
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNVEILING LANGUAGE SKILLS UNDER FAITHFUL CIR-
CUITS

Anonymous authors
Paper under double-blind review

ABSTRACT

[Circuit decomposition and counterfactual-based pruning have become the corner-
stone framework for mechanism interpretability. However, the unfaithfulness to
the output due to cumulative bias in the pruning process hinders more complex and
detailed mechanism exploration. To address this, we propose a novel circuit dis-
covery framework that faithfully identifies circuit graphs. This framework contains
three steps: firstly, the language model is decomposed into a fully linear graph
consisting of disentangled “memory circuits”; secondly, greedy search is adopted
to prune while ensuring output faithfulness; finally, we adopt causal analysis on the
pruned circuit graph to identify salient circuit graph, estimated by counterfactuals
and interventions. Our framework facilitates the discovery of complete circuit
graphs and dissection of more complex mechanisms. To demonstrate this, we
explored three generic language skills (Previous Token Skill, Induction Skill and
In-Context Learning Skill). Using the circuit graphs discovered through our frame-
work, we identify the complete skill paths of these skills.] Our experiments on
various datasets confirm the correspondence between our identified skill paths and
language skills, and validate three longstanding hypotheses: 1) Language skills are
identifiable through circuit dissection; 2) Simple language skills reside in shallow
layers, whereas complex language skills are found in deeper layers; 3) Complex lan-
guage skills are formed on top of simpler language skills. Our codes are available
at: https://anonymous.4open.science/r/language_skill.

1 INTRODUCTION

[Mechanism interpretability (Elhage et al., 2021; Conmy et al., 2023) is becoming crucial for
understanding how language models work. A common approach (Conmy et al., 2023; Yao et al.,
2024; Syed et al., 2023; Bhaskar et al., 2024) involves breaking down the model into disentangled,
more linear components organized as a computational graph. By applying counterfactual techniques
and pruning, less important connections are removed, leaving behind a smaller “circuit graph” that
highlights the key components contributing to the model’s output.]

[However, existing circuit discovery methods often fail to faithfully represent the output of the model.
Specifically, substituting the model’s forward process with a circuit graph does not ensure that the
predicted output token remains consistent with the original output of the language model. This lack
of faithfulness indicates that other yet-undiscovered circuits may significantly influence the output,
undermining the argument that the circuit graph fully captures the underlying mechanisms. The core
issue lies in the pruning strategies employed by these methods, which are typically optimized for
counterfactual scenarios. Decisions to remove an edge are based on the changes in logits between the
original output and a ‘corrupted output.’ As a result, the cumulative effect of removing many edges
introduces biases that can ultimately alter the model’s output.]

[To address this challenge, we propose a two-stage discovery process, decoupling faithful pruning and
causal discovery. In the first stage, we employ a greedy search algorithm to identify non-contributing
edges in the original circuit graph, under the condition that the original output remains the same
after performing each pruning step. This stage ensures a faithful pruning result, keeping the outputs
unchanged. The second stage identifies salient circuit graph using counterfactual and intervention
techniques. Additionally, to achieve more precise discovery, we completely dissect the transformer
model into fully disentangled and linear components, known as “memory circuits”, with the addition

1

https://anonymous.4open.science/r/language_skill

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of “compensation circuits” to account for the non-linearity of the MLP module within the transformer,
which has not been accomplished in previous works. In summary, our framework encompasses three
steps: complete linear circuit decomposition, faithful pruning, and causal analysis.]

[Compared to existing methods, our approach has distinct advantages: the lossless and linear
decomposition holds the potential to identify all components responding to a pattern, while faithful
pruning and causal analysis enable us to dissect more complex patterns. To show the potential ability
for discovering new insights, We select three generic and progressively complex skills which have
been introduced in (cro, 2024; Ren et al., 2024; Edelman et al., 2024; Olsson et al., 2022): a) Previous
Token skill which is responsible for receiving information from the previous token; b) Induction Skill
which duplicates tokens with the same prefix; and c) ICL Skill which perform inference based on
similar patterns appeared in demonstrations. Utilizing the circuit graph obtained from our three-step
framework, we unveil the complete skill paths of these skills. These skill paths have confirmed some
conjectures that have long remained unverified:]

1. Identifiability: Language skills are identifiable through circuit dissection and correspond to
different circuit paths.

2. Stratification: Simple language skills reside in shallow layers, whereas complex language
skills are found in deeper layers.

3. Inclusiveness: Complex language skills are formed on top of simpler language skills. For
example, the Induction skill, dealing with text formatted as “A B ... A” and producing “B” at
the end, requires the Previous Token skill to carry information from “A” to “B”. The ICL
Skill likewise consists of the Induction Skill as an essential mechanism.

In summary, our contributions are 3-fold:

• We propose a complete and faithful circuit discovery framework, providing a theoretical
basis for addressing the research gap in mechanism interpretability.

• We devise a 3-step framework to extract the paths of generic language skills in language
models.

• Our analysis and experiments verify three properties among the Previous Token Skill,
Induction Skill, and ICL Skill, which include identifiability, stratification and inclusiveness.

2 A COMPARISON WITH RELATED WORK

[Existing methods have proposed various pruning strategies, including greedy search, such as
ACDC (Conmy et al., 2023; Yao et al., 2024), attribute patching, such as EAP (Syed et al., 2023), and
optimization search, such as Opt-Prun (Bhaskar et al., 2024). However, these pruning strategies cannot
guarantee to reproduce the original output of the model, and hence not faithful in their discoveries.]

Table 1: Can existing pruning strategies really recover
the original outputs? ‘linear mlp’ represents whether
their components can decouple the influence on the
MLP into a linear combination, and ‘recover rate of
original output (%)’ represents the percentage of the
pruning output that is the same as the original model
output under our lossless decomposition.

method recover rate of original output (%)
IOI greater than induction

ACDC 56% 31% 67%
Opt-Prun 59% 29% 62%
EAP 41% 22% 55%
Ours 100% 100% 100%

[Table 1 shows the comparison between
the results obtained using the output of the
pruned graph and the original LLM out-
put results on several commonly used cir-
cuit datasets: IOI, greater than, and induc-
tion. (For specific experimental details, see
Appendix A.) The circuit graphs obtained
by these methods cannot fully recover the
model’s original output under lossless cir-
cuit decomposition. Theoretically, these
pruning strategies decide whether to delete
an edge by calculating its importance score,
which is related to the change in the final
logit. However, this does not guarantee
that the logits of other candidates will not
exceed the original output. Therefore, we
adopt a more direct approach, conducting a
greedy search under the condition that the
top n candidates remain unchanged.]

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHOD

In this paper we propose a novel 3-step framework to extract the target language skills.

• Step 1 (Section 3.1): We decouple the architecture of transformer language models into a
combination of individual “Memory Circuits”, which independently represents the minimum
unit for reading memory. This results in a Complete Circuit Graph, G.

• Step 2 (Section 3.2): Keeping the destination token unchanged, we adopt greedy search to
remove redundant edges in G, retaining only those paths necessary for predicting the last
(destination) token and resulting in an Irreducible Circuit Graph, G∗.

• Step 3 (Section 3.3): We estimate the causal effect of each path in G∗ on the target skill
and select those paths rendering most significant changes as the skill paths. The final graph
formed by the skill paths is named as Skill Circuit Graph, denoted as GS .

3.1 MEMORY CIRCUIT

Building on the foundation of the Transformer Circuit (Elhage et al., 2021), we propose a complete
decomposition of the transformer model including the MLP layers. Using tensor products (⊗), we
can represent any layer of the transformer model:

output = (Id+ Id⊗WMLP) · (Id+
∑
h∈H

Ah ⊗Wh
OV) ·X

= (Id+
∑
h∈H

Ah ⊗Wh
OV + Id⊗WMLP +

∑
h∈H

Ah ⊗WMLPW
h
OV) ·X

(1)

where X represents the input representation in each layer and H represents the number of attention
heads. Matrix A is given by the attention mechanism A = softmax((XWQ)(XWK)T), and
WMLP involves the MLP operation with activation given by atv(XWM1)WM2. WOV = WOWV

refers to an “output-value” matrix which computes how each token affects the output if attended to,
while WQ,WK ,WV are parameter matrices for query, key and value. WM1 and WM2 are weight
parameters in two linear layers. This equation simplifies both the attention and MLP modules
into linear matrix mappings, describing how the paths from input to output for each layer are
decoupled into four independent circuits: 1) Cself = Id ·X; 2) Cattn =

∑
h∈H Ah ⊗Wh

OV ·X;
3) Cmlp = Id ⊗WMLP ·X; 4) Cattn+mlp =

∑
h∈H Ah ⊗WMLPW

h
OV ·X . Moreover, three of

these circuits can be further factorized as:

Cattn =
∑
h∈H

fattn
WQK

(X) ·WOV (2)

where fattn
WQK

(X) = softmax((XWQ)(XWK)T)X

Cmlp = fmlp
WM1

(X) ·WM2 (3)

where fmlp
WM1

(X) = atv(XWM1)

Cattn+mlp =
∑
h∈H

fattn+mlp
WQK ,WOV ,WM1

(X) ·WM2 (4)

where fattn+mlp
WQK ,WOV ,WM1

(X) = atv(fattn
WQK

(X)WOV WM1)

We use f to represent a function that can be considered equivalent to an activation function, for
instance, fattn

WQK
(X) represents the softmax-normalization of the input X through a weighted accumu-

lation performed by QK values. In conclusion, these three types of circuits can be expressed using a
common paradigm:

Cattn/mlp/attn+mlp = f(X) ·W (5)
The function f(X) possesses the ability for non-linear transformations, while W is an input-agnostic
parameter, which can be understood as a memory learned through training (Geva et al., 2021).
Therefore, this paradigm is capable of generating non-linear “weights” (f(X)) from the input
representation X and assigns these “weights” to a static memory distribution to extract the necessary
“knowledge” for output. These three circuits thus represent the minimum and complete unit for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Specific circuit index and corresponding implementation in each layer of GPT2-small.
W and b represent weight and bias parameters, atv represents the activation of MLP. ln(·) is the
layernorm function. A = softmax(XWQW

T
KXT + bQW

T
KXT + XWQb

T
K + bQb

T
K). Memory

Circuits are C1−25.

Index Category Implementation(X=input representation in each layer)
C0 Self X
C1−12 Attention Ahln(X)WV WO +AhbV WO

C13 MLP atv(ln(X)WM1)WM2

C14−25 Attention+MLP atv(ln(Ahln(X)WV WO +AhbV WO)WM1)WM2

C26 Compensation (atv(ln((
∑12

h=1 C
h)WM1))−

∑12
h=1 atv(ln(C

h)WM1))WM2

C27 Compensation (atv((ln(C0−13)WM1)− atv(ln(C0)WM1)− atv(ln(
∑12

h=1 C
h)WM1))WM2

C28 Bias bv + atv(bM1)WM2 + bM2 +
∑12

h=1 act(bV WM1)WM2

manipulating how much memory to read (i.e., memory-reading operation), and are independent of
each other, which we refer to as “Memory Circuits”1.

In this paper, we select GPT2-small as the target language model, containing 12 layers (L = 12) and
12 attention heads (H = 12). To provide a complete dissection of the the model at each layer which
can precisely recover the original output, we introduce Bias Circuits and Compensation Circuits
(Compensation circuits represent the synergy of the sum of linear terms passing the non-linear
function, please refer to Appendix C for more details), apart from Memory Circuits, to compensate
for the remaining information not covered by the memory circuits. Table 2 shows the specific circuits
and their implementation for each layer. Our circuit dissection leads to a lossless decomposition of
the original LM layer2: LMl(X) =

∑28
i=0 C

i.

We treat Memory Circuits as the smallest units and build a Complete Circuit Graph, G = {C, E},
where C stands for the set of 29 circuits (C0−28 shown in Table 2, where Attention and Attention+MLP
has 12 circuits due to 12 heads given) and E represents the path between any two circuits in different
layers. Any memory circuit Ci(0 ⩽ i ⩽ 25) in any layer l(0 ⩽ l ⩽ 11), denoted as Cl,i, would
receive information streams from all circuits in previous layers, i.e., E = {(Cl1,i → Cl2,j)}(0 ⩽
l1 < l2 ⩽ 11, 0 ⩽ i, j ⩽ 25). Notably, the lossless decomposition ensures that the insights gained
from our circuit network accurately reflect the behavior of the original language model.

3.2 GREEDY SEARCH

Given the input tokens for LMs, X = {x1, · · · , xN−1}, the whole optimization loss is:

L = −
N∑

n=1

logP (xn+1|x1, · · · , xn) (6)

Without loss of generality and to facilitate our analysis, we focus on predicting the last destination
token, xN , given the historical context, i.e., Ldst = − log(xN |x1, · · · , xN−1). It can be reasonably
hypothesized that many circuits and paths are not dedicated to the prediction of the destination token
xN but related to other source tokens. Therefore, we need to prune the circuit graph and retain those
paths that are essential for the prediction of destination tokens. This will afford a more explicit and
causal view of the efforts made by the language model to generate xN .

Specifically, we use a greedy search strategy to prune unnecessary paths between Memory Circuits
while ensuring that the top n3 candidates for the prediction of the destination token remain unchanged.
Given that a depth-first search is more likely to remove shallow paths, we employ a breadth-first search

1Please note that while there are finer-grained functions in practice, such as A ⊗X , although filled with
activation and attention, they suffer deep constraints to generate new vocabulary distribution and do not fully
encompass the complete function. We elaborate in detail in Appendix B.

2[In fact, due to the pytorch’s floating-point calculation, there is an ignorable loss (minimum squared error
between the sum of circuits and the original layer output LMl(X) is < 10−11).]

3We set n = 1 in our experiments because our research model, GPT2-small does not consider candidates
below top1 as outputs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(We compared different search strategies and constraints in Appendix D) as shown in Algorithm 1: We

Algorithm 1 Greedy Search for G∗
Require: Complete Circuit Graph G = {C, E}, prediction xN = Model(G, X), number of Layers L
and Circuit Index [0, 28]. Ensure: Irreducible Circuit Graph G∗ = {C, E∗}

G∗=G, G′ = G∗
for each Memory Circuit Cl,i ∈ C(0 ⩽ l < L, 1 ⩽ i ⩽ 25) do

for each Memory Circuit C̃l′,i′ ∈ C(0 ⩽ l′ < l, 1 ⩽ i′ ⩽ 25) do
P = [[l′, i′,], [l, i]], G′ = G∗, E ′ = E ∗ −P
if Model(G′, X) == xN then
G∗ = G′

else
G′ = G∗

end if
end for

end for
return G∗

denote G∗ as the Irreducible Circuit Graph after pruning, and E∗ as a subset of E which only includes
those paths encapsulating the information stream necessary for the destination token prediction. G∗
thus represents the smallest, independent, and functionally complete circuit graph which is necessary
for generating xN .

3.3 ESTIMATION OF CAUSAL EFFECTS FOR LANGUAGE SKILLS

It is widely recognized that most texts require more than one language skill for inference (Arora
& Goyal, 2023). Therefore, determining which paths are associated with the observed skill can be
challenging. For this reason and motivated by endeavors in causal effect analysis (Wang et al., 2023;
Vig et al., 2020), we divide the effects of any text on the output token into 3 components: skill effects,
background effects, and self effects for destination (abbreviated as self effects).

Skill effects refer to the impact of the observed language skill on the output which is the focus of this
paper. Self effects denote the impact of using a single destination token to predict, which functions
like a “bi-gram model” (a model associating one input token with its output token). Background
effects propose a counterfactual scenario, i.e., what would the effect be if this skill is not present in this
text4. We use the typical example of the “Induction” skill for illustration, which works with an input in
the form of “... A B ... A”, where A, B refers to different tokens. Here the language model is expected
to repeat the pattern (“A B”) it has seen in the context and predict token “B” as the destination token.

“Generate a question with a”

SkillBackground Self

“a question ... a”
“Generate a

question with the”
“a”

Output
Output Output

“ answer”
“ condition”
“ language”
“ question”

……

“ question” “ model”
“ person”

……
“ question”

……

Figure 1: A case text about causal effects.

Figure 1 illustrates an example of the “Induc-
tion” skill where the model outputs “question”
when given the input “Generate a question with
a”. However, the vocabulary distribution in the
output given by the language model does not
merely result from the induction skill, but is also
confounded by other effects such as the back-
ground effect and the self effect. To compute the
target effect for a specific circuit path, let Pathi

be any directed paths in G∗ (e.g., C1,19 →
C2,14 → C6,5 s.t. circuit edges (C1,19, C2,14)
and (C2,14, C6,5) are in G∗). Pathi then sym-
bolizes the flow of information across layers
amongst the circuits it encompasses. We use
the occurrence rate of Pathi in all samples to

4Recognizing the impracticality of realizing the strict counterfactual scenarios, we adopt texts that are as
close as possible to the input text, but without the observed skill, as counterfactual texts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

compute the effect:

Eff(Pathi
G∗) =

N
Pathi

G∗
Pathi

G∗=1

Nall
(7)

N
Pathi

G∗
Pathi

G∗=1
represents the number of samples encompassing Pathi while Nall represents the number

of all samples. Each path contributes differently to the three effects. Hence, we aim to find those
paths that contribute to the skill effect rather than the other two effects.

Specifically, for each input text as a sample s, we perturb it to create a background text sBkg and
a self text sSlf (The process for generating background text and self text for all types of skills is
described in Appendix E). Eventually, any sample is augmented with two more perturbed versions,
rendering three types of inputs (i.e., original text, background text, and self text), each of which is
subjected to the greedy search as discussed in Section 3.2. The greedy search produces three distinct
Irreducible Circuit Graphs: GOri∗ (from original input text), GBkg∗ (from background text), and
GSlf∗ (from self text). Therefore, the skill effect (e.g., Induction Skill) of Pathi can be defined as:

EffSkill(Pathi) =

NPathi

Pathi
GOri∗

=1,Pathi
GBkg∗=0,Pathi

GSelf∗=0

Nall

(8)

Finally, we get the Skill Circuit Graph GS = {C, ES}. With δ as the threshold parameter: ES =
{Pathi|EffSkill(Pathi) > δ} (we provided detailed analysis about δ in Appendix E.5).

4 EXPERIMENTAL DESIGN

This paper focuses on 3 language skills, spanning from basic to advanced levels:

Previous Token Skill: This is a skill to receive information from the previous token.

Induction Skill: This skill involves identifying patterns in prefix matching and replicating recurring
token sequences.

ICL Skill: This is a complex skill to recognize and replicate the demonstration context, thereby
producing outputs based on similar patterns.

Extensive research has shown that these three skills build on one another in a sequentially encompass-
ing manner (cro, 2024; Olsson et al., 2022; Ren et al., 2024; Edelman et al., 2024). The Induction
Skill inherently includes the Previous Token Skill. In simple terms, for induction to occur in the
sequence “A B ... A”, the token B must retrieve information from the preceding token A. Likewise,
In-Context Learning must be capable of identifying similar patterns across different demonstrations
to generate analogous outputs.

We select over 10k samples encompassing one of the three above-mentioned skills from large
corpora and popular datasets such as WIKIQA (Yang et al., 2015), SST-2 (Socher et al., 2013),
BIG-BENCH (Srivastava et al., 2023), OpenOrca (Lian et al., 2023), and OpenHermes (Teknium,
2023). For each instance, we create a background perturbation and a self perturbation (discussed
in Section 3.3). For simplicity, PVT represents the sample set involving the Previous Token Skill
and IDT represents the sample set related to Induction Skill. ICL1 represents the ICL sample set
from SST-2 datasets; ICL2 represents the ICL sample set from object counting task; ICL3 and ICL4
represents those from qawikidata and reasoning about colored objects task. Using GPT2-small as the
research model and applying the three-step framework detailed in Section 3 to these samples, we are
able to identify high-effect samples through clustering, which clearly reveal distinct skill paths. The
details of data preparation and implementation are elaborated in Appendix E, while our validation,
findings, and explorations are presented in Sections 5, 6, and 7.

5 VALIDATION

5.1 WHEN SKILL PATHS ARE REMOVED

To understand whether the identified skill paths are responsible for their corresponding language
skills, we design an intervention experiment by removing different sets of paths and observe the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Accuracy of output to original label within different Circuit Graph

Sample Circuit Graph
G∗ −R50 −R500 −GS,PV T −GS,IDT −GS,ICL1 −GS,ICL2 −GS,ICL3 −GS,ICL4

PVT 1.00 0.46 0.23 0.01 0.00 0.00 0.01 0.00 0.00
IDT 1.00 0.58 0.29 0.08 0.00 0.00 0.00 0.01 0.00
ICL1 1.00 0.61 0.23 0.01 0.00 0.00 0.00 0.00 0.00
ICL2 1.00 0.51 0.18 0.00 0.00 0.01 0.00 0.01 0.01
ICL3 1.00 0.54 0.21 0.00 0.00 0.00 0.00 0.00 0.00
ICL4 1.00 0.62 0.30 0.07 0.03 0.01 0.02 0.00 0.00

(a) PVT (b) IDT (c) ICL1 (d) ICL2 (e) ICL3 (f) ICL4

Figure 2: T-sne visualization of 6 types of samples on top 5 vocabulary candidates. Red denotes the
original output model (G), while blue signifies the output once a corresponding skill path is removed
(G − GS). The outputs for the background text (GBkg) and self text (GSlf) are indicated in green and
yellow, respectively.

output of the LM. Table 3 displays the accuracy of 6 types of samples under different configurations
of the Circuit Graphs when treating the original output as the ground-truth. For each language skill S,
we randomly select 500 samples from its corresponding dataset. As a result, 9 different configurations
of Circuit Graphs are tested: G∗ which represents the original output; −R50 which signifies the
removal of 50 paths at random from G∗; −R500 after the deletion of 500 paths randomly from G∗,
which approximately equals the number of skill paths5. The remaining 6 configurations encompass
the removal of paths from G∗ that correspond to the skill of Previous Token, Induction, ICL1, ICL2,
ICL3, and ICL4, respectively (For additional supplementary data for this validation test, please refer
to Appendix E.4.).

The results indicate that almost all samples were unable to produce the original token when these
skill paths were excluded (as indicated in the last 6 columns), yet random removal of paths does not
lead to such significant impact. Additionally, Figure 2 visualizes the t-SNE representation of the
top 5 candidate outputs associated with different Circuit Graphs. It is clear that when a skill path is
removed, the output (blue) shifts from red towards green (or yellow), indicating a transition from a
text output distribution that includes skills to a distinct space resulted from the removal of these skills.

5.2 HOW SKILL EFFECTS ARE CONFOUNDED

Another question is whether the background effect and self effect, mentioned in Section 3.3, po-
tentially exist as confounders or share the circuits with observed skills. To answer this question,
we conduct two experiments, with the results shown in Appendix F. Initially, Table 11 checks the
overlap between the paths with Eff > 0.5 in the background/self text and the skill paths, illustrating
that a small portion (approximately 10%-20%) of those paths does not belong to any observed skill.
This corresponds to the confounding originating from other latent skills that we envisioned. Secondly,
Figure 6 visualizes these different-effect paths’ bivariate probability density function with the original
input and background/self text. One intriguing discovery is that the confounding skills are more likely
to present in the background text than in the self text, and the more complex the skill under analysis,
the subtler the confounding effect introduced by the self text.

5[The exact number of removed paths is: −GS,PV T 325, −GS,IDT 466, −GS,ICL1 589, −GS,ICL2 622,
−GS,ICL3 603, −GS,ICL4 537]

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Key Receivers in Skill Circuit Graphs, green circuits are presented in the lower skill

Skill Receivers with receiving more than 10 paths ([#layer, #circuit])
PVT [1, 8], [1, 18], [1, 19], [1, 20], [1, 21], [2, 1], [2, 7], [2, 14], [2, 18], [2, 20], [2, 22], [2, 24], [11, 1], [11, 14]
IDT [2, 14], [2, 18], [2, 20], [3, 14], [3, 17] [4, 5], [4, 12], [5, 11], [6, 5], [11, 1], [11, 14]

ICL1 [2, 14], [2, 20], [2, 22], [2, 24], [3, 3], [3, 4], [3, 5], [3, 11], [3, 14], [3, 17], [4, 3], [4, 5], [5, 11], [8, 5],
[10, 10], [11, 8], [11, 9], [11, 10], [11, 11]

ICL2 [1, 19], [2, 14], [2, 20], [2, 24], [3, 5], [3, 11], [3, 14], [4, 5], [4, 7], [4, 9], [5, 10], [6, 5],[10, 9], [10, 10],
[10, 11], [11, 1], [11, 5]

ICL3 [1, 8], [1, 18], [1, 19], [1, 20], [1, 21], [2, 14], [2, 20], [2, 24], [3,1], [3, 14], [4, 3], [4, 5], [5, 1], [5, 10],
[5, 11], [8, 1], [8, 9], [10, 5], [10, 10], [10, 12], [11, 1], [11, 8]

ICL4 [1, 16], [1, 20], [2, 20], [4, 3], [4, 5], [5, 3], [6, 4], [6, 5], [8, 9], [9, 4], [9, 5], [10, 2], [10, 10], [10, 12],
[11, 2], [11, 3], [11, 4], [11, 6], [11, 15]

6 DISCOVERY OF LANGUAGE SKILLS

Table 4 displays the circuits receiving more than 10 circuit paths (receivers) in the skill graphs. We
use [l, i] to denote the circuit Cl,i in the l-th layer and i-th circuit. The complete Skill Circuit Graph
can be found in Appendix J. From Table 4, we identify 3 interesting patterns:

1. Identifiability: The paths of each skill are identifiable and remain unchanged across most data
instances.

2. Stratification: The Previous Token Skill (PVT) is one of the simplest language skills, and thus it
is located across layers 0-2. The Induction Skill (IDT) is slightly more complex and thus spreads
across layers 0-6. Meanwhile, ICL is the most complex skill and has key receivers across nearly all
layers. Additionally, all skills share the 11-th layer (final layer).

3. Inclusiveness: Higher-level skills always entail the key circuits of lower-level skills. It is
universally acknowledged that the Previous Token Skill is an integral part of the Induction Skill,
which is why circuits such as [2, 14], [2, 18] and [2, 20] (presented in PVT) can be found in the
Induction Skill Graph. Similarly, the ICL skill encapsulates the Previous Token Skill and Induction
Skill as necessary sub-skills, which is why circuits that are evident in the Previous Token Skill (such
as [2, 14], [2, 20], [2, 24]) and those identified in the Induction Skill (such as [3, 14], [4, 5]) can be
found in the ICL Skill Graph. Furthermore, we list all multi-step paths with inclusive sub-path in
Appendix G.

Additionally, we have observed some differences in the receivers of different ICL tasks. Combined
with the insights provided by Bayazit et al. (2023) and Bricken et al. (2023), we suspect that these
differences arise from distinct circuits required to process domain-specific knowledge across different
tasks. Based on the paths, attention weights, and cosine similarities of the representations (detailed
results on attention weights can be found in Appendix H), we have identified several circuits with
distinct characteristics (We demonstrate the performances of other circuit discovery methods in
validating these conclusions in Appendix I.):

Preceding Token Circuit: Circuit [4, 12] performs a unique function, namely, when any token
serves as a query token to attend other tokens, this circuit is shown to consistently carry significant
information from its preceding token to the query token.

Key Token Circuit: Circuit [3, 14] exhibits a significantly different function from the others. This
circuit consistently focuses on certain key tokens in the preceding text – such as the beginning, ending,
and label prompts – and transmits this information to subsequent query tokens. Additionally, other
key circuits in layers 3 and 4 partially undertake these functionalities.

Opposite Circuit: When using the last token of each input to produce the embedding for a specific
circuit, we notice that the cosine similarity between Circuit [11, 14] and other key circuits is usually
less than 0, especially with Circuit [11, 1], where the cosine similarity reaches to −0.92. Previous
work (Wang et al., 2023) has mentioned this phenomenon, hypothesizing the reason to be controlling
the variance of the loss function.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Top 5 Receiver circuits appearing most frequently in skill paths presented in correct output
samples but not incorrect samples.

Type Top-5 circuits with absence rate
F IDT [2, 18] (↓0.37), [2, 14] (↓0.32), [11, 1] (↓0.28), [2, 20] (↓0.26), [2, 24] (↓0.26)
F1 ICL [2, 24] (↓0.45), [2, 20] (↓ 0.42), [2, 22] (↓ 0.41), [1, 20] (↓0.39), [2, 14] (↓ 0.32)
F2 ICL [3, 14] (↓0.29), [4, 5] (↓0.28), [10, 10] (↓0.28), [8, 9](↓0.24), [4, 12] (↓0.22)

7 EXPLORATION - WHY WRONG OUTPUTS?

In this section, we present a new direction for explaining and exploring common erroneous answers
using Skill Circuit Graphs. Specifically, by contrasting the Skill Graphs of “incorrect” outputs with
those of correct outputs, we can further diagnose what leads to the failure in skill execution. Table 5
illustrates the key circuits exhibiting the highest absent rate6 between 3 “incorrect” and correct output
types. Specifically, we investigate one erroneous type of output from an induction skill sample
(F IDT), and two types from ICL skill samples (F1 ICL, F2 ICL).

F IDT refers to those samples wherein the input possesses an Induction pattern (“A B ... A”), but
ultimately does not output B. F1 ICL denotes those samples wherein the output includes a word
outside of the label options from the demonstrations, for example, a case where the input text
“[review1], label: positive, [review2], label: negative, [review3], label:” unexpectedly produces
“the”. Such an error indicates that the language model did not capture the ICL template pattern in this
case. F2 ICL involves samples that capture the template pattern yet still produce incorrect outputs,
for example, cases where the correct output should be “positive”, but the prediction is “negative”. We
compare the circuit graphs of these “incorrect” samples with the correct samples and identify the top
5 circuits with the highest absence rate.

Table 5 exhibits several interesting phenomena where the largest discrepancies between correct and
incorrect samples in both F IDT and F1 ICL occur on key circuits at layer 2. These circuits originate
from the previous token skill, which handles the skill of receiving information from the previous
token, such as the “A → B” in the induction template “A B ... A”, as well as patterns such as
“label → positive” in ICL. The loss of this skill—failure during the execution of the previous token
skill—means that both the Induction skill and ICL skill cannot pass the duplicated prefix information
to the next token, leading to template-based errors.

To further understand why these samples do not successfully execute the previous token skill, we
perform a bi-clustering operation on the Previous Token Skill (experiment details are shown in
Appendix E.2), yielding a cluster with Eff < 0.2 across most of all paths. We compared this cluster
(termed the low-effect cluster) with another cluster (named high-effect cluster), with some samples
as follows (All samples are from the original text of the Previous Token Skill, tokenized into two
tokens):

Low-effect cluster:“About to”, “ all these”, “ am a”, “ and win”, “ and select”, “ care over”,
“In Singapore”, “ in the”, “ is a”, “ it was”, “ than they”, “The language”, “The country”, “ the
movie”

High-effect cluster: “ 2002”, “Adriano”, “Ajinomoto”, “ becomes”, “Could you”, “ don’t”, “
ended up”, “If the”, “ iPhone”, “ Knowledge”, “ stressful”, “Windows”, “ Youtube’s”

It becomes obvious that in the context of an experimental setting lacking enough context, the previous
token skill is performed only when there is a strong semantic relationship between the two tokens.
For pairs of tokens where the semantic relation is not strong, there tends to be a reliance on the
bi-gram model decision from the destination token.

Furthermore, for F2 ICL, the absence rate is relatively lower, suggesting that the source of the error
might not be due to a single explicit cause. These circuits generally reside in the middle or even
deeper layers, incorporating functions such as induction and summarization. However, to further

6Let N+

Cl,j and N−
Cl,j be the number of paths received by Cl,j in correct and incorrect samples. The absence

rate for each circuit is calculated as (N+

Cl,j −N−
Cl,j)/N

+

Cl,j ∈ [0, 1].

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

analyze this, we would need to delve into the representational level, which for the moment goes
beyond the scope of this paper.

8 LIMITATION AND CONCLUSION

We have identified three pressing limitations that need to be addressed. The first is the time complexity
of the greedy search the second is the lack of further examination on the representational study, and
the third is scalability. Assuming the time for one inference of LLM as O(1), the time complexity
of a single greedy search would then be O(L2N2), i.e., the square of the layer number times the
number of circuits. If we can overlook this time-consuming process, then the G∗ for each input
would effectively facilitate training. In other words, G∗ could directly instruct LLM which paths
are essential and which are not, thus streamlining the training process. Despite the time complexity,
we recall our contribution on the analysis of LMs which is usually more challenging and does not
require large-scale inference. Additionally, the lack of research at the representational level hinders
our progress in answering more complex questions such as why certain samples fail to trigger a
skill. Recognized that this is a rather challenging topic, we leave it as a promising future work.
Finally, we recognized the limitations of testing on a single model and specific skills. Although many
studies have validated the GPT-2 series to have public trustworthiness for research in mechanistic
interpretability, making us confident in its capacity to support our contribution—the pioneering work
in discovering the theoretical foundation and experimental design of language skills—there remains
ample scope for scalability across a variety of models and skills for future work.

In conclusion, we propose a novel framework including faithful pruning and linear decomposition to
completely dissect the language model and discover key components leading to meaningful language
skills. Our framework contains three steps, involving [decomposing the LM losslessly into circuits
including memory, compensation, and bias circuits], pruning paths preserving the inference outcome,
and identifying salient paths for language skills via causal analysis. Through this process, we are
able to identify the skill paths necessary for a language model to process texts. Furthermore, we
demonstrate several interesting findings validating existing hypotheses. For example, each language
skill is bound to specific circuits, and more complex skills are associated with deeper circuits.
Additionally, we find that the evolution of complex skills extends along the path of simpler skills they
encompass, providing strong experimental support for research on emergence discoveries. Lastly,
we explored attributions of error samples to the absence of certain skill circuits. These findings
could potentially offer novel feedback for the training process. Overall, we believe that our thorough
discovery of language skills can generate more insights into the exploration of language models.

REFERENCES

Induction heads as an essential mechanism for pattern matching in in-context learning. arXiv preprint
arXiv:2407.07011, 2024.

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models,
2023. URL https://arxiv.org/abs/2307.15936.

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail Weiss, and Antoine Bosselut. Discovering
knowledge-critical subnetworks in pretrained language models. arXiv preprint arXiv:2310.03084,
2023.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits
with edge pruning. arXiv preprint arXiv:2406.16778, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

10

https://arxiv.org/abs/2307.15936

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The evolution
of statistical induction heads: In-context learning markov chains. arXiv preprint arXiv:2402.11004,
2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, 2021.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36, 2024.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and ”Teknium”.
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/Open-Orca/OpenOrca, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Jie Ren, Qipeng Guo, Hang Yan, Dongrui Liu, Xipeng Qiu, and Dahua Lin. Identifying semantic
induction heads to understand in-context learning. arXiv preprint arXiv:2402.13055, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

Aarohi Srivastava, Abhinav Rastogi, and et al Abhishek Rao. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=uyTL5Bvosj.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery. arXiv preprint arXiv:2310.10348, 2023.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URL https://huggingface.co/datasets/teknium/OpenHermes-2.5.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388–12401, 2020.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://openreview.net/forum?id=uyTL5Bvosj
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge dataset for open-domain question
answering. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pp. 2013–2018, Lisbon, Portugal, September 2015. Association for Computational
Linguistics. doi: 10.18653/v1/D15-1237. URL https://aclanthology.org/D15-1237.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun Chen.
Knowledge circuits in pretrained transformers. arXiv preprint arXiv:2405.17969, 2024.

A DETAILS ABOUT OUTPUT RECOVERY TESTS

We believe that although the graph is pruned, it should not change the next token output by the LLM.
Therefore, we selected representative works from three pruning strategies and verified whether their
outputs are the same as the original output of the language model on our lossless circuit decomposition.
Specifically, we selected three datasets:

IOIdataset (Wang et al., 2023), which is used to discover the circuit for indirect object inference in
the LLM.

Greater than (Hanna et al., 2024), which is used to discover the circuit for size comparison in the
LLM.

Induction (Gokaslan & Cohen, 2019), which is used to discover the induction head and induction-
related circuit in the LLM.

Then, we selected a representative work from each of the three different pruning strategies:

ACDC (Conmy et al., 2023), Automatic Circuit DisCovery, which calculates the importance score of
each edge and performs a greedy search based on the score.

Opt prun (Bhaskar et al., 2024), which converts the importance score into an optimization function
and assigns a learnable parameter to each edge to indicate whether an edge needs to be deleted.

EAP (Syed et al., 2023), or Edge Attribution Patching, which makes a linear approximation of
activation patching to assign an importance score to each edge, and retains the top-k edges.

The language model was chosen as GPT2-small. On each dataset, under our lossless circuit decom-
position, i.e., memory, compensation, and bias circuit framework, we obtained the corresponding
circuit graph according to the search strategy in the corresponding method paper with provided
settings. For these circuit graphs, we obtained new outputs (considering only a token length) using
their corresponding forward processes. We compared the new output tokens with the original output
of GPT2-small. Table 1 shows the percentage of their similarity.

B ANALYSIS ABOUT MEMORY CIRCUITS

B.1 WHY A⊗X IS NOT THE CIRCUIT WITH COMPLETE FUNCTION?

We use X l,n to denote the hidden state representation corresponding to the n-th token at the l-th
layer, and U represents the unembedding matrix. Therefore, for any representation X l,n, we can
obtain its vocabulary distribution, i.e., the logits for each token candidate, using X l,nU . We adopt a
sample text, “Beats Music is owned by”, as the input. Table 6 shows the logits corresponding to the
words “ the” and “ Apple” when these tokens are converted to vocabulary embeddings.

Our expected correct output is such that after the last layer’s representation is unembedded, the logits
for “ Apple” reach their peak. However, as shown in Table 6, after conducting an A⊗X operation on
the 1st layer’s representation, the logit range for “ Apple” is [80.49, 86.44], where 80.49 corresponds
to the attention weight of “ Music” to “ by” being 1, and 86.44 represents the attention weight of “
Be” to “ by” being 1.

This situation exposes a significant drawback. In the representations of all previous tokens, the
logits for “ the” are always higher than those for “ Apple”. Hence, no matter how many effects
A⊗X operations performed, it remains impossible for the logits of “ Apple” to surpass those of “
the”. Therefore, although A⊗X incorporates an activation function such as softmax, it can only

12

https://aclanthology.org/D15-1237

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 6: Logits of “ the” and “ Apple” when the representation in 1-st layer products unembedding
matrix, with input “Beats Music is owned by”

Logits Tokens
“Be” “ats” “ Music” “ is” “ owned” “ by”

“ the” 95.45 89.43 91.20 99.32 94.21 101.52
“ Apple” 86.44 82.13 80.49 82.31 82.57 83.41

be considered as semi-activated (Elhage et al., 2021). We refer to this as a “deep constraint”, that
is, A ⊗X cannot allow the representation of the destination token to exceed the upper and lower
boundaries of the previous token’s representation. This is why we assert that A ⊗ X lacks full
functions, that is, it does not possess memory capability.

B.2 HOW TO EXPLAIN MEMORY CIRCUITS?

Let’s likewise map all the Memory Circuits into the vocabulary space:

V = C · U = f(X) ·W · U = f(x) ·WU (9)

Simply put, we assume X ∈ RN,D, f(X) ∈ RN,M , W ∈ RM,D, and U ∈ RD,E , where N
represents the number of tokens, D denotes the dimensions in the residual stream, M refers to the
dimensions in the circuit (such as the dimensions in QKV or MLP), and E signifies the length of
the vocabulary list. Naturally, WU ∈ RM,E , which could be seen as a collection of M vocabulary
distributions. These vocabulary distributions are unaffected by the input tokens and thus can be
considered as the acquired memory from training.

The function f(X) ∈ RN,M acts like a weight which specifies how much each vocabulary distribution
contributes to the output. This confirms why MLP is generally regarded as a memory storage, as its
dimensions are usually significantly larger than those of QKV. Simultaneously, it also explains the
advantage of MoE: providing a wider range of options for vocabulary distribution.

In the final analysis, the inference process of a language model can be seen as constituting 3 key
components: “memory”, “movement”, and “ensemble”. “Memory” pertains to acquiring a new
distribution from memory distribution, while “movement” involves transferring token information
to subsequent tokens. Finally, “ensemble” refers to the process of combining representations from
multiple circuits to produce the final representation. Within this process, Memory Circuits serve as the
smallest units responsible for “memory” and also encompass independent operations of “movement”
(C1−12 and C14−25). Furthermore, they form individual elements of the “ensemble”. Therefore,
we examine the interrelationships (necessary paths) between Memory Circuits to understand the
language skills of language models.

C DERIVATION OF COMPENSATION CIRCUITS

The input of the MLP consists of two parts: the residual stream and the output of the attention. Due
to the presence of nonlinear activation functions, the residual stream and attention are coupled in the
input, making it impossible to isolate their impact on the MLP, thereby affecting the verification of
pruning. To address this, we introduce a compensation circuit, decomposing the MLP into four parts:

atv((X +
∑
h∈H

Attnh)WM1)WM2 = (atv(XWM1) +
∑
h∈H

atv(AttnhWM1]))WM2 + Cps1 + Cps2

where Cps1 = (atv((X +
∑
h∈H

Attnh)WM1)− atv(XWM1)− atv(
∑
h∈H

AttnhWM1))WM2

Cps2 = (atv(
∑
h∈H

AttnhWM1)−
∑
h∈H

atv(AttnhWM1))WM2

(10)
where MLP operation with activation given by atv((X+

∑
h∈H Attnh)WM1)WM2 (WM1 and WM2

are weight parameters in two linear layers and atv represents the activation function), X represents the
input representation in each layer and H represents the number of attention heads, Attnh represents

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 7: Logits of “ the” and “ Apple” when the representation in 1-st layer products unembedding
matrix, with input “Beats Music is owned by”

Metrics Strategies
Breadth-1 Breadth-2 Breadth-3 Breadth-4 Depth Top-2 Top-5 Top-10 Loss-1 Loss-2

Deleted Path(%) 69% 68% 68% 70% 9% 32% 14% 2% 25% 34%
Hamming 0 14 21 27 26457 12947 21639 44712 21773 16721

the output of h-th attention head, Cps1 and Cps2 are compensation circuit, representing the synergy
effect of the residual stream (X +

∑
h∈H Attnh) and the sum of attention head

∑
h∈H Attnh

respectively.

The compensation circuit calculates the synergy between the output when linear terms are summed
before passing through a non-linear function, and the output passing through a non-linear function
before summing. Therefore, the compensation circuit is dynamic and related to the input. From the
perspective of the MLP, if we want the compensation circuit to be 0, then the input to the MLP must
be reduced to only one or zero linear terms. This is an unlikely occurrence in practical pruning, so
we assume that all edges of the compensation circuit always exist.

D SEARCH STRATEGIES

We conducted extensive comparisons w.r.t. two elements: breadth-first search and top1 candidate
consistency. 1000 samples, each less than 30 tokens in length, were randomly selected from the
WIKIQA dataset (Yang et al., 2015) and applied to different search strategies:

• Breadth-1: Breadth-first search was conducted on Cl,i where l varies from 0 to 11, and i
from 1 to 25.

• Breadth-2: The same breadth-first search was done on Cl,i, but with l running from 0 to 11
and i from 25 to 1.

• Breadth-3: l spanned from 11 to 0 and i from 25 to 1 while conducting breadth-first search
on Cl,i.

• Breadth-4: The breadth-first search on Cl,i was performed randomly.

• Depth: The depth-first search on Cl,i was undertaken with l ranging from 0 to 11 and i from
1 to 25 (i.e., treating Cl,i as the sender rather than the receiver).

• Top-2: Altered constraint to ensure top 2 candidates’ token consistency.

• Top-5: Altered constraint to ensure top 5 candidates’ token consistency.

• Top-10: Changed constraint to ensure top 10 candidates’ token consistency.

• Loss-1: The constraint was modified to ensure that xN ’s loss does not exceed the original
loss by more than 5.

• Loss-2: The constraint was changed to ensure the loss of xN does not exceed 100% of the
original loss.

We measured two metrics: Deleted Path, which is the total number of deleted paths divided by the
total number of paths and times 100%, and Hamming, which is the Hamming distance between G∗
obtained from each strategy and G∗ obtained from Breadth-1.

Table 7 presents the results of these methods. Notably, different search sequences of breadth-first
search do not lead to significant discrepancies. Depth-first search methods, however, are not as
effective as breadth-first searches in deleting a sufficient number of paths. Compared to the top 1
constraint, it is challenging for other constraints to delete an adequate quantity of paths. We posit that
this is because GPT2-small is a simple model and does not possess the capability to randomly select
candidates from the top N for output.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E DATA PREPARATION AND IMPLEMENTATIONS

E.1 DATA PREPARATION

E.1.1 PREVIOUS TOKEN SKILL

We randomly selected 40k text samples comprising two tokens - “token0 token1” - from the WIKIQA,
OpenOrca, and OpenHermes corpora. In 20k of these samples, the two tokens made up one word,
while in the remaining 20k, “token0” and “token1” belonged to two separate words. For the
background text, we chose “token0”, and for the self text, we selected “ token1”. A complete sample
is as follows:

{text: “ that most”, backgound text: “ that”, self text: “ most”, GPT2-small output: “ of”}

E.1.2 INDUCTION SKILL

The samples for the Induction Skill also come from WIKIQA, OpenOrca, and OpenHermes. We
randomly selected 14k samples with the template “... A1 B ... A2”, where the destination token “ A2”
is the same as the preceding token “ A1”, and the total token length of the sample does not exceed
30. For the background text, we removed “ A2” and had GPT2-small produce a new but different
token to replace “ A2”, resulting in “... A1 B ... C”. Since “ C” is semantically supplemented by
the preceding text and differs from “ A2”, it preserves semantics as much as possible without the
Induction Skill. The self text is still token “ A2”. A complete sample is as follows:

{text: “chinese lesson 1.2: chinese”, backgound text: “chinese lesson 1.2: The”, self text: “ chi-
nese”, GPT2-small output: “ lesson”}

E.1.3 ICL SKILL

The 4 types of ICL skill samples come from SST-2 dataset and the object counting, qawikidata,
reasoning about colored objects datasets in BIGBENCH. These samples have been named by us as
icl sst2, icl oc, icl qa, icl raco, with quantities of 1000, 284, 1000, and 135 respectively. Each sample
is required to contain two different labelled demonstrations and should be answerable correctly by
GPT2-small. Here are examples of the four types of samples:

icl sst2:

{text: “, nor why he keeps being cast in action films when none of them are ever any good Sentiment:
negative\nfunny , even punny 6 Sentiment: positive\nis that secret ballot is a comedy , both gentle
and biting . Sentiment:”, backgound text: “is that secret ballot is a comedy , both gentle and biting .
Sentiment:”, self text: “ Sentiment:”, GPT2-small output: “ positive”}
icl oc:

{text: “I have a piano, a trombone, a violin, and a flute. How many musical instruments do I have?A:
four\nI have a banana, a plum, a strawberry, a nectarine, an apple, a raspberry, an orange, a peach,
a grape, and a blackberry. How many fruits do I have?A: ten\nI have a head of broccoli, a cauliflower,
a stalk of celery, a cabbage, a potato, an onion, a yam, a garlic, a lettuce head, and a carrot. How
many vegetables do I have?A:”, backgound text: “I have a head of broccoli, a cauliflower, a stalk
of celery, a cabbage, a potato, an onion, a yam, a garlic, a lettuce head, and a carrot. How many
vegetables do I have?A:”, self text: “ A:”, GPT2-small output: “ ten”}
icl qa:

{text: “The country of University of Tsukuba is A: Japan\nThe sport played by Judit Polgár is A:
chess\nThe country of citizenship of Théophile Gautier is A:”, backgound text: “The country of
citizenship of Théophile Gautier is A:”, self text: “ A:”, GPT2-small output: “ France”}
icl raco:

{text: “On the nightstand, you see the following objects arranged in a row: a black bracelet, a pink
booklet, a blue cup, and a silver cat toy. What is the color of the object directly to the left of the pink
object? A: black\nOn the floor, you see a bunch of objects arranged in a row: a red cup, a gold
bracelet, a fuchsia puzzle, a purple stress ball, and a burgundy fidget spinner. What is the color of the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Previous Token Skill (b) Induction Skill

(c) ICL1 Skill (icl sst2) (d) ICL2 Skill (icl oc)

(e) ICL3 Skill (icl qa) (f) ICL4 Skill (icl raco)

Figure 3: bisection clustering on paths with top 10% EffSkill for 3 skills

object directly to the right of the cup? A: gold\nOn the table, you see a set of things arranged in a
row: a black keychain, a purple mug, a blue dog leash, and a teal sheet of paper. What is the color of
the left-most thing? A:”, backgound text: “On the table, you see a set of things arranged in a row: a
black keychain, a purple mug, a blue dog leash, and a teal sheet of paper. What is the color of the
left-most thing? A:”, self text: “ A:”, GPT2-small output: “ black”}

E.2 IMPLEMENTATION

In implementation, following the 3-step process from Section 3, we obtained the skill circuit graph,
GS . We found that the skill effect values in GS for the Previous Token Skill and the Induction Skill
were not high, with the highest EffSkill being only 0.54 and 0.61, respectively. However, the highest
EffSkill for the ICL Skill reached 0.98. We speculated that because the Previous Token Skill and the
Induction Skill are overly simple, there were a significant number of samples that happened to output
the correct answers without triggering the corresponding skill paths. For instance, in the text “In
China [mainland]”, it’s challenging to confidently determine whether “mainland” was influenced by
the bi-gram model of “China” or if “China” received information from “In”. As such, we attempted
to perform bisection clustering for each sample in the Previous Token Skill and Induction Skill, based
on the paths with top 10% EffSkill.

Figure 3 shows the results of our clustering on the GS for the 3 skills. The x-axis sequentially arranges
the top 10% of paths on EffSkill from shallow to deep, and the y-axis indicates the mean EffSkill

of these paths. It’s striking that two clusters in the Previous Skill and Induction Skill: one consistently
showing a high EffSkill, and the other showing little to no EffSkill. This suggests that these low
EffSkill samples hardly share common paths or trigger common language skills. Meanwhile, the
ICL skill does not showcase discriminable clustering, further corroborating our speculation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) 1-st round clustering (b) 2-nd round clustering

(c) 3-rd round clustering

Figure 4: 3 rounds clustering in Previous Token Skill

(a) 1-st round clustering (b) 2-nd round clustering

Figure 5: 2 rounds clustering in Induction Skill

Going a step further, we would like to ascertain whether the Previous Token Skill and Induction
Skill, after undergoing multiple rounds of “purification” through clustering, could still be divided
into two clusters. Therefore, we recursively performed bisection clustering on the higher EffSkill

cluster each time. Figure 4 and 5 presents the results after each round of clustering. Notably, the
Previous Token could not be divided after 2 rounds of clustering, while the Induction Token hit the
dividing limit after just 1 round. Considering that the number of clustering rounds for ICL Skill was
0, we believe this supports our hypothesis: the more complicated the skill, the fewer instances of
coincidental samples.

Lastly, we verified that bisection clustering significantly outperformed trisection, quad-section, and
quintisection clustering. As illustrated in Figure 6, out of all the clusterings, only bisection clustering
was able to distinctly segregate two mutually exclusive clusters categorized by high and low EffSkill.

E.3 SENSITIVITY ABOUT BACKGROUND TEXT

To compare the sensitivity brought about by different background texts, we designed four different
background text formats on the induction skill and compared the changes between the irreducible
circuit graph (G∗) of these background texts and the final skill graph (GS). These formats are as
follows:

Bkg1: For the induction text “......A1 B......A2”, we replace A2 with the output of the large model for
“......A1 B......”. For example, if the induction text is “Chinese lesson 1.2: Chinese”, the background
text is “Chinese lesson 1.2: The”.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) bisection cluster (b) trisection cluster

(c) quadsection cluster (d) quintisection cluster

Figure 6: different clustering on Induction Skill

Table 8: HP between different background text. For example, the value in the second row and third
column of Figure a is 6.42%, which means HP (G∗

Bkg2,G∗
Bkg3) = 6.42% (G∗

Bkg2 and G∗
Bkg3 has

6.42% edges different).

(a) HP on G∗
Bkg

Bkg1 Bkg2 Bkg3 Bkg4
Bkg1 0% 12.54% 9.33% 11.42%
Bkg2 12.54% 0% 6.42% 9.52%
Bkg3 9.33% 6.42% 0% 12.91%
Bkg4 11.42% 9.52% 12.91% 0%

(b) HP on GS

Bkg1 Bkg2 Bkg3 Bkg4
Bkg1 0% 4.37% 5.75% 4.62%
Bkg2 4.37% 0% 3.51% 4.03%
Bkg3 5.75% 3.51% 0% 3.72%
Bkg4 4.62% 4.03% 3.72% 0%

Bkg2: For the induction text “......A1 B......A2”, we directly delete A2. For example, if the induction
text is “Chinese lesson 1.2: Chinese”, the background text is “Chinese lesson 1.2: ”.

Bkg3: For the induction text “......A1 B......A2”, we directly delete A1. For example, if the induction
text is “Chinese lesson 1.2: Chinese”, the background text is “ lesson 1.2: Chinese”.

Bkg4: For the induction text “......A1 B......A2”, we replace B with the output of the large model for
“......A1”. For example, if the induction text is “Chinese lesson 1.2: Chinese”, the background text is
“Chinese people 1.2: Chinese”.

To intuitively feel these changes, we introduced a metric of percentage Hamming distance, HP,
specifically HP (G1, G2) = hammingdistance(G1, G2)/(

∑
G1

E +
∑

G2
E) ∗ 100%, i.e., when

HP=0%, it means that the two graphs G1 and G2 completely overlap, and when HP=100%, it means
that the two graphs do not overlap at all. We show the HP between G∗

Bkg and the HP between GS

under any two background texts in Tables 3 and 4.

E.4 SUPPLEMENTARY DATA FOR VALIDATION

To enhance the transparency and validity of the validation experiment, we have supplemented it with
some additional data.

Firstly, Table 3 only provides the accuracy of randomly deleting 50 and 500 edges, however, the
dynamics of accuracy as the number of deleted edges changes is not disclosed. Therefore, we
demonstrate the dynamics of accuracy in Figure 7 when the number of randomly deleted edges ranges
from 50 to 1000. Notably, even with 1000 edges randomly deleted, the accuracy still remains above

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

numther of randomly removed edges

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

pvt
idt
icl1
icl2
icl3
icl4

Figure 7: Accuracy with the number of removed edges increasing.

Table 9: Accuracy of output to original label within different Circuit Graph
Sample
Circuit Graph

G∗ −(GS,PV T − G∗) −(GS,IDT − G∗) −(GS,ICL1 − G∗) −(GS,ICL2 − G∗) −(GS,ICL3 − G∗) −(GS,ICL4 − G∗)
PVT 1.00 1.00 0.88 0.89 0.89 0.83 0.89
IDT 1.00 0.93 1.00 0.81 0.82 0.85 0.81
ICL1 1.00 0.95 0.81 1.00 0.95 0.93 0.97
ICL2 1.00 0.93 0.84 1.00 0.92 0.95 0.92
ICL3 1.00 0.94 0.86 1.00 0.93 0.91 0.94
ICL4 1.00 0.96 0.83 1.00 0.93 0.94 0.96

0.1 (the total number of edges being considered is 6875). However, deleting the skill graph leads
directly to an accuracy close to 0, even if the skill graph only contains around 500 edges. This further
illustrates that the skill graph contains more edges that significantly determine the final output.

Secondly, in Table 3, we only showed the situation where low-level skill graphs remove those paths
contained in high-level skill graphs. To reinforce the validation, we additionally provide in Table 9
the scenario where samples of low-level skills are only deleted from those edges that exist in the
high-level skill graph but not in the low-level skills.

Herein, −(GS,PV T −G∗) represents the deletion of paths in the previous token skill graph that do not
exist in the target graph for the target sample, while −(GS,IDT −G∗) represents the deletion of paths
in the Induction skill graph that do not exist in the target graph. −(GS,ICL1−G∗), −(GS,ICL2−G∗),
−(GS,ICL3 − G∗), and −(GS,ICL4 − G∗) respectively represent the deletion of paths in the ICL1,
ICL2, ICL3, and ICL4 skill graphs that do not exist in the target graph for the target sample.

To reiterate, a portion of the paths in the high-level skill graph is identical to a portion of the paths in
the low-level skill graph. Table 9 clearly demonstrates that when target samples delete those paths
that exist in other skills but not in their own, the accuracy is not significantly affected. For instance,
−(GS,IDT − GS,PV T) deletes 129 paths, but only reduces the sample accuracy of the previous token
skill to 0.88, while the accuracy corresponding to randomly deleting 100 edges is only 0.42 (see
Figure 7). In conjunction with Table 3, it explains that only the overlapping part of the Induction skill
graph with the previous token skill graph affects the previous token skill. Additionally, when the ICL
series skills output paths that exist in other ICLs but not in themselves, their accuracy is somewhat
higher (over 0.9). This is due to the ICL series skill graphs being more similar to each other, resulting
in fewer paths in the complement.

E.5 THRESHOLD AND FAITHFULNESS

While we maintain faithfulness on G∗, it is difficult to maintain it on GS . In other words, the
bias introduced by counterfactuals and interventions is indeed hard to completely avoid, while the
faithfulness of pruning is avoidable. Therefore, a circuit graph that clearly reflects the final result
will certainly discard some edges of unclear significance. This is usually accomplished through a
threshold. We show in Figure 8 the change in accuracy when the threshold δ mentioned in Section 3.3
ranges from 0 to 0.9 (there are almost no circuits left when δ > 0.9, so we ignore this part). It can

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y
(R

an
k

of
 to

ke
n)

pvt
idt
icl1
icl2
icl3
icl4

Figure 8: Faithfulness ranging from the δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

threshold

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000

nu
m

be
r

of
 d

eg
es

pvt
idt
icl1
icl2
icl3
icl4

Figure 9: number of edges ranging from the δ

be clearly seen that faithfulness can only be fully guaranteed when δ = 0. However, such edges
are not sparse enough to reflect some specific interpretable functions. When δ > 0.7, it is almost
impossible to recover to the original input, but the obtained skill graph can correspond well with
previous methods. Additionally, in this paper, we default the δ for each skill to be PVT: 0.6, IDT: 0.7,
ICL1-4: 0.8. Additionally, we have demonstrated in Figures 9 and 10 the changes in the number
of edges and the continuous KL divergence metric with varying thresholds δ. Specifically, Figure 9
presents the total number of edges in the circuit graph (excluding compensation circuit and bias
circuit) under different thresholds, while Figure 10 shows the KL divergence between GS and G∗
(solid lines) and mathcalGS and G (dash lines) obtained at different thresholds. Figure 9 clearly
indicates that the edges with high causal effects from the previous token skill are the fewest, and the
most are from the series of ICL skill, which corroborates the conclusion drawn from the clustering
in Appendix E.2. Moreover, the changes in KL divergence (Figure 10) can be roughly divided into
four phases (steady, burst, steady, burst). In conjunction with Figure 9, the two bursts are due to the
rapid decrease in edges and the number of edges being too few, approaching zero. The default δ we
selected (PVT 0.6, IDT 0.7, ICL1-4 0.8) are each in the second steady phase. Combining Figures 9
and10, it suggests that when a large number of edges are deleted, the circuit graph enters a phase of
minimal change, which we believe best achieves the “balance between faithfulness and sparsity”.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

threshold

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

K
L

di
ve

rg
en

ce

pvt
idt
icl1
icl2
icl3
icl4
pvt

g

idt
g

icl1
g

icl2
g

icl3
g

icl4
g

Figure 10: KL divergence ranging from the δ, the solid lines represents KL between GS and G∗, and
the dash lines represents KL between mathcalGS and G.

Table 10: Ratio of high Eff path (Eff > 0.5) in GBkg∗ and GSelf∗ (The sum of ratios > 1 due to
overlaps in each item).

Skills GBkg∗ GSelf∗
GS
PV T GS

IDT GS
ICL1 GS

ICL2 GS
ICL3 GS

ICL4 Others GS
PV T GS

IDT GS
ICL1 GS

ICL2 GS
ICL3 GS

ICL4 Others
Induction 0.76 - - - - - 0.24 0.84 - - - - - 0.16
ICL1 0.43 0.38 0.29 0.19 0.25 0.23 0.18 0.51 0.33 0.24 0.16 0.18 0.15 0.15
ICL2 0.46 0.37 0.25 0.16 0.19 0.21 0.17 0.61 0.24 0.25 0.14 0.19 0.18 0.15
ICL3 0.45 0.35 0.23 0.21 0.15 0.19 0.20 0.60 0.28 0.25 0.16 0.18 0.19 0.11
ICL4 0.49 0.36 0.25 0.19 0.26 0.14 0.16 0.61 0.25 0.23 0.19 0.16 0.13 0.13

Additionally, we can observe that the KL divergence between G∗ and G is approximately 10 (as can
be seen from the solid and dashed lines corresponding to δ = 0), and generally, the KL divergence
between GS and G (KL(GS ,G)) is greater than the KL divergence between GS and G∗ (KL(GS ,G∗)).
Interestingly, as δ increases, the values between KL(GS ,G) and KL(GS ,G) get closer and are almost
the same at the default threshold.

F DETAILS ABOUT VALIDATIONS FOR CAUSAL EFFECTS

Another question is whether the background effect and self effect, mentioned in Section 3.3, po-
tentially exist as confounders or share the circuits with observed skills? To answer this question,
we examine the paths in background/self text with Eff > 0.5. Table 11 categorizes these paths
into 7 types and displays their ratios. Here, GS

PV T signifies the ratio of those paths found in the
Previous Token Skill graph, GS

IDT refers to the ratio of those located in the Induction skill graph,
similarly, GS

ICL1 to GS
ICL4 represents the ratio of paths in corresponding ICL skill graphs, and “Others”

represents the ratio of paths that do not exist in either skill graphs. Notably, a small fraction of
high-effect paths does not belong to any observed skill (approximately 0.1-0.2 in “Others”); these are
the confounding paths we mentioned before. Additionally, we demonstrated the bivariate probability
density function (PDF) in Figure 11. Bivariate PDF constructed from the origin text as one variable,
and background text or self text as another one variable. Evidently, across all skills, the paths that
have a high effect (Eff > 0.5) in the origin text include a part of paths with a relatively high effect
(Eff > 0.5) in the background text. However, there are nearly ignorable high-effect paths in the self
text in ICL skills. We guess that within the ICL skill, the background text and the origin text possess
a significantly higher number of tokens compared to the self text, thereby leading to an insignificant
effect of the self text.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(a) PVT GOri ∗&GBkg∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(b) PVT GOri ∗&GSelf∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(c) IDT GOri ∗&GBkg∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(d) IDT GOri ∗&GSelf∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(e) ICL2 GOri ∗&GBkg∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(f) ICL2 GOri ∗&GSelf∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(g) ICL1 GOri ∗&GBkg∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(h) ICL1 GOri ∗&GSelf∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(i) ICL3 GOri ∗&GBkg∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(j) ICL3 GOri ∗&GSelf∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(k) ICL4 GOri ∗&GBkg∗

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.90

15.56

18.64

21.54

24.89

29.30

34.00

(l) ICL4 GOri ∗&GSelf∗

Figure 11: Bivariate probability density function (PDF) of path effects on Previous Token,Induction,
ICL1 ICL2, ICL3, and ICL4 Skills. The x-axis represents the first variable, the path effect in the origin
text (GOri∗) while the y-axis represents the second variable, the path effect in the background/self
text (GBkg ∗ /GSelf∗). Orange, red, green, and blue respectively represent the distribution of paths
with Eff > 0.2, 0.3, 0.4, 0.5 in the origin text.

Additionally, Table 11 also shows that a part of high-effect paths in the background/self text is
common with the corresponding skill graph. Fortunately, we need not worry that removing these
paths would render the final Skill Graph (paths) incomplete. Appendix G provides evidence that
these removed but common paths can always be restored through multi-step paths (We explain this
phenomenon as ‘Inclusiveness’ in Section 6.).

We have supplemented the bivariate distribution figures for Previous Token, ICL2, ICL3, and ICL4,
as depicted in Figure 11.

G INCLUSIVE PATH

we have listed the whole paths for Previous Token Skills, all multi-step paths for the Induction and
ICL1 Skills in following, with index of the send circuit, the first receive circuit, the second receive
circuit.... The green represents the paths involving inclusive paths.

Previous Token Skill

layer 0 circuit 13, layer 1 circuit 6, with effect 0.71
layer 0 circuit 14, layer 1 circuit 7, with effect 0.82
layer 0 circuit 16, layer 1 circuit 7, with effect 0.7
layer 0 circuit 20, layer 1 circuit 7, with effect 0.86
layer 0 circuit 14, layer 1 circuit 8, with effect 0.79
layer 0 circuit 16, layer 1 circuit 8, with effect 0.78
layer 0 circuit 17, layer 1 circuit 8, with effect 0.81
layer 0 circuit 19, layer 1 circuit 8, with effect 0.72
layer 0 circuit 20, layer 1 circuit 8, with effect 0.88
layer 0 circuit 22, layer 1 circuit 8, with effect 0.81
layer 0 circuit 23, layer 1 circuit 8, with effect 0.87

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

layer 0 circuit 24, layer 1 circuit 8, with effect 0.75
layer 0 circuit 13, layer 1 circuit 18, with effect 0.79
layer 0 circuit 13, layer 1 circuit 19, with effect 0.89
layer 0 circuit 14, layer 1 circuit 19, with effect 0.83
layer 0 circuit 15, layer 1 circuit 19, with effect 0.74
layer 0 circuit 16, layer 1 circuit 19, with effect 0.81
layer 0 circuit 20, layer 1 circuit 19, with effect 0.82
layer 0 circuit 24, layer 1 circuit 19, with effect 0.84
layer 0 circuit 13, layer 1 circuit 20, with effect 0.84
layer 0 circuit 14, layer 1 circuit 20, with effect 0.81
layer 0 circuit 20, layer 1 circuit 20, with effect 0.8
layer 0 circuit 13, layer 1 circuit 21, with effect 0.78
layer 0 circuit 14, layer 1 circuit 21, with effect 0.83
layer 0 circuit 16, layer 1 circuit 21, with effect 0.79
layer 0 circuit 17, layer 1 circuit 21, with effect 0.75
layer 0 circuit 20, layer 1 circuit 21, with effect 0.87
layer 0 circuit 22, layer 1 circuit 21, with effect 0.77
layer 0 circuit 23, layer 1 circuit 21, with effect 0.77
layer 0 circuit 24, layer 1 circuit 21, with effect 0.75
layer 0 circuit 23, layer 2 circuit 1, with effect 0.8
layer 0 circuit 24, layer 2 circuit 1, with effect 0.81
layer 1 circuit 13, layer 2 circuit 1, with effect 0.76
layer 1 circuit 15, layer 2 circuit 1, with effect 0.79
layer 1 circuit 16, layer 2 circuit 1, with effect 0.75
layer 1 circuit 17, layer 2 circuit 1, with effect 0.75
layer 1 circuit 20, layer 2 circuit 1, with effect 0.82
layer 0 circuit 13, layer 1 circuit 20, layer 2 circuit 1, with effect 0.74
layer 1 circuit 21, layer 2 circuit 1, with effect 0.8
layer 0 circuit 20, layer 1 circuit 21, layer 2 circuit 1, with effect 0.77
layer 1 circuit 22, layer 2 circuit 1, with effect 0.76
layer 1 circuit 23, layer 2 circuit 1, with effect 0.79
layer 1 circuit 24, layer 2 circuit 1, with effect 0.8
layer 0 circuit 20, layer 2 circuit 14, with effect 0.74
layer 0 circuit 21, layer 2 circuit 14, with effect 0.75
layer 0 circuit 22, layer 2 circuit 14, with effect 0.77
layer 0 circuit 23, layer 2 circuit 14, with effect 0.72
layer 0 circuit 24, layer 2 circuit 14, with effect 0.84
layer 1 circuit 13, layer 2 circuit 14, with effect 0.72
layer 1 circuit 15, layer 2 circuit 14, with effect 0.8
layer 1 circuit 16, layer 2 circuit 14, with effect 0.72
layer 1 circuit 17, layer 2 circuit 14, with effect 0.8
layer 1 circuit 18, layer 2 circuit 14, with effect 0.74
layer 1 circuit 20, layer 2 circuit 14, with effect 0.79
layer 1 circuit 21, layer 2 circuit 14, with effect 0.79
layer 0 circuit 14, layer 1 circuit 21, layer 2 circuit 14, with effect 0.71
layer 0 circuit 20, layer 1 circuit 21, layer 2 circuit 14, with effect 0.77
layer 1 circuit 22, layer 2 circuit 14, with effect 0.81
layer 1 circuit 23, layer 2 circuit 14, with effect 0.76
layer 1 circuit 24, layer 2 circuit 14, with effect 0.86
layer 0 circuit 13, layer 2 circuit 18, with effect 0.82
layer 1 circuit 13, layer 2 circuit 18, with effect 0.88
layer 0 circuit 19, layer 2 circuit 20, with effect 0.72
layer 0 circuit 20, layer 2 circuit 20, with effect 0.79
layer 0 circuit 21, layer 2 circuit 20, with effect 0.72
layer 0 circuit 22, layer 2 circuit 20, with effect 0.77
layer 1 circuit 19, layer 2 circuit 20, with effect 0.75
layer 1 circuit 20, layer 2 circuit 20, with effect 0.76
layer 1 circuit 21, layer 2 circuit 20, with effect 0.7
layer 1 circuit 22, layer 2 circuit 20, with effect 0.76

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

layer 1 circuit 23, layer 11 circuit 1, with effect 0.74
layer 1 circuit 24, layer 11 circuit 1, with effect 0.75
layer 2 circuit 24, layer 11 circuit 1, with effect 0.73
layer 4 circuit 23, layer 11 circuit 1, with effect 0.74
layer 0 circuit 24, layer 11 circuit 14, with effect 0.77
layer 1 circuit 13, layer 11 circuit 14, with effect 0.74
layer 1 circuit 16, layer 11 circuit 14, with effect 0.74
layer 1 circuit 24, layer 11 circuit 14, with effect 0.82
layer 2 circuit 13, layer 11 circuit 14, with effect 0.75
layer 2 circuit 16, layer 11 circuit 14, with effect 0.76
layer 2 circuit 24, layer 11 circuit 14, with effect 0.81
layer 3 circuit 13, layer 11 circuit 14, with effect 0.75
layer 3 circuit 16, layer 11 circuit 14, with effect 0.75
layer 3 circuit 24, layer 11 circuit 14, with effect 0.81
layer 4 circuit 13, layer 11 circuit 14, with effect 0.76
layer 4 circuit 24, layer 11 circuit 14, with effect 0.81
layer 5 circuit 24, layer 11 circuit 14, with effect 0.82
layer 6 circuit 16, layer 11 circuit 14, with effect 0.76
layer 6 circuit 24, layer 11 circuit 14, with effect 0.79
layer 7 circuit 24, layer 11 circuit 14, with effect 0.77
layer 8 circuit 24, layer 11 circuit 14, with effect 0.78
layer 9 circuit 24, layer 11 circuit 14, with effect 0.77
layer 10 circuit 24, layer 11 circuit 14, with effect 0.77

Multi-Step Paths in Induction Skill

layer 0 circuit 20, layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 0 circuit 21, layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 1 circuit 16, layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 1 circuit 18, layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 1 circuit 20, layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 1 circuit 21, layer 2 circuit 14, layer 5 circuit 11, with effect 0.6
layer 1 circuit 22, layer 2 circuit 14, layer 5 circuit 11, with effect 0.61
layer 0 circuit 13, layer 2 circuit 20, layer 5 circuit 11, with effect 0.6
layer 0 circuit 20, layer 2 circuit 14, layer 11 circuit 1, with effect 0.61
layer 0 circuit 21, layer 2 circuit 14, layer 11 circuit 1, with effect 0.63
layer 1 circuit 18, layer 2 circuit 14, layer 11 circuit 1, with effect 0.61
layer 1 circuit 20, layer 2 circuit 14, layer 11 circuit 1, with effect 0.61
layer 1 circuit 21, layer 2 circuit 14, layer 11 circuit 1, with effect 0.61
layer 1 circuit 22, layer 2 circuit 14, layer 11 circuit 1, with effect 0.63

Multi-Step Paths in ICL1 Skill

layer 0 circuit 13, layer 1 circuit 19, layer 3 circuit 11, with effect 0.81
layer 0 circuit 14, layer 1 circuit 19, layer 3 circuit 11, with effect 0.85
layer 0 circuit 15, layer 1 circuit 19, layer 3 circuit 11, with effect 0.84
layer 0 circuit 16, layer 1 circuit 19, layer 3 circuit 11, with effect 0.85
layer 0 circuit 21, layer 1 circuit 19, layer 3 circuit 11, with effect 0.82
layer 0 circuit 22, layer 1 circuit 19, layer 3 circuit 11, with effect 0.85
layer 0 circuit 23, layer 1 circuit 19, layer 3 circuit 11, with effect 0.84
layer 0 circuit 24, layer 1 circuit 19, layer 3 circuit 11, with effect 0.85
layer 0 circuit 13, layer 2 circuit 14, layer 3 circuit 11, with effect 0.81
layer 0 circuit 20, layer 2 circuit 14, layer 3 circuit 11, with effect 0.81
layer 0 circuit 21, layer 2 circuit 14, layer 3 circuit 11, with effect 0.83
layer 0 circuit 22, layer 2 circuit 14, layer 3 circuit 11, with effect 0.83
layer 1 circuit 20, layer 2 circuit 14, layer 3 circuit 11, with effect 0.81
layer 1 circuit 21, layer 2 circuit 14, layer 3 circuit 11, with effect 0.82
layer 1 circuit 22, layer 2 circuit 14, layer 3 circuit 11, with effect 0.83
layer 1 circuit 23, layer 2 circuit 14, layer 3 circuit 11, with effect 0.8
layer 0 circuit 13, layer 2 circuit 20, layer 3 circuit 11, with effect 0.86

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

layer 0 circuit 14, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 0 circuit 15, layer 2 circuit 20, layer 3 circuit 11, with effect 0.81
layer 0 circuit 16, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 0 circuit 17, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 0 circuit 18, layer 2 circuit 20, layer 3 circuit 11, with effect 0.81
layer 0 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.82
layer 0 circuit 20, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 0 circuit 21, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
layer 0 circuit 22, layer 2 circuit 20, layer 3 circuit 11, with effect 0.86
layer 0 circuit 24, layer 2 circuit 20, layer 3 circuit 11, with effect 0.81
layer 1 circuit 13, layer 2 circuit 20, layer 3 circuit 11, with effect 0.86
layer 1 circuit 14, layer 2 circuit 20, layer 3 circuit 11, with effect 0.84
layer 1 circuit 15, layer 2 circuit 20, layer 3 circuit 11, with effect 0.82
layer 1 circuit 16, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 1 circuit 17, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 1 circuit 18, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 1 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 0 circuit 14, layer 1 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
layer 0 circuit 15, layer 1 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
layer 0 circuit 16, layer 1 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
layer 0 circuit 22, layer 1 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.83
layer 0 circuit 23, layer 1 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.82
layer 0 circuit 24, layer 1 circuit 19, layer 2 circuit 20, layer 3 circuit 11, with effect 0.84
layer 1 circuit 20, layer 2 circuit 20, layer 3 circuit 11, with effect 0.85
layer 1 circuit 21, layer 2 circuit 20, layer 3 circuit 11, with effect 0.84
layer 1 circuit 22, layer 2 circuit 20, layer 3 circuit 11, with effect 0.86
layer 1 circuit 23, layer 2 circuit 20, layer 3 circuit 11, with effect 0.82
layer 1 circuit 24, layer 2 circuit 20, layer 3 circuit 11, with effect 0.81
layer 0 circuit 21, layer 2 circuit 14, layer 3 circuit 14, with effect 0.8
layer 0 circuit 22, layer 2 circuit 14, layer 3 circuit 14, with effect 0.81
layer 1 circuit 21, layer 2 circuit 14, layer 3 circuit 14, with effect 0.81
layer 1 circuit 22, layer 2 circuit 14, layer 3 circuit 14, with effect 0.81
layer 0 circuit 13, layer 1 circuit 16, layer 10 circuit 9, with effect 0.84
layer 0 circuit 14, layer 1 circuit 16, layer 10 circuit 9, with effect 0.81
layer 0 circuit 15, layer 1 circuit 16, layer 10 circuit 9, with effect 0.8
layer 0 circuit 22, layer 1 circuit 16, layer 10 circuit 9, with effect 0.81
layer 0 circuit 14, layer 1 circuit 20, layer 10 circuit 9, with effect 0.83
layer 0 circuit 24, layer 1 circuit 20, layer 10 circuit 9, with effect 0.81
layer 0 circuit 13, layer 2 circuit 20, layer 10 circuit 9, with effect 0.92
layer 0 circuit 14, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9
layer 0 circuit 15, layer 2 circuit 20, layer 10 circuit 9, with effect 0.85
layer 0 circuit 16, layer 2 circuit 20, layer 10 circuit 9, with effect 0.91
layer 0 circuit 17, layer 2 circuit 20, layer 10 circuit 9, with effect 0.89
layer 0 circuit 18, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86
layer 0 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86
layer 0 circuit 20, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9
layer 0 circuit 21, layer 2 circuit 20, layer 10 circuit 9, with effect 0.87
layer 0 circuit 22, layer 2 circuit 20, layer 10 circuit 9, with effect 0.92
layer 0 circuit 23, layer 2 circuit 20, layer 10 circuit 9, with effect 0.85
layer 0 circuit 24, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86
layer 1 circuit 13, layer 2 circuit 20, layer 10 circuit 9, with effect 0.92
layer 1 circuit 14, layer 2 circuit 20, layer 10 circuit 9, with effect 0.89
layer 1 circuit 15, layer 2 circuit 20, layer 10 circuit 9, with effect 0.85
layer 1 circuit 16, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9
layer 0 circuit 13, layer 1 circuit 16, layer 2 circuit 20, layer 10 circuit 9, with effect 0.83
layer 1 circuit 17, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9
layer 1 circuit 18, layer 2 circuit 20, layer 10 circuit 9, with effect 0.91
layer 0 circuit 14, layer 1 circuit 18, layer 2 circuit 20, layer 10 circuit 9, with effect 0.81
layer 0 circuit 23, layer 1 circuit 18, layer 2 circuit 20, layer 10 circuit 9, with effect 0.83

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9
layer 0 circuit 13, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.83
layer 0 circuit 14, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.87
layer 0 circuit 15, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86
layer 0 circuit 16, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.87
layer 0 circuit 20, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.82
layer 0 circuit 21, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.82
layer 0 circuit 22, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.87
layer 0 circuit 23, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86
layer 0 circuit 24, layer 1 circuit 19, layer 2 circuit 20, layer 10 circuit 9, with effect 0.88
layer 1 circuit 20, layer 2 circuit 20, layer 10 circuit 9, with effect 0.9
layer 0 circuit 14, layer 1 circuit 20, layer 2 circuit 20, layer 10 circuit 9, with effect 0.81
layer 1 circuit 21, layer 2 circuit 20, layer 10 circuit 9, with effect 0.89
layer 1 circuit 22, layer 2 circuit 20, layer 10 circuit 9, with effect 0.92
layer 1 circuit 23, layer 2 circuit 20, layer 10 circuit 9, with effect 0.86
layer 0 circuit 14, layer 1 circuit 19, layer 10 circuit 10, with effect 0.81
layer 0 circuit 16, layer 1 circuit 19, layer 10 circuit 10, with effect 0.81
layer 0 circuit 22, layer 1 circuit 19, layer 10 circuit 10, with effect 0.81
layer 0 circuit 23, layer 1 circuit 19, layer 10 circuit 10, with effect 0.81
layer 0 circuit 24, layer 1 circuit 19, layer 10 circuit 10, with effect 0.82
layer 0 circuit 14, layer 1 circuit 19, layer 11 circuit 5, with effect 0.81
layer 0 circuit 16, layer 1 circuit 19, layer 11 circuit 5, with effect 0.8
layer 0 circuit 22, layer 1 circuit 19, layer 11 circuit 5, with effect 0.81
layer 0 circuit 24, layer 1 circuit 19, layer 11 circuit 5, with effect 0.81
layer 0 circuit 13, layer 2 circuit 14, layer 11 circuit 5, with effect 0.87
layer 0 circuit 14, layer 2 circuit 14, layer 11 circuit 5, with effect 0.81
layer 0 circuit 20, layer 2 circuit 14, layer 11 circuit 5, with effect 0.86
layer 0 circuit 21, layer 2 circuit 14, layer 11 circuit 5, with effect 0.89
layer 0 circuit 22, layer 2 circuit 14, layer 11 circuit 5, with effect 0.89
layer 0 circuit 23, layer 2 circuit 14, layer 11 circuit 5, with effect 0.86
layer 0 circuit 24, layer 2 circuit 14, layer 11 circuit 5, with effect 0.84
layer 1 circuit 13, layer 2 circuit 14, layer 11 circuit 5, with effect 0.85
layer 1 circuit 14, layer 2 circuit 14, layer 11 circuit 5, with effect 0.86
layer 1 circuit 15, layer 2 circuit 14, layer 11 circuit 5, with effect 0.85
layer 1 circuit 16, layer 2 circuit 14, layer 11 circuit 5, with effect 0.84
layer 1 circuit 17, layer 2 circuit 14, layer 11 circuit 5, with effect 0.85
layer 1 circuit 18, layer 2 circuit 14, layer 11 circuit 5, with effect 0.86
layer 1 circuit 19, layer 2 circuit 14, layer 11 circuit 5, with effect 0.8
layer 1 circuit 20, layer 2 circuit 14, layer 11 circuit 5, with effect 0.87
layer 1 circuit 21, layer 2 circuit 14, layer 11 circuit 5, with effect 0.89
layer 1 circuit 22, layer 2 circuit 14, layer 11 circuit 5, with effect 0.89
layer 1 circuit 23, layer 2 circuit 14, layer 11 circuit 5, with effect 0.86
layer 1 circuit 24, layer 2 circuit 14, layer 11 circuit 5, with effect 0.81
layer 0 circuit 13, layer 2 circuit 24, layer 11 circuit 5, with effect 0.84
layer 0 circuit 14, layer 2 circuit 24, layer 11 circuit 5, with effect 0.82
layer 0 circuit 15, layer 2 circuit 24, layer 11 circuit 5, with effect 0.85
layer 0 circuit 16, layer 2 circuit 24, layer 11 circuit 5, with effect 0.85
layer 0 circuit 17, layer 2 circuit 24, layer 11 circuit 5, with effect 0.85
layer 0 circuit 22, layer 2 circuit 24, layer 11 circuit 5, with effect 0.85
layer 0 circuit 23, layer 2 circuit 24, layer 11 circuit 5, with effect 0.85
layer 0 circuit 24, layer 2 circuit 24, layer 11 circuit 5, with effect 0.82
layer 1 circuit 13, layer 2 circuit 24, layer 11 circuit 5, with effect 0.83
layer 1 circuit 14, layer 2 circuit 24, layer 11 circuit 5, with effect 0.81
layer 1 circuit 15, layer 2 circuit 24, layer 11 circuit 5, with effect 0.82
layer 1 circuit 16, layer 2 circuit 24, layer 11 circuit 5, with effect 0.81
layer 1 circuit 17, layer 2 circuit 24, layer 11 circuit 5, with effect 0.81
layer 1 circuit 22, layer 2 circuit 24, layer 11 circuit 5, with effect 0.85
layer 1 circuit 23, layer 2 circuit 24, layer 11 circuit 5, with effect 0.82
layer 1 circuit 24, layer 2 circuit 24, layer 11 circuit 5, with effect 0.81

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

IF to IFA to IS

IP to IS

IF to IS

IN to IS

ISP to IS

IS to IS

A to IN

IP to IN

IF to IN

IN to IN

A to IF

IP to IF

IF to IF

A to IP

IP to IP

(a) IP

IF to IFA to IS

IP to IS

IF to IS

IN to IS

ISP to IS

IS to IS

A to IN

IP to IN

IF to IN

IN to IN

A to IF

IP to IF

IF to IF

A to IP

IP to IP

(b) IF

IF to IFA to IS

IP to IS

IF to IS

IN to IS

ISP to IS

IS to IS

A to IN

IP to IN

IF to IN

IN to IN

A to IF

IP to IF

IF to IF

A to IP

IP to IP

(c) IN

IF to IFA to IS

IP to IS

IF to IS

IN to IS

ISP to IS

IS to IS

A to IN

IP to IN

IF to IN

IN to IN

A to IF

IP to IF

IF to IF

A to IP

IP to IP

(d) IS

Figure 12: Attention weights of located token positions in Induction Skill

layer 0 circuit 13, layer 3 circuit 14, layer 11 circuit 5, with effect 0.81
layer 0 circuit 23, layer 3 circuit 14, layer 11 circuit 5, with effect 0.85
layer 1 circuit 23, layer 3 circuit 14, layer 11 circuit 5, with effect 0.81
layer 2 circuit 23, layer 3 circuit 14, layer 11 circuit 5, with effect 0.8

Almost all 3-step paths are composed of paths from lower-level skills. For instance, in the ICL skill,
the sequence “layer 0 circuit 20, layer 2 circuit 14, layer 5 circuit 11” encompasses the path “layer
0 circuit 20, layer 2 circuit 14” from the previous token skill. Furthermore, it is apparent that the
more complex a skill, the more multi-step paths it encompasses.

H ATTENTION WEIGHTS OF KEY CIRCUIT

In this section, we provide additional information on the attention weights of key circuits in the
Induction Skill and ICL1 Skill.

For the Induction samples, we focus on the following tokens:

“A ... IP IF IN ... ISP IS”, where “A” represents the first token of the input text, “IF” and “IS” denote
the positions of the first and second appearances of the duplicated token respectively, “IP” and “IN”
indicate the tokens before and after “IF”, and “ISP” refers to the token before “IS”. Figure 12 shows
these located positions’ attention weight.

For the ICL samples, we select ICL1 (icl sst2 task) to show, following tokens:

“A B ... P1P P1A ... P1B L1... A2 ... P2P P2A ... P2B L2 ... A3 ... P3P P3A ... P3B, where “A”, “A2”,
“A3” represents the beginning of review1, review2 and review3, “P1P”, “P2P”, and “P3P” represents
the end of review1, review2, and review3, “P1A ... P1B”, “P2A ... P2B”, “P3A ... P3B” represents
the label prompt of review1, review2, and review3, and “L1”, “L2” represent the label of review1 and
review2. Figure 13 shows these located positions’ attention weight.

I COMPARISONS WITH OTHER METHODS VALIDATING CONJECTURES

One of the contributions of this paper is to validate three long-unverified conjectures about language
skills: Identifiability, Stratification, and Inclusiveness. The question of why previous work merely
“proposed conjectures” while our method could find “strong evidence” will be answered in this
section.

Firstly, we compared the differences in circuit components among 4 circuit discovery methods,
including ours. The other methods are ACDC, OPT-prun, and EAP (introduced in Section 2). Each
method used its own circuit discovery strategy to search for corresponding circuit graphs for the three
skills we focus on: PVT, IDT, and ICL1. Then, as with Table 4, we investigated the distribution of
receiver nodes in these circuit graphs and displayed the normalized results in Figure 14.

It is clear from other methods that PVT is more prominent in the shallow layers, IDT in the mid-
to-deep layers, and ICL1 tends to cluster in the deep layers. However, the circuit graphs from
these methods are insufficient to prove these patterns. For instance, although PVT is significantly
concentrated in the shallow layers, there are also components in the deep layers. Yet, the circuit
graph discovered by our method provides a more distinct differentiation: PVT circuits only appear in
layers 1 and 2, and IDT circuits only appear in layers 1-6. Our method determines the specific layer
numbers of the skill circuits and confirms that as the skill becomes more complex, the layers spread

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(a) P1P

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(b) P1A

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(c) P1B

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(d) L1

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(e) A2

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(f) P2P

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(g) P2A

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(h) P2B

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(i) L2

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(j) A3

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(k) P3P

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(l) P3A

 A to P3B

 B to P3B

 P1P to P3B

 P1A to P3B

P1B to P3B

 L1 to P3B

 A2 to P3B

 P2P to P3B

P2A to P3B

 L2 to P3B

 P2B to P3B

 A3 to P3B

 P3P to P3B

 P3A to P3B

 P3A to P3B

A to P3P

B to P3P

 P1P to P3P

 P1A to P3P

P1B to P3P

 L1 to P3P

A2 to P3P

 P2P to P3P

P2A to P3P

 L2 to P3P

 P2B to P3P

 A3 to P3P

 P3P to P3P

 A to P3A

 B to P3A

 P1P to P3A

 P1A to P3A

P1B to P3A

 L1 to P3A

 A2 to P3A

 P2P to P3A

P2A to P3A

 L2 to P3A

 P2B to P3A

 A3 to P3A

 P3P to P3A

 P3A to P3A

A to A3

B to A3

 P1P to A3

 P1A to A3

P1B to A3

 L1 to A3

A2 to A3

 P2P to A3

P2A to A3

 L2 to A3

 P2B to A3

 A3 to A3

A to L2

B to L2

 P1P to L2

 P1A to L2

P1B to L2

 L1 to L2

A2 to L2

 P2P to L2

P2A to L2

 L2 to L2

 P2B to L2

A to P2B

B to P2B

 P1P to P2B

 P1A to P2B

P1B to P2B

 L1 to P2B

A2 to P2B

 P2P to P2B

P2A to P2B

 P2B to P2B

A to P2A

B to P2A

 P1P to P2A

 P1A to P2A

P1B to P2A

 L1 to P2A

A2 to P2A

 P2P to P2A

P2A to P2A

A to P2P

B to P2P

 P1P to P2P

 P1A to P2P

P1B to P2P

 L1 to P2P

A2 to P2P

 P2P to P2P

A to L1

B to L1

 P1P to L1

 P1A to L1

P1B to L1

 L1 to L1

A to P1B

B to P1B

 P1P to P1B

 P1A to P1B

 P1B to P1B

A to P1A

B to P1A

 P1P to P1A

 P1A to P1A

A to P1P

B to P1P

 P1P to P1P

A to A2

B to A2

 P1P to A2

 P1A to A2

P1B to A2

 L1 to A2

A2 to A2

(m) P3B

Figure 13: Attention weights of located token positions in ICL Skill

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

PVT IDT ICL1

(a) ACDC

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

PVT IDT ICL1

(b) OPT-prun

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

PVT IDT ICL1

(c) EAP

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

PVT IDT ICL1

(d) Ours

Figure 14: Visualization of receivers distributed in layer1-10 in 3 increasingly-complex skills (PVT,
IDT, and ICL1), obtained from 4 circuit discovery methods (ACDC, OPT-prun, EAP, and Ours)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 11: Overlaps between different skill circuit graphs

Method PVT IDT ICL1
ovlp(PV T, IDT) ovlp(PV T, ICL1) ovlp(IDT, PV T) ovlp(IDT, ICL1) ovlp(ICL1, PV T) ovlp(ICL1, IDT)

ACDC 0.13 0.05 0.19 0.10 0.06 0.17
OPT-prun 0.11 0.18 0.05 0.07 0.14 0.17
EAP 0.09 0.06 0.14 0.05 0.03 0.18
Ours 0.34 0.29 0.74 0.35 0.81 0.63

from shallow to deep. This finding provides stronger evidence for the identifiability and stratification
of skills compared to other methods.

Additionally, to observe the performance of these methods on the conjecture of Inclusiveness, we
investigated their overlap on the three skill circuits: PVT, IDT, and ICL1. The corresponding circuit
graphs are still derived from the circuit discovery strategies proposed by each method, searching in
the corpora corresponding to the three skills proposed in this paper. The rule for calculating overlap
is as follows: let ovlp(A,B) represent what the rate of edges in skill graph A also existing in skill
graph B is. For any edge ei in skill graph A, we set an overlap flag fA,B(e

i). If ei in A also exists in
skill circuit graphs B, then fA,B(e

i) = 1, otherwise fA,B(e
i) = 0. For a circuit graph A with NA

edges, its set of edges is EA. Our overlap is calculated as ovlp(A,B) = 1
NA

∑EA

ei∈EA
fA,B(e

i).

Table 5 demonstrates that the overlap of circuit graphs discovered by existing methods is quite
low. For instance, ovlp(ICL1, IDT) is only 0.17 in ACDC. However, this 0.17 overlap of circuits
represents the key function of induction (often referred to as the induction head). As a result, many
studies have proposed the conjecture that the ICL skill includes the Induction skill. Yet, only our work
provides clear empirical evidence for the conjecture of inclusiveness: ovlp(IDT, PV T) = 0.74
indicates that 74% of the paths in the circuit graph of the Induction skill exist in the circuit graph
of the previous token skill. Furthermore, ovlp(ICL1, PV T) = 0.81 and ovlp(ICL1, IDT) = 0.63
suggest that 81% and 63% of the paths in the ICL skill’s circuit graph are included in the circuit
graphs of the previous token skill and the induction skill, respectively.

J SKILL CIRCUIT GRAPHS

Due to large size constraints, we have only displayed the circuit graph for the Previous Token Skill.
For additional skill graphs, please refer to our repository.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 15: Skill Circuit Graph of Previous Token Skill, all paths with Eff > 0.7 are labeled.

30

	Introduction
	A Comparison with Related Work
	Method
	Memory Circuit
	Greedy Search
	Estimation of Causal Effects for Language Skills

	Experimental Design
	Validation
	When Skill Paths are Removed
	How Skill Effects Are Confounded

	Discovery of Language Skills
	Exploration - Why Wrong Outputs?
	Limitation and Conclusion
	Details about Output Recovery Tests
	Analysis about Memory Circuits
	Why A X is not the circuit with complete function?
	How to explain Memory Circuits?

	Derivation of Compensation Circuits
	Search Strategies
	Data Preparation and Implementations
	Data Preparation
	Previous Token Skill
	Induction Skill
	ICL Skill

	Implementation
	Sensitivity about Background Text
	Supplementary Data for Validation
	Threshold and Faithfulness

	Details about Validations for Causal Effects
	Inclusive Path
	Attention Weights of Key Circuit
	Comparisons with Other Methods Validating Conjectures
	Skill Circuit Graphs

