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ABSTRACT

In this paper, we address the problem of learning a binary (positive vs. negative)
classifier given Positive and Unlabeled data commonly referred to as PU learning.
Although rudimentary techniques like clustering, out-of-distribution detection, or
positive density estimation can be used to solve the problem in low-dimensional
settings, their efficacy progressively deteriorates with higher dimensions due to
the increasing complexities in the data distribution. In this paper we propose to
learn a neural network-based data representation using a loss function that can be
used to project the unlabeled data into two (positive and negative) clusters that can
be easily identified using simple clustering techniques, effectively emulating the
phenomenon observed in low-dimensional settings. We adopt a vector quantiza-
tion technique for the learned representations to amplify the separation between
the learned unlabeled data clusters. We conduct experiments on simulated PU
data that demonstrate the improved performance of our proposed method com-
pared to the current state-of-the-art approaches. We also provide some theoretical
justification for our two cluster-based approach and our algorithmic choices.

1 INTRODUCTION

The excessive data demands of current large deep learning models can make the cost of data col-
lection and labeling prohibitive. These costs along with other challenges related to data collection
have given rise to the development of learning settings that deal with data scarcity and the absence
or poor quality of labeling. PU learning, or learning from Positive and Unlabeled data is a learning
setting that deals with binary classification problems where the labeling of one of the two classes
is either significantly costly or even infeasible (Bekker & Davis, 2020). This scenario exists natu-
rally in many problems such as medical diagnosis where a single clear symptom of a disease can
be reliably used as an indicator of the ”diseased” patients (positive class). However, the absence of
this symptom does not conclusively rule out the existence of the disease. Consequently, the data
will contain a positive label for those cases that exhibit that symptom, while all other cases will
remain unlabeled (Claesen et al., 2015). Another clear example of a PU setting is seen in spam
detection, where it is usually easy to label emails reported by users as spam (positive class), while
the label of all other emails remains unknown (Wu et al., 2018). PU learning appears in other fields
including matrix completion (Hsieh et al., 2015), gene identification (Mordelet & Vert, 2011), and
recommendation systems (Zhou et al., 2021).

Many existing PU learning methods (such as Weighted Unlabeled Samples SVM (Liu et al., 2008),
Biased Least Squares SVM (Ke et al., 2018), Topic-Sensitive pLSA (Zhou et al., 2009), and Rank
Pruning (Northcutt et al., 2017)) primarily leverage the bi-modality of the unlabeled data distribu-
tion. The bi-modality arises from the distributional contrast between positive and negative samples
within the unlabeled dataset. These methods, although effective in some contexts where the bi-
modality of the unlabeled data is easily identifiable, show a gradual decline in performance as the
dimensionality of the data increases and the positive and negative instances within the unlabeled
data become entangled and less distinguishable.

The existence of the PU learning problem in domains where the dimensionality of the data is high has
led to the emergence of learning methods that deal with the problem in more subtle ways, such as: (i)
using generative models to learn the negative data distribution to reduce the problem to a supervised
learning scenario (Chiaroni et al., 2020) (Zamzam et al., 2023), (ii) two step methods that estimate
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the positive class prior and then utilize it to learn a binary classifier (Garg et al., 2021) (Elkan
& Noto, 2008), and (iii) adversarial learning where two classifiers iteratively learn the separation
between positive and negative instances (Hu et al., 2021). Nevertheless, the intricate entanglement
of the two classes within the unlabeled data in high dimensions continues to exert a significant
influence on the performance trajectories of these methods across diverse scenarios.

One simple and yet unexplored way of dealing with the complexity of the data in high dimensions
is to learn a new representation that makes the distributional difference between positive and neg-
ative instances within the unlabeled data easily identifiable. We propose a unique representation
learning method that projects the positive and unlabeled data into a new space where the unlabeled
data gets disentangled into two separable clusters; one of these clusters coincides with the repre-
sentation of the positive labeled samples, and the other is recognized as the representation of the
negative samples, replicating the separability phenomenon found in lower-dimensional spaces. The
contributions of this paper are outlined as follows:

• A novel loss function designed to facilitate the learning of a new data representation in
which the unlabeled data disentangles into two distinct positive and negative clusters.

• An innovative adoption of vector quantization techniques to enhance the informative ca-
pacity of the learned representation, particularly in the context of PU learning, bridging the
performance gap between existing PU learning methods and traditional supervised learn-
ing.

• Empirical evidence of the effectiveness of our proposed method through experimental stud-
ies using four different datasets.

• Comprehensive ablation studies that emphasize the significance and impact of each term
within our loss function. These studies also showcase the method’s robustness across a
wide range of hyperparameter configurations.

• We also provide some theoretical justification for our two cluster-based approach and some
of our algorithmic choices.

2 PROBLEM SETUP

In PU learning, the goal is to learn a binary (positive vs. negative) classifier given labeled positive
data and unlabeled data that consists of positive and negative samples. We propose to achieve this
by first learning a new data representation in which the positive and negative samples become more
distinguishable, and then deploying a simple clustering technique to learn the two classes.
To formalize the PU problem setup, we denote the class-conditional distributions for the positive and
negative classes by PP and PN , where pP (x) = p(x|y = 1) and pN (x) = p(x|y = 0) represent
their respective class-conditional densities, and the distribution of the unlabeled data by PU , with
pU (x) = p(x) denoting its density. We also denote by α the proportion of positive samples within
the unlabeled distribution (α = p(y = 1)).
In this setting, a set of np independent and identically distributed (i.i.d.) samples is drawn from
the positive class conditional distribution, resulting in XP = {x1, x2, ..., xnp

} ∼ Pnp

P , where each
xi ∈ Rd. Similarly, the unlabeled set XU is partitioned into two subsets: XUP containing nup

positive samples and XUN containing nun negative samples, resulting in XU = XUP ∪ XUN ,
where each xi ∈ Rd. We do not assume a known positive class prior α, and our goal is to learn
a new representation space in which the Euclidean distances between the samples within XUN and
within the union XUP ∪XP are minimized, while simultaneously maximizing the distances between
samples across XUN and XUP ∪ XP , resulting in an easily identifiable separation between positive
and negative samples.

3 LEARNING A DISENTANGLING REPRESENTATION FOR PU LEARNING

We start by introducing a motivation to solve the problem of PU learning through learning a new
representation space. In the toy 1-dimensional example shown in Figure 1, the PU problem setting
is simulated using two Gaussian distributions with means 0 and 30 and variances of 9 and 25 for
the positive and negative classes, respectively. The unlabeled set is a combination of samples that
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come from both classes with equal probabilities. The clear difference between the two modes in
the bimodal distribution of the unlabeled data allows a simple K-means algorithm deployed only on
the unlabeled data to learn the two underlying positive and negative classes. The positive samples
can then be used to identify which of the two learned clusters corresponds to the positive class by
measuring the distance between the positive samples and the centers of the two learned clusters.
This simple example illustrates how in low-dimensional settings (mainly because of the obvious
difference between the modes in the unlabeled data) the problem is easily solvable.

Figure 1: 1D toy example showing the distributions of positive, negative, and unlabeled sets in a PU
learning problem.

Driven by the evident simplicity of the problem when the two modes in the unlabeled data are
readily distinguishable, we present an approach to learn a representation that tackles scenarios where
these two modes are challenging to differentiate. Although multiple existing PU learning methods
have been proposed to deal with the complexities of high-dimensional data, we show that learning
a new representation alleviates the problem and gives consistent results across different domains.
Figure 2 shows a simple comparison between the t-SNE visualization of the unlabeled data in the
representation space in our proposed method and in the representation space of a classical VQ-VAE
(Van Den Oord et al., 2017). The figure clearly shows the effectiveness of the proposed method in
learning a representation space in which the positive and negative samples are clearly concentrated
in two clusters, making the problem much closer to the simple 1-dimensional scenario shown in
Figure 1. The representation of the unlabeled data in the VQ-VAE shows the entanglement of the
positive and negative samples, which makes it challenging to learn a binary classifier in the PU
setting.

(a) t-SNE Visualization of the data in the repre-
sentation space of a trained VQ-VAE

(b) t-SNE Visualization of the data in the repre-
sentation space of our proposed VQ-Encoder

Figure 2: The t-SNE visualization of the learned data representation (for the AFHQ dataset) in the
proposed method compared to the data representation learned in a classical VQ-VAE showing how
the proposed learned representation disentangles the positive and negative samples such that they
can be easily told apart using simple clustering algorithms.
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3.1 METHODOLOGY

Let fθ : Rd 7→ RK×p represent a network that transforms input data from the input space into a set V
of K vectors V = {v1,v2, . . . ,vK}, where vi ∈ Rp. Consider a codebook C = {c1, c2, . . . , cm}
of m vectors, where ci ∈ Rp, such that ∥c1∥2 < ∥c2∥2 < . . . < ∥cm∥2. We define a quantization
operator Q(·) whose output is defined as Q(v) = argmin

ck

∥v − ck∥2.

We propose to minimize the following loss function:

L(θ) =
nP∑
ip=1

K∑
j=1

∥vj(xip ; θ)− sg(cm)∥22 + ∥sg(vj(xip ; θ))−Q(vj(xip ; θ))∥22

+

nu∑
iu=1

K∑
j=1

∥vj(xiu ; θ)− sg(c1)∥22 + ∥sg(vj(xiu ; θ))−Q(vj(xiu ; θ))∥22 (1)

Where sg(·) is the stop gradient operator that stops the gradient from being propagated back to its
operand during backpropagation, making it a constant non-updated value, vj(xip) is the j’th vector
in the output of the encoder network after inputting the ip’th sample from the positive set XP , and
vj(xiu) is the j’th vector in the output of the encoder network after inputting the iu’th sample from
the unlabeled set XU .

Figure 3: Illustration of the proposed vector quantized encoder: The input image x is fed to a
Convolutional Neural Network that encodes it to K = N1 × N2 vectors of dimension p. The
quantization operator Q(·) is applied to the n vectors, resulting in n codebook vectors whose indices
are outputted as the new representation to be used by a K-mean clustering algorithm.

The first term in the two summations is to derive the vectors in the encoding of the positive samples
towards the codebook vector of the highest magnitude cm, and derive the vectors in the encoding of
the unlabeled samples towards the codebook vector of the lowest magnitude c1. The second term
in the two summations is to update the codebook vectors to align with the output of the encoder for
faster convergence, inspired by (Van Den Oord et al., 2017).

The main idea in the loss function is that encoding the positive samples in the (labeled) positive
set to a vector of high magnitude and the positive samples in the unlabeled set to a vector with a
low magnitude would intuitively result in projecting all the positive samples to a linear combination
of the two vectors that depends on the proportion of the positive samples in the unlabeled set. On
the other hand, the negative samples in the unlabeled set will simply be projected to the vector of
the low magnitude as it’s the only vector they’re projected to in the loss function. The similarity
in distribution between the positive labeled samples and the positive unlabeled samples is the main
feature that is being exploited here, deliberately making the network unable to project each of them
to its corresponding vector in the loss function while being able to more easily project the negative
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samples to a different vector, creating the sought-after separation between the positive and negative
samples in the encoding space.
After arriving at the new desired quantized representation, a K-means algorithm is employed on
the indices of the vectors Q(v)′s for all the samples in the unlabeled set to cluster them into 2
clusters. The K-means algorithm returns an assigned cluster for each of the unlabeled instances
and the center of the two learned clusters. The positive labeled samples are then encoded and the
distance from their encodings are compared to the two centers returned by the K-means algorithm,
and the closest cluster to the positive labeled samples encodings are recognized to be the positive
cluster. At inference time, the two centroids returned by the K-means algorithm are compared to the
encoding of a test sample to decide its corresponding class based on its Euclidean proximity to the
two centers.

3.2 MATHEMATICAL INTUITION

While encoding the input to a set of vectors and using vector quantization are both shown to improve
the performance of the proposed method (see in detail analysis in the ablation studies in section 5.5),
the mathematical basis of the proposed method can be simply explained in a scenario where the
encoder network encodes the input data x to a single vector v(x; θ). In what follows, we show the
mathematical logic behind the proposed method in this single vector scenario. Consider an encoder
network that maps the input from Rd to Rp. Consider µP , µU ∈ Rp where µP ̸= µU . Suppose the
following loss function is to be optimized

min
θ

L̄(θ) = min
θ

Exp∼PP
[∥v(xp; θ)− µP ∥22] + Exu∼PU

[∥v(xu; θ)− µU∥22] (2)

= min
θ

Exp∼PP
[∥v(xp; θ)− µP ∥22] + αExup∼PP

[∥v(xup; θ)− µU∥22]

+ (1− α)Exun∼PN
[∥v(xun; θ)− µU∥22] (3)

= min
θ

Exp∼PP

[
∥v(xp; θ)− µP ∥22 + α∥v(xp; θ)− µU∥22

]
+ (1− α)Exun∼PN

[
∥v(xun; θ)− µU∥22

]
(4)

Replacing the expectations in (4) with the empirical average results in:

min
θ

L̄(θ) = min
θ

1

np

np∑
i=1

[∥v(xp
i ; θ)− µP ∥22] +

α

nup

nup∑
i=1

[∥v(xup
i ; θ)− µU∥22]

+
1− α

nun

nun∑
i=1

[∥v(xun
i ; θ)− µU∥22] (5)

Under the assumption that the labeled positive samples are Selected Completely At Random (SCAR
(Elkan & Noto, 2008)), i.e., there is no difference between the distribution of the labeled and un-
labeled positive samples, the loss function in equation 5 is minimized at the linear combination
v(xp; θ) = v(xup; θ) = µP+αµU

1+α and v(xun; θ) = µU . For µP and µU sufficiently distant from
each other (in the ∥.∥2 sense), a simple K-means algorithm can be used to cluster v(x; θ) for posi-
tive and negative x’s.

To make this intuition concrete we state an informal theorem below which we make more precise in
the appendix.

Theorem 1 (Informal). Consider the formulation in equation 5 and assume that all the layers of
the neural network x 7→ g(x; θ) are sufficiently wide (large number of channels). We run gradient
updates on the loss equation 5 with an appropriate choice of step size η starting from random
initialization. We assume that the scale of initialization of the network is sufficiently large (i.e. the
standard deviation of the weights at initialization). Then, with early stopping at a time T (specified
in the appendix) we have

v(xp
i ; θT ) = v(xup

i ; θT ) ≈
µP + αµU

1 + α
and v(xun

i ; θT ) ≈ µU

holds for all i with high probability.
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We note that the above theorem holds for a rather broad range of step sizes (see Appendix A for a
precise description).

Although the loss function in equation 5 is written in terms of α, nup and nun which are assumed
unknown in this work, it is easy to see that using the empirical estimates of α ≈ nup

nu
and 1 − α ≈

nun

nu
, we have α

nup
= 1−α

nun
≈ 1

nu
which results in

min
θ

L̄(θ) = min
θ

1

np

np∑
i=1

[∥v(xp
i ; θ)− µP ∥22] +

1

nu

nup∑
i=1

[∥v(xup
i ; θ)− µU∥22]

+
1

nu

nun∑
i=1

[∥v(xun
i ; θ)− µU∥22] (6)

= min
θ

1

np

np∑
i=1

[∥v(xp
i ; θ)− µP ∥22]+

1

nu

nu∑
i=1

[∥v(xu
i ; θ)− µU∥22]

This allows the optimization of the loss in equation 5 without the need of any knowledge about α.

3.3 STOPPING CRITERIA

One major difference between supervised learning and learning from PU data is the absence of
any completely labeled validation sets. Consequently, there is no obvious metric that can be used
in general to avoid overfitting. Some existing PU learning methods design a model such that it
eventually converges to the correct answer after exhaustive training (Garg et al., 2021), (Zamzam
et al., 2023). One significant disadvantage of these methods is that the speed of convergence is
unknown, hence, there is no definitive way of determining a reasonable stopping point. As a result,
to increase confidence in the correctness of the solution, one has to train the model for a large number
of epochs.
In this study, the K-means algorithm is the primary model utilized to differentiate between positive
and negative samples. Consequently, the outputs of the K-means algorithm (applied on the unlabeled
data during training) are used to identify the overfitting behavior. By the design of the loss function,
the unlabeled samples are driven toward one vector, and the positive samples are driven toward
another vector, relying on the challenge introduced to the encoder network in differentiating between
labeled and unlabeled positive samples, hence, they are projected to a linear combination of the
vectors. An overfitting encoder network would start memorizing the labeled and unlabeled positive
samples, projecting each of them to the corresponding vector in the loss function. Since the K-means
algorithm is applied on the unlabeled data, the centers of the clusters identified by the algorithm
will start getting closer to each other as the unlabeled data gets memorized and dealt with by the
network in the same way. These centers identified by the K-means algorithm are monitored during
the training and the training of the encoder network is stopped once the distance between the two
centers starts decreasing.

4 RELATED WORK

The PU learning problem has been discussed in the literature for at least 25 years. More recently due
to the growing data requirements of machine learning and deep learning models, various approaches
have been developed to address the issue in different fields where the labeling of one or more classes
is impractical or costly ((Liu et al., 2003), (Yu et al., 2004), (Zhang & Lee, 2005), (Elkan & Noto,
2008), (Zamzam et al., 2023) (Hsieh et al., 2015), (Chiaroni et al., 2020),(Garg et al., 2021), (Zhao
et al., 2022)).
A common approach to deal with the PU learning problem is to consider the unlabeled observations
as belonging to the negative class and dealing with their labels as noisy labels. To accomplish this,
a binary classifier is trained using a biased cost function that places a higher penalty for the misclas-
sification of positive samples compared to that of the unlabeled (noisy negative) samples (Liu et al.,
2003), (Hsieh et al., 2015), (Mordelet & Vert, 2014). Another related class of methods assumes a
known prior probability for the positive class P (Y = 1). By incorporating this known class prior,
the bias in the cost function can be accurately weighted towards the positive class. Alternatively,
one can train a binary classifier by assuming that only a subset of unlabeled samples with the lowest
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loss values are reliable negative samples. The number of samples chosen in the subset must ensure
that the proportion of the remaining samples in the unlabeled set is equal to the positive class prior
(Kiryo et al., 2017) (Zhao et al., 2022) (Plessis et al., 2015). The main disadvantage of this class
of methods is that in practice, the positive class prior is rarely known. To overcome this, a family
of methods has been proposed to solve the problem by estimating the positive class prior as a first
step, and subsequently, a classifier is trained using this information (Ivanov, 2020). Alternating be-
tween the step of estimating the prior and training the binary classifier has also been used in (Garg
et al., 2021) (TEDn). Another class of PU learning methods defines a distance metric to identify
the unlabeled observations that are the furthest from the positive samples. These observations are
then treated as reliable negatives, reducing the problem to the supervised setting where both reliable
negative and positive samples are available (Yu et al., 2004) (Grinenko et al., 2018). An alterna-
tive way of finding reliable negative examples is to generate them using a Generative Adversarial
Network (GAN) (Chiaroni et al., 2020) (Zamzam et al., 2023), similarly, reducing the problem to a
supervised setting. However, generating negative samples and relying on them to train a classifier
in an supervised way often shows deterioration of the performance as the complexity of the data
increases.

Here we propose a method to use the unlabeled and positive data to train an encoder that learns
to encode the data to a representation space, where the positive and negative samples are distant
enough from each other to be identified using a K-means algorithm. After applying the K-means
algorithm to the unlabeled data, we used the labeled positive samples to determine which of the two
resulting clusters corresponds to the positive class. Details of the proposed method and empirical
comparisons with other methods are presented below.

5 EXPERIMENTS

5.1 USED DATASETS

We use 4 different datasets to evaluate the performance of the proposed method, namely MNIST
(Deng, 2012), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky, 2009), and animal faces
(AFHQ) (Choi et al., 2020). The positive and negative classes are defined respectively as the last
five classes vs. first five classes on Fashion-MNIST (classes: T-shirt, Trouser, Pullover, Dress, Coat,
Sandal, Shirt, Sneaker, Bag, and Ankle boot), animal versus not animal images on CIFAR-10, even
versus odd digits on MNIST dataset, and cat versus dog images on AFHQ.
We construct the training dataset X = {x1, ..., xp, xp+1, ..., xp+n}, consisting of p positive samples,
and n negative samples. We randomly sample α|XU | samples from the positive samples along with
(1− α)|XU | negative samples to constitute the unlabeled set, where α is the proportion of positive
samples in XU , and |XU | is the size of XU . We use the same data splits as in (Zamzam et al., 2023)
to compare the different methods.

5.2 BASELINE METHODS

We compare our method to three state-of-the-art PU learning methods that have shown good perfor-
mance on image datasets. The first method is Observer-GAN (Zamzam et al., 2023), which uses a
GAN-based setup to train a classifier to learn features from the positive and unlabeled data that can
be used to differentiate between positive and negative samples. The second is TEDn(Garg et al.,
2021), which uses an alternating procedure between the problem of estimating the positive prior α,
and the problem of learning a binary classifier. The third method, D-GAN (Chiaroni et al., 2020),
uses a two-step approach: in the first step, the generator network in a GAN is trained to generate
pseudo-negative samples, and in the second step, a binary classifier is trained on the positive sam-
ples and the generated pseudo-negative samples. Since the first two methods claim convergence to
the correct solution, and there is no clear way to stop training at an early stage, we follow the same
method of training each of the methods for 1000 epochs. We then look at the average performance of
the last 50 and 100 epochs. For the third method, no specific criteria were presented for terminating
the training of the second-stage classifier. Therefore, we train the classifier and apply early stopping
based on a fully labeled validation set to prevent the second-stage classifier from overfitting.
For our proposed method, we look at the Euclidean distance between the two clusters identified
by the K-means algorithm (applied to the training set), and stop training when this distance starts
decreasing. Figure 4 shows that even though the accuracy on the validation set does not change
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dramatically after it reaches about 20 epochs, the point at which the distance between the two clus-
ters found using the training set is largest also corresponds to the point of highest accuracy for the
validation data. This behavior was evident in all experiments.

Figure 4: Left: Accuracy curve as a function of the number of epochs on the test data. Right: The
Euclidean distance between the centers of the two clusters identified by the K-means algorithm on
the unlabeled (training) data.
5.3 TRAINING SETUP

We utilized a neural network with six convolutional layers for all datasets. We choose the dimension
of each output vi(x) and codebook vector to be 64. The number of the codebook vectors was 512,
and they were all initialized from a normal distribution N (0, I), where 0 is the vector of all zeros.
We trained the proposed method on the loss function L specified in equation 1. We use Adam as the
optimization algorithm with a learning rate of 10−4. We adopted the training specifications outlined
in the original publications for all baseline methods.

5.4 COMPARISONS OF THE RESULTS

Table 2 shows the testing accuracy of each of the considered models on each of the datasets. The
proposed method (VQ K-means) shows superior performance compared to all baseline methods.

In Table 1 we compare the number of epochs needed by each of the methods to reach 90% of its
maximum attained accuracy when trained on the (AFHQ) dataset. The table shows that the simplic-
ity of the proposed method (VQ K-means) allows for faster learning compared to other methods.
We excluded the number of epochs for D-GAN from the table since it did not outperform random
chance on this particular dataset.

Table 1: Number of epochs needed to reach 90% of the highest accuracy

Method TEDn Observer VQ K-means
number of epochs 43 220 11

D-GAN TEDn Observer VQ K-means
Early Stop 50 100 50 100 highest distance

AFHQ (Cats vs. Dogs) 50.3± 0.2 86.8± 12 89.9± 14.9 91± 1.1 90.1± 3.2 95.3± 1.3
CIFAR (Animal vs. Not Animal) 82± 1.1 88± 2.5 87.7± 4.6 89.6± 0.7 88.8± 1.7 91.1± 0.7

MNIST (Even vs. Odd) 98.3± 0.1 97.7± 0.4 97.7± 0.4 98.3± 0.2 97.8± 1.6 98.1± 0.1
Binarized Fashion MNIST 89.6± 0.2 88.5± 0.9 88.1± 1 92.6± 0.3 92± 1 93.3± 0.75

Table 2: Summary of experimental results averaged over 5 trials: Left-most column is the dataset,
and upper-most row is the method used. Stopping Criteria: We report the best performing model
when using D-GAN, the mean and standard deviation of the accuracy (%) of the last 50 and 100
epochs when using TEDn or the Observer network, and the mean and standard deviation of the
accuracy of the 5 models corresponding to the largest Euclidean distances between the centers of
the clusters identified by K-means clustering of the unlabeled training data.

5.5 ABLATION STUDY

We empirically study various adaptations of the proposed method to evaluate the importance of
each component. Initially, we study the implementation of the idea presented in section 3.2 where

8



Under review as a conference paper at ICLR 2024

we project the input data to two constant vectors. Here one of the vectors is µU = 0, where 0 is
the all-zero vector, and the other vector is µP = a where a is a scalar that takes value from the set
{1, 5, 50, 100} (we report mean and standard deviation of accuracy of all trials), and a is the vector
of all a’s. This experiment is referred to as ”Constant encodings” in Table 3.
Next, we implement the idea while considering two normal distributions U ∼ N (0, I) and
P ∼ N (a, I) instead of µU , and µP respectively, where N (a, I) is the normal distribution that
has a mean vector of all a’s, and identity covariance matrix. Again, we let a to take values from the
set {1, 5, 50, 100} (we report mean and standard deviation of accuracy of all trials). In this case, we
penalize the KL divergence between the encoded vectors and the two normal distributions U and P .
This variant is named ”distributional encodings” in Table 3.
Thirdly, we assess the impact of the number of codebook vectors. We implement the proposed
method using the minimal feasible number of codebook vectors, which is two vectors.The resulting
accuracy is presented in Table 3 and referred to as ”VQ (2 updated C.B. vectors).
Fourth, we explore the significance of updating the codebook vectors during the vector quantiza-
tion of the representation space. We replicated our previous experiments but this time without any
updates to the codebook vectors. In this case, because the idea of the method relies on having two
distinct magnitudes of vectors in the representation space, we initialize the codebook vectors to
have two modes, such that half of the codebook vectors are initialized from a normal distribution
N1(0, I)), and the other half is initialized from a normal distribution N2(a, I)). Here a took values
from the set {1, 5, 50, 100}. We refer to this method in Table 3 as ”VQ (No updates)”.
Lastly, we revisited the prior configuration but with a restriction to just two codebook vectors. The
objective was to project both positive and negative samples onto one of these two vectors. This
technique is denoted as ”VQ (2 fixed C.B. vectors)” in Table 3.

Ablation Studies
Method Accuracy% (±std)

Constant Encodings 73(±4)
Distributional Encodings 69(±7)

VQ (2 updated C.B. vectors) 97(±0.5)
N (0, I), N (1, I) N (0, I), N (5, I) N (0, I), N (50, I) N (0, I)), N (100, I)

VQ (No updates) 78.9(±4.3) 95.1(±0.7) 96.7(±1) 88.9(±3.2)

VQ (2 fixed C.B. vectors) 76.3(±3) 97.3(±0.3) 96.2(±0.8) 91.4(±2.7)

Table 3: Ablation studies conducted on AFHQ dataset
The conducted experiments and ablation studies show the efficiency of learning a new representation
to learn from PU data, and the significance introduced by the quantization of the representation
space. Although the idea of learning a new representation space stems from the simple mathematical
steps shown in section 3.2, the conducted ablation studies show that quantization helps achieve
a clear separation between the positive and negative data in the unlabeled set. The ablation studies
also demonstrate the importance of allowing update of the codebook vectors when adopting a vector-
quantized representation space. Since the choice of the means of the codebook vectors seems to
impact the performance (as evident in the last two rows in Table 3), initializing all codebook vectors
with zero mean and updating them during training eliminates the need to fine-tune the means at
initialization.

6 CONCLUSION

This work addresses the PU learning problem using a simple and yet effective method based on
applying the K-means clustering algorithm in a learned representation space. The main idea of this
paper comes from the simplicity of the PU learning problem in low-dimensional settings, as Figure
1 illustrates. The failure of some existing PU learning methods on typical PU learning problems is
inherent to the high-dimensional complexities of the data. The primary objective of this paper is to
address the limitations of existing techniques when used on high-dimensional data by learning a new
representation space for the data such that it imitates the phenomenon observed in low-dimensional
settings. The learning process of the representation space is optimized to produce two distinct and
separable clusters representing the positive and negative class distributions. Quantizing the learned
representation space is shown to improve the performance of the method in producing separable
clusters. Comparison of the proposed method to current state-of-the-art PU learning techniques
shows that our method outperforms others in terms of accuracy across 4 different imaging datasets.
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A APPENDIX

In this section we wish to justify the informal theorem. We investigate the minimization function
mentioned in equation 5. We note that this loss can be rewritten in the form

L̂(θ) := ∥f(θ)− y∥22
where

f(θ) :=
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np
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and y :=


1√
np

1np ⊗ µP
√
α√

nup
1nup

⊗ µU
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1−α√
nun

1nun ⊗ µU



where ⊗ denotes the Kronecker product. With this nonlinear least squares formulation one can use
well established Neural Tangent Kernel (NTK) theory to show that the for sufficiently wide networks
and sufficiently large scale of initialization the iterative updates and the output of the network remain
close to that of the iterative updates on a linear problem of the form

∥Jθ − y∥22 (7)

where J denotes the Jacobian of the mapping f at random initialization. This is a direction con-
sequence of the argument in Section 5.3 of (Oymak et al., 2019) combined with NTK eigenvalue
characterizations for deep convolutional networks in (Du et al., 2019). This argument is by now
standard, and thus we omit unnecessary repetition given the informal/qualitative statement of our
theorem and focus on the linearized form in equation 7. Without loss of generality we can focus on
the case where µP and µU are scalar valued as the argument in the general case follows the exact
same proof and can be thought of as repeating the scalar argument across the coordinates of µP /µU .
The loss in this case can also be alternatively written in the form

L̃(θ) = min
θ

1

np
∥Jpθ − µP1∥2 +

α

nup
∥Jupθ − µU1∥2 +

1− α

nun
∥Jupθ − µun1∥2 (8)

Where Jp ∈ Rnp×d is the Jacobian matrix corresponding to the positive labeled samples, similarly,
the matrices Jup ∈ Rnup×d and Jun ∈ Rnun×d correspond to the unlabeled positive and negative
samples, respectively, and θ ∈ Rd×1 is the linear model, and 1 is the all 1 vector.

For convenience, the three loss terms can be combined into a tall concatenated matrix as follows:

L̃(θ) =

∥∥∥∥∥


Jp√
np

θ − µP√
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Thus in this case J corresponds to
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Applying gradient descent to minimize the loss function, the update rule for θ is :

θt+1 = θt − ηJT (Jθt − y)

Where η is the learning rate. Defining the residual vector rt := Jθt − y after t iterations we have

rt = Jθt − y = Jθt−1 − y − ηJJT (Jθt−1 − y)

= (I − ηJJT )(Jθt−1 − y)

= (I − ηJJT )rt−1

=
(
I − ηJJT

)t
r0 (10)

With sufficiently small or asymmetric initialization ((Oymak et al., 2019)) we can ensure θ0 ≈ 0
which implies that the initial residual is r0 = Jθ0 − y ≈ −y, hence,

Jθt = y −
(
I − ηJJT

)t
y (11)

Now consider the vector w =


√
α1√
np

−1√
nup

0

. The critical observation is that this vector is approximately

in the null space of JT . To see this note that

JTw =
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(12)

JT
p 1

np
and

JT
up1

nup
are simply the empirical average of the NTK features over the labeled and unlabeled

positive pairs. Since these two distributions are identical they converge to the same population mean.
Let us denote this common mean by ϕ. Thus,

∥JTw∥ =
√
α

∥∥∥∥∥JT
p 1

np
− ϕ−

(
JT
up1

nup
− ϕ
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√
α
√
δ

where the latter holds with high probability do to the concentration of the empirical mean
around the true mean under mild technical assumptions about the NTK kernel and data distribu-
tions.Indeed, if the features are sub-Gaussian (e.g. bounded) one can show that

√
δ scales with

max
(
1/
√
np, 1/sqrtnup

)
and can thus be made arbitrarily small for a sufficiently large data set. To

continue define the unit norm vector ŵ = w√
1+α

and note that

ŵTJJT ŵ ≤ α

α+ 1
δ ≤ δ.

Now, we can decompose y into it’s orthogonal projections onto ŵ where ŵ = w√
1+α

: y = y∥+y⊥ =

ŵŵT y +
(
I − ŵŵT

)
y.
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To continue note that
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Furthermore,
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µP + αµU

1 + α
JT
p 1+

α

nup

µP + αµU

1 + α
JT
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Now using concentration of the rows of different J the above is approximately equal to the following
with high probability

JT y⊥ ≈ (µP + αµU )ϕ+ (1− α)µU ϕ̃

where ϕ and ϕ̃ are the average of the NTK features in the positive and unlabeled negative data. Thus,
for v̂ = y⊥/∥y⊥∥2 we have

vTJJT v =
1

∥y⊥∥22
yT⊥JJ

T y⊥ ≥ (1 + α)
∥ (µP + αµU )ϕ+ (1− α)µU ϕ̃∥22

µ2
P + µ2

U + 2αµPµU
:= ∆

Thus in the direction of ŵ the NTK kernel JJT is small where as in the direction v̂ it is large. Intu-
itively, this implies that (I−ηJJT )ty⊥ is small for a sufficiently large t where as (I−ηJJT )ty∥ ≈
y∥. Indeed, we can make this intuition precise and prove that

∥(I − ηJJT )ty⊥∥2 ≤ (1− η∆)
t ∥y⊥∥2 and ∥y∥ − (I − ηJJT )ty∥∥2 ≤

(
1− (1− ηδ)t

)
∥y∥∥2

Since δ can be made arbitrarily small for a sufficiently large data set we have δ << ∆ therefore for
a broad range of values of η one can find a stopping time T where both terms are very small. For
instance for η = 1

2∆ picking any stopping time obeying
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we have

∥(I − ηJJT )T y⊥∥2 ≤ ϵ

2
∥y⊥∥2 and ∥y∥ − (I − ηJJT )T y∥∥2 ≤ ϵ

2
∥y∥∥2

using the above identities we conclude that
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This formally proves that for an appropriate stopping time T

JθT ≈ y⊥ (13)

Pulling back the definition of J :

JθT =
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Resulting in:

JpθT = JupθT ≈ µP + αµU

1 + α
1, and Junθt ≈ µU1

B APPENDIX

B.1 TESTING THE SPEED OF K-MEANS ALGORITHM AFTER EACH ITERATION

We test the speed of running the K-means algorithm when training on different datasets, and Table
4 shows the results. The table shows the average and standard deviation of the time elapsed by
the K-means algorithm after each training epoch in seconds for each of three datasets, along with
the dimensions of the learned representation the algorithm is run on and the number of samples.
Although increasing data size will increase the time of running the algorithm, we expect the time
to only increase linearly as the time complexity of K-means is linear in dimensions and number of
samples. It should be pointed out that the K-means algorithm in the proposed method is run on the
learned representation space, which is in lower dimensions than the input data.

Dataset MNIST Fashion MNIST AFHQ
# of Samples, # of dimensions 19000, 49 19000, 49 3300, 1024

K-means Elapsed Time (s) 0.0207± 0.0038 0.0292± 0.0174 0.3681± 0.0071

Table 4: Time Elapsed in running K-means algorithm after each training epoch

B.2 TESTING DIFFERENT α VALUES

We conducted an experiment to assess the effectiveness of our method when the likelihood of pos-
itive samples was either less or greater than that of negative samples, characterized by different α
values. We then compared the outcomes of this experiment with the results obtained using TEDn

method in Table 5.

α = 0.2 α = 0.4 α = 0.5 α = 0.6 α = 0.8
TEDn 86.9± 1 89.5± 2.5 89.9± 14.9 81.5± 3.7 71.1± 2

VQ K-means 97.6± 1.1 96.5± 0.7 95.4± 1.3 84.3± 1.1 70.2± 2.1

Table 5: Classification results with different α values

B.3 COMPARISON AGAINST MORE METHODS

Here we provide comparisons of the proposed method to Robust-PU (Zhu et al., 2023) and Dist-PU
(Zhao et al., 2022). Table 6 shows the results table including the two additional methods.
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D-GAN TEDn Observer VQ K-means Robust-PU Dist-PUEarly Stop 50 100 50 100 highest distance
AFHQ (Cats vs. Dogs) 50.3± 0.2 86.8± 12 89.9± 14.9 91± 1.1 90.1± 3.2 95.3± 1.3 65.8± 1.4 83.9± 0.6

CIFAR (Animal vs. Not Animal) 82± 1.1 88± 2.5 87.7± 4.6 89.6± 0.7 88.8± 1.7 91.1± 0.7 83.8± 1.3 87± 1.1
MNIST (Even vs. Odd) 98.3± 0.1 97.7± 0.4 97.7± 0.4 98.3± 0.2 97.8± 1.6 98.1± 0.1 97.1± 0.4 91.4± 0.5

Binarized Fashion MNIST 89.6± 0.2 88.5± 0.9 88.1± 1 92.6± 0.3 92± 1 93.3± 0.75 90.7± 0.2 86± 1.6

Table 6: Summary of experimental results averaged over 5 trials
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