equivalent to an activation function, for
instance, f{}[ﬁg; (X) represents the softmax-normalization of the input X through a weighted accumu-
lation performed by QK values. In conclusion, these three types of circuits can be expressed using a
common paradigm:

Catt7:,/mlp/attn+mlp _ f(X) W (5)

The function f(X) possesses the ability for non-linear transformations, while W is an input-agnostic
parameter, which can be understood as a memory learned through training (Geva et al., [2021)).
Therefore, this paradigm is capable of generating non-linear “weights” (f(X)) from the input
representation X and assigns these “weights” to a static memory distribution to extract the necessary
“knowledge” for output. These three circuits thus represent the minimum and complete unit for
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Table 2: Specific circuit index and corresponding implementation in each layer of GPT2-small.
W and b represent weight and bias parameters, atv represents the activation of MLP. in(-) is the
layernorm function. A = softmaz(XWoWEXT + boWEXT + XWgobk + bgobk,). Memory
Circuits are C1725,

Index Category Implementation(.X =input representation in each layer)

Y Self X

12 Attention AMIn( X)Wy Wo + Alby Wo

013 MLP CLtU(lTl(X)WMl)W]\/[Q

C™=25  Attention+MLP atv(ln(Ahln(X)WVWo + A}lbvwo)W]\,ﬂ)WMg

Cc?6 Compensation  (atv(In(( ,112:1 CMWan)) — 2,112:1 atv(In(CMYWa1))Ware

o Compensation  (atv((In(CO~¥)Wap) — ato(In(CO)Wan) — ato(in(32, CMYWar ) Wara
028 Bias bv + LLt’U(le)WAI2 + b]\,]Q + Z}LQ:I act(bVWMl)WMg

manipulating how much memory to read (i.e., memory-reading operation), and are independent of
each other, which we refer to as “Memory Circuits’ﬂy

In this paper, we select GPT2-small as the target language model, containing 12 layers (L = 12) and
12 attention heads (H = 12). To provide a complete dissection of the the model at each layer which
can precisely recover the original output, we introduce Bias Circuits and Compensation Circuits
(Compensation circuits represent the synergy of the sum of linear terms passing the non-linear
function, please refer to Appendix [C|for more details), apart from Memory Circuits, to compensate
for the remaining information not covered by the memory circuits. Table [2| shows the specific circuits
and their implementation for each layer. Our circuit dissection leads to a lossless decomposition of

the original LM laye LM(X) =Y, C.

We treat Memory Circuits as the smallest units and build a Complete Circuit Graph, G = {C, £},
where C stands for the set of 29 circuits (C°~2% shown in Table[2} where Attention and Attention+MLP
has 12 circuits due to 12 heads given) and £ represents the path between any two circuits in different
layers. Any memory circuit C*(0 < i < 25) in any layer [(0 < [ < 11), denoted as C'**, would
receive information streams from all circuits in previous layers, i.e., £ = {(C'*" — C27)}(0 <
1 <ly < 11,0 < 4,5 < 25). Notably, the lossless decomposition ensures that the insights gained
from our circuit network accurately reflect the behavior of the original language model.

3.2 GREEDY SEARCH

Given the input tokens for LMs, X = {z1,--- ,zy_1}, the whole optimization loss is:
N
L= —ZlogP(xn+1|m1,--- , Xn) 6)
n=1

Without loss of generality and to facilitate our analysis, we focus on predicting the last destination
token, x, given the historical context, i.e., LI = —log(x |71, -+ ,2x_1). It can be reasonably
hypothesized that many circuits and paths are not dedicated to the prediction of the destination token
x v but related to other source tokens. Therefore, we need to prune the circuit graph and retain those
paths that are essential for the prediction of destination tokens. This will afford a more explicit and
causal view of the efforts made by the language model to generate x .

Specifically, we use a greedy search strategy to prune unnecessary paths between Memory Circuits
while ensuring that the top 7’| candidates for the prediction of the destination token remain unchanged.
Given that a depth-first search is more likely to remove shallow paths, we employ a breadth-first search

'Please note that while there are finer-grained functions in practice, such as A ® X, although filled with
activation and attention, they suffer deep constraints to generate new vocabulary distribution and do not fully
encompass the complete function. We elaborate in detail in Appendix

2[In fact, due to the pytorch’s floating-point calculation, there is an ignorable loss (minimum squared error
between the sum of circuits and the original layer output LM; (X ) is < 107 *%).]

3We set n = 1 in our experiments because our research model, GPT2-small does not consider candidates
below top1 as outputs.
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(We compared different search strategies and constraints in Appendix D)) as shown in Algorithm[I} We

Algorithm 1 Greedy Search for G

Require: Complete Circuit Graph G = {C, £}, prediction z;y = Model(G, X ), number of Layers L
and Circuit Index [0, 28]. Ensure: Irreducible Circuit Graph Gx = {C, Ex}
Gx=G,G" = Gx ‘
for each Memory Circuit C** € COLI<L,1<i<25)do
for each Memory Circuit C*-% € C(0 < I' < 1,1 < i’ < 25) do
P = [Ul?ilv]v [laZ]L g/ = g*’ &=Ex-P
if Model(G', X) == z then
Gx=¢g'
else
G' = Gx
end if
end for
end for
return Gx*

denote Gx as the Irreducible Circuit Graph after pruning, and £x as a subset of £ which only includes
those paths encapsulating the information stream necessary for the destination token prediction. G
thus represents the smallest, independent, and functionally complete circuit graph which is necessary
for generating x .

3.3 ESTIMATION OF CAUSAL EFFECTS FOR LANGUAGE SKILLS

It is widely recognized that most texts require more than one language skill for inference (Arora
& Goyal, [2023)). Therefore, determining which paths are associated with the observed skill can be
challenging. For this reason and motivated by endeavors in causal effect analysis (Wang et al., 2023}
Vig et al.,2020), we divide the effects of any text on the output token into 3 components: skill effects,
background effects, and self effects for destination (abbreviated as self effects).

Skill effects refer to the impact of the observed language skill on the output which is the focus of this
paper. Self effects denote the impact of using a single destination token to predict, which functions
like a “bi-gram model” (a model associating one input token with its output token). Background
effects propose a counterfactual scenario, i.e., what would the effect be if this skill is not present in this
texﬂ We use the typical example of the “Induction” skill for illustration, which works with an input in
the form of “... A B... A”, where A, B refers to different tokens. Here the language model is expected
to repeat the pattern (“A B”) it has seen in the context and predict token “B” as the destination token.

Figure |1 illustrates an example of the “Induc-

tion” skill where the model outputs “question”
hen given the input “Generate a question with — |

st e Background  skill - Self

a’. However, the vocabulary distribution inthe e ! N

output given by the language model does not [ ‘Generatea (% question .a”) (%

merely result from the induction skill, but is also ~ {question with the 7/ “——=-== ===

( “Generate a question witha” )

confounded by other effects such as the back- Ou]:put Output Output
ground effect and the self effect. To compute the L v “question”  “model ”
target effect for a specific circuit path, let Path’ “ ?gﬁé\ﬁgn ” “person”
be any directed paths in Gx (e.g., C119 — “ wo

y p g ( g |anguage ”question ”

Cc?1 5 (065 s.t. circ.:uit edges (C119, C14) “question ”
and (C%14 C%®) are in G*). Path® then sym- .o
bolizes the flow of information across layers

amongst the circuits it encompasses. We use Figure 1: A case text about causal effects.
the occurrence rate of Path® in all samples to

“Recognizing the impracticality of realizing the strict counterfactual scenarios, we adopt texts that are as
close as possible to the input text, but without the observed skill, as counterfactual texts.
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compute the effect:
Path
G
Path"é* =1

7
Nan @

Eff(Pathy,) =
Patht,
N Path§ L=1
of all samples. Each path contributes differently to the three effects. Hence, we aim to find those
paths that contribute to the skill effect rather than the other two effects.

represents the number of samples encompassing Path® while N,;; represents the number

Specifically, for each input text as a sample s, we perturb it to create a background text sp, and
a self text sg;¢ (The process for generating background text and self text for all types of skills is
described in Appendix [E). Eventually, any sample is augmented with two more perturbed versions,
rendering three types of inputs (i.e., original text, background text, and self text), each of which is
subjected to the greedy search as discussed in Section[3.2] The greedy search produces three distinct
Irreducible Circuit Graphs: Go,;* (from original input text), Gprg* (from background text), and
Gsip* (from self text). Therefore, the skill effect (e.g., Induction Skill) of Path can be defined as:
Path_i v )
X Path® =1,Pathg .=0,Pathy .=0
Ef fskiu(Path') = o ];Bkg O5elf ®)
all

Finally, we get the Skill Circuit Graph G® = {C,E°}. With § as the threshold parameter: £% =
{Path!|Ef fsru(Path') > §} (we provided detailed analysis about § in Appendix [E.5).

4 EXPERIMENTAL DESIGN

This paper focuses on 3 language skills, spanning from basic to advanced levels:
Previous Token SKkill: This is a skill to receive information from the previous token.

Induction Skill: This skill involves identifying patterns in prefix matching and replicating recurring
token sequences.

ICL Skill: This is a complex skill to recognize and replicate the demonstration context, thereby
producing outputs based on similar patterns.

Extensive research has shown that these three skills build on one another in a sequentially encompass-
ing manner (crol 2024} [Olsson et al., 2022 Ren et al.,2024; |Edelman et al.,|2024). The Induction
Skill inherently includes the Previous Token Skill. In simple terms, for induction to occur in the
sequence “A B ... A”, the token B must retrieve information from the preceding token A. Likewise,
In-Context Learning must be capable of identifying similar patterns across different demonstrations
to generate analogous outputs.

We select over 10k samples encompassing one of the three above-mentioned skills from large
corpora and popular datasets such as WIKIQA (Yang et al.| 2015), SST-2 (Socher et al., [2013)),
BIG-BENCH (Srivastava et al.| 2023)), OpenOrca (Lian et al., [2023), and OpenHermes (Tekniuml
2023)). For each instance, we create a background perturbation and a self perturbation (discussed
in Section [3.3). For simplicity, PVT represents the sample set involving the Previous Token Skill
and IDT represents the sample set related to Induction Skill. ICL1 represents the ICL sample set
from SST-2 datasets; ICL2 represents the ICL sample set from object_counting task; ICL3 and ICL4
represents those from qawikidata and reasoning_about_colored_objects task. Using GPT2-small as the
research model and applying the three-step framework detailed in Section [3]to these samples, we are
able to identify high-effect samples through clustering, which clearly reveal distinct skill paths. The
details of data preparation and implementation are elaborated in Appendix [El while our validation,
findings, and explorations are presented in Sections [5] [6] and

5 VALIDATION

5.1 WHEN SKILL PATHS ARE REMOVED

To understand whether the identified skill paths are responsible for their corresponding language
skills, we design an intervention experiment by removing different sets of paths and observe the
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Table 3: Accuracy of output to original label within different Circuit Graph

Sample Circuit Graph
G _R50 —R500 —GSFVT _gSIDT _gSICLl _gSICL2  _gSICL  _gSICL4
PVT 1.00 0.46 0.23 0.01 0.00 0.00 0.01 0.00 0.00
IDT 1.00 058 0.29 0.08 0.00 0.00 0.00 0.01 0.00
ICL1 1.00 0.61 0.23 0.01 0.00 0.00 0.00 0.00 0.00
ICL2 1.00 0.1 0.18 0.00 0.00 0.01 0.00 0.01 0.01
ICL3 1.00 0.54 0.21 0.00 0.00 0.00 0.00 0.00 0.00
ICL4 1.00 0.62 0.30 0.07 0.03 0.01 0.02 0.00 0.00
k4 . 2 *
' ! :15! . gﬁ g A i} L3
b oL b oA MR e a5 !
o] &% "“_T - -%?‘ft.. . ﬁ{}: ;.’i‘," ’é :‘h.; ?\.3‘!‘ :},g. : ﬂg’ e ] ’
Pt 21 LA a7 i e
(a) PVT (b) IDT (c) ICL1 (d) ICL2 (e) ICL3 (f) ICL4

Figure 2: T-sne visualization of 6 types of samples on top 5 vocabulary candidates. Red denotes the

original output model (G), while blue signifies the output once a corresponding skill path is removed

(G — G®). The outputs for the background text (G Bkg) and self text (Gg; ¢) are indicated in and
, respectively.

output of the LM. Table [3]displays the accuracy of 6 types of samples under different configurations
of the Circuit Graphs when treating the original output as the ground-truth. For each language skill S,
we randomly select 500 samples from its corresponding dataset. As a result, 9 different configurations
of Circuit Graphs are tested: G* which represents the original output; — R50 which signifies the
removal of 50 paths at random from Gx; —R500 after the deletion of 500 paths randomly from G+,
which approximately equals the number of skill pathsﬂ The remaining 6 configurations encompass
the removal of paths from G that correspond to the skill of Previous Token, Induction, ICL1, ICL2,
ICL3, and ICLA4, respectively (For additional supplementary data for this validation test, please refer

to Appendix [E-4]).

The results indicate that almost all samples were unable to produce the original token when these
skill paths were excluded (as indicated in the last 6 columns), yet random removal of paths does not
lead to such significant impact. Additionally, Figure 2] visualizes the t-SNE representation of the
top 5 candidate outputs associated with different Circuit Graphs. It is clear that when a skill path is
removed, the output (blue) shifts from red towards green (or yellow), indicating a transition from a
text output distribution that includes skills to a distinct space resulted from the removal of these skills.

5.2 How SKILL EFFECTS ARE CONFOUNDED

Another question is whether the background effect and self effect, mentioned in Section 3.3] po-
tentially exist as confounders or share the circuits with observed skills. To answer this question,
we conduct two experiments, with the results shown in Appendix [F Initially, Table [TT|checks the
overlap between the paths with E f f > 0.5 in the background/self text and the skill paths, illustrating
that a small portion (approximately 10%-20%) of those paths does not belong to any observed skill.
This corresponds to the confounding originating from other latent skills that we envisioned. Secondly,
Figure 6] visualizes these different-effect paths’ bivariate probability density function with the original
input and background/self text. One intriguing discovery is that the confounding skills are more likely
to present in the background text than in the self text, and the more complex the skill under analysis,
the subtler the confounding effect introduced by the self text.

3[The exact number of removed paths is: —GSPVT 305 _gSIPT 466, —GS1CLL 589 G5 1CL2 goo
_GSICL3 g3 _GSICLA 537
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Table 4: Key Receivers in Skill Circuit Graphs, green circuits are presented in the lower skill

Skill  Receivers with receiving more than 10 paths ([#layer, #circuit])
PVT [1,8],[1, 18], [1, 19], [1, 20], [1, 211, [2, 1], [2, 7], [2, 14], [2, 18], [2, 201, [2, 22], [2, 24], [11, 1], [11, 14]

IDT : . 141, 3. 171 [4. 51 [4. 12). [5. 111, [6. 51,
e B.31. 3,41, 13,51, 13 11, : NIRRT 8.5,
[10, 101, [11, 8], [11, 9], [11, 10]. [11, 11]

: : B3.5.3. 111, 75T, [4. 77, 4.9, [5. 101, [6. 5 1.[10, 97, [10. 10T,
ICL2 116, 11], [11,5]

s s s , , , ,[3.1], , [4, 3], , [5, 11, [5, 10],
ICL3 I8, 11.[8. 91, [10. 5], [10. 10]. [10, 12], 11, 8]
a1 161 : 4,31, 1250, 5. 31, 16, 41, 10, 51, 8. 91, [9. 41, [9. 51, [10, 2, [10, T0], [10, 12],

[11,2], [11, 3], [11, 4], [11, 6], [11, 15]

6 DISCOVERY OF LANGUAGE SKILLS

Table [d] displays the circuits recewmg more than 10 circuit paths (receivers) in the skill graphs. We
use [1,1] to denote the circuit C+* in the I-th layer and i-th circuit. The complete Skill Circuit Graph
can be found in Appendix[J] From Table ] we identify 3 interesting patterns:

1. Identifiability: The paths of each skill are identifiable and remain unchanged across most data
instances.

2. Stratification: The Previous Token Skill (PVT) is one of the simplest language skills, and thus it
is located across layers 0-2. The Induction Skill (IDT) is slightly more complex and thus spreads
across layers 0-6. Meanwhile, ICL is the most complex skill and has key receivers across nearly all
layers. Additionally, all skills share the 11-th layer (final layer).

3. Inclusiveness: Higher-level skills always entail the key circuits of lower-level skills. It is
universally acknowledged that the Previous Token Skill is an integral part of the Induction Skill,
which is why circuits such as [2, 14], [2, 18] and [2, 20] (presented in PVT) can be found in the
Induction Skill Graph. Similarly, the ICL skill encapsulates the Previous Token Skill and Induction
Skill as necessary sub-skills, which is why circuits that are evident in the Previous Token Skill (such
as [2, 14], [2, 20], [2, 24]) and those identified in the Induction Skill (such as [3, 14], [4, 5]) can be
found in the ICL Skill Graph. Furthermore, we list all multi-step paths with inclusive sub-path in
Appendix |G|

Additionally, we have observed some differences in the receivers of different ICL tasks. Combined
with the insights provided by Bayazit et al.|(2023) and [Bricken et al.|(2023)), we suspect that these
differences arise from distinct circuits required to process domain-specific knowledge across different
tasks. Based on the paths, attention weights, and cosine similarities of the representations (detailed
results on attention weights can be found in Appendix [H]), we have identified several circuits with
distinct characteristics (We demonstrate the performances of other circuit discovery methods in
validating these conclusions in Appendix [I}):

Preceding Token Circuit: Circuit [4, 12] performs a unique function, namely, when any token
serves as a query token to attend other tokens, this circuit is shown to consistently carry significant
information from its preceding token to the query token.

Key Token Circuit: Circuit [3, 14] exhibits a significantly different function from the others. This
circuit consistently focuses on certain key tokens in the preceding text — such as the beginning, ending,
and label prompts — and transmits this information to subsequent query tokens. Additionally, other
key circuits in layers 3 and 4 partially undertake these functionalities.

Opposite Circuit: When using the last token of each input to produce the embedding for a specific
circuit, we notice that the cosine similarity between Circuit [11, 14] and other key circuits is usually
less than 0, especially with Circuit [11, 1], where the cosine similarity reaches to —0.92. Previous
work (Wang et al.l 2023)) has mentioned this phenomenon, hypothesizing the reason to be controlling
the variance of the loss function.
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Table 5: Top 5 Receiver circuits appearing most frequently in skill paths presented in correct output
samples but not incorrect samples.

Type Top-5 circuits with absence rate

FIDT [2, 18] (J0.37), [2, 14] (J0.32), [11, 1] (JO.28), [2, 20] (10.26), [2, 24] (10.26)
F1ICL [2,24] (J0.45),[2,20] ({ 0.42), [2, 22] (4 0.41), [1, 20] (10.39), [2, 14] (| 0.32)
F2_ICL [3, 14] (10.29), [4, 5] (0.28), [10, 10] (0.28), [8, 91(10.24), [4, 12] (]0.22)

7 EXPLORATION - WHY WRONG OUTPUTS?

In this section, we present a new direction for explaining and exploring common erroneous answers
using Skill Circuit Graphs. Specifically, by contrasting the Skill Graphs of “incorrect” outputs with
those of correct outputs, we can further diagnose what leads to the failure in skill execution. Table[3]
illustrates the key circuits exhibiting the highest absent rateE] between 3 “incorrect” and correct output
types. Specifically, we investigate one erroneous type of output from an induction skill sample
(F_IDT), and two types from ICL skill samples (F1_ICL, F2_ICL).

F_IDT refers to those samples wherein the input possesses an Induction pattern (“A B ... A”), but
ultimately does not output B. F1_ICL denotes those samples wherein the output includes a word
outside of the label options from the demonstrations, for example, a case where the input text
“[reviewl], label: positive, [review2], label: negative, [review3], label:” unexpectedly produces
“the”. Such an error indicates that the language model did not capture the ICL template pattern in this
case. F2_ICL involves samples that capture the template pattern yet still produce incorrect outputs,
for example, cases where the correct output should be “positive”, but the prediction is “negative”. We
compare the circuit graphs of these “incorrect” samples with the correct samples and identify the top
5 circuits with the highest absence rate.

Table [5] exhibits several interesting phenomena where the largest discrepancies between correct and
incorrect samples in both F_IDT and F1_ICL occur on key circuits at layer 2. These circuits originate
from the previous token skill, which handles the skill of receiving information from the previous
token, such as the “A — B” in the induction template “A B ... A”, as well as patterns such as
“label — positive” in ICL. The loss of this skill—failure during the execution of the previous token
skill—means that both the Induction skill and ICL skill cannot pass the duplicated prefix information
to the next token, leading to template-based errors.

To further understand why these samples do not successfully execute the previous token skill, we
perform a bi-clustering operation on the Previous Token Skill (experiment details are shown in
Appendix [E.2), yielding a cluster with E'f f < 0.2 across most of all paths. We compared this cluster
(termed the low-effect cluster) with another cluster (named high-effect cluster), with some samples
as follows (All samples are from the original text of the Previous Token Skill, tokenized into two
tokens):

o« o«

Low-effect cluster: “About to”, “ all these”, “ am a”, “ and win”, “ and select”, “ care over”,
5 » v e 5

“In Singapore”, “ inthe”, “isa”, “itwas”, “ than they”, “The language”, “The country”, “ the
movie”

High-effect cluster: “ 2002”7, “Adriano”, “Ajinomoto”, “ becomes”, “Could you”, “ don’t”, “
ended up”, “If the”, “ iPhone”, “ Knowledge”, “ stressful”, “Windows”, “ Youtube’s”

It becomes obvious that in the context of an experimental setting lacking enough context, the previous
token skill is performed only when there is a strong semantic relationship between the two tokens.
For pairs of tokens where the semantic relation is not strong, there tends to be a reliance on the
bi-gram model decision from the destination token.

Furthermore, for F2_ICL, the absence rate is relatively lower, suggesting that the source of the error
might not be due to a single explicit cause. These circuits generally reside in the middle or even
deeper layers, incorporating functions such as induction and summarization. However, to further

SLet NY, . and N ot.; be the number of paths received by C" in correct and incorrect samples. The absence

cl.j
rate for each circuit is calculated as (N N2, )/Ng,’j € [0, 1].

cti o
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analyze this, we would need to delve into the representational level, which for the moment goes
beyond the scope of this paper.

8 LIMITATION AND CONCLUSION

We have identified three pressing limitations that need to be addressed. The first is the time complexity
of the greedy search the second is the lack of further examination on the representational study, and
the third is scalability. Assuming the time for one inference of LLM as O(1), the time complexity
of a single greedy search would then be O(L?N?), i.e., the square of the layer number times the
number of circuits. If we can overlook this time-consuming process, then the Gx* for each input
would effectively facilitate training. In other words, G could directly instruct LLM which paths
are essential and which are not, thus streamlining the training process. Despite the time complexity,
we recall our contribution on the analysis of LMs which is usually more challenging and does not
require large-scale inference. Additionally, the lack of research at the representational level hinders
our progress in answering more complex questions such as why certain samples fail to trigger a
skill. Recognized that this is a rather challenging topic, we leave it as a promising future work.
Finally, we recognized the limitations of testing on a single model and specific skills. Although many
studies have validated the GPT-2 series to have public trustworthiness for research in mechanistic
interpretability, making us confident in its capacity to support our contribution—the pioneering work
in discovering the theoretical foundation and experimental design of language skills—there remains
ample scope for scalability across a variety of models and skills for future work.

In conclusion, we propose a novel framework including faithful pruning and linear decomposition to
completely dissect the language model and discover key components leading to meaningful language
skills. Our framework contains three steps, involving [decomposing the LM losslessly into circuits
including memory, compensation, and bias circuits], pruning paths preserving the inference outcome,
and identifying salient paths for language skills via causal analysis. Through this process, we are
able to identify the skill paths necessary for a language model to process texts. Furthermore, we
demonstrate several interesting findings validating existing hypotheses. For example, each language
skill is bound to specific circuits, and more complex skills are associated with deeper circuits.
Additionally, we find that the evolution of complex skills extends along the path of simpler skills they
encompass, providing strong experimental support for research on emergence discoveries. Lastly,
we explored attributions of error samples to the absence of certain skill circuits. These findings
could potentially offer novel feedback for the training process. Overall, we believe that our thorough
discovery of language skills can generate more insights into the exploration of language models.
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A  DETAILS ABOUT OUTPUT RECOVERY TESTS

We believe that although the graph is pruned, it should not change the next token output by the LLM.
Therefore, we selected representative works from three pruning strategies and verified whether their
outputs are the same as the original output of the language model on our lossless circuit decomposition.
Specifically, we selected three datasets:

IOIdataset (Wang et al.| [2023)), which is used to discover the circuit for indirect object inference in
the LLM.

Greater than (Hanna et al., 2024), which is used to discover the circuit for size comparison in the
LLM.

Induction (Gokaslan & Cohenl, [2019), which is used to discover the induction head and induction-
related circuit in the LLM.

Then, we selected a representative work from each of the three different pruning strategies:

ACDC (Conmy et al.;[2023)), Automatic Circuit DisCovery, which calculates the importance score of
each edge and performs a greedy search based on the score.

Opt prun (Bhaskar et al.,[2024), which converts the importance score into an optimization function
and assigns a learnable parameter to each edge to indicate whether an edge needs to be deleted.

EAP (Syed et al., 2023), or Edge Attribution Patching, which makes a linear approximation of
activation patching to assign an importance score to each edge, and retains the top-k edges.

The language model was chosen as GPT2-small. On each dataset, under our lossless circuit decom-
position, i.e., memory, compensation, and bias circuit framework, we obtained the corresponding
circuit graph according to the search strategy in the corresponding method paper with provided
settings. For these circuit graphs, we obtained new outputs (considering only a token length) using
their corresponding forward processes. We compared the new output tokens with the original output
of GPT2-small. Table|l|shows the percentage of their similarity.

B ANALYSIS ABOUT MEMORY CIRCUITS

B.1 WHY A ® X IS NOT THE CIRCUIT WITH COMPLETE FUNCTION?

We use X" to denote the hidden state representation corresponding to the n-th token at the I-th
layer, and U represents the unembedding matrix. Therefore, for any representation X", we can
obtain its vocabulary distribution, i.e., the logits for each token candidate, using X*"U. We adopt a
sample text, “Beats Music is owned by”, as the input. Table 6] shows the logits corresponding to the
words “ the” and “ Apple” when these tokens are converted to vocabulary embeddings.

Our expected correct output is such that after the last layer’s representation is unembedded, the logits
for “ Apple” reach their peak. However, as shown in Table [6] after conducting an A® X operation on
the 1st layer’s representation, the logit range for “ Apple” is [80.49, 86.44], where 80.49 corresponds
to the attention weight of “ Music” to “ by” being 1, and 86.44 represents the attention weight of “
Be” to “ by” being 1.

This situation exposes a significant drawback. In the representations of all previous tokens, the
logits for “ the” are always higher than those for “ Apple”. Hence, no matter how many effects
A ® X operations performed, it remains impossible for the logits of “ Apple” to surpass those of “
the”. Therefore, although A ® X incorporates an activation function such as softmaz, it can only
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Table 6: Logits of “the” and “ Apple” when the representation in 1-st layer products unembedding
matrix, with input “Beats Music is owned by”

Logits Tokens

“Be”  “ats” “Music” “is”  “owned” “by”
“the” 9545 89.43 91.20 99.32 94.21 101.52
“Apple” 86.44 82.13 80.49 82.31 82.57 83.41

be considered as semi-activated (Elhage et al.l 2021). We refer to this as a “deep constraint”, that
is, A ® X cannot allow the representation of the destination token to exceed the upper and lower
boundaries of the previous token’s representation. This is why we assert that A ® X lacks full
functions, that is, it does not possess memory capability.

B.2 HOW TO EXPLAIN MEMORY CIRCUITS?

Let’s likewise map all the Memory Circuits into the vocabulary space:
V=C-U=f(X)-W-U=f(x) WU ©)]

Simply put, we assume X € RN.D, f(X) € RNM W e RM:D and U € RPE, where N
represents the number of tokens, D denotes the dimensions in the residual stream, M refers to the
dimensions in the circuit (such as the dimensions in QKV or MLP), and F signifies the length of
the vocabulary list. Naturally, WU € R which could be seen as a collection of M vocabulary
distributions. These vocabulary distributions are unaffected by the input tokens and thus can be
considered as the acquired memory from training.

The function f(X) € RY-M acts like a weight which specifies how much each vocabulary distribution
contributes to the output. This confirms why MLP is generally regarded as a memory storage, as its
dimensions are usually significantly larger than those of QKV. Simultaneously, it also explains the
advantage of MoE: providing a wider range of options for vocabulary distribution.

In the final analysis, the inference process of a language model can be seen as constituting 3 key
components: “memory”’, “movement”, and ‘“ensemble”. “Memory’’ pertains to acquiring a new
distribution from memory distribution, while “movement” involves transferring token information
to subsequent tokens. Finally, ‘“‘ensemble” refers to the process of combining representations from
multiple circuits to produce the final representation. Within this process, Memory Circuits serve as the
smallest units responsible for “memory’’ and also encompass independent operations of “movement”
(C*'~12 and C''*~25), Furthermore, they form individual elements of the “ensemble”. Therefore,
we examine the interrelationships (necessary paths) between Memory Circuits to understand the
language skills of language models.

C DERIVATION OF COMPENSATION CIRCUITS

The input of the MLP consists of two parts: the residual stream and the output of the attention. Due
to the presence of nonlinear activation functions, the residual stream and attention are coupled in the
input, making it impossible to isolate their impact on the MLP, thereby affecting the verification of
pruning. To address this, we introduce a compensation circuit, decomposing the MLP into four parts:

atv((X + Z Attnh)WMl)WMg = (ato(XWph) + Z atv(AttnhWMl]))WMg + Cps! + COps?

heH heH
where Cps' = (atv((X + Z Attnh)WMl) — atv(XWhn) — atv(z AttnhWMl))WMg
heH heH
Cps® = (atv(z Attn" W) — Z atv(Attn" W) Ware
heH heH

(10)
where MLP operation with activation given by atv((X+), c 5 AttnYWar) ) Wara Wiyt and Wiy
are weight parameters in two linear layers and atv represents the activation function), X represents the
input representation in each layer and H represents the number of attention heads, Attn” represents
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Table 7: Logits of “the” and “ Apple” when the representation in 1-st layer products unembedding
matrix, with input “Beats Music is owned by”

Metrics Strategies

Breadth-1 Breadth-2 Breadth-3 Breadth-4 Depth Top-2 Top-5 Top-10 Loss-1 Loss-2
Deleted Path(%) 69% 68% 638% 70% 9% 32% 14% 2% 25% 34%
Hamming 0 14 21 27 26457 12947 21639 44712 21773 16721

the output of h-th attention head, Cps! and Cps? are compensation circuit, representing the synergy
effect of the residual stream (X + >,y Attn") and the sum of attention head > heH Attnh
respectively.

The compensation circuit calculates the synergy between the output when linear terms are summed
before passing through a non-linear function, and the output passing through a non-linear function
before summing. Therefore, the compensation circuit is dynamic and related to the input. From the
perspective of the MLP, if we want the compensation circuit to be 0, then the input to the MLP must
be reduced to only one or zero linear terms. This is an unlikely occurrence in practical pruning, so
we assume that all edges of the compensation circuit always exist.

D SEARCH STRATEGIES

We conducted extensive comparisons w.r.t. two elements: breadth-first search and topl candidate
consistency. 1000 samples, each less than 30 tokens in length, were randomly selected from the
WIKIQA dataset (Yang et al.,2015) and applied to different search strategies:

* Breadth-1: Breadth-first search was conducted on C** where [ varies from 0 to 11, and i
from 1 to 25.

* Breadth-2: The same breadth-first search was done on C%, but with [ running from O to 11
and ¢ from 25 to 1.

* Breadth-3: [ spanned from 11 to 0 and ¢ from 25 to 1 while conducting breadth-first search
on Ch,

* Breadth-4: The breadth-first search on C** was performed randomly.

* Depth: The depth-first search on C 1, was undertaken with [ ranging from 0 to 11 and i from
1 to 25 (i.e., treating C** as the sender rather than the receiver).

* Top-2: Altered constraint to ensure top 2 candidates’ token consistency.
» Top-5: Altered constraint to ensure top 5 candidates’ token consistency.
» Top-10: Changed constraint to ensure top 10 candidates’ token consistency.

* Loss-1: The constraint was modified to ensure that x’s loss does not exceed the original
loss by more than 5.

* Loss-2: The constraint was changed to ensure the loss of z does not exceed 100% of the
original loss.

We measured two metrics: Deleted Path, which is the total number of deleted paths divided by the
total number of paths and times 100%, and Hamming, which is the Hamming distance between G
obtained from each strategy and G* obtained from Breadth-1.

Table [7 presents the results of these methods. Notably, different search sequences of breadth-first
search do not lead to significant discrepancies. Depth-first search methods, however, are not as
effective as breadth-first searches in deleting a sufficient number of paths. Compared to the top 1
constraint, it is challenging for other constraints to delete an adequate quantity of paths. We posit that
this is because GPT2-small is a simple model and does not possess the capability to randomly select
candidates from the top N for output.
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E DATA PREPARATION AND IMPLEMENTATIONS

E.1 DATA PREPARATION
E.1.1 PREVIOUS TOKEN SKILL

We randomly selected 40k text samples comprising two tokens - “foken0 tokenl” - from the WIKIQA,
OpenOrca, and OpenHermes corpora. In 20k of these samples, the two tokens made up one word,
while in the remaining 20k, “foken0” and “tokenl” belonged to two separate words. For the
background text, we chose “foken0”, and for the self text, we selected “ fokenl”. A complete sample
is as follows:

{text: “ that most”, backgound_text: “ that”, self_text: “ most”, GPT2-small_output: “ of ’}

E.1.2 INDUCTION SKILL

The samples for the Induction Skill also come from WIKIQA, OpenOrca, and OpenHermes. We
randomly selected 14k samples with the template “... Al B... A2”, where the destination token “ A2”
is the same as the preceding token “ A/”, and the total token length of the sample does not exceed
30. For the background text, we removed “ A2” and had GPT2-small produce a new but different
token to replace “ A2”, resulting in “... AI B... C”. Since “ C” is semantically supplemented by
the preceding text and differs from “ A2”, it preserves semantics as much as possible without the
Induction Skill. The self text is still token “ A2”. A complete sample is as follows:

{text: “chinese lesson 1.2: chinese”, backgound_text: “chinese lesson 1.2: The”, self_text: “ chi-
nese”, GPT2-small_output: “ lesson”}

E.1.3 ICL SKILL

The 4 types of ICL skill samples come from SST-2 dataset and the object_counting, qawikidata,
reasoning_about_colored_objects datasets in BIGBENCH. These samples have been named by us as
icl_sst2, icl_oc, icl_qa, icl_raco, with quantities of 1000, 284, 1000, and 135 respectively. Each sample
is required to contain two different labelled demonstrations and should be answerable correctly by
GPT2-small. Here are examples of the four types of samples:

icl_sst2:

{text: “, nor why he keeps being cast in action films when none of them are ever any good Sentiment:
negative\nfunny , even punny 6 Sentiment: positive\nis that secret ballot is a comedy , both gentle
and biting . Sentiment:”, backgound_text: “is that secret ballot is a comedy , both gentle and biting .
Sentiment:”, self_text: “ Sentiment:”, GPT2-small_output: “ positive”}

icl_oc:

{text: “I have a piano, a trombone, a violin, and a flute. How many musical instruments do I have?A:
four\nl have a banana, a plum, a strawberry, a nectarine, an apple, a raspberry, an orange, a peach,
a grape, and a blackberry. How many fruits do I have ?A: ten\nI have a head of broccoli, a cauliflower,
a stalk of celery, a cabbage, a potato, an onion, a yam, a garlic, a lettuce head, and a carrot. How
many vegetables do I have?A:”, backgound_text: “I have a head of broccoli, a cauliflower; a stalk
of celery, a cabbage, a potato, an onion, a yam, a garlic, a lettuce head, and a carrot. How many
vegetables do I have?A:”, self text: “ A:”, GPT2-small_output: “ ten”

icl_ga:

{text: “The country of University of Tsukuba is A: Japan\nThe sport played by Judit Polgdr is A:
chess\nThe country of citizenship of Théophile Gautier is A:”, backgound_text: “The country of
citizenship of Théophile Gautier is A:”, self_text: “ A:”, GPT2-small_output: “ France”}

icl_raco:

{text: “On the nightstand, you see the following objects arranged in a row: a black bracelet, a pink
booklet, a blue cup, and a silver cat toy. What is the color of the object directly to the left of the pink
object? A: black\nOn the floor, you see a bunch of objects arranged in a row: a red cup, a gold
bracelet, a fuchsia puzzle, a purple stress ball, and a burgundy fidget spinner. What is the color of the
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Figure 3: bisection clustering on paths with top 10% E f fsx; for 3 skills

object directly to the right of the cup? A: gold\nOn the table, you see a set of things arranged in a
row: a black keychain, a purple mug, a blue dog leash, and a teal sheet of paper. What is the color of
the left-most thing? A:”, backgound_text: “On the table, you see a set of things arranged in a row: a
black keychain, a purple mug, a blue dog leash, and a teal sheet of paper. What is the color of the
left-most thing? A:”, self-text: “ A:”, GPT2-small_output: “ black”}

E.2 IMPLEMENTATION

In implementation, following the 3-step process from Section [3] we obtained the skill circuit graph,
GS. We found that the skill effect values in G for the Previous Token Skill and the Induction Skill
were not high, with the highest F f fsx,;; being only 0.54 and 0.61, respectively. However, the highest
E f fsiqy for the ICL Skill reached 0.98. We speculated that because the Previous Token Skill and the
Induction Skill are overly simple, there were a significant number of samples that happened to output
the correct answers without triggering the corresponding skill paths. For instance, in the text “In
China [mainland]”, it’s challenging to confidently determine whether “mainland” was influenced by
the bi-gram model of “China” or if “China” received information from “/n”. As such, we attempted
to perform bisection clustering for each sample in the Previous Token Skill and Induction Skill, based
on the paths with top 10% E f fsgii.

Figure shows the results of our clustering on the G for the 3 skills. The x-axis sequentially arranges
the top 10% of paths on E f fsy;;; from shallow to deep, and the y-axis indicates the mean E f fsrin
of these paths. It’s striking that two clusters in the Previous Skill and Induction Skill: one consistently
showing a high E f fsy1, and the other showing little to no E f fsk;;;. This suggests that these low
E f fsii samples hardly share common paths or trigger common language skills. Meanwhile, the
ICL skill does not showcase discriminable clustering, further corroborating our speculation.
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Figure 5: 2 rounds clustering in Induction Skill

Going a step further, we would like to ascertain whether the Previous Token Skill and Induction
Skill, after undergoing multiple rounds of “purification” through clustering, could still be divided
into two clusters. Therefore, we recursively performed bisection clustering on the higher F f ki
cluster each time. Figure [f] and 5] presents the results after each round of clustering. Notably, the
Previous Token could not be divided after 2 rounds of clustering, while the Induction Token hit the
dividing limit after just 1 round. Considering that the number of clustering rounds for ICL Skill was
0, we believe this supports our hypothesis: the more complicated the skill, the fewer instances of
coincidental samples.

Lastly, we verified that bisection clustering significantly outperformed trisection, quad-section, and
quintisection clustering. As illustrated in Figure[6] out of all the clusterings, only bisection clustering
was able to distinctly segregate two mutually exclusive clusters categorized by high and low E f fsi.

E.3 SENSITIVITY ABOUT BACKGROUND TEXT

To compare the sensitivity brought about by different background texts, we designed four different
background text formats on the induction skill and compared the changes between the irreducible
circuit graph (G*) of these background texts and the final skill graph (G*). These formats are as
follows:

Bkgl: For the induction text “......Al B......A2”, we replace A2 with the output of the large model for
“....AI B......”. For example, if the induction text is “Chinese lesson 1.2: Chinese”, the background
text is “Chinese lesson 1.2: The”.
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Figure 6: different clustering on Induction Skill

Table 8: HP between different background text. For example, the value in the second row and third
column of Figure a is 6.42%, which means HP(Gpy. 0, Gp1g3) = 6.42% (G50 and Gy, 5 has
6.42% edges different).
(a) HP on Gy, (b) HP on G°
| Bkgl Bkg2 Bkg3 Bkg4 | Bkgl Bkg2 Bkg3  Bkg4
Bkgl 0% 12.54% 933% 11.42% Bkgl 0% 437% 5.75% 4.62%
gtgg 192-35;(;% 63‘;0(7 6-3;% 1925921‘{; Bkg2 | 437% 0%  351% 4.03%
g . 0 . (4 0 . 0
Bked | 11.42% 9.52% 1291% 0% gtﬁi i'ggz 431'(5);3; 3 %’% 3'07;0%

Bkg2: For the induction text “......Al B......A2”, we directly delete A2. For example, if the induction
text is “Chinese lesson 1.2: Chinese”, the background text is “Chinese lesson 1.2: .

Bkg3: For the induction text “.....Al B......A2”, we directly delete Al. For example, if the induction
text is “Chinese lesson 1.2: Chinese”, the background text is “ lesson 1.2: Chinese”.

Bkg4: For the induction text “......AI B......A2”, we replace B with the output of the large model for
“.....AI". For example, if the induction text is “Chinese lesson 1.2: Chinese”, the background text is
“Chinese people 1.2: Chinese”.

To intuitively feel these changes, we introduced a metric of percentage Hamming distance, HP,
specifically HP(G1,Ga) = hammingdistance(G1,G2)/(3 g, € + > q, €) * 100%, i.e., when
HP=0%, it means that the two graphs G; and G5 completely overllap, and when HP=100%, it means
that the two graphs do not overlap at all. We show the HP between G, , and the HP between G3

under any two background texts in Tables 3 and 4.

E.4 SUPPLEMENTARY DATA FOR VALIDATION

To enhance the transparency and validity of the validation experiment, we have supplemented it with
some additional data.

Firstly, Table 3 only provides the accuracy of randomly deleting 50 and 500 edges, however, the
dynamics of accuracy as the number of deleted edges changes is not disclosed. Therefore, we
demonstrate the dynamics of accuracy in Figure [7]when the number of randomly deleted edges ranges
from 50 to 1000. Notably, even with 1000 edges randomly deleted, the accuracy still remains above
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Table 9: Accuracy of output to original label within different Circuit Graph

Sample
Circuit Graph

G —(GSPVT — Gu)  —(GSIPT — Gx)  —(GSICLL — Gu)  —(GSICL2 —Gx) —(GSICL3 _ Gu)  —(GSICLA _ Gx)
PVT 1.00 1.00 0.88 0.89 0.89 0.83 0.89
IDT 1.00 0.93 1.00 0.81 0.82 0.85 0.81
ICL1 1.00 0.95 0.81 1.00 0.95 0.93 0.97
ICL2 1.00 0.93 0.84 1.00 0.92 0.95 0.92
ICL3 1.00 0.94 0.86 1.00 0.93 0.91 0.94
ICL4 1.00 0.96 0.83 1.00 0.93 0.94 0.96

0.1 (the total number of edges being considered is 6875). However, deleting the skill graph leads
directly to an accuracy close to 0, even if the skill graph only contains around 500 edges. This further
illustrates that the skill graph contains more edges that significantly determine the final output.

Secondly, in Table[3] we only showed the situation where low-level skill graphs remove those paths
contained in high-level skill graphs. To reinforce the validation, we additionally provide in Table[9]
the scenario where samples of low-level skills are only deleted from those edges that exist in the
high-level skill graph but not in the low-level skills.

Herein, —(G%TVT — Gx) represents the deletion of paths in the previous token skill graph that do not
exist in the target graph for the target sample, while —(G*!PT — Gx) represents the deletion of paths
in the Induction skill graph that do not exist in the target graph. —(G>1CL1 — Gx), —(GS1CL2 _ Gx),
—(G51CL3 — Gx), and —(G9TCL4 — Gx) respectively represent the deletion of paths in the ICL1,
ICL2, ICL3, and ICL4 skill graphs that do not exist in the target graph for the target sample.

To reiterate, a portion of the paths in the high-level skill graph is identical to a portion of the paths in
the low-level skill graph. Table 9] clearly demonstrates that when target samples delete those paths
that exist in other skills but not in their own, the accuracy is not significantly affected. For instance,
— (G5 IPT _ GS.PVT) deletes 129 paths, but only reduces the sample accuracy of the previous token
skill to 0.88, while the accuracy corresponding to randomly deleting 100 edges is only 0.42 (see
Figure[7). In conjunction with Table[3] it explains that only the overlapping part of the Induction skill
graph with the previous token skill graph affects the previous token skill. Additionally, when the ICL.
series skills output paths that exist in other ICLs but not in themselves, their accuracy is somewhat
higher (over 0.9). This is due to the ICL series skill graphs being more similar to each other, resulting
in fewer paths in the complement.

E.5 THRESHOLD AND FAITHFULNESS

While we maintain faithfulness on Gx, it is difficult to maintain it on G°. In other words, the
bias introduced by counterfactuals and interventions is indeed hard to completely avoid, while the
faithfulness of pruning is avoidable. Therefore, a circuit graph that clearly reflects the final result
will certainly discard some edges of unclear significance. This is usually accomplished through a
threshold. We show in Figure[§|the change in accuracy when the threshold 6 mentioned in Section [3.3]
ranges from 0 to 0.9 (there are almost no circuits left when § > 0.9, so we ignore this part). It can
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be clearly seen that faithfulness can only be fully guaranteed when § = 0. However, such edges
are not sparse enough to reflect some specific interpretable functions. When § > 0.7, it is almost
impossible to recover to the original input, but the obtained skill graph can correspond well with
previous methods. Additionally, in this paper, we default the ¢ for each skill to be PVT: 0.6, IDT: 0.7,
ICL1-4: 0.8. Additionally, we have demonstrated in Figures [9]and[T0| the changes in the number
of edges and the continuous KL divergence metric with varying thresholds d. Specifically, Figure 9]
presents the total number of edges in the circuit graph (excluding compensation circuit and bias
circuit) under different thresholds, while Figure [10|shows the KL divergence between G and Gx
(solid lines) and mathcalG® and G (dash lines) obtained at different thresholds. Figure |§| clearly
indicates that the edges with high causal effects from the previous token skill are the fewest, and the
most are from the series of ICL skill, which corroborates the conclusion drawn from the clustering
in Appendix [E.2] Moreover, the changes in KL divergence (Figure can be roughly divided into
four phases (steady, burst, steady, burst). In conjunction with Figurelgg) the two bursts are due to the
rapid decrease in edges and the number of edges being too few, approaching zero. The default § we
selected (PVT 0.6, IDT 0.7, ICL1-4 0.8) are each in the second steady phase. Combining Figures 9]
andT0)] it suggests that when a large number of edges are deleted, the circuit graph enters a phase of
minimal change, which we believe best achieves the “balance between faithfulness and sparsity”.
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Table 10: Ratio of high E' f f path (Ef f > 0.5) in Gprg* and Ggeip* (The sum of ratios > 1 due to
overlaps in each item).

Skills GBrg* Gserf*

Givr Gipr Gten Giors Giers Gicpa Others GPyy Giny Giopy Giers Gicrs  Giops  Others
Induction  0.76 - - - - - 0.24 0.84 - - - - - 0.16
ICL1 0.43 0.38 0.29 0.19 0.25 0.23 0.18 0.51 0.33 0.24 0.16 0.18 0.15 0.15
ICL2 0.46 0.37 0.25 0.16 0.19 0.21 0.17 0.61 0.24 0.25 0.14 0.19 0.18 0.15
ICL3 0.45 0.35 0.23 0.21 0.15 0.19 0.20 0.60 0.28 0.25 0.16 0.18 0.19 0.11
ICL4 0.49 0.36 0.25 0.19 0.26 0.14 0.16 0.61 0.25 0.23 0.19 0.16 0.13 0.13

Additionally, we can observe that the KL divergence between Gx* and G is approximately 10 (as can
be seen from the solid and dashed lines corresponding to § = 0), and generally, the KL divergence
between G¥ and G (K L(G*, G)) is greater than the KL divergence between G° and G (K L(G®, G*)).
Interestingly, as d increases, the values between K L(G 5.G Yand KL(G 5.6 ) get closer and are almost
the same at the default threshold.

F DETAILS ABOUT VALIDATIONS FOR CAUSAL EFFECTS

Another question is whether the background effect and self effect, mentioned in Section [3.3] po-
tentially exist as confounders or share the circuits with observed skills? To answer this question,
we examine the paths in background/self text with Ef f > 0.5. Table|l 1| categorizes these paths
into 7 types and displays their ratios. Here, G5, signifies the ratio of those paths found in the
Previous Token Skill graph, G fDT refers to the ratio of those located in the Induction skill graph,
similarly, G }90 106G ;qc 1.4 Tepresents the ratio of paths in corresponding ICL skill graphs, and “Others”
represents the ratio of paths that do not exist in either skill graphs. Notably, a small fraction of
high-effect paths does not belong to any observed skill (approximately 0.1-0.2 in “Others”); these are
the confounding paths we mentioned before. Additionally, we demonstrated the bivariate probability
density function (PDF) in Figure Bivariate PDF constructed from the origin text as one variable,
and background text or self text as another one variable. Evidently, across all skills, the paths that
have a high effect (E f f > 0.5) in the origin text include a part of paths with a relatively high effect
(Eff > 0.5) in the background text. However, there are nearly ignorable high-effect paths in the self
text in ICL skills. We guess that within the ICL skill, the background text and the origin text possess
a significantly higher number of tokens compared to the self text, thereby leading to an insignificant
effect of the self text.
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Figure 11: Bivariate probability density function (PDF) of path effects on Previous Token,Induction,
ICL1 ICL2, ICL3, and ICL4 Skills. The x-axis represents the first variable, the path effect in the origin
text (Gor*) while the y-axis represents the second variable, the path effect in the background/self
text (Gprg * /Gser*). Orange, red, green, and blue respectively represent the distribution of paths
with Eff > 0.2,0.3,0.4,0.5 in the origin text.

Additionally, Table [T1] also shows that a part of high-effect paths in the background/self text is
common with the corresponding skill graph. Fortunately, we need not worry that removing these
paths would render the final Skill Graph (paths) incomplete. Appendix [G] provides evidence that
these removed but common paths can always be restored through multi-step paths (We explain this
phenomenon as ‘Inclusiveness’ in Section[d]).

We have supplemented the bivariate distribution figures for Previous Token, ICL2, ICL3, and ICLA4,
as depicted in Figure [TT}

G INCLUSIVE PATH

we have listed the whole paths for Previous Token Skills, all multi-step paths for the Induction and
ICL1 Skills in following, with index of the send circuit, the first receive circuit, the second receive
circuit.... The green represents the paths involving inclusive paths.

Previous Token SKkill

layer O circuit 13, layer 1 circuit 6, with effect 0.71
layer O circuit 14, layer I circuit 7, with effect 0.82
layer O circuit 16, layer 1 circuit 7, with effect 0.7
layer O circuit 20, layer I circuit 7, with effect 0.86
layer O circuit 14, layer I circuit 8, with effect 0.79
layer O circuit 16, layer 1 circuit 8, with effect 0.78
layer O circuit 17, layer 1 circuit 8, with effect 0.81
layer O circuit 19, layer I circuit 8, with effect 0.72
layer 0 circuit 20, layer 1 circuit 8, with effect 0.88
layer O circuit 22, layer I circuit 8, with effect 0.81
layer O circuit 23, layer I circuit 8, with effect 0.87
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layer O circuit 24,
layer O circuit 13,
layer O circuit 13,
layer O circuit 14,
layer O circuit 15,
layer O circuit 16,
layer 0 circuit 20,
layer O circuit 24,
layer O circuit 13,
layer O circuit 14,
layer O circuit 20,
layer O circuit 13,
layer O circuit 14,
layer O circuit 16,
layer O circuit 17,
layer 0 circuit 20,
layer O circuit 22,
layer O circuit 23,
layer O circuit 24,
layer O circuit 23,
layer O circuit 24,
layer I circuit 13,
layer 1 circuit 15,
layer 1 circuit 16,
layer 1 circuit 17,
layer 1 circuit 20,
layer O circuit 13,
layer I circuit 21,
layer 0 circuit 20,
layer I circuit 22,
layer 1 circuit 23,
layer 1 circuit 24,
layer O circuit 20,
layer O circuit 21,
layer O circuit 22,
layer O circuit 23,
layer O circuit 24,
layer I circuit 13,
layer I circuit 15,
layer 1 circuit 16,
layer I circuit 17,
layer I circuit 18,
layer 1 circuit 20,
layer I circuit 21,
layer O circuit 14,
layer 0 circuit 20,
layer I circuit 22,
layer I circuit 23,
layer 1 circuit 24,
layer O circuit 13,
layer 1 circuit 13,
layer O circuit 19,
layer O circuit 20,
layer O circuit 21,
layer O circuit 22,
layer I circuit 19,
layer I circuit 20,
layer 1 circuit 21,
layer I circuit 22,

layer 1 circuit 8, with effect 0.75
layer I circuit 18, with effect 0.79
layer I circuit 19, with effect 0.89
layer I circuit 19, with effect 0.83
layer 1 circuit 19, with effect 0.74
layer I circuit 19, with effect 0.81
layer 1 circuit 19, with effect 0.82
layer 1 circuit 19, with effect 0.84
layer 1 circuit 20, with effect 0.84
layer I circuit 20, with effect 0.81
layer I circuit 20, with effect 0.8
layer 1 circuit 21, with effect 0.78
layer I circuit 21, with effect 0.83
layer I circuit 21, with effect 0.79
layer 1 circuit 21, with effect 0.75
layer I circuit 21, with effect 0.87
layer I circuit 21, with effect 0.77
layer I circuit 21, with effect 0.77
layer I circuit 21, with effect 0.75
layer 2 circuit 1, with effect 0.8
layer 2 circuit 1, with effect 0.81
layer 2 circuit 1, with effect 0.76
layer 2 circuit 1, with effect 0.79
layer 2 circuit 1, with effect 0.75
layer 2 circuit 1, with effect 0.75
layer 2 circuit 1, with effect 0.82

layer 1 circuit 20, layer 2 circuit 1, with effect 0.74

layer 2 circuit 1, with effect 0.8

layer I circuit 21, layer 2 circuit 1, with effect 0.77

layer 2 circuit 1, with effect 0.76
layer 2 circuit 1, with effect 0.79
layer 2 circuit 1, with effect 0.8
layer 2 circuit 14, with effect 0.74
layer 2 circuit 14, with effect 0.75
layer 2 circuit 14, with effect 0.77
layer 2 circuit 14, with effect 0.72
layer 2 circuit 14, with effect 0.84
layer 2 circuit 14, with effect 0.72
layer 2 circuit 14, with effect 0.8
layer 2 circuit 14, with effect 0.72
layer 2 circuit 14, with effect 0.8
layer 2 circuit 14, with effect 0.74
layer 2 circuit 14, with effect 0.79
layer 2 circuit 14, with effect 0.79

layer 1 circuit 21, layer 2 circuit 14, with effect 0.71
layer I circuit 21, layer 2 circuit 14, with effect 0.77

layer 2 circuit 14, with effect 0.81
layer 2 circuit 14, with effect 0.76
layer 2 circuit 14, with effect 0.86
layer 2 circuit 18, with effect 0.82
layer 2 circuit 18, with effect 0.88
layer 2 circuit 20, with effect 0.72
layer 2 circuit 20, with effect 0.79
layer 2 circuit 20, with effect 0.72
layer 2 circuit 20, with effect 0.77
layer 2 circuit 20, with effect 0.75
layer 2 circuit 20, with effect 0.76
layer 2 circuit 20, with effect 0.7

layer 2 circuit 20, with effect 0.76
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layer I circuit 23, layer 11 circuit 1, with effect 0.74
layer I circuit 24, layer 11 circuit 1, with effect 0.75
layer 2 circuit 24, layer 11 circuit 1, with effect 0.73
layer 4 circuit 23, layer 11 circuit 1, with effect 0.74
layer O circuit 24, layer 11 circuit 14, with effect 0.77
layer 1 circuit 13, layer 11 circuit 14, with effect 0.74
layer I circuit 16, layer 11 circuit 14, with effect 0.74
layer 1 circuit 24, layer 11 circuit 14, with effect 0.82
layer 2 circuit 13, layer 11 circuit 14, with effect 0.75
layer 2 circuit 16, layer 11 circuit 14, with effect 0.76
layer 2 circuit 24, layer 11 circuit 14, with effect 0.81
layer 3 circuit 13, layer 11 circuit 14, with effect 0.75
layer 3 circuit 16, layer 11 circuit 14, with effect 0.75
layer 3 circuit 24, layer 11 circuit 14, with effect 0.81
layer 4 circuit 13, layer 11 circuit 14, with effect 0.76
layer 4 circuit 24, layer 11 circuit 14, with effect 0.81
layer 5 circuit 24, layer 11 circuit 14, with effect 0.82
layer 6 circuit 16, layer 11 circuit 14, with effect 0.76
layer 6 circuit 24, layer 11 circuit 14, with effect 0.79
layer 7 circuit 24, layer 11 circuit 14, with effect 0.77
layer 8 circuit 24, layer 11 circuit 14, with effect 0.78
layer 9 circuit 24, layer 11 circuit 14, with effect 0.77
layer 10 circuit 24, layer 11 circuit 14, with effect 0.77

Multi-Step Paths in Induction Skill

layer O circuit 20, layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer O circuit 21,
layer I circuit 16,
layer I circuit 18,
layer 1 circuit 20,
layer I circuit 21,
layer I circuit 22,
layer O circuit 13,

layer
layer
layer
layer
layer
layer

-0 circuit 20,
-0 circuit 21,
- [ circuit 18,
- 1 circuit 20,
-1 circuit 21,
- [ circuit 22,

layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 2 circuit 14, layer 5 circuit 11, with effect 0.61
layer 2 circuit 20, layer 5 circuit 11, with effect 0.6
layer 2 circuit 14, layer 11 circuit 1, with effect 0.61
layer 2 circuit 14, layer 11 circuit 1, with effect 0.63
layer 2 circuit 14, layer 11 circuit 1, with effect 0.61
layer 2 circuit 14, layer 11 circuit 1, with effect 0.61
layer 2 circuit 14, layer 11 circuit 1, with effect 0.61
layer 2 circuit 14, layer 11 circuit 1, with effect 0.63

Multi-Step Paths in ICL1 Skill

layer O circuit 13, layer I circuit 19, layer 3 circuit 11, with effect 0.81

layer

r 0 circuit 14,

layer O circuit 15,

layer
layer

-0 circuit 16,
O circuit 21,

layer O circuit 22,

layer
layer

-0 circuit 23,
O circuit 24,

layer O circuit 13,

layer
layer

-0 circuit 20,
O circuit 21,

layer O circuit 22,

layer
layer
layer
layer
layer

- [ circuit 20,
1 circuit 21,
- [ circuit 22,
- [ circuit 23,
O circuit 13,

layer I circuit 19, layer 3 circuit 11, with effect 0.85
layer I circuit 19, layer 3 circuit 11, with effect 0.84
layer I circuit 19, layer 3 circuit 11, with effect 0.85
layer I circuit 19, layer 3 circuit 11, with effect 0.82
layer I circuit 19, layer 3 circuit 11, with effect 0.85
layer I circuit 19, layer 3 circuit 11, with effect 0.84
layer 1 circuit 19, layer 3 circuit 11, with effect 0.85
layer 2 circuit 14, layer 3 circuit 11, with effect 0.81
layer 2 circuit 14, layer 3 circuit 11, with effect 0.81
layer 2 circuit 14, layer 3 circuit 11, with effect 0.83
layer 2 circuit 14, layer 3 circuit 11, with effect 0.83
layer 2 circuit 14, layer 3 circuit 11, with effect 0.81
layer 2 circuit 14, layer 3 circuit 11, with effect 0.82
layer 2 circuit 14, layer 3 circuit 11, with effect 0.83
layer 2 circuit 14, layer 3 circuit 11, with effect 0.8

layer 2 circuit 20, layer 3 circuit 11, with effect 0.86
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layer O circuit 14, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

layer O circuit 15, layer 2 circuit 20, layer 3 circuit 11, with effect 0.81

layer O circuit 16, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

layer O circuit 17, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

laver O circuit 18, layer 2 circuit 20, layer 3 circuit 11, with effect 0.81

laver O circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.82

layer O circuit 20, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

layer O circuit 21, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83

laver O circuit 22, layer 2 circuit 20, layer 3 circuit 11, with effect 0.86

layer O circuit 24, layer 2 circuit 20, layer 3 circuit 11, with effect 0.81

laver I circuit 13, layer 2 circuit 20, layer 3 circuit 11, with effect 0.86

laver I circuit 14, layer 2 circuit 20, layer 3 circuit 11, with effect 0.84

layer I circuit 15, laver 2 circuit 20, layer 3 circuit 11, with effect 0.82

layer 1 circuit 16, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

laver 1 circuit 17, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

layer I circuit 18, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

laver 1 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

laver O circuit 14, layer I circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
layer O circuit 15, layer I circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
laver O circuit 16, layer I circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
laver O circuit 22, layer I circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
layer O circuit 23, layer I circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.82
laver O circuit 24, layer I circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.84
laver 1 circuit 20, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85

layer I circuit 21, layer 2 circuit 20, layer 3 circuit 11, with effect 0.84

layer I circuit 22, layer 2 circuit 20, layer 3 circuit 11, with effect 0.86

laver I circuit 23, layer 2 circuit 20, layer 3 circuit 11, with effect 0.82

layer I circuit 24, layer 2 circuit 20, layer 3 circuit 11, with effect 0.81

layer O circuit 21, layer 2 circuit 14, layer 3 circuit 14, with effect 0.8

laver O circuit 22, laver 2 circuit 14, layer 3 circuit 14, with effect 0.81

layer I circuit 21, layer 2 circuit 14, layer 3 circuit 14, with effect 0.81

layer I circuit 22, layer 2 circuit 14, layer 3 circuit 14, with effect 0.81

layer O circuit 13, layer 1 circuit 16, layer 10 circuit 9, with effect 0.84

layer O circuit 14, layer I circuit 16, layer 10 circuit 9, with effect 0.81

layer O circuit 15, layer I circuit 16, layer 10 circuit 9, with effect 0.8

layer O circuit 22, layer 1 circuit 16, layer 10 circuit 9, with effect 0.81

layer O circuit 14, layer I circuit 20, layer 10 circuit 9, with effect 0.83

layer O circuit 24, layer I circuit 20, layer 10 circuit 9, with effect 0.81

laver O circuit 13, layer 2 circuit 20, layer 10 circuit 9, with effect 0.92

layer O circuit 14, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9

layer O circuit 15, layer 2 circuit 20, layer 10 circuit 9, with effect 0.85

laver O circuit 16, laver 2 circuit 20, layer 10 circuit 9, with effect 0.91

layer O circuit 17, layer 2 circuit 20, layer 10 circuit 9, with effect 0.89

laver O circuit 18, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86

layer O circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86

layer O circuit 20, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9

layer O circuit 21, layer 2 circuit 20, layer 10 circuit 9, with effect 0.87

laver O circuit 22, layer 2 circuit 20, layer 10 circuit 9, with effect 0.92

layer O circuit 23, layer 2 circuit 20, layer 10 circuit 9, with effect 0.85

laver O circuit 24, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86

laver I circuit 13, layer 2 circuit 20, layer 10 circuit 9, with effect 0.92

layer | circuit 14, layer 2 circuit 20, layer 10 circuit 9, with effect 0.89

layer I circuit 15, layer 2 circuit 20, layer 10 circuit 9, with effect 0.85

layer I circuit 16, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9

layer O circuit 13, layer I circuit 16, layer 2 circuit 20, layer 10 circuit 9, with effect 0.83
layer I circuit 17, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9

layer I circuit 18, layer 2 circuit 20, layer 10 circuit 9, with effect 0.91

layer O circuit 14, layer I circuit 18, layer 2 circuit 20, layer 10 circuit 9, with effect 0.81
laver O circuit 23, layer I circuit 18, layer 2 circuit 20, layer 10 circuit 9, with effect 0.83
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layer 1 circuit 19, layer 2 circuit 20,
layer O circuit 13, layer I circuit 19,
layer O circuit 14, layer I circuit 19,
layer O circuit 15, layer 1 circuit 19,
layer O circuit 16, layer I circuit 19,
layer O circuit 20, layer 1 circuit 19,
layer O circuit 21, layer I circuit 19,
layer O circuit 22, layer I circuit 19,
layer O circuit 23, layer 1 circuit 19,
layer O circuit 24, layer 1 circuit 19,
layer 1 circuit 20, layer 2 circuit 20,
layer O circuit 14, layer 1 circuit 20,
layer 1 circuit 21, layer 2 circuit 20,
layer I circuit 22, layer 2 circuit 20,
layer I circuit 23, layer 2 circuit 20,
layer O circuit 14, layer I circuit 19,
layer O circuit 16, layer I circuit 19,
layer O circuit 22, layer 1 circuit 19,
layer O circuit 23, layer I circuit 19,
layer O circuit 24, layer I circuit 19,
layer O circuit 14, layer I circuit 19,
layer O circuit 16, layer I circuit 19,
layer O circuit 22, layer I circuit 19,
layer O circuit 24, layer 1 circuit 19,
layer O circuit 13, layer 2 circuit 14,
layer O circuit 14, layer 2 circuit 14,
layer O circuit 20, layer 2 circuit 14,
layer O circuit 21, layer 2 circuit 14,
layer O circuit 22, layer 2 circuit 14,
layer O circuit 23, layer 2 circuit 14,
layer O circuit 24, layer 2 circuit 14,
layer I circuit 13, layer 2 circuit 14,
layer I circuit 14, layer 2 circuit 14,
layer I circuit 15, layer 2 circuit 14,
layer I circuit 16, layer 2 circuit 14,
layer I circuit 17, layer 2 circuit 14,
layer 1 circuit 18, layer 2 circuit 14,
layer 1 circuit 19, layer 2 circuit 14,
layer I circuit 20, layer 2 circuit 14,
layer I circuit 21, layer 2 circuit 14,
layer I circuit 22, layer 2 circuit 14,
layer I circuit 23, layer 2 circuit 14,
layer 1 circuit 24, layer 2 circuit 14,
layer O circuit 13, layer 2 circuit 24,
layer O circuit 14, layer 2 circuit 24,
layer O circuit 15, layer 2 circuit 24,
layer O circuit 16, layer 2 circuit 24,
layer O circuit 17, layer 2 circuit 24,
layer O circuit 22, layer 2 circuit 24,
layer O circuit 23, layer 2 circuit 24,
layer O circuit 24, layer 2 circuit 24,
layer I circuit 13, layer 2 circuit 24,
layer 1 circuit 14, layer 2 circuit 24,
layer I circuit 15, layer 2 circuit 24,
layer I circuit 16, layer 2 circuit 24,
layer 1 circuit 17, layer 2 circuit 24,
layer I circuit 22, layer 2 circuit 24,
layer I circuit 23, layer 2 circuit 24,

layer 10 circuit 9,
layer 2 circuit 20,
layer 2 circuit 20,
layer 2 circuit 20,
layer 2 circuit 20,
layer 2 circuit 20,
layer 2 circuit 20,
layer 2 circuit 20,
layer 2 circuit 20,
layer 2 circuit 20,
layer 10 circuit 9,
layer 2 circuit 20,
layer 10 circuit 9,
layer 10 circuit 9,
layer 10 circuit 9,

with effect 0.9
layer
layer
layer
layer
layer
layer
layer
layer
layer

with effect 0.9

layer 10 circuit 9, with effect 0.81

with effect 0.89
with effect 0.92
with effect 0.86

layer 10 circuit 10, with effect 0.81
layer 10 circuit 10, with effect 0.81
layer 10 circuit 10, with effect 0.81
layer 10 circuit 10, with effect 0.81
layer 10 circuit 10, with effect 0.82

layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,
layer 11 circuit 5,

with effect 0.81
with effect 0.8

with effect 0.81
with effect 0.81
with effect 0.87
with effect 0.81
with effect 0.86
with effect 0.89
with effect 0.89
with effect 0.86
with effect 0.84
with effect 0.85
with effect 0.86
with effect 0.85
with effect 0.84
with effect 0.85
with effect 0.86
with effect 0.8

with effect 0.87
with effect 0.89
with effect 0.89
with effect 0.86
with effect 0.81
with effect 0.84
with effect 0.82
with effect 0.85
with effect 0.85
with effect 0.85
with effect 0.85
with effect 0.85
with effect 0.82
with effect 0.83
with effect 0.81
with effect 0.82
with effect 0.81
with effect 0.81
with effect 0.85
with effect 0.82

layer 1 circuit 24, layer 2 circuit 24, layer 11 circuit 5, with effect 0.81
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10 circuit 9, with effect 0.83
10 circuit 9, with effect 0.87
10 circuit 9, with effect 0.86
10 circuit 9, with effect 0.87
10 circuit 9, with effect 0.82
10 circuit 9, with effect 0.82
10 circuit 9, with effect 0.87
10 circuit 9, with effect 0.86
10 circuit 9, with effect 0.88
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Figure 12: Attention weights of located token positions in Induction Skill

layer O circuit 13, layer 3 circuit 14, layer 11 circuit 5, with effect 0.81
layer O circuit 23, layer 3 circuit 14, layer 11 circuit 5, with effect 0.85
layer I circuit 23, layer 3 circuit 14, layer 11 circuit 5, with effect 0.81
layer 2 circuit 23, layer 3 circuit 14, layer 11 circuit 5, with effect 0.8

Almost all 3-step paths are composed of paths from lower-level skills. For instance, in the ICL skill,
the sequence “layer O circuit 20, layer 2 circuit 14, layer 5 circuit 11” encompasses the path “layer
O circuit 20, layer 2 circuit 14” from the previous token skill. Furthermore, it is apparent that the
more complex a skill, the more multi-step paths it encompasses.

H ATTENTION WEIGHTS OF KEY CIRCUIT

In this section, we provide additional information on the attention weights of key circuits in the
Induction Skill and ICL1 Skill.

For the Induction samples, we focus on the following tokens:

“A...IPIFIN... ISP IS”, where “A” represents the first token of the input text, “IF” and “IS” denote
the positions of the first and second appearances of the duplicated token respectively, “IP” and “IN”
indicate the tokens before and after “IF”, and “ISP” refers to the token before “IS”. Figure@] shows
these located positions’ attention weight.

For the ICL samples, we select ICL1 (icl_sst2 task) to show, following tokens:

“AB..PIPPIA..PIBLI.. A2..P2PP2A ... P2BL2 ... A3 ... P3P P3A ... P3B, where “A”, “A2”,
“A3” represents the beginning of reviewl, review?2 and review3, “P1P”, “P2P”, and “P3P” represents
the end of reviewl, review2, and review3, “P1A ... P1B”, “P2A ... P2B”, “P3A ... P3B” represents
the label prompt of review1, review2, and review3, and “L1”, “L2” represent the label of review1 and
review?2. Figure [I3]shows these located positions’ attention weight.

I COMPARISONS WITH OTHER METHODS VALIDATING CONJECTURES

One of the contributions of this paper is to validate three long-unverified conjectures about language
skills: Identifiability, Stratification, and Inclusiveness. The question of why previous work merely
“proposed conjectures” while our method could find “strong evidence” will be answered in this
section.

Firstly, we compared the differences in circuit components among 4 circuit discovery methods,
including ours. The other methods are ACDC, OPT-prun, and EAP (introduced in Section E]) Each
method used its own circuit discovery strategy to search for corresponding circuit graphs for the three
skills we focus on: PVT, IDT, and ICL1. Then, as with Table Eﬂ, we investigated the distribution of
receiver nodes in these circuit graphs and displayed the normalized results in Figure 14}

It is clear from other methods that PVT is more prominent in the shallow layers, IDT in the mid-
to-deep layers, and ICL1 tends to cluster in the deep layers. However, the circuit graphs from
these methods are insufficient to prove these patterns. For instance, although PVT is significantly
concentrated in the shallow layers, there are also components in the deep layers. Yet, the circuit
graph discovered by our method provides a more distinct differentiation: PVT circuits only appear in
layers 1 and 2, and IDT circuits only appear in layers 1-6. Our method determines the specific layer
numbers of the skill circuits and confirms that as the skill becomes more complex, the layers spread
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Figure 13: Attention weights of located token positions in ICL Skill

Layer 1 Layer 1 Layer 1 Layer 1

Layer 2 Layer 2 Layer 2 Layer 2

Layer 3 Layer 3 Layer 3 Layer 3

Layer 4 Layer 4 Layer 4 Layer 4

Layer 5 Layer 5 Layer 5 Layer 5

Layer 6 Layer 6 Layer 6 Layer 6

Layer 7 Layer 7 Layer 7 Layer 7

Layer 8 Layer 8 Layer 8 Layer 8

Layer 9 Layer 9 Layer 9 Layer 9

Layer 10 Layer 10 Layer 10 Layer 10
PVT IDT ICL1 PVT IDT ICL1 PVT IDT ICL1 PVT IDT ICL1
(a) ACDC (b) OPT-prun (c) EAP (d) Ours

Figure 14: Visualization of receivers distributed in layer1-10 in 3 increasingly-complex skills (PVT,
IDT, and ICL1), obtained from 4 circuit discovery methods (ACDC, OPT-prun, EAP, and Ours)
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Table 11: Overlaps between different skill circuit graphs

Method PVT IDT ICL1
ovlp(PVT,IDT) ovlp(PVT,ICL1) ovlp(IDT,PVT) ovlp(IDT,ICL1) ovlp(ICL1,PVT) ovlp(ICL1,IDT)

ACDC 0.13 0.05 0.19 0.10 0.06 0.17

OPT-prun 0.11 0.18 0.05 0.07 0.14 0.17

EAP 0.09 0.06 0.14 0.05 0.03 0.18

Ours 0.34 0.29 0.74 0.35 0.81 0.63

from shallow to deep. This finding provides stronger evidence for the identifiability and stratification
of skills compared to other methods.

Additionally, to observe the performance of these methods on the conjecture of Inclusiveness, we
investigated their overlap on the three skill circuits: PVT, IDT, and ICL1. The corresponding circuit
graphs are still derived from the circuit discovery strategies proposed by each method, searching in
the corpora corresponding to the three skills proposed in this paper. The rule for calculating overlap
is as follows: let ovlp(A, B) represent what the rate of edges in skill graph A also existing in skill
graph B is. For any edge e’ in skill graph A, we set an overlap flag f4 g(e'). If ¢’ in A also exists in
skill circuit graphs B, then fa p(e') = 1, otherwise fa p(e’) = 0. For a circuit graph A with N4

edges, its set of edges is £4. Our overlap is calculated as ovlp(A, B) = N%; E?GSA fap(ed).

Table 5 demonstrates that the overlap of circuit graphs discovered by existing methods is quite
low. For instance, ovip(IC L1, IDT) is only 0.17 in ACDC. However, this 0.17 overlap of circuits
represents the key function of induction (often referred to as the induction head). As a result, many
studies have proposed the conjecture that the ICL skill includes the Induction skill. Yet, only our work
provides clear empirical evidence for the conjecture of inclusiveness: ovlp(IDT, PVT) = 0.74
indicates that 74% of the paths in the circuit graph of the Induction skill exist in the circuit graph
of the previous token skill. Furthermore, ovlp(ICL1, PVT) = 0.81 and ovip(ICL1,IDT) = 0.63
suggest that 81% and 63% of the paths in the ICL skill’s circuit graph are included in the circuit
graphs of the previous token skill and the induction skill, respectively.

J SKILL CIRCUIT GRAPHS

Due to large size constraints, we have only displayed the circuit graph for the Previous Token Skill.
For additional skill graphs, please refer to our repository.

29



Under review as a conference paper at ICLR 2025

- V“\ A ez
X Yu g
)

AL

IO N e ’ ¥ )
! M/,. X X X \.4 \&Pﬂm“‘ .l“~ L

7
AR NPT
B TS R AT XTI =1

N -
= - w//'\//\lm‘-\

e
| _—

Figure 15: Skill Circuit Graph of Previous Token Skill, all paths with E f f > 0.7 are labeled.
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