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Abstract

Unmanned Aerial Vehicle (UAV) Vision-and-001
Language Navigation (VLN) is vital for ap-002
plications such as disaster response, logistics003
delivery, and urban inspection. However, ex-004
isting methods often struggle with insufficient005
multimodal fusion, weak generalization, and006
poor interpretability. To address these chal-007
lenges, we propose FlightGPT, a novel UAV008
VLN framework built upon Vision-Language009
Models (VLMs) with powerful multimodal per-010
ception capabilities. We design a two-stage011
training pipeline: first, Supervised Fine-Tuning012
(SFT) using high-quality demonstrations to013
improve initialization and structured reason-014
ing; then, Group Relative Policy Optimiza-015
tion (GRPO) algorithm, guided by a compos-016
ite reward that considers goal accuracy, rea-017
soning quality, and format compliance, to en-018
hance generalization and adaptability. Fur-019
thermore, FlightGPT introduces a Chain-of-020
Thought (CoT)-based reasoning mechanism to021
improve decision interpretability. Extensive022
experiments on the city-scale dataset CityNav023
demonstrate that FlightGPT achieves state-of-024
the-art performance across all scenarios, with025
a 9.22% higher success rate than the strongest026
baseline in unseen environments. Our imple-027
mentation is publicly available1.028

1 Introduction029

With the rapid advancement of Unmanned Aerial030

Vehicles (UAV) technology, vision-and-language031

navigation (VLN) has emerged as a critical ca-032

pability for UAV applications (Fan et al., 2022;033

Li et al., 2025; Sautenkov et al., 2025; Wu et al.,034

2024). Specifically, UAV VLN involves the ability035

to comprehend and integrate natural language in-036

structions with visual observations, enabling UAVs037

to plan and execute flight missions in complex038

and dynamic real-world environments (Wang et al.,039

1https://anonymous.4open.science/r/
FlightGPT-95C0

2024c). This capability has demonstrated signif- 040

icant value across a variety of practical scenar- 041

ios (Wang et al., 2024b). For example, during dis- 042

aster relief operations, UAVs can rapidly identify 043

disaster-affected areas and plan safe routes based 044

on rescue instructions, thereby improving the ef- 045

fectiveness of search and rescue missions (Estrada 046

and Ndoma, 2019). 047

Despite numerous methods being developed for 048

UAV VLN task — such as sequence-to-sequence 049

(Seq2Seq) (Fried et al., 2018), Cross-Modal At- 050

tention (CMA) (Liu et al., 2023), and Map-based 051

Goal Predictors (MGP) (Lee et al., 2024) — several 052

critical challenges remain in practical applications. 053

Insufficient multimodal information fusion. 054

Existing methods often perform simple concate- 055

nation or shallow fusion of image and text inputs, 056

lacking effective integration of deep semantic un- 057

derstanding and visual perception. Therefore, navi- 058

gation strategies are prone to misinterpretation of 059

complex instructions and perception errors, leading 060

to suboptimal navigation performance. 061

Weak generalization and poor dynamic adapt- 062

ability. Existing models typically rely heavily on 063

the training environment and lack generalization 064

capabilities in Out-of-Distribution (OOD) environ- 065

ments. When encountering unfamiliar environ- 066

ments or dynamic obstacles, their navigation per- 067

formance degrades significantly, making reliable 068

execution challenging. 069

Limited Interpretability of Navigation Deci- 070

sions. Most current approaches directly output 071

navigation decisions without providing clear in- 072

termediate reasoning steps. The decision-making 073

logic is opaque to users, making it difficult to diag- 074

nose errors or refine navigation strategies, which 075

limits the system’s reliability and maintainability. 076

To address these challenges, we propose Flight- 077

GPT, a novel UAV VLN framework, as illus- 078

trated in Fig. 1. The system is built upon Vision- 079

Language Models (VLMs) to support multimodal 080
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understanding, strong generalization and adaptabil-081

ity, and interpretable reasoning. The design of082

FlightGPT focuses on three techniques:083

VLM-based multimodal integration. Utilizing084

the capacity of VLMs, visual and textual inputs085

are effectively integrated to enhance multimodal086

perception and understanding.087

Two-stage training pipeline. A two-stage train-088

ing pipeline is designed, starting with supervised089

fine-tuning (SFT) on high-quality demonstrations090

to warm up the policy, followed by reinforcement091

learning (RL) with a task-specific reward designed092

for UAV VLN to improve model generalization.093

Chain-of-Thought based reasoning module.094

A structured reasoning mechanism is introduced095

using explicit <think> / <answer> tags, forming a096

Chain-of-Thought (CoT) reasoning process. This097

design enables the model to “think before acting”098

and improves reasoning quality.099

The main contributions of this work are summa-100

rized as follows:101

1. We leverage an end-to-end VLM that effec-102

tively integrates visual and textual inputs for103

enhanced multimodal comprehension.104

2. A two-stage training pipeline is developed,105

where SFT helps accelerate convergence and106

stabilize training, followed by RL to enhance107

the model’s generalization and adaptability.108

3. A CoT reasoning mechanism is introduced109

to improve the model’s reasoning quality, re-110

sulting in reasoning processes that are more111

complete, coherent, and fluent.112

4. We evaluate FlightGPT on CityNav, a large-113

scale benchmark based on real-world urban114

environments. The model achieves state-of-115

the-art performance, and demonstrates strong116

generalization.117

2 Related Work and Motivation118

2.1 Evolution of UAV Vision-and-Language119

Navigation120

UAV VLN plays a key role in enabling intelligent121

flight in complex environments, and its research122

has undergone continuous evolution. Early UAV123

VLN approaches adopted Seq2Seq models that en-124

coded language instructions into fixed represen-125

tations for action generation (Fried et al., 2018).126

CMA mechanisms were later proposed to enhance127

alignment between navigation instructions and vi- 128

sual observations (Liu et al., 2023), while the Self- 129

Monitoring model incorporated auxiliary progress 130

estimation to support self-correction during navi- 131

gation (Ma et al., 2019). With the rise of Trans- 132

former architectures, pretrained models such as 133

VLN-BERT (Hong et al., 2021) were introduced, 134

employing a multimodal BERT structure to inte- 135

grate language and visual trajectories. Alongside 136

method development, UAV VLN benchmarks have 137

also evolved. AerialVLN (Liu et al., 2023) intro- 138

duced a high-fidelity 3D simulation environment 139

for language-guided flight, while CityNav (Lee 140

et al., 2024) provides a city-scale dataset with GPS, 141

imagery, and natural language, increasing task di- 142

versity and evaluation complexity. These develop- 143

ments have promoted the intelligent evolution of 144

UAV VLN technologies and the standardization of 145

benchmark datasets. 146

2.2 Vision-Language Models for Multimodal 147

Perception in Navigation 148

VLMs, pretrained on large-scale image-text cor- 149

pora, have demonstrated strong capabilities in uni- 150

fying visual and linguistic modalities, making them 151

increasingly relevant to navigation tasks that de- 152

mand rich semantic perception. Early models such 153

as UNITER (Chen et al., 2020) aligned image and 154

text features in a joint embedding space, while 155

CLIP (Radford et al., 2021) introduced contrastive 156

learning for open-vocabulary visual recognition, 157

greatly improving the generalization of multimodal 158

representations. Recent VLMs like GPT-4V (Ope- 159

nAI et al., 2024b), Gemini 1.5 (Team et al., 2024), 160

and Qwen2-VL (Wang et al., 2024a) further ex- 161

pand this capability, enabling unified interfaces for 162

vision-language reasoning and decision support. In 163

navigation contexts, researchers have preliminarily 164

shown that VLMs can directly process multimodal 165

inputs to generate navigation trajectories or struc- 166

tured subtasks (Wang et al., 2024c). This ability 167

to unify visual perception with language under- 168

standing positions VLMs as a promising founda- 169

tion for bridging high-level task interpretation and 170

low-level action control in navigation. 171

2.3 Reinforcement Learning for Enhancing 172

Generalization in Navigation 173

RL has emerged as an effective mechanism for en- 174

hancing both the reasoning capabilities and gen- 175

eralization performance of large language mod- 176

els (LLMs) and embodied agents. DeepSeek- 177
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Target
Historical trajectory

  Future trajectory

Find The small gray 
building on the Milton 
Walk that is connected 

to a playground.
Human

UAV

FlightGPT

SFT

GRPO

Training stage

<think>The target is a small gray building
on Milton Walk that is connected to a playground.  

The location for the Milton Walk is: [x1, y1, x2, y2]
The target is on Milton Walk, and it is near the 

playground, which is the gray area with some 
structures.<\think>

<answer> {“target_location”: [x, y]} <\answer>

Current Position: 
“x”:320.25, “y”:210.39, 
“z”:16.04, “yaw”:66.42

Look-ahead Guidance

forward turn left forward turn right forwardText

Image

Start Position

Current Position

Figure 1: Workflow of FlightGPT for UAV VLN. FlightGPT takes multimodal input comprising a semantic map
image and a natural language instruction, performs Chain-of-Thought reasoning to infer the target location, which is
used for subsequent executable actions.

R1 (DeepSeek-AI et al., 2025) applies large-scale178

RL to optimize chain-of-thought reasoning in lan-179

guage models, yielding strong performance in com-180

plex tasks such as mathematical problem solving181

and code generation. Beyond static reasoning, RL182

has also been leveraged to improve model adapt-183

ability in interactive settings. GROOT (Zhu et al.,184

2023) trains general-purpose agents in 3D envi-185

ronments through end-to-end RL, demonstrating186

the ability to generalize across diverse manipula-187

tion tasks via object-centric representations. These188

studies highlight the dual role of RL: not only rein-189

forcing structured reasoning in LLMs, but also en-190

hancing their robustness and transferability across191

dynamic and multi-task environments. Such ca-192

pabilities are particularly valuable for UAV VLN,193

where agents must interpret diverse language in-194

puts and adapt to complex, ever-changing visual195

contexts.196

2.4 Limitations of Existing Work and197

Motivation for FlightGPT198

While recent advances in VLMs have improved199

multimodal perception and RL has shown strong200

potential in enhancing policy generalization, their201

application in UAV VLN remains limited due to202

challenges in action reliability and training sta-203

bility. To address these limitations, we propose 204

FlightGPT, a unified framework that combines the 205

perceptual capabilities of VLMs with the adaptive 206

learning strengths of RL to provide a more general- 207

izable and effective solution for UAV VLN. 208

3 Method 209

3.1 Problem Formulation 210

We focus on the task of UAV VLN, which requires 211

the UAV to reach a designated target in a three- 212

dimensional environment. The navigation process 213

is guided by both a natural language description 214

of the target and the UAV’s visual perception of 215

its surroundings. Specifically, each task can be 216

formalized as a triplet (I,D,E), where: 217

• I denotes the initial state of the agent, including 218

its position and heading angle; 219

• D represents a natural language description of 220

the target, typically including details about the 221

target and its surrounding landmarks; 222

• E refers to a three-dimensional environment with 223

realistic spatial layouts and rich geographic se- 224

mantics, where the UAV can access various per- 225

ceptual inputs such as key landmarks, as well as 226

RGB/depth maps from its first-person viewpoint. 227
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The agent accomplishes the navigation task by228

executing a sequence of discrete actions, includ-229

ing forwad, turning left, turning right, ascend,230

descend, stop. When the agent determines that it231

has arrived near the target, it can choose the stop232

action. The navigation is considered successful if233

the final position of the UAV is within a predefined234

distance threshold (e.g., 20 meters) from the target.235

3.2 FlightGPT236

3.2.1 System Overview237

Fig. 1 illustrates the inference process of FlightGPT238

when executing the UAV VLN task, which consists239

of the following steps:240

1. Input Acquisition. The system collects in-241

puts from the environment, including a semantic242

map (annotated with the UAV’s current position,243

heading angle, first-person field of view, and known244

landmark information) and a textual description245

(containing the UAV’s current position and a natu-246

ral language description of the target).247

2. Reasoning and Target Prediction. Follow-248

ing the paradigm adopted by several existing meth-249

ods (e.g., Seq2Seq, CMA, MGP), we adopt a se-250

quential workflow that first predicts the target loca-251

tion and then plans the navigation actions. Flight-252

GPT generates a structured reasoning process and253

outputs a prediction of the target location.254

3. Action Planning. Following the approach255

proposed in AerialVLN (Liu et al., 2023), we in-256

corporate a look-ahead mechanism into our system,257

enabling the simulation of future trajectories for258

generating executable actions.259

4. Environment Interaction. The UAV exe-260

cutes the planned actions in the environment and261

updates its state.262

This process is iteratively repeated until the UAV263

either executes a stop action or reaches a predefined264

maximum number of iterations.265

Inspired by the training process of DeepSeek-266

R1 (DeepSeek-AI et al., 2025), we design a two-267

stage training pipeline to equip FlightGPT with the268

aforementioned capabilities, as illustrated in Fig. 2.269

• Stage 1: SFT. We use a strong model to generate270

training data that includes CoT-style reasoning271

processes. After selecting high-quality samples,272

we perform SFT to train the initial model. This273

stage is designed to provide the model with a274

solid initialization and to endow it with the ability275

to perform structured reasoning.276

• Stage 2: RL. Building upon the SFT stage, we in- 277

troduce a reinforcement learning phase based on 278

the Group Relative Policy Optimization (GRPO) 279

algorithm, guided by carefully designed rewards. 280

Specifically, we define three types of rewards: 281

Goal Accuracy Reward, Intermediate Reasoning 282

Reward, and Format Reward. This stage aims to 283

enhance the model’s generalization ability and ro- 284

bustness in complex and dynamic environments. 285

3.2.2 SFT for Warm-up 286

While VLMs exhibit strong multimodal understand- 287

ing, they still struggle with perception and decision- 288

making tasks in complex and dynamic environ- 289

ments, such as UAV VLN. Meanwhile, RL often 290

suffers from unstable convergence when trained 291

from scratch. To address these challenges, we in- 292

troduce a SFT stage that leverages high-quality 293

demonstrations to warm up the model, providing a 294

solid initialization for subsequent RL optimization. 295

Input, Prompt, and Output Design To enable 296

structured output generation and strong reasoning 297

capabilities, we design the input, prompt, and out- 298

put format during the SFT stage as follows: 299

Input The input is composed of two parts: (1) 300

Semantic Map, which is a map annotated with the 301

UAV’s current position and heading angle, the first- 302

person view region projected on the map, and the 303

locations of known landmarks; and (2) Textual In- 304

formation, which describes the UAV’s current state 305

information, including its position and heading an- 306

gle, along with a natural language description of 307

the target. 308

Prompt To enable structured reasoning and en- 309

hance interpretability, we design a prompt tem- 310

plate that explicitly induces a CoT style reasoning 311

process. The prompt includes a detailed system 312

message outlining the UAV’s role and mission ob- 313

jective, along with structured descriptions of both 314

the semantic map and the textual target instruc- 315

tion. It guides the model to reason step-by-step 316

within dedicated <think> tags—covering semantic 317

understanding of the target, landmark identifica- 318

tion, and spatial inference, and to produce the final 319

location prediction within <answer> tags. This 320

CoT-style prompting not only improves reasoning 321

completeness but also provides an interpretable 322

output format that facilitates model debugging and 323

performance analysis. The full prompt template is 324

provided in Appendix A. 325

Output The output consists of two components: 326
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UAV’s final position

Target position

Predicting landmark

Actual landmarkRaw data

SFT Goal Accuracy Reward

Intermediate Reasoning Reward
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model
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{“landmark”:[x1,y1,x2,y2]} 
{“target_location”:[x, y]} 
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Output
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Figure 2: The two-stage training pipeline of FlightGPT. The pipeline consists of a supervised fine-tuning (SFT)
stage using CoT-annotated data generated by a powerful VLM, followed by reinforcement learning (RL) with
composite rewards, including goal accuracy, intermediate reasoning, and format compliance.

• <think> ... </think>: The model’s inter-327

mediate reasoning process, which may include328

understanding the target, recognizing landmarks,329

and inferring spatial relationships.330

• <answer> ... </answer>: The final predicted331

target location, which are used for generating332

subsequent executable actions.333

Data Generation Due to the lack of reasoning334

datasets tailored for UAV VLN tasks, we adopt335

the Qwen2.5-VL-32B model to automatically gen-336

erate the training data required for the SFT stage.337

Without any additional fine-tuning, we compared338

several open-source and closed-source VLMs, and339

Qwen2.5-VL-32B demonstrated the best perfor-340

mance under the same settings. Therefore, we se-341

lect it as our data generator. Specifically, we pro-342

vide Qwen2.5-VL-32B with the input and prompt343

template described in Section 3.2.2, guiding it to344

output both the reasoning process and the final pre-345

diction. To ensure the quality of the training data,346

we introduce the following filtering and augmen-347

tation mechanisms: (1) discard samples with ab-348

normal output formats; (2) discard samples where349

the predicted location is more than 20 meters away350

from the ground truth; and (3) for retained samples,351

replace the target location predicted by Qwen2.5-352

VL-32B with the ground truth.353

Training Strategy The training objective is next-354

token prediction, where the model predicts the next355

token based on the given input and previously gen-356

erated context, proceeding token-by-token until the357

entire output sequence is completed.358

3.2.3 RL for Generalization 359

Although the model acquires preliminary abilities 360

in visual-language understanding and reasoning 361

through the SFT stage, it still lacks the adaptabil- 362

ity required for complex and dynamic environ- 363

ments—particularly in terms of generalization to 364

unseen scenarios. To address this, we adopt the 365

GRPO algorithm to perform policy optimization 366

using pre-collected simulated data, based on the 367

multimodal input and prompt templates defined in 368

Section 3.2.2. 369

To jointly improve final navigation accuracy, rea- 370

soning quality, and output format consistency, we 371

design a composite reward system consisting of the 372

following three components: 373

Goal Accuracy Reward. The accuracy of the 374

predicted target location is a key indicator of the 375

system’s effectiveness. Let the UAV’s predicted 376

position be p̂ = (p̂x, p̂y) and the ground truth be 377

p∗ = (p∗x, p
∗
y). We define the reward based on their 378

distance: 379

380

Rgoal =


1, if d(p̂,p∗) ≤ dsuccess

exp

(
−d(p̂,p∗)− dsuccess

τ

)
, if dsuccess < d(p̂,p∗) ≤ dcutoff

0, otherwise

381

where: 382

• The Euclidean distance d(p̂,p∗) is defined as: 383

d(p̂,p∗) =
√
(p̂x − p∗x)

2 + (p̂y − p∗y)
2. 384

• dsuccess = 20 meters: threshold for task success; 385

• dcutoff = 80 meters: upper limit beyond which 386

no reward is given; 387
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• τ = 100: decay temperature controlling the388

sharpness of the exponential drop-off.389

This reward encourages the model to generate390

target location that are closer to the ground truth,391

thereby improving success rate.392

Intermediate Reasoning Reward. Providing393

guidance for intermediate reasoning steps is critical394

for enhancing multi-step navigation performance.395

In our task, we leverage landmarks as key inter-396

mediate signals to encourage effective reasoning397

during the <think> stage. Specifically, we intro-398

duce a reward based on the Intersection over Union399

(IoU) between the predicted landmark bounding400

box B̂ and the ground-truth bounding box B. The401

reward is defined as:402

RIoU =
Area(B ∩ B̂)

Area(B ∪ B̂)
403

If the model fails to output a valid bounding box,404

we set RIoU = 0. This mechanism incentivizes405

spatial reasoning before location prediction and406

contributes to more stable and interpretable inter-407

mediate representations.408

Format Reward. To ensure the model generates409

structured outputs, we introduce a format compli-410

ance reward. This reward encourages the model411

to produce outputs that follow a predefined format,412

with both the reasoning and action sections clearly413

presented and containing the required information.414

• If the output includes both <think> and415

<answer> tags properly enclosing the reasoning416

and answer segments, a reward of +0.5 is given;417

• If a "landmark_bbox" field in the format [x1,418

y1, x2, y2] is successfully extracted within the419

<think> tag, an additional +0.25 is granted;420

• If a "target_location" field in the format [x,421

y] is successfully extracted within the <answer>422

tag, another +0.25 is granted.423

This reward helps stabilize the model’s output424

structure, facilitating controllability and enabling425

downstream execution or interpretation.426

Overall Reward. The total reward used for pol-427

icy optimization is the sum of the three components428

described above:429

Rtotal = Rgoal +RIoU +Rformat430

4 Experiments 431

4.1 Experimental Settings 432

4.1.1 Dataset 433

In this study, we utilize the CityNav (Lee et al., 434

2024) dataset, a high-quality benchmark specifi- 435

cally designed for city-scale UAV VLN tasks. City- 436

Nav comprises 32,637 human demonstration tra- 437

jectories across 5,850 target objects, constructed 438

on top of 3D urban scans from the SensatUrban 439

dataset. It covers two real-world cities, Birming- 440

ham and Cambridge, with a total area of approxi- 441

mately 4.65 km², providing rich geographic seman- 442

tics and diverse navigation scenarios. The dataset is 443

publicly available under the MIT License, enabling 444

free use for research purposes. 445

4.1.2 Evaluation Metrics 446

Following the standard evaluation protocol estab- 447

lished by CityNav, four metrics are used to evaluate 448

performance: 449

• Navigation Error (NE): The Euclidean distance 450

between the agent’s final position and the ground- 451

truth location. Lower NE indicates better local- 452

ization accuracy. 453

• Success Rate (SR): The percentage of episodes 454

in which the agent stops within 20 meters of the 455

target location. 456

• Oracle Success Rate (OSR): The proportion of 457

episodes where the agent, at any point during 458

navigation, gets within 20 meters of the target, 459

regardless of whether it stops. 460

• Success weighted by Path Length (SPL): A 461

metric that adjusts SR by penalizing unnecessar- 462

ily long paths, encouraging efficient navigation. 463

These metrics jointly reflect the agent’s goal- 464

reaching accuracy, path efficiency, and overall nav- 465

igation robustness. 466

4.1.3 Baseline Models 467

We conduct evaluations of FlightGPT against a di- 468

verse set of representative baselines, including Ran- 469

dom, Seq2Seq, CMA, MGP, GPT-4o, Qwen2.5-VL 470

(7B / 32B), and LLaMA-3.2-11B-Vision. Brief 471

introductions for all baselines are provided in Ap- 472

pendix B. 473
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Table 1: Hyperparameters for SFT and RL stages.

Stage Batch Size LR Epochs

SFT 16 2e-5 2
RL 1 1e-5 1

4.1.4 Model and Training Configuration474

We adopt Qwen2.5-VL-7B as the base model and475

optimize it using a two-stage pipeline. For SFT,476

1,872 samples were collected and filtered from477

Qwen2.5-VL-32B outputs. For RL, 4,758 sam-478

ples were selected from the training set, cover-479

ing diverse cities, street scenes, and target types.480

The SFT stage is implemented using LLaMA-481

Factory (Zheng et al., 2024), while the RL stage482

is built upon the VLM-R1 framework (Shen et al.,483

2025). Key hyperparameters for both stages are484

summarized in Table 1.485

4.2 Experimental Results486

4.2.1 Model Performance and Generalization487

Analysis488

Table 2 summarizes the performance of various489

models across evaluation scenarios in the CityNav490

dataset. Experimental results reveal that Qwen2.5-491

VL-7B achieves reasonable performance in UAV492

VLN tasks, while its larger variant, Qwen2.5-VL-493

32B, further improves and surpasses the strongest494

traditional baseline, MGP, across multiple metrics.495

These observations underscore that base VLMs496

already possess strong visual-language perception497

and multimodal fusion capabilities, even when used498

out-of-the-box without task-specific tuning.499

On top of this foundation, FlightGPT further500

improves performance across the board. In the val-501

seen setting, it achieves the highest success rate502

17.57%, the lowest navigation error 66.1, and the503

most efficient path SPL 15.78. In more challenging504

test-unseen setting, it shows remarkable generaliza-505

tion ability, improving the success rate by 9.22%506

and nearly doubling the SPL compared to Qwen2.5-507

VL-32B, the strongest baseline model.508

It is worth noting that FlightGPT, built on the509

relatively lightweight Qwen2.5-VL-7B model, sur-510

passes the larger-scale Qwen2.5-VL-32B after the511

application of a two-stage training pipeline. This512

result highlights that, rather than merely scaling up513

model size, incorporating appropriate modeling ap-514

proaches (e.g., a CoT reasoning module) and adopt-515

ing efficient training strategies (e.g., SFT+RL) are516

more crucial for enhancing model generalization517

and real-world performance. 518

4.2.2 Ablation Study 519

To systematically evaluate the contributions of 520

SFT and RL in the FlightGPT framework, we 521

conduct ablation experiments under the follow- 522

ing three training configurations: (1) SFT-only: 523

Trained with supervised fine-tuning only, with- 524

out RL; (2) RL-only: Trained directly with re- 525

inforcement learning, without SFT initialization; 526

(3) SFT+RL: Initialized with SFT and further opti- 527

mized with RL. 528

Ablation Study Results Analysis. 529

• SFT-only: This configuration achieves decent 530

performance in the val-seen environment, ben- 531

efiting from the reasoning mechanism and SFT 532

on high-quality data. However, without RL for 533

policy optimization and exploration, it shows lim- 534

ited generalization to OOD environments. On the 535

test-unseen set, its performance is clearly inferior 536

to models trained with RL. 537

• RL-only: This configuration eventually achieves 538

reasonably good performance without any prior 539

initialization. However, as shown in Fig. 3, the 540

model suffers from low success rates at the be- 541

ginning of training due to the absence of a good 542

starting policy. Its convergence is slower than 543

SFT+RL: while SFT+RL nearly converges at 544

around 500 steps, the RL-only model only be- 545

gins to stabilize after 600 steps, and its reward 546

remains consistently lower throughout training. 547

In addition, its final performance remains slightly 548

lower than that of SFT+RL. 549

• SFT+RL: The SFT stage provides a strong ini- 550

tialization of the policy, resulting in a more sta- 551

ble and faster convergence during training. Sub- 552

sequently, the RL stage further improves the 553

model’s generalization and adaptability to OOD 554

environments. This configuration not only out- 555

performs both SFT-only and RL-only baselines 556

across all evaluation metrics, but also achieves a 557

more stable and efficient training process, demon- 558

strating the synergistic advantage of the two- 559

stage training pipeline. 560

4.2.3 Reasoning Quality Analysis 561

To compare the reasoning quality between the RL- 562

only and SFT+RL configurations, we randomly 563

selected several cases from the dataset for quali- 564

tative analysis. The reasoning process generated 565

7



Table 2: Comparison of Model Performance Across Evaluation Scenarios

Method Validation Seen Validation Unseen Test Unseen
NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑

Random 222.30 0.00 1.15 0.00 223.00 0.00 0.90 0.00 208.80 0.00 1.44 0.00
Seq2Seq 148.40 4.52 10.61 4.47 201.40 1.04 8.03 1.02 174.50 1.73 8.57 1.69

CMA 151.70 3.74 10.77 3.70 205.20 1.08 7.89 1.06 179.10 1.61 10.07 1.57
MGP 59.70 8.69 35.51 8.28 75.10 5.84 22.19 5.56 93.80 6.38 26.04 6.08

Qwen2.5-VL-7B 116.10 4.72 12.89 4.15 123.20 5.52 13.98 4.92 124.60 4.59 12.75 3.99
Qwen2.5-VL-32B 84.70 12.65 24.14 11.30 91.90 10.12 20.52 9.00 83.28 11.98 23.48 10.76

LLaMA-3.2-11B-Vision 198.90 1.16 5.16 1.06 215.10 0.50 4.35 0.46 191.10 1.26 4.59 1.15
GPT-4o 155.80 2.42 9.62 2.17 170.40 2.17 7.77 1.98 144.40 3.90 11.79 3.42

SFT-only 97.60 10.29 18.45 9.46 101.70 10.51 18.54 9.70 117.40 11.20 21.24 10.78
RL-only 74.90 13.27 27.13 12.59 71.40 12.87 25.82 12.27 76.50 19.80 32.26 18.91

SFT+RL (FlightGPT) 66.10 17.57 30.26 15.78 68.10 14.69 29.33 13.24 76.20 21.20 35.38 19.24

Figure 3: Reward (train) and success rate (test) over
training steps.

by the RL-only model is generally disorganized:566

the <think> section tends to be short, lacks clear567

logical structure, and contains fragmented reason-568

ing chains, making it difficult to follow. In con-569

trast, SFT+RL produces significantly more coher-570

ent and well-structured reasoning, with complete571

chains covering landmark identification, spatial572

relation reasoning, and target location prediction.573

Several representative examples are provided in574

Appendix C.575

To further quantify these observations, we de-576

signed three reasoning quality metrics and used577

GPT-4o to automatically score a random sample of578

5,000 outputs (the detailed prompt is provided in579

Appendix D). The three reasoning quality metrics580

are measured by: (1) Completeness: Whether the581

reasoning covers all necessary steps without miss-582

ing key details; (2) Coherence: Whether the rea-583

soning is logically consistent and well connected584

throughout; (3) Fluency: Whether the language is585

fluent and grammatically correct.586

To reduce evaluation variance, each sample was587

scored 3 times, and the average score was reported588

as the final result. The evaluation results, sum-589

Table 3: Reasoning Quality Evaluation Results

Strategy Completeness Coherence Fluency

RL-only 3.67 4.03 4.78
SFT+RL 4.11 4.29 4.86

marized in Table 3, show that SFT+RL outper- 590

forms the RL-only model across all three reasoning 591

quality metrics, demonstrating the critical role of 592

the SFT stage in improving reasoning quality. In 593

particular, the SFT+RL configuration achieves a 594

0.44 improvement in completeness, indicating that 595

structured reasoning training effectively guides the 596

model to produce more comprehensive and system- 597

atic reasoning processes. Additionally, improve- 598

ments of 0.26 and 0.08 are observed in coherence 599

and fluency, respectively, further enhancing the 600

clarity and readability of the reasoning outputs. 601

5 Conclusion 602

In this paper, we propose FlightGPT, a system for 603

UAV VLN, aiming to improve navigation perfor- 604

mance in complex environments, enhance cross- 605

environment generalization, and increase the in- 606

terpretability of decision-making processes. We 607

leverage the multimodal understanding capabili- 608

ties of VLMs and construct a two-stage training 609

pipeline that combines SFT with RL, where the 610

RL stage is guided by a composite reward design. 611

In addition, we introduce a CoT reasoning mech- 612

anism to improve the transparency and controlla- 613

bility of the system. We conduct comprehensive 614

evaluations on the real-world, city-scale CityNav 615

dataset. Experimental results show that FlightGPT 616

achieves significant improvements over existing 617

baseline models in in-distribution environments, 618

and exhibits strong generalization capabilities in 619

more challenging OOD scenarios. We will release 620

the code and data to facilitate further research. 621
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6 Limitations622

Despite the strong performance of FlightGPT in623

city-scale UAV VLN, several noteworthy limita-624

tions remain in terms of real-world applicability625

and system capabilities:626

Significant Gap Between Simulation and Re-627

ality. This study primarily relies on high-fidelity628

simulators such as CityNav for training and evalu-629

ation. While these platforms offer structured and630

diverse urban scenarios that facilitate learning of631

task semantics and spatial layouts, they fall short632

of capturing the complexity and uncertainty of real-633

world urban airspaces. Factors such as GPS drift,634

weather disturbances, dynamic obstacles, and un-635

expected events frequently arise in actual UAV op-636

erations and can significantly impact perception637

and decision-making. As a result, the system’s per-638

formance, stability, and robustness in real-world639

settings remain unverified and call for further field640

testing and validation.641

Substantial Gap Compared to Human Naviga-642

tion Abilities. Although FlightGPT demonstrates643

leading performance on the CityNav dataset and ex-644

hibits basic language understanding and path plan-645

ning capabilities, its navigation intelligence still646

lags behind human operators. In particular, the647

model struggles with complex scenarios involving648

ambiguous expressions, implicit goals, or multi-649

turn instructions, often lacking commonsense rea-650

soning and strategic flexibility. This exposes lim-651

itations in multi-modal semantic integration, spa-652

tial reasoning, and decision consistency, making653

it difficult for the system to handle dynamic and654

high-complexity navigation tasks.655

Lack of Systematic Evaluation of Deployment656

Feasibility. The current research primarily em-657

phasizes performance, with insufficient attention658

paid to the practical requirements for real-world659

deployment. Key factors such as inference latency,660

memory usage, and computational resource de-661

mands directly influence the system’s ability to662

operate in real time on resource-constrained edge663

devices, yet these metrics have not been systemati-664

cally quantified. Furthermore, issues such as com-665

munication reliability and failure recovery mecha-666

nisms—critical for engineering-level implementa-667

tion—remain underexplored, limiting the transition668

of FlightGPT from a research prototype to a de-669

ployable solution.670

7 Broader Impact and Ethics 671

Dual-use risk. UAV-based navigation systems, 672

while beneficial for disaster relief or infrastructure 673

inspection, may also be misused for surveillance, 674

tracking, or other purposes that infringe on privacy 675

or civil liberties. To mitigate such risks, real-world 676

deployment should be accompanied by appropriate 677

regulatory oversight, strict usage boundaries, and 678

human-in-the-loop supervision mechanisms. 679

Risk of unsafe deployment. Although the sys- 680

tem shows strong performance in simulated city- 681

scale environments, deploying it in real-world sce- 682

narios poses safety risks due to unmodeled factors 683

such as GPS drift, occlusions, dynamic obstacles, 684

or weather conditions. Without rigorous field test- 685

ing and fail-safe mechanisms, these issues may lead 686

to unintended navigation failures or even physical 687

harm to people or property. 688
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A Prompt Template for FlightGPT1428

Prompt

System Message:
You are an intelligent autonomous aerial vehicle (UAV) capable of
real-world navigation and visual target localization.

Mission Objective:
Your mission is to locate a specific target described in natural language
instructions.

Details of the Target:
{target description}

Environmental Perception:
- The UAV’s current position is indicated by the starting point of an arrow in
the image, with its heading angle represented by the arrow’s direction.
- The yellow box outlines the UAV’s current camera field of view on the map,
centered at pixel coordinates: cur_pose = {UAV current position}.
- Landmark regions are highlighted with red masks.

Operational Guidance:
- The target is usually located near a red-masked landmark.
- Use both the target description and the visual input to identify the most
relevant red-masked landmark region.
- Infer the relative position of the target with respect to that landmark.

Output Format Specification:
- Present your reasoning process within <think> and </think> tags.
- Provide your final answer within <answer> and </answer> tags in the
following format: {"target_location": [x, y]}
Your reasoning may include:
- A semantic interpretation of the target description.
- Identification of the correct landmark region.
- The bounding box of that region in the following format:
{"landmark_bbox": [x1, y1, x2, y2]}

1429

B Baseline Model Descriptions1430

We briefly introduce the baseline models evaluated1431

on the CityNav.1432

• Random: A simple random action policy serving1433

as a lower bound reference.1434

• Seq2Seq (Anderson et al., 2017): A classic end-1435

to-end model that encodes the instruction and1436

visual input into a latent representation to directly1437

generate action sequences.1438

• CMA (Hu et al.): A cross-modal attention model1439

that integrates visual and linguistic inputs via1440

cross-attention mechanisms for action selection.1441

• MGP (Lee et al., 2024): A map-based method1442

that predicts the target location based on semantic1443

maps and natural language instructions.1444

• GPT-4o (OpenAI et al., 2024a): A powerful mul-1445

timodal model developed by OpenAI, capable1446

of processing both text and visual inputs with1447

reasoning abilities.1448

• Qwen2.5-VL (7B / 32B) (Bai et al., 2025): An1449

open-source family of vision-language models1450

with varying parameter scales, used to assess how1451

model size influences performance.1452

• LLaMA-3.2-11B-Vision (Grattafiori et al.,1453

2024): Meta AI’s latest open-source multimodal1454

model, supporting both visual and language per- 1455

ception. 1456

C Reasoning Examples 1457

D Prompt for Reasoning Quality 1458

Evaluation 1459

Prompt

System Message:
You are a language model output quality evaluator. Please evaluate the
following text based on the three criteria below.

Evaluation Criteria Definitions:
1. Completeness
- Does the text fully present all the necessary reasoning steps or information
needed to answer the question or solve the problem?
- Are there any missing steps, skipped logic, or gaps in reasoning?
2. Coherence
- Is the reasoning internally consistent and logically connected? Are there
any contradictions or abrupt jumps?
3. Fluency
- Is the language natural and smooth? Are grammar, sentence structure, and
word choice appropriate?

Scoring Guideline:
- 1: Very poor
- 2: Poor
- 3: Fair
- 4: Good
- 5: Excellent
Based on the above definitions and scoring scale, please evaluate the
following text. Output one integer score (1–5) per criterion. Strictly follow
the format below so it can be parsed by code.

Language Model Output:
{language model output}

Output Format:
- Completeness: x
- Coherence: x
- Fluency: x

1460
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Table 4: Reasoning Examples

ID RL-only Output (<think> Section) SFT+RL Output (<think> Section)

1 The landmark region is the area where the red mask is present.
The bounding box for the red-masked region is:
{"landmark_bbox": [3428, 23, 3801, 547]}
The probable target location is on the sidewalk next to the
building within this red-masked area.

The target is a black car on the sidewalk next to a building on Chesterwood Gardens.
The red masks in the image indicate the streets, specifically Chesterwood Gardens,
and may help us identify the correct landmark region for locating the target.
1. Semantic Interpretation of the Instruction:
– The car is described as a black car and is on the sidewalk near a building.
– The location reference “Chesterwood Gardens” should point the drone towards
the correct residential area.
2. Identifying the Correct Landmark Region:
– The aerial view shows Chesterwood Gardens as a rectangular area marked by the
red mask. Given it is residential with houses and likely the target is near the edge
of one of these buildings on the sidewalk, I would focus on the northern edge of
Chesterwood Gardens.
3. Relative Position of the Target:
– The target is described as on the sidewalk next to a building. The sidewalk along
the northern edge of Chesterwood Gardens is a likely location.
4. Bounding Box for the Landmark Region: – Based on the aerial view, the
northern edge of Chesterwood Gardens is highlighted in red. The area around the
edge of the buildings and the sidewalk here aligns with the target description.
{"landmark_bbox": [2693, 16, 4026, 1361]}

2 The target, a black car parked between a silver car and a
black car, is located in the parking lot behind the "One Stop"
store. The red-masked landmark represents the One Stop store,
which is a good reference point. The target is likely to be in
the parking lot area adjacent to this landmark, as indicated by
the "One Stop" text.
The parking lot is clearly demarcated by the red masks. Given
the position of the target relative to the One Stop landmark,
it should be in the area where the parking rows are arranged
around the store. Since the target is described as being between
two cars, we can look for that specific arrangement of cars in
the parking lot area behind One Stop.
Since the target is in the parking lot area behind One Stop,
the bounding box would cover the parking lot region near the
red-masked "One Stop" area.
{"landmark_bbox": [1745, 0, 3882, 1467]}
The target, a black car, is likely to be found within the bound-
ing box of the parking lot area behind "One Stop".

The target description states that it is a black car parked between a silver car and a
black car in a lot behind "One Stop." Given the current position indicated by the
arrow, we need to identify a red-masked landmark near this area as the target might
be near a red-masked street landmark for reference.
1. Identify Possible Red-Masked Landmarks:
– The image highlights red structures with some marked as "One Stop," which
appears larger and more prominent.
– The area behind "One Stop" is clearly outlined by the red mask.
2. Locate the Target Relatively:
– The target is described as being behind "One Stop."
– Given the current field of view and the position indicated by the arrow, the target
should be within the vicinity of the "One Stop" landmark.
3. Bounding Box for Landmark:
– The "One Stop" landmark is clearly marked by the red structure.
– The bounding box for the landmark can be identified roughly around the "One
Stop" structure.
{"landmark_bbox": [1594, 0, 3864, 1502]}

3 The target description indicates that the target is a parking lot
located behind the building at the corner of Chesterton Road
and Ferry Path. The red mask outlines the street landmark
regions. The target should be in the parking lot behind the
building at the intersection of Chesterton Road and Ferry Path.
Let’s identify the landmark region:
– The red mask around Chesterton Road and Ferry Path clearly
highlights the region where the target is likely to be located.
– The target parking lot is behind the building at the corner of
Chesterton Road and Ferry Path.
The bounding box for the landmark region is:
{"landmark_bbox": [403, 249, 1060, 959]}
Given the green arrow and the current orientation of the UAV,
the target is likely to be behind the building at the corner of
Chesterton Road and Ferry Path within the red mask area.

The task is to find a parking lot, which is described as "behind the building at the
corner of Chesterton Road and Ferry Path" and "has no cars in this area." The goal
is to locate this parking lot, relative to the red-masked landmark regions marked as
"Chesterton Road" and "Ferry Path".
1. Identify the relevant landmark red masks:
– There are red masks over Chesterton Road and Ferry Path in the image. These
identify the streets and regions of interest.
2. Determine the direction of movement:
– The UAV’s current orientation is indicated by the arrow at the bottom-left. It
points towards the top-left of the image.
3. Locate the intersection:
– The intersection of Chesterton Road and Ferry Path is where the red masks overlap
at the bottom of the image.
4. Identify the target area:
– The target parking lot is described as being behind the buildings at the corner.
Given the red masks, it’s reasonable to conclude that any area behind these masks,
specifically in the region near the intersection, is the location to look for.
5. Bounding box of the area:
– Since we need to look behind the intersection at the parking lot, and considering
the red masks as a guide, I’ll assume an area directly behind the intersection is
our target. This means the parking lot would lie inside the yellow bounding box
(highlighted on the image).
The bounding box region of interest behind the red-masked Chesterton Road, which
should contain the parking lot, would be:
{"landmark_bbox": [370, 273, 1076, 972]}
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