pFedKT: PERSONALIZED FEDERATED LEARNING VIA KNOWLEDGE TRANSFER

ABSTRACT
Federated learning (FL) has been widely studied as a new paradigm to achieve multi-party collaborative modelling on decentralized data with privacy protection. Unfortunately, traditional FL suffers from Non-IID data distribution, where clients’ private models after FL are even inferior to models trained standalone. Existing approaches to tackle this challenge fall into two directions: a) pursuing a better global model through mitigating biases of private models, and b) improving personalized private models by personalized federated learning (PFL). Still, both of them have limited accuracy improvements in private models. To this end, we design pFedKT, a novel personalized federated learning framework with knowledge transfer, towards boosting the performances of personalized private models on Non-IID data. It involves two types of knowledge transfer: a) transferring historical private knowledge to new private models by local hypernetworks; b) transferring the global model’s knowledge to private models through contrastive learning. After absorbing the historical private knowledge and the latest global knowledge, the personalization and generalization of private models are both enhanced. Besides, we derive pFedKT’s generalization and prove its convergence theoretically. Extensive experiments verify that pFedKT presents 0.31% - 3.46% accuracy improvements of private models than the state-of-the-art baseline.

1 INTRODUCTION
With frequent privacy leakage, directly collecting data and modelling it would violate privacy protection regulations such as GDPR (Kairouz & et al., 2021). To implement collaborative modelling while protecting data privacy, federated learning (FL) came into being (McMahan & et al, 2017). As shown in Fig. 1(a), FL consists of a central server and multiple clients. In each communication round, the server broadcasts the global model (abbr. GM) to selected clients; then clients train it locally on their local datasets and upload trained private models (abbr. PMs) to the server; finally, the server aggregates received private models to update the global model. The whole procedure is repeated until the global model converges. In short, FL fulfils collaborative modelling by allowing clients to only communicate model updates with the server, while data is always stored locally.

However, FL still faces several challenges such as communication efficiency, robustness to attacks, and model accuracy which we focus on in this work. The motivation for clients to participate in FL is to improve their local models’ quality. However, the decentralized data held by clients are often not independent and identically distributed (Non-IID) (Kairouz & et al., 2021), and the global model aggregated through a typical FL algorithm FedAvg (McMahan & et al, 2017) based on Non-IID data may perform worse than clients’ solely trained models. Zhao & et al (2018) have verified this fact experimentally and argued that the global model aggregated by skewed local models trained on Non-IID data deviates from the optima (model trained on all local data). To alleviate the accuracy degradation caused by Non-IID data, personalized FL (PFL) methods (Shamsian & et al, 2021) have been widely studied to improve clients’ personalized model quality.

Existing researches implement PFL by fine-tuning Mansour & et al (2020); Wang & et al (2019), model mixup Arivazhagan & et al (2019); Collins & et al (2021), regularization Li & et al (2020); Acar & et al (2021), and etc. Most of them suffer from one of the following two weaknesses: 1) showing limited improvements in the accuracy of private models, and 2) ignoring the potential of trained private models in previous rounds.

To tackle the above two deficiencies, we proposed a novel personalized FL framework named pFedKT with knowledge transfer. It involves two types of transferred knowledge: 1) private knowledge: we deploy a local hypernetwork for each client to transfer historical PMs’ knowledge to new PMs; 2) global knowledge: we exploit contrastive learning to enable PMs to absorb the GM’s knowledge. We analyzed pFedKT’s generalization and proved its convergence theoretically. We also conducted extensive experiments to verify that pFedKT fulfills the state-of-the-art PM’s accuracy.
Our main contributions are summarized as follows: a) We devised two types of knowledge transfer to simultaneously enhance the generalization and personalization of private models. b) We analyzed pFedKT’s generalization and convergence in theory. c) Extensive experiments verified the superiority of pFedKT on the accuracy of personalized private models.

2 PRELIMINARIES AND MOTIVATION

2.1 Utility of Private Models

As the workflow of FedAvg shown in Fig 1 (a), we abbreviate the private model as PM and the global model as GM, and the detailed definition of FL is introduced in Appendix B. It’s worth noting that: in FedAvg1, clients no longer store PMs after uploading them to the server; 2) in the next round, clients train the received GM on local datasets from scratch. That is, the trained PMs only play as “temporary models” for aggregation and their utilities are not sufficiently developed.

To explore the utilities of PMs, we train a CNN model on a natural Non-IID FEMINIST dataset in an FL system with 20 clients. From Fig 1 (b), we observe that there are always some PMs performing better than GM in each round (some PMs show lighter pixels than GM), so we can further develop PMs’ self-utility during FL to boost the accuracy of personalized private models.

2.2 PM’s Personalization Enhancement

A hypernetwork [Ha & et al, 2017] is generally a small model that generates parameters for large target models, belonging to the category of generative networks in unsupervised learning. To fully exploit PMs’ self-utility, inspired by the server’s global hypernetwork which learns local models’ parameter distributions and generates personalized parameters for local models in Shamsian & et al (2021), we attempt to allocate a local hypernetwork for each client to learn its own historical private knowledge (parameter distributions) and then generate parameters for its private model. We hope this insight can enhance PM’s personalization so as to improve PM’s accuracy.

To validate feasibility, we conduct experiments on a single client. Specifically, we train a randomly initialized hypernetwork (abbr. HN) and a target model (abbr. NN, i.e., PM) with parameters generated by the hypernetwork in an end-to-end form on the CIFAR-10 dataset. To estimate hypernetworks to generate parameters for target models and how to update hypernetwork in Appendix C and D, Fig 2 displays the structures of the target model and hypernetwork, as well as the experimental results. We observe that the final test accuracies of the solely trained target model (NN without HN) and the target model trained with the hypernetwork (NN with HN) are 91.84% and 93.84%, respectively, i.e., the latter performs better, indicating that regarding HN as a medium to learn PM’s historical knowledge has no negative effect on PM’s accuracy. Therefore, we can safely utilize the hypernetwork to learn PM’s private knowledge.

2.3 PM’s Generalization Enhancement

As mentioned in Shen et al. (2020), the server aims to enhance the representation extraction ability and generalization of the global model on all clients’ data, while clients tend to train personalized models with preferences on their local data. Therefore, how to balance the generalization and personalization of PMs is crucial. Li et al. (2021) utilize contrastive learning to keep the current round’s PM (anchor) close to the received GM (positive) and away from the last round’s PM (negative). Since it initializes the current round’s PM (anchor) with GM’s parameters, the trained PM’s personalization is impaired. Nevertheless, it still provides an interesting view that we can refer to enhance PM’s generalization.
2.4 Motivation

Personalization. The above observations concluded that it’s necessary to exploit PMs’ self-utility to enhance their personalization. FedPHP \cite{li2021fedphp} linearly accumulates historical private models. Since historical private models with obsolete parameters compromise convergence, linearly stacking them with manually selected weights may suffer from degraded accuracy, which has been verified in subsequent experiments (Sec. 5.2). Since we have demonstrated that a hypernetwork can continuously learn the knowledge of target models effectively while improving accuracy, we can safely deploy a local hypernetwork for each client to accumulate private knowledge to enhance PM’s personalization.

Generalization. Further, we exploit contrastive learning to balance GM and PM. Especially, unlike GM as the anchor in MOON \cite{li2021moon}, we regard the PM generated by hypernetworks which has absorbed historical private knowledge as the anchor. This discrepancy facilitates the effective fusion of global knowledge and historical private knowledge, promoting a better trade-off between PM’s personalization and generalization.

3 Methodology

In this section, we first outline pFedKT’s workflow, and then detail the two types of knowledge transfer: a) private knowledge transfer by local hypernetworks and b) global knowledge transfer by contrastive learning. Finally, we analyze pFedKT’s computational budgets and storage costs.

3.1 Overview

Principle. Building on the above motivations, we devise a novel personalized FL framework named pFedKT, which involves two types of knowledge transfer: 1) Transferring knowledge from old PM to new PM. We configure a local hypernetwork (with much smaller footprint than that of PM) for each client to learn the old PM’s knowledge and transfer it to the new PM. 2) Transferring knowledge from GM to PM. We exploit contrastive learning to keep the new PM (have carried old private knowledge) close to GM and away from the last round’s PM. In this way, during each round of local training, the private knowledge from the old PM, the global knowledge from the latest GM, and absolutely the knowledge from local data are simultaneously incorporated into the trained new PM, which facilitates both the generalization and personalization of PMs.

Workflow. Specifically, as displayed in Fig. 3, the complete workflow of pFedKT framework includes the following steps: in the k-th round, a) the server first broadcasts the global model GM^t to selected clients. 2) The k-th client uses its local hypernetwork HN_k (with the embedding of our pre-divided chunk id as input) to generate parameters for the target private model $PM_k^{t_0}$ (to be trained) in a stacked manner, where we detailed the generation procedure in Appendix C. 3) Then, we regard the generated initial private model $PM_k^{t_0}$ as the anchor, the received global model GM^t as a positive item, the last round’s trained private model PM_{k-1}^t as a negative item. The k-th client computes the distances d_{KL}^+ and d_{KL}^- measured by KL (Kullback-Leibler) divergence \cite{kullback1951information} from $PM_k^{t_0}$ to GM^t and PM_{k-1}^t, respectively. After that, the k-th client computes the contrastive loss with the two distances. 4) The k-th client trains $PM_k^{t_0}$ with contrastive loss and supervised loss from labels on local dataset D_k. After training, the trained private model is marked as PM_k^t. 5) The k-th client updates the old private model PM_{k-1}^t with the latest trained private model PM_k^t. 6) The k-th client updates the hypernetwork HN_k^t to HN_{k+1}^t with the parameter variations between initial $PM_k^{t_0}$ and trained PM_k^t. 7) The k-th client uploads the trained private model PM_k^t to the server.
Figure 3: Left: workflow of pFedKT. Right: KL divergence between two models is calculated on logits $\mathcal{R}_\omega(D_k)$; and the local hypernetwork used in pFedKT is a simply fully connected (FC) network with much smaller footprint than that of PM.

8) The server aggregates the received private models $[PM_k^t, \cdots]$ through the weighted aggregation rule of FedAvg, and updates the global model to be GM^{t+1}. The above steps are executed iteratively until both GM and PMs converge. In the end, we acquire both the GM and personalized PMs. A detailed algorithm description for pFedKT is given in Appendix \[22\] Alg. 1.

3.2 Private Knowledge Transfer via Local Hypernetworks

Motivated by the availability of hypernetworks validated in Sec. \[22\], we view hypernetworks as “information carriers” to continuously transfer old private knowledge of previous PMs to new PMs generated by hypernetworks. In particular, we deploy a local hypernetwork for each client. Utilizing hypernetworks to achieve private knowledge transfer involves two directions: a) knowledge release (forward) and b) knowledge absorption (backward).

Knowledge release (forward). As step ② in Fig. 3 we first use the hypernetwork φ_k^t to generate parameters for the new initial private model θ_k^0, in which hypernetworks release old knowledge of the last round’s trained private models ω_k^{t-1} to the new generated model θ_k^0.

Then, the initial private model θ_k^0 will be trained on local dataset D_k, and the trained private model is denoted as ω_k^t, which will be uploaded to the server for aggregation.

Knowledge absorption (backward). Instead of abandoning trained private models after uploading them to the server as in FedAvg, we use local hypernetworks to absorb the knowledge (parameter distribution) of trained private models. This procedure is implemented by updating hypernetworks’ parameters with parameter variations between generated initial new PM and trained new PM, as step ⑥ in Fig. 3. Specifically, according to the rule of updating hypernetworks in Eq. (8) of Appendix D, we utilize the difference between the generated initial new PM θ_k^0 and trained new PM ω_k^t to update the local hypernetwork φ_k^t, i.e.,

$$
\varphi_k^{t+1} \leftarrow \varphi_k^t - \eta_{HN} (\nabla_{\varphi_k} \theta_k^0)^T \Delta(\theta_k^0, \omega_k^t).
$$

(1)

where η_{HN} is the hypernetwork’s learning rate. Then the updated hypernetwork φ_k^{t+1} absorbs the knowledge of the latest trained PM ω_k^t.

Since the two-way knowledge transfer is executed in each round, hypernetworks continuously learn historical private knowledge and transfer it to the new generated PMs during the whole FL, which promotes the personalization of PMs.

3.3 Global Knowledge Transfer via Contrastive Learning

Once the new initial PM θ_k^0 generated by the local hypernetwork, old private knowledge has been transferred into the new model.

To make θ_k^0 further obtain the latest GM’s knowledge, we exploit contrastive learning to bridge GM ω^t and PM θ_k^0. Specifically, we view θ_k^0 as the anchor, and keep it close to GM ω^t (positive) since we hope θ_k^0 to learn knowledge from other clients via GM; while keeping θ_k^0 away from the last round’s PM ω_k^{t-1} (negative), so as to avoid slowing down convergence due to excessively skewing...
previous PM’s obsolete parameters. We use triplet loss [Schroff & et al., 2015] in typical contrastive learning as pFedKT’s contrastive loss ℓ_{con}. Then, we calculate contrastive loss by:

$$
\begin{align*}
L_{\omega} & \leftarrow R_{\omega}(D_k), L_{\omega_{k}} \leftarrow R_{\omega_{k}}(D_k), L_{\omega_{k-1}} \leftarrow R_{\omega_{k-1}}(D_k); \\
\delta_{K,L}^{t} & = d_{KL}(L_{\omega}(||L_{\omega_{k}})), \delta_{K,L}^{t} = d_{KL}((L_{\omega_{k-1}}||L_{\omega_{k}})); \\
\ell_{con} & = \max\{d_{KL}^{t} - d_{KL}^{t} + \alpha, 0\}.
\end{align*}
$$

The distance $\delta_{K,L}^{t}$ of θ_{t}^{0} (anchor) and ω_{t} (positive), and the distance $\delta_{K,L}^{t}$ of θ_{k}^{1} (anchor) and ω_{k-1}^{t} (negative) are measured by the KL divergence Kullback & Leibler (1951) of their logits $L(\omega)$ (i.e., extracted representation $R_{\omega}(D_k)$). $\alpha \geq 0$, is the maximum margin between the anchor-positive distance and anchor-negative distance. If $\alpha = 0$, the initial PM θ_{t}^{0} is as far from GM ω_{t} as from the last round’s PM ω_{t-1}, i.e., “neutral” status. If $\alpha > 0$, then $d_{KL}^{t} + \alpha \leq d_{KL}^{t}$, i.e., initial PM θ_{t}^{0} is close to the GM ω_{t} and away the last round’s PM ω_{t-1}, and vice versa.

After computing contrastive loss ℓ_{con}, we further calculate the supervised loss ℓ_{sup} (e.g., Cross Entropy loss) with the training model’s predictions and labels. Finally, we linearly weight the two types of loss to build the complete loss function ℓ, i.e.,

$$
\ell = \mu \ast \ell_{con} + (1 - \mu) \ast \ell_{sup},
$$

where $\mu \in (0, 1)$ is the weight of contrastive loss. Next, we train the initial PM θ_{t}^{0} on local data D_k through gradient descent with the complete loss function ℓ, and obtain trained PM ω_{t}, i.e.,

$$
\omega_{t}^{t} \leftarrow \theta_{t}^{0} - \eta_{NN} \nabla_{\theta_{t}^{0}} \ell(\theta_{t}^{0}; D_k),
$$

where η_{NN} is the private model’s learning rate.

With contrastive learning, the trained PM θ_{t} absorbs the GM’s global knowledge (actually private knowledge from other clients), which enhances the generalization of PMs.

3.4 Computational Budget and Storage Cost

In this section, we analyze the computational complexity and storage overhead of pFedKT compared with state-of-the-art pFedHN [Shamsian & et al., 2021]. Limited to pages, the detailed analysis is presented in Appendix [H]. After careful comparisons, we make the following summaries.

Computational Complexity. pFedKT consumes comparable computational cost to pFedHN. Besides, pFedKT inherently offloads the learning tasks of the hypernetwork on the server in pFedHN to clients’ sub-tasks, which tackles the blocking issue that possibly occurred on the server in pFedHN.

In cross-silo FL scenarios, multiple enterprises with sufficient computational power can tolerate the blocking issue, which tackles the computational complexity issue. We refer to the theoretical analysis in Shamsian & et al (2021), and derive similar conclusions in Theorem [4.1], the detailed assumptions and derivations are illustrated in Appendix [F].

Theorem 4.1 If each client has at least $M = \mathcal{O}(\frac{1}{\epsilon^{2}}(cemb_{dim} + H N_{size})log(\frac{L_{\omega} L_{\phi}}{\epsilon}) + \frac{1}{\epsilon^{2}}log(\frac{1}{\delta}))$ samples, for hypernetwork ϕ, there is at least $1 - \delta$ probability that satisfies: $|f(\phi) - \hat{f}_{D_{n}}(\phi)| \leq \epsilon$.

where f is loss function, $cemb_{dim}$ and $H N_{size}$ are the input embedding dimension and size (parameter capacity) of hypernetworks (the hypernetwork is a fully connected model with chunk id as input embedding), L_{ω}, L_{ϕ} are assumed Lipschitz constants, r, ϵ are constants defined in derivation.

The above Theorem reflects that pFedKT’s generalization is impacted by both the hypernetwork’s input embedding dimension and size, Lipschitz constants L_{ω} and L_{ϕ} which have been verified to marginally affect the hypernetwork’s utility in Shamsian & et al (2021). Therefore, we experimentally verify how the hypernetwork’s input embedding dimension and size influence pFedKT’s generalization in Sec. [5.3.1] and Sec. [5.3.2].
4.2 Proof for Convergence

Insight. [Shamsian & et al. (2021)](https://www.tensorflow.org/federated/api) explains that the mapping of hypernetworks to generated target models is essentially similar to the principle of PCA dimension reduction. That is, the hypernetwork can be viewed as the main component (core information) of the target model after reducing dimension. Therefore, target models generated by hypernetworks would have a similar convergence rate to pure target models, as shown in preliminaries (Fig. 2(b) in Sec. 2).

Proof. We refer to the convergence proof in [Li et al. (2020)](https://www.cs.toronto.edu/~kriz/cifar.html), and derive the following Theorem (detailed proof is presented in Appendix F):

Theorem 4.2 Assuming \(E[f(\omega)] \) is the average loss in the \(T \)-th round, \(f^* \) is the minimum loss of \(\omega \) during \(T \) rounds; \(\kappa, \gamma, B, C, \mu, L \) are defined constants in [Li et al. (2020)](https://www.cs.toronto.edu/~kriz/cifar.html); \(\omega_0 \) is the initial model, \(\omega^* \) is the optimal model with minimum loss. Based on these notions, we can get: \(E[f(\omega_T)] - f^* \leq \frac{2\kappa}{\gamma T} (B + C + L \cdot \mu \cdot \sigma_4^2) \sim O(1/T) \), where \(L_\varphi \) and \(\sigma_4 \) are constants defined in our extra assumptions.

From Theorem 4.2 we conclude that pFedKT has the same convergence rate \(O(1/T) \) with FedAvg.

5 Experiments

We implement pFedKT and all baselines with PyTorch and simulate their FL processes on NVIDIA GeForce RTX 3090 GPUs with 24G memory. We evaluate pFedKT on two image classification datasets: CIFAR-10/100 [Krizhevsky & et al. 2009](https://www.cs.toronto.edu/~kriz/cifar.html) and a large real-world Non-IID dataset: Stack Overflow. The Codes will be made public after acceptance.

5.1 Settings

Datasets and Models. Referred to the Non-IID data divisions in [Shamsian & et al. (2021); Charles & et al. (2021)], we manually divide the three datasets into Non-IID distributions. Specifically, for CIFAR-10, we assign only 2 classes of data to each client, 50 clients totally; for CIFAR-100, we assign only 10 classes of data to each client, 50 clients totally; for Stack Overflow, we assign only posts from one author to each client, 100 clients totally. We train a small CNN model and a large CNN model on the CIFAR-10 and 100 datasets in two image classification tasks, respectively, and train an LSTM model with the same structure as [McMahan & et al. (2017)](https://www.tensorflow.org/federated/api) on Stack Overflow dataset in a next-word prediction task. We use the same hypernetworks in three tasks. The structures of two CNN models and hypernetworks are shown in Appendix G.1 Tab. 2.

Metrics. We measure the trained private models’ mean accuracy and denote it as PM@Acc (%).

Training Strategy. We set grid-searched optimal FL hyperparameters for all algorithms: the client sampling rate \(C \) is 0.1; the learning rate of the local target model (\(\eta_{NN} \)) is \(1e - 2 \), using the SGD optimizer with the momentum of 0.9, weight decay of 5e - 5, and batch size of 64, and the hypernetwork’s learning rate (\(\eta_{HN} \)) is 5e - 3. To ensure all algorithms converge, we train them with 500 communication rounds and 100 local iterations per round. Our pFedKT’s unique hyperparameters are reported in Appendix G.1 Tab. 3.

5.2 Comparisons with Baselines

Limited to pages, here we only report the comparison results on the CIFAR-10/100 dataset, the results on the Stack Overflow dataset are recorded in Tab. 4 of Appendix G.2.1 Tab. 1 records PM’s mean accuracy of our pFedKT and all baselines within 5 repeating trails, and Fig. 4 displays how the PM’s accuracy varies with rounds and final 50 clients’ individual PM’s accuracy.

Table 1: The PMs’ mean accuracy of pFedKT and compared baselines on CIFAR-10 (Non-IID: 2/10) and CIFAR-100 (Non-IID: 10/100) datasets.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FedAvg (McMahan & et al. 2017)</td>
<td>50.61±0.16</td>
<td>5.30±0.13</td>
</tr>
<tr>
<td>HYPCLUSTER (Mansour & et al. 2020)</td>
<td>51.57±0.14</td>
<td>10.63±4.46</td>
</tr>
<tr>
<td>FedRep (Collins & et al. 2021)</td>
<td>55.36±8.50</td>
<td>46.40±0.47</td>
</tr>
<tr>
<td>FedPer (Arivazhagan & et al. 2019)</td>
<td>50.73±5.52</td>
<td>47.91±1.15</td>
</tr>
<tr>
<td>LG-FL (Chen & et al. 2020)</td>
<td>62.94±12.16</td>
<td>19.09±12.78</td>
</tr>
<tr>
<td>MAPPER (Mansour & et al. 2020)</td>
<td>50.67±0.60</td>
<td>5.36±0.20</td>
</tr>
<tr>
<td>PartialFed (Sun & et al. 2021)</td>
<td>51.75±0.18</td>
<td>18.02±23.22</td>
</tr>
<tr>
<td>FedProx (Li & et al. 2020)</td>
<td>63.9±21.22</td>
<td>22.5±30.96</td>
</tr>
<tr>
<td>Ditto (Li & et al. 2020)</td>
<td>74.28±1.05</td>
<td>42.78±0.87</td>
</tr>
<tr>
<td>FedDyn (Acar & et al. 2021)</td>
<td>51.64±0.02</td>
<td>17.9±12.11</td>
</tr>
<tr>
<td>SCAFFOLD (Sat. & et al. 2020)</td>
<td>50.06±0.05</td>
<td>5.07±0.02</td>
</tr>
<tr>
<td>pFedMe (Dinh & et al. 2020)</td>
<td>52.01±0.06</td>
<td>4.45±0.04</td>
</tr>
<tr>
<td>FedFOMO (Denny & et al. 2021)</td>
<td>51.33±0.01</td>
<td>5.09±0.04</td>
</tr>
<tr>
<td>FedPHP (Li & et al. 2021)</td>
<td>52.28±0.72</td>
<td>6.43±0.01</td>
</tr>
<tr>
<td>MOON (Li et al. 2021)</td>
<td>51.78±0.15</td>
<td>5.25±0.92</td>
</tr>
<tr>
<td>pFedHN (Shaham & et al. 2021)</td>
<td>90.05±8.45</td>
<td>58.20±0.03</td>
</tr>
<tr>
<td>Fed-ROD (Chen & et al. 2021)</td>
<td>88.86±0.39</td>
<td>56.70±1.35</td>
</tr>
<tr>
<td>pFedKT (Ours)</td>
<td>90.34±0.12</td>
<td>61.66±0.08</td>
</tr>
</tbody>
</table>

Figure 4: On CIFAR-10/100 datasets, left-two: the PMs’ mean accuracy varies with communication rounds; right-two: final 50 clients’ individual PM’s accuracy.

Results. As shown in Tab. 1, our pFedKT’s mean PM accuracy outperforms all baselines. On the CIFAR-10 dataset, pFedKT’s mean PM’s accuracy is 90.34%, which is 0.31% improved than the second-highest PM@Acc 90.03% achieved by pFedHN. On the CIFAR-100 dataset, pFedKT’s mean PM’s accuracy is 61.66%, increased 3.46% than the second-highest PM@Acc 58.20% achieved by pFedHN. The 100-classification task is a bit more complex than the 10-classification task, so it is inspiring that pFedKT fulfills a larger improvement of PM’s accuracy on the CIFAR-100 dataset. Besides, in Fig. 4 it’s obvious to see that: (1) our pFedKT converges to the highest PM’s accuracy. (2) Overall, the final 50 PMs’ individual accuracies in pFedKT are better (lighter color) than the baselines, which demonstrates the highest personalization degree of pFedKT.

Analysis. The PM@Acc of pFedHN and Fed-ROD are second only to our pFedKT, which benefits from that: pFedHN uses the server’s large hypernetwork to learn clients’ private knowledge and transfer it to each client, promoting PM’s feature extraction ability; Fed-ROD utilizes local hypernetworks to learn personalized header’s knowledge, improving PM’s prediction ability. FedPHP marginally improves PM due to linear cumulative knowledge; MOON fails to improve PM may be due to choosing GM as the initial anchor. Profiting from transferring historical private knowledge via local hypernetworks into PMs and transferring global knowledge via contrastive learning into PMs, PM’s generalization and personalization in pFedKT are both enhanced, so it achieves the state-of-the-art personalized PM’s accuracy.

Non-IID and Client Participating Rate. In addition, we also verified that pFedKT presents superiority in different Non-IID degrees and shows robustness to diverse client participation rates. The detailed experimental settings, results and analysis are reported in Appendix G.2.2.

5.3 Case Study

In this section, we study the affects of several cases on pFedKT, which include: the hypernetwork’s input embedding dimension and size, the weight of contrastive loss, the margin of triplet loss, and diverse loss functions. Since pFedKT can converge during 100 rounds, all case studies are executed within 100 rounds on CIFAR-10 (Non-IID: 2/10) and CIFAR-100 (Non-IID: 10/100) datasets.
We vary weight of contrastive loss should be set smaller than that of supervised loss. Hence, the PM’s insufficient training, since PM accesses less supervised information from labels. explained that: a larger weight of contrastive loss and a smaller weight of supervised loss lead to relatively high accuracy; otherwise, the accuracy of PM degrades obviously as \(\mu \) obtains the best PM on CIFAR-10, 100 datasets. Fig. 7 presents that when \(\mu \) results are reported in Fig. 7 and Tab. 8 of Appendix G.3. Tab. 8 shows that PM on CIFAR-10, 100 dataset, respectively. Fig. 7 displays that: when \(\mu \) drops obviously which controls the weight of contrastive loss; (2) \(\alpha \) combination of distance measurements and loss functions affect pFedKT, and the detailed experimental settings, results and analysis are given in Appendix G.3. From the results in Appendix G.3, Tab. 10, we conclude that triplet loss and KL divergence we designed in pFedKT performs better model accuracy than others. Therefore, setting an appropriate \(\alpha \) is necessary to balance PM’s personalization and generalization.

C. Loss functions. We also explore how diverse combinations of distance measurements and loss functions affect pFedKT: (1) \(\mu \), which controls the weight of contrastive loss; (2) \(\alpha \), the margin of triplet loss; and (3) different combinations of loss functions and distance measurements.

A. Weight of contrastive loss. We vary \(\mu \in \{0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9\} \), and the results are reported in Fig. 7 and Tab. 8 of Appendix G.3. Tab. 8 shows that \(\mu = 0.001 \), pFedKT obtains the best PM on CIFAR-10, 100 datasets. Fig. 7 presents that when \(\mu < 0.1 \), PM has relatively high accuracy; otherwise, the accuracy of PM degrades obviously as \(\mu \) rises. This can be explained that: a larger weight of contrastive loss and a smaller weight of supervised loss lead to PM’s insufficient training, since PM accesses less supervised information from labels. Hence, the weight of contrastive loss should be set smaller than that of supervised loss.

B. Margin of triplet loss. We vary \(\alpha \in \{0, 0.1, 1, 5, 10, 20, 30, 40, 50\} \), and the results are reported in Fig. 7 and Tab. 9 of Appendix G.3. Tab. 9 shows that pFedKT with \(\alpha = 0.1, 5 \) achieves optimal PM on CIFAR-10, 100 dataset, respectively. Fig. 7 displays that: when \(\alpha \geq 30 \), PM’s accuracy drops obviously, since larger \(\alpha \) leads initialized PM to be overly biased to the immature GM, directly compromising PM’s personalization. Therefore, setting an appropriate \(\alpha \) is necessary to balance the personalization and generalization of PM.

C. Loss functions. We also explore how diverse combinations of distance measurements and loss functions affect pFedKT, and the detailed experimental settings, results and analysis are given in Appendix G.3. From the results in Appendix G.3 Tab. 10 we conclude that the combination of triplet loss and KL divergence we designed in pFedKT performs better model accuracy than others.

5.3.3 Hyperparameters in Contrastive Learning

Next, we explore how the following key parameters of contrastive learning affect pFedKT: (1) \(\mu \), which controls the weight of contrastive loss; (2) \(\alpha \), the margin of triplet loss; and (3) different combinations of loss functions and distance measurements.

5.4 Ablation Study

pFedKT involves two important parts: (1) transferring private knowledge via hypernetwork (HN) and (2) transferring global knowledge via contrastive learning. To verify the effectiveness of each part, we conduct ablation experiments. We explore the following four cases: (A) Without part-(1,2), then pFedKT degenerates into FedAvg. (B) Only executing part-(1), i.e., only repeating the local training steps: generating initial PM by HN → training → updating HN’s parameters. C) Only executing part-(2), viewing the PM initialized with GM as the anchor, GM as the positive item, and the last round’s PM as the negative item, then this case degrades to MOON, but we still use triplet loss with KL divergence to compute contrastive loss. D) Executing both the two parts, i.e., pFedKT.

As shown in Appendix G.3 Tab. 11 case-(A) (i.e., FedAvg) has the lowest PM accuracy. Compared case-(B) with case-(A), the PM’s accuracy is obviously improved, indicating that using hypernetworks to transfer private knowledge is reasonable. Compared case-(C) with case-(A), there are marginal improvements in PM’s accuracy, reflecting that MOON takes limited improvements on model accuracy. Case-(D) (i.e., pFedKT) achieved the highest PM’s accuracy, demonstrating that the two-type knowledge transfers are necessary to enhance PM’s generalization and personalization.
Summary. Overall, pFedKT fulfills the state-of-the-art personalized PM’s performances. Besides, both the hypernetwork’s input embedding dimension and size influence pFedKT’s generalization. And it’s necessary to select the proper weight of contrastive loss, the margin of triplet loss, and the combination of the contrastive loss function and distance measurement. Finally, ablation experiments verified the feasibility and effectiveness of both two types of knowledge transfer in pFedKT.

6 RELATED WORK

Recent personalized federated learning (PFL) approaches include: a) **Fine-tuning**, clients fine-tune the received GM on local data to get PMs (Wang & et al, 2019; Mansour & et al, 2020). b) **Federated meta-learning**, some methods apply meta-learning in FL, such as MAML-based distributed variants (Li & et al, 2017; Fallah & et al, 2020b,a). c) **Federated multi-task learning**, it treats each client as a learning task, e.g., MOCHA (Smith & et al, 2017), FedU (Dinh & et al, 2021). d) **Model mixup**, the PM’s parameters are split into two parts, only one part is shared through the server and another is trained locally, as in FedPer (Arivazhagan & et al, 2019), FedFus (Yao et al, 2019), FLDA (Peterson et al, 2019), LG-FEDAVG (Liang & et al, 2020), MAPPER (Mansour et al, 2020), FedRep (Collins & et al, 2021), pFedGP (Achituve & et al, 2021), (Sun & et al, 2021). e) **Split learning (SL)**, like model mixup, it splits one full model into two portions which are allocated to client-side and server-side, respectively. Due to its efficient communication and privacy protection through transferring smashed data between the server and clients (Singh et al, 2019), it has been introduced into FL (Kairouz & et al, 2021). The latest SFL framework (Thapa & et al, 2022) merges FL with SL to boost model performances. f) **Regularization**, the gap between PM and GM is added to the PM’s loss function as a regularization term, such as pFedMe (Dinh & et al, 2020), FedProx (Li & et al, 2020), SCAFFOLD (Sai. & et al, 2020), L2GD (Hanzely & Richtarik, 2020), Ditto (Li & et al, 2021), FedDyn (Acar & et al, 2021). g) **Federated clustering**, the server clusters PMs with similar parameter distributions and performs aggregation within clusters, e.g., HYPCLUSTER (Mansour & et al, 2020), ClusterFL (Ouyang & et al, 2021). h) **Local aggregation**, instead of aggregation within server’s clustered groups, FedFOMO (Zhang & et al, 2021) makes each client pull other clients’ PMs and selects more beneficial ones for local aggregation to update its own PMs. i) **Knowledge distillation-based**, FedPHP (Li & et al, 2021) accumulates PMs to teach the received GM through knowledge distillation. FML (Shen et al, 2020) makes each client’s PM interact with the GM through mutual learning. KT-pFL (Zhang et al, 2021) allocates a public dataset to each client, and only logits computed on the public dataset are shared through the server. j) **Contrastive learning-based**, MOON (Li et al, 2021) utilizes contrastive learning to make PMs be close to the GM, towards obtaining a better GM. k) **Hypernetwork-based**, pFedHN (Shamsian & et al, 2021) deploys a hypernetwork with larger size than PMs on the server, which learns PMs’ parameter distributions and generates personalized parameters for each PM. The latest work Fed-ROD (Chen & Chao, 2022) trains private personalized headers with parameters generated by local hypernetworks. It improves both the GM and PMs, but extra communication cost incurs by communicating hypernetworks.

Our Insights. Inspired by FedPHP (Li et al, 2021), MOON (Li et al, 2021), pFedHN (Shamsian & et al, 2021) and the state-of-the-art work Fed-ROD (Chen & Chao 2022), our pFedKT targets to improve the accuracy of personalized PMs through transferring two types of knowledge. In short, our pFedKT outperforms these advanced methods in the following aspects: a) it achieves better performances of PMs than all of the four, b) it has comparable computation complexity with pFedHN, c) it has the same communication cost as FedAvg, lower than Fed-ROD. We detail the reasons for the above strengths in Appendix A.

7 CONCLUDING REMARKS

In this paper, we proposed a novel personalized FL framework named pFedKT to boost the performances of personalized PMs. It consists of two types of knowledge transfer: a) transferring historical private knowledge to PMs by local hypernetworks, and b) transferring global knowledge to PMs through contrastive learning. The two-type knowledge transfer enables PMs to acquire both historical private knowledge and the latest global knowledge, which promotes PM’s personalization and generalization simultaneously. Besides, we theoretically and experimentally verified that pFedKT’s generalization is related to hypernetworks’ input embedding dimension and size, and also proved pFedKT’s convergence. Extensive experiments demonstrated that pFedKT achieves the state-of-the-art personalized PM’s performances. In practice, pFedKT can be broadly applied to cross-silo FL scenarios.
REFERENCES

A INTUITIVE ANALYSIS OF pFedKT’S STRENGTHS OVER FOUR ADVANCED METHODS

Our pFedKT differs from the four related state-of-the-art methods in the following aspects:

• a) Unlike FedPHP (Li & et al. [2021]) linearly weighting new trained PMs and historical PMs, our pFedKT utilizes hypernetworks to continuously learn PMs’ parameter distributions, and transfers old knowledge to new models with parameters generated by hypernetworks. In other words, the process of updating hypernetwork inherently absorbs knowledge from old models, and the operation of generating parameters for new models by hypernetworks naturally transfers old knowledge to new models. Since historical private models with obsolete parameters compromise convergence, linearly stacking them with manually selected weights may suffer from degraded accuracy, which has been verified in experiments (Sec. 5.2). Since we have demonstrated that a hypernetwork can continuously learn the knowledge of target models effectively while improving accuracy, it can effectively accumulate private knowledge to enhance PM’s personalization.

• b) MOON (Li et al. [2021]) initializes the anchor with GM’s parameters, which is helpful to improve the GM’s accuracy but compromises the personalization of PMs. pFedKT selects the new PM generated by the local hypernetwork as the anchor which has carried private historical knowledge. Hence, it makes a better trade-off between personalization and generalization for PMs.

• c) The size of the server’s hypernetwork designed in pFedHN (Shamsian & et al. [2021]) is larger than that of private models, specifically, only the capacity of its output layer’s parameters is equal to that of one private model. While clients’ local hypernetworks used in our pFedKT are simple fully connected networks with lower parameter capacity, so it has lower computation complexity than the server’s large hypernetwork in pFedHN.

• d) The latest state-of-the-art work Fed-ROD (Chen & Chao [2022]) requires to communicate local hypernetworks (generating parameters for personalized headers) between clients and the server, introducing extra communication cost which is the main bottleneck of FL (Kairouz & et al. [2021]). Whereas, our pFedKT has consistent communication traffic with FedAvg.

B DEFINITION OF FL

FedAvg (McMahan & et al. [2017]) is a typical federated learning algorithm. Assuming that there are N clients in total, as shown in Fig. 1, the server samples fraction C of clients S(I = 1, ..., N) to participate in FL and broadcasts the global model to them. The k-th client initializes its local model \(\omega_k \) with the received global model and then trains it on local datasets \(D_k \), the training objective is: \(\min F_k(\omega_k) = \frac{1}{n_k} \sum_{i \in D_k} f_i(\omega_k) \), where \(n_k = |D_k|; f_i(\omega_k) = \ell(\mathbf{x}_i, y_i; \omega_k) \), i.e., the loss of the i-th instance \((\mathbf{x}_i, y_i) \) on the local model \(\omega_k \). The local epoch is \(E \), batch size is \(B \), so local training executes \(E \frac{n_k}{B} \) iterations. Then, clients upload trained local models to the server, and the server aggregates received local models to update the global model: \(\omega = \sum_{k=0}^{K-1} \frac{n_k}{n} \omega_k \), where \(n \) is the total number of instances owned by all clients. Finally, the server broadcasts the updated global model to clients. All the steps iteratively execute until the global model converges.

C HOW TO USE HYPERNETWORKS TO GENERATE PARAMETERS FOR TARGET MODEL?

Taking the hypernetwork and CNN (target model) for CIFAR-10 in Tab. 2 as examples, here we introduce how we use the hypernetwork to generate parameters for target models. Since the volume \((2 \cdot e + 09)\) of CNN’s parameters is more than the parameters amounts \((400)\) of the hypernetwork’s output layer, so we first divide CNN’s parameters into multiple chunks with ordered ids, each chunk has no more than 400 (hypernetwork’s output dimension) parameters. Then we sequentially input the embedding of chunk id into the hypernetwork to get the corresponding chunk’s target parameters. Finally, we concatenate the parameters from all chunks and reshape them with the CNN’s parameter...
shape. To sum up, we call the hyperparameters multiple times to generate parameters for the target model in a stacked form. Since each client’s local hypernetwork is unrelated to others, we applied the above parameter generation way for all clients in our pFedKT.

D HOW TO UPDATE HYPERNETWORK?

Assuming that the hypernetwork is \(\varphi \) and it generates parameters for the target model \(\omega = h(v; \varphi) \) (\(v \) is the hypernetwork’s input embedding). The hypernetwork \(\varphi \) and the generated target model \(\omega \) are trained in an end-to-end manner. Specifically, the generated target model \(\omega \) first executes gradient descent, then the hypernetwork \(\varphi \) is updated also through gradient descent. We assume that the loss function of the generated target model \(\omega \) is \(\ell(\omega) = \ell(h(v; \varphi)) \), so we refer to Shamsian & et al. (2021) and also utilize chain rule to derive the following equation:

\[
\nabla_\varphi \ell(\omega) = \nabla_\omega \ell(\omega) \cdot \nabla_\varphi \omega = (\nabla_\varphi \omega)^T \cdot \nabla_\omega \ell(\omega).
\] (5)

For \(\nabla_\omega \ell(\omega) \), we can use its first-order gradient approximation (Shamsian & et al. 2021; Zhang & et al. 2021) to represent as:

\[
\nabla_\omega \ell(\omega) := \Delta \omega = \hat{\omega} - \omega,
\] (6)

where \(\hat{\omega} \) and \(\omega \) are the target models after/before training. So we replace \(\nabla_\omega \ell(\omega) \) of Eq. 5 with Eq. 6 and get:

\[
\nabla_\varphi \ell(\omega) = (\nabla_\varphi \omega)^T \cdot \Delta \omega
\] (7)

After computing the gradients of the hypernetwork \(\varphi \), its parameters are updated through gradient descent, i.e.,

\[
\varphi \leftarrow \varphi - \eta_{HN} (\nabla_\varphi \omega)^T \cdot \Delta \omega,
\] (8)

where \(\eta_{HN} \) is the learning rate of the hypernetwork \(\varphi \).

E pFedKT ALGORITHM

Here, we illustrate the detailed algorithm of pFedKT in Alg. 1.

F DETAILED THEORETICAL ANALYSIS AND PROOF

In this section, we detailed the assumptions and derivations for Theorem 4.1 and Theorem 4.2, respectively.

F.1 DETAILED DERIVATIONS FOR THEOREM 4.1

We assume that the \(k \)-th client’s local dataset \(D_k = \{ (x_i^{(k)}, y_i^{(k)}) \}_{i=1}^{D_k} \), \(D_k \sim P_k \). Then the empirical loss and expected loss of its private model \(\omega_k \) can be denoted as:

Empirical loss:

\[
\hat{f}_{D_k}(\omega_k) = \frac{1}{|D_k|} \sum_{i=1}^{|D_k|} \ell(x_i^{(k)}, y_i^{(k)}; \omega_k),
\] (9)

Expected loss:

\[
f(\omega_k) = \mathbb{E}_{P_k} [\ell(x^{(k)}, y^{(k)}; \omega_k)].
\] (10)

Since we utilize local hypernetworks to generate parameters for private models, \(\omega_k = h(v; \varphi_k) \). So we can replace \(\omega_k \) with \(h(v; \varphi_k) \) in the above two losses, i.e.,

Empirical loss:

\[
\hat{f}_{D_k}(\varphi_k) = \frac{1}{|D_k|} \sum_{i=1}^{|D_k|} \ell(x_i^{(k)}, y_i^{(k)}; h(v; \varphi_k)),
\] (11)

Expected loss:

\[
f(\varphi_k) = \mathbb{E}_{P_k} [\ell(x^{(k)}, y^{(k)}; h(v; \varphi_k))].
\] (12)

Since each client holds its own hypernetwork which is unrelated to other’s hypernetworks, i.e., the hypernetwork’s input embedding \(v \) is independent of clients, so the variant is only \(\varphi_k \).
The supervised loss also assume the following two Lipschitz conditions:

\[\phi \]

Randomly initialize the global model \(\omega^0 \), private model \(\omega^0_k = \omega^0 \), private hypernetwork \(\phi^0_k \)

for each round \(t = 0, 1, \ldots, R-1 \) do

\(S^t \leftarrow \) randomly select \(K \) clients from \(N \) clients

Clients execute:

for each client \(k \in S^t \) do

Receive the latest global model \(\omega^t \) form the server

Utilize hypernetwork \(\phi^t_k \) to generate initial private model \(\theta^0_k \)

Train \(\theta^0_k \) on local dataset \(D_k \) to get trained private model \(\omega^t_k \) by contrastive learning:

\(B \leftarrow \) split local dataset \(D_k \) into batches of size \(B \)

\(\omega^t_k \leftarrow \theta^0_k \)

for each local epoch \(e \) from 1 to \(E \) do

for each batch \(b \in B \) do

Compute logits: \(\mathcal{L}_{\omega^t_k} \leftarrow \mathcal{R}_{\omega^t_k}(b) \), \(\mathcal{L}_{\omega^t_{k-1}} \leftarrow \mathcal{R}_{\omega^t_{k-1}}(b) \)

Compute distances: \(d_{KL}^{\omega^t_k} = d_{KL}(\mathcal{L}_{\omega^t_k} \| \mathcal{L}_{\omega^t_{k-1}}) \)

Compute contrastive loss: \(\ell_{\mathrm{con}} = \max(d_{KL}^{\omega^t_k} - d_{KL}^{\omega^t_{k-1}} + \alpha, 0) \) // triplet loss

Compute supervised loss: \(\ell_{\mathrm{sup}} = \text{CrossEntropy}(\text{output of } \omega^t_k(b), \text{label}) \)

Complete complete loss function: \(\ell = \mu \times \ell_{\mathrm{con}} + (1 - \mu) \times \ell_{\mathrm{sup}} \)

Gradient descent: \(\omega^t_k \leftarrow \omega^t_k - \eta_{NN} \nabla_{\omega^t_k} \ell \)

end

end

Store trained model \(\omega^t_k \) locally

Use trained private model \(\omega^t_k \) and initial private model \(\theta^0_k \) to update hypernetwork:

\(\phi^{t+1}_k \leftarrow \phi^t_k - \eta_{HN} (\nabla_{\phi^t_k} \theta^0_k)^2 \Delta(\theta^0_k, \omega^t_k) \) // according to Eq. 7

Upload private trained model \(\omega^t_k \) to the server

end

Server executes:

Receive private models \([\omega^t_1, \ldots]\) from clients and aggregate them by:

\(\omega^{t+1} = \sum_{k=1}^{K} \frac{n_k}{n} \omega^t_k \) // \(n_k \), the number of \(k \)-th client’s samples; \(n \), total number of all clients’ samples

Send the updated global model \(\omega^{t+1} \) to clients selected in the next round

end

Return (1) global model \(\omega^{R-1} \) and (2) personalized private models \([\omega^{R-1}_0, \omega^{R-1}_1, \ldots, \omega^{R-1}_N]\)

We refer to the assumptions about the parameters \(\varphi \) of hypernetworks in Shamsian & et al. (2021), in which the hypernetwork’s parameters are bounded in a spherical space with radius \(r \). Besides, we also assume the following two Lipschitz conditions:

Assumption F.1 The supervised loss \(\ell_{\mathrm{sup}} \) of the private model \(\omega \) is Lipschitz smooth, i.e., \(\ell_{\mathrm{sup}} \) satisfies:

\[\| \ell_{\mathrm{sup}}(x, y; \omega_1) - \ell_{\mathrm{sup}}(x, y; \omega_2) \| \leq L_{\omega} \| \omega_1 - \omega_2 \|. \] (13)

As analyzed in Qian & et al. (2019), we can also assume that the triplet loss \(\ell_{\mathrm{con}} \) of pFedKT is Lipschitz smooth. So we can update the above assumption as:

Assumption F.2 The complete loss \(\ell \) of the private model \(\omega \) satisfies:

\[\| \ell(x, y; \omega_1) - \ell(x, y; \omega_2) \| \leq L_{\omega} \| \omega_1 - \omega_2 \|. \] (14)

Assumption F.3 The mapping from the hypernetwork \(\varphi \) to the target private model \(\omega \) is Lipschitz smooth, i.e.,

\[\| h(\cdot; \varphi_1) - h(\cdot; \varphi_2) \| \leq L_{\varphi} \| \varphi_1 - \varphi_2 \|. \] (15)

Among the above two Lipschitz conditions, \(L_{\omega}, L_{\varphi} \) are Lipschitz constants.

Based on the above assumptions and the derived threshold of local data volume \(M = O(\frac{1}{\epsilon^2 \log(\frac{C(\epsilon, H_2)}{\delta})}) \) in Shamsian & et al. (2021), Baxter (2000), \(C(\epsilon, H_2) \) is the covering number of
According to the Lipschitz condition in Assumption F.4, we can further get:

H

Then we choose a ϵ-covering parameter space, in which we can always find at least one neighbor φ_2 with $\frac{1}{L_\varphi}$ distance to φ_1, so we can get:

$$\log(C(\epsilon, \mathbb{E}_i)) = O((emb_{dim} + HN_{size}) \log(\frac{r_{\omega} L_\varphi}{\epsilon})), \quad (17)$$

where emb_{dim} and HN_{size} are the input embedding and parameter capacity of the hypernetwork.

Similar to Theorem 1 in Shamsian & et al. (2021), we can conclude that our pFedKT’s generalization is affected by the hypernetwork’s input embedding and size, and also the above Lipschitz constants, as illustrated in our Theorem 4.4.

F.2 Detailed derivations for Theorem 4.2

Based on above Lipschitz conditions, we further make the following assumptions:

Assumption F.4 The gradients and parameters of models are bounded, i.e.,

$$\mathbb{E}[\|g(\omega)\|^2] \leq \sigma_1^2, \mathbb{E}[\|\omega\|^2] \leq \sigma_2^2,$$

$$\mathbb{E}[\|g(\varphi)\|^2] \leq \sigma_3^2, \mathbb{E}[\|\varphi\|^2] \leq \sigma_4^2, \quad (18)$$

where φ is the hypernetwork and ω is the target model with parameters generated by the hypernetwork φ. $\sigma_{1,2,3,4}$ are constants.

Li et al. (2020) have proved that FedAvg can converge to $O(1/T)$ on Non-IID dataset when partial clients participate in FL, i.e.,

$$\mathbb{E}[f(\omega_T)] - f^* \leq \frac{2\kappa}{\gamma + T}(\frac{B + C}{\mu} + 2L\|\omega_0 - \omega^*\|^2), \quad (19)$$

where $\mathbb{E}[f(\omega_T)]$ is the average loss in the T-th round; f^* is the minimum loss of ω during T rounds’ optimization; $\kappa, \gamma, B, C, \mu, L$ are constants assumed or derived in Li et al. (2020); ω_0 is the initialized model, ω^* is the optima with f^*. Since the above conclusion has been proved in Li et al. (2020), here we no further detail it.

In our pFedKT, each client’s private model ω is generated by its private hypernetwork φ, so we have:

$$\omega_0 = h(v; \varphi_0), \omega^* = h(v; \varphi^*). \quad (20)$$

Hence, Eq. (19) can be replaced as:

$$\mathbb{E}[f(\omega_T)] - f^* \leq \frac{2\kappa}{\gamma + T}(\frac{B + C}{\mu} + 2L\|h(v; \varphi_0) - h(v; \varphi^*)\|^2). \quad (21)$$

From Assumption F.3, the above equation can be further derived as:

$$\mathbb{E}[f(\omega_T)] - f^* \leq \frac{2\kappa}{\gamma + T}(\frac{B + C}{\mu} + 2L_\varphi\|\varphi_0 - \varphi^*\|^2). \quad (22)$$

According to the Lipschitz condition in Assumption F.3, we can further get:

$$\mathbb{E}[f(\omega_T)] - f^* \leq \frac{2\kappa}{\gamma + T}(\frac{B + C}{\mu} + 2L_\varphi\sigma_4^2) \sim O(1/T), \quad (23)$$

where L_φ and σ_4 are the constants defined in Assumption F.3 and Assumption F.4. Therefore, our pFedKT has the same convergence rate $O(1/T)$ with FedAvg.
G EXPERIMENTAL DETAILS

G.1 MODEL STRUCTURES AND HYPERPARAMETERS

We describe the structures of CNN models used on CIFAR-10/100 datasets and hypernetworks used for all tasks in Tab. 2. And we also report the detailed pFedKT’s hyperparameters used in three tasks in Tab. 3.

Table 2: Structures of CNN models on CIFAR-10/100 datasets and hypernetworks used for CIFAR-10 and Stack Overflow datasets. Note: the hypernetwork used on CIFAR-100 dataset has 2 hidden layers, i.e., its structure: fc1 (emb_dim, 100) → fc2 (100, 100) → fc3 (100, 100), → fc4 (100, 400).

<table>
<thead>
<tr>
<th>layer name</th>
<th>input size</th>
<th>output size</th>
<th>filter</th>
<th>input size</th>
<th>output size</th>
<th>filter</th>
<th>input size</th>
<th>output size</th>
<th>filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv1</td>
<td>3x32x32</td>
<td>16x28x28</td>
<td>5x5x16</td>
<td>3x32x32</td>
<td>16x28x28</td>
<td>5x5x16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max pool1</td>
<td>16x28x28</td>
<td>16x14x14</td>
<td>2x2</td>
<td>16x28x28</td>
<td>16x14x14</td>
<td>2x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv2</td>
<td>16x14x14</td>
<td>32x10x10</td>
<td>5x5x32</td>
<td>16x14x14</td>
<td>32x10x10</td>
<td>5x5x32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max pool2</td>
<td>32x10x10</td>
<td>32x5x5</td>
<td>2x2</td>
<td>32x10x10</td>
<td>32x5x5</td>
<td>2x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc1</td>
<td>800</td>
<td>1920</td>
<td></td>
<td>800</td>
<td>1920</td>
<td></td>
<td>Emb_dim</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>fc2</td>
<td>1920</td>
<td>80</td>
<td></td>
<td>1920</td>
<td>80</td>
<td></td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>fc3</td>
<td>80</td>
<td>10</td>
<td></td>
<td>80</td>
<td>100</td>
<td></td>
<td>100</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: The settings of pFedKT’s hyperparameters in three tasks. emb_dim is the hypernetwork’s input embedding dimension; n_hidden is the hypernetwork’s number of hidden layers; µ is the weight of contrastive loss; α is the margin in triplet loss. Note that: the hyperparameters are approximate optimal due to our coarse-grained searching.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>emb_dim</th>
<th>n_hidden</th>
<th>µ</th>
<th>α</th>
<th>loss function</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR-10 (Non-IID)</td>
<td>13</td>
<td>1</td>
<td>0.001</td>
<td>0.1</td>
<td>KL divergence</td>
<td></td>
</tr>
<tr>
<td>CIFAR-100 (Non-IID)</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.1</td>
<td>triplet loss</td>
<td></td>
</tr>
<tr>
<td>Stack Overflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G.2 MORE EXPERIMENTAL RESULTS OF COMPARISONS WITH BASELINES

Here, we also detailedly report the experimental results on Stack Overflow dataset, and the comparison results of our pFedKT and four related advanced baselines on CIFAR-10/100 dataset with different Non-IID degrees and diverse client participation rates.

G.2.1 EXPERIMENTAL RESULTS ON STACK OVERFLOW DATASET

We report the experimental results on a large natural real-world Non-IID dataset Stack Overflow in Tab. 4. We can observe that our pFedKT presents the best PM’s accuracy, again verifying its utility.

Table 4: The experimental results of our pFedKT and baselines on Stack Overflow dataset (a large natural real-world Non-IID dataset).

<table>
<thead>
<tr>
<th>Model@Acc</th>
<th>PM@Acc</th>
<th>FedAvg</th>
<th>FedPHP</th>
<th>MOON</th>
<th>pFedHN</th>
<th>Fed-ROD</th>
<th>pFedKT (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Training</td>
<td>15.71±2.30</td>
<td>23.52±0.05</td>
<td>23.64±0.03</td>
<td>23.79±1.41</td>
<td>25.19±0.01</td>
<td>24.98±0.15</td>
<td>25.33±0.01</td>
</tr>
</tbody>
</table>

G.2.2 COMPARISONS WITH BASELINES ON DATASETS WITH DIFFERENT NON-IID DEGREES

To explore how the Non-IID degree affects the performances of our pFedKT and four related advanced baselines, we allocate \{1, 2, ..., 10\} classes of data into one client for the CIFAR-10 dataset and divide \{10, 20, ..., 100\} classes of data into one client for CIFAR-100 dataset, and the results are reported in Fig. 5 and Tab. 5.

From Fig. 5, we observe that PM’s accuracy drops as the IID degree rises. Since clients hold more classes of data, their PMs have lower preferences to each class (i.e., improved generalization but compromised personalization), so PMs’ accuracy degrades. This result is also consistent with the argument in [Shen et al., 2020]: GM targets to improve its generalization but PM aims to improve its personalization, so Non-IID is beneficial to PM but harmful to GM. Our pFedKT presents superiority.
Under review as a conference paper at ICLR 2023

on severely Non-IID data, but performs marginally worse than baselines in high IID data, such as CIFAR-10 with class = \{8, 9, 10\} and CIFAR-100 with class = \{70, 80, 90, 100\}. Nevertheless, decentralized data held by devices participating in FL is often highly Non-IID (Kairouz et al., 2021), hence our pFedKT’s utility is still practical.

Figure 5: Test accuracy of PM on CIFAR-10/100 datasets varies with different Non-IID degrees.

Table 5: Test accuracy of GM and PM on CIFAR-10/100 datasets with different Non-IID degrees. Since pFedHN abandons the GM, we only report GM@Acc of other four algorithms.

<table>
<thead>
<tr>
<th></th>
<th>CIFAR-10 (Non-IID) PM@Acc</th>
<th>CIFAR-100 (Non-IID) PM@Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FedPHP</td>
<td>100.00</td>
<td>52.46</td>
</tr>
<tr>
<td>MOON</td>
<td>100.00</td>
<td>51.78</td>
</tr>
<tr>
<td>pFedHN</td>
<td>100.00</td>
<td>90.03</td>
</tr>
<tr>
<td>Fed-ROD</td>
<td>100.00</td>
<td>88.41</td>
</tr>
<tr>
<td>pFedKT</td>
<td>100.00</td>
<td>90.48</td>
</tr>
</tbody>
</table>

G.2.3 Comparisons with baselines under different client participation rates

To evaluate the effects of our pFedKT and baselines under different client participation rates (i.e., fraction C), we conduct experiments on CIFAR-10/100 datasets. We vary fraction $C \in \{0.1, 0.2, ..., 1\}$ and report the results in Fig. [6]. We can observe that: a) our pFedKT presents the highest PM accuracy in any fraction setting; b) pFedKT’s GM accuracy improves as fraction increases, which is intuitive since more clients participating in each round of FL provide more enough information for the aggregated GM then boost the generalization of GM; c) pFedKT’s PM accuracy is less affected by fraction. In addition, we also test our pFedKT and state-of-the-art Fed-ROD under the FL settings with 500 clients and frac $= 0.01$ client participation rate. The PM accuracy of Fed-ROD and our pFedKT are 79.79%, 79.98% on CIFAR-10 dataset and 30.85%, 31.63% on CIFAR-100 dataset. All the above results verify that pFedKT is robust to client participation rates.

Figure 6: Test accuracy of PM on CIFAR-10/100 datasets varies with different client participation rates (fraction C).
G.3 Detailed experimental results in case study

Here we report the detailed experimental results of five cases on CIFAR-10 (Non-IID: 2/10) and CIFAR-100 (Non-IID: 10/100) datasets in Tab. 6-9.

![Figure 7: PM’s test accuracy of varies with the hypernetwork’s input embedding dimension and number of hidden layers, the weight μ of contrastive loss, and the margin α in triplet loss.](image)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CIFAR-10 (Non-IID)</th>
<th>CIFAR-100 (Non-IID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>emb_dim</td>
<td>PM@Acc</td>
<td>PM@Acc</td>
</tr>
<tr>
<td>6</td>
<td>89.30</td>
<td>58.46</td>
</tr>
<tr>
<td>13</td>
<td>90.34</td>
<td>59.99</td>
</tr>
<tr>
<td>17</td>
<td>90.24</td>
<td>58.88</td>
</tr>
<tr>
<td>26</td>
<td>89.90</td>
<td>62.07</td>
</tr>
<tr>
<td>51</td>
<td>90.29</td>
<td>62.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CIFAR-10 (Non-IID)</th>
<th>CIFAR-100 (Non-IID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_hidden</td>
<td>PM@Acc</td>
<td>PM@Acc</td>
</tr>
<tr>
<td>1</td>
<td>86.16</td>
<td>52.21</td>
</tr>
<tr>
<td>2</td>
<td>85.78</td>
<td>53.76</td>
</tr>
<tr>
<td>3</td>
<td>83.13</td>
<td>48.77</td>
</tr>
<tr>
<td>4</td>
<td>75.56</td>
<td>17.26</td>
</tr>
<tr>
<td>5</td>
<td>57.79</td>
<td>12.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CIFAR-10 (Non-IID)</th>
<th>CIFAR-100 (Non-IID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>PM@Acc</td>
<td>PM@Acc</td>
</tr>
<tr>
<td>0.0001</td>
<td>83.87</td>
<td>52.74</td>
</tr>
<tr>
<td>0.001</td>
<td>86.16</td>
<td>52.21</td>
</tr>
<tr>
<td>0.01</td>
<td>84.43</td>
<td>50.50</td>
</tr>
<tr>
<td>0.1</td>
<td>53.30</td>
<td>11.41</td>
</tr>
<tr>
<td>0.3</td>
<td>47.32</td>
<td>8.67</td>
</tr>
<tr>
<td>0.5</td>
<td>35.23</td>
<td>5.35</td>
</tr>
<tr>
<td>0.7</td>
<td>24.49</td>
<td>4.73</td>
</tr>
<tr>
<td>0.9</td>
<td>19.07</td>
<td>1.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CIFAR-10 (Non-IID)</th>
<th>CIFAR-100 (Non-IID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>PM@Acc</td>
<td>PM@Acc</td>
</tr>
<tr>
<td>0</td>
<td>86.16</td>
<td>52.21</td>
</tr>
<tr>
<td>0.1</td>
<td>87.54</td>
<td>51.38</td>
</tr>
<tr>
<td>1</td>
<td>85.63</td>
<td>53.20</td>
</tr>
<tr>
<td>5</td>
<td>87.27</td>
<td>53.73</td>
</tr>
<tr>
<td>10</td>
<td>87.02</td>
<td>52.19</td>
</tr>
<tr>
<td>20</td>
<td>86.74</td>
<td>53.65</td>
</tr>
<tr>
<td>30</td>
<td>86.74</td>
<td>53.65</td>
</tr>
<tr>
<td>40</td>
<td>85.04</td>
<td>52.06</td>
</tr>
<tr>
<td>50</td>
<td>84.56</td>
<td>47.91</td>
</tr>
</tbody>
</table>

C. Loss functions in contrastive learning

There are various ways to measure the distances between two models’ logits vectors, such as KL divergence, $1−$ (cosine similarity), L2 norm, and MSE (the square of L2 norm). There are also diverse contrastive loss functions, such as triplet loss (Schroff & et al., 2015), loss in MOON (Li et al., 2021), etc. In fact, we pursue PM to be close to GM via contrastive learning, so a naive way is to add the euclidean distance (L2 norm) between the GM and PM as the regularization to the supervised loss, like FedProx (Li & et al., 2020). We evaluated several combinations of the above distance measurements and loss functions, and the results are reported in Tab. 10.

We can observe that the combination of triplet loss and KL divergence that we designed in pFedKT achieves the best PM on the CIFAR-10 dataset and the best GM on the CIFAR-100 dataset. pFedKT with loss used in MOON (Li et al., 2021) gets the highest PM’s accuracy on the CIFAR-100 dataset but lower PM’s accuracy on CIFAR-10 dataset than pFedKT with triplet loss and KL divergence. Other combinations also show worse model performances than our designed loss for pFedKT.
Table 10: The test accuracy of PM varies with multiple combinations of distance measurements and loss functions.

<table>
<thead>
<tr>
<th>Loss function</th>
<th>Distance</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PM@Acc</td>
<td>PM@Acc</td>
</tr>
<tr>
<td>Dataset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIFAR-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>triplet loss</td>
<td>KL divergence</td>
<td>86.16</td>
<td>52.21</td>
</tr>
<tr>
<td></td>
<td>1− (cosine similarity)</td>
<td>84.38</td>
<td>53.48</td>
</tr>
<tr>
<td></td>
<td>L2 norm</td>
<td>85.94</td>
<td>52.41</td>
</tr>
<tr>
<td></td>
<td>MSE</td>
<td>59.18</td>
<td>12.96</td>
</tr>
<tr>
<td>Moon loss</td>
<td>cosine similarity</td>
<td>84.66</td>
<td>53.81</td>
</tr>
<tr>
<td>L2 Regularization</td>
<td>KL divergence</td>
<td>84.84</td>
<td>52.96</td>
</tr>
<tr>
<td></td>
<td>cosine similarity</td>
<td>84.39</td>
<td>53.22</td>
</tr>
<tr>
<td></td>
<td>L2 norm</td>
<td>85.99</td>
<td>51.34</td>
</tr>
<tr>
<td></td>
<td>MSE</td>
<td>83.55</td>
<td>49.17</td>
</tr>
</tbody>
</table>

Table 11: Results of ablation experiments. “HN→PM” denotes private knowledge transfer by hypernetworks, “CL” represents global knowledge transfer through contrastive learning.

<table>
<thead>
<tr>
<th>Case</th>
<th>HN→PM</th>
<th>CL</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM@Acc</td>
<td>PM@Acc</td>
</tr>
<tr>
<td>A</td>
<td>✗</td>
<td>✗</td>
<td>51.64±0.02</td>
<td>4.59±0.39</td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td>✗</td>
<td>90.10±0.51</td>
<td>61.23±0.67</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✓</td>
<td>51.78±0.07</td>
<td>16.40±0.03</td>
</tr>
<tr>
<td>D</td>
<td>✓</td>
<td>✓</td>
<td>90.34±0.12</td>
<td>61.66±0.08</td>
</tr>
</tbody>
</table>

H.1 **Computational Complexity**

In this section, we compare pFedKT and state-of-the-art pFedHN in computational complexity, storage overhead, and model performances.

In short, our **pFedKT consumes comparable computational cost to pFedHN**.

Besides, pFedHN updates the server’s HN(large) once it receives one private model. Using one private model to update HN(large) and then using the updated HN(large) to generate parameters for the private model consume 1.2715*2 GB FLOPs. When multiple private models reach the server simultaneously, **computational blocking may occur due to the high computational complexity of HN(large).** Whereas, our pFedKT deploys one HN(small) on each client. From the perspective of computational complexity, our pFedKT inherently offloads the training tasks with the server’s hypernetwork in pFedHN to clients’ sub-tasks, which tackles the above blocking issue.

H.2 **Storage Overhead**

pFedHN’s server requires about 657 MB to store the HN(large), while our pFedKT’s N clients consume N * 0.1980 MB storage cost. When the number N of clients participating in FL is about...
Table 12: The three models’ parameter capacity and computational overhead (FLOPs) for one-time forward operation.

<table>
<thead>
<tr>
<th>Layers</th>
<th>Parameter Capacity</th>
<th>Computational Overhead (FLOPs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NN</td>
<td>HN(small)</td>
</tr>
<tr>
<td>conv1</td>
<td>(553+1)*16</td>
<td>-</td>
</tr>
<tr>
<td>conv2</td>
<td>(5516+1)*32</td>
<td>-</td>
</tr>
<tr>
<td>fc1</td>
<td>(800+1)*1920</td>
<td>(13+1)*100</td>
</tr>
<tr>
<td>fc2</td>
<td>(1920+1)*90</td>
<td>(100+1)*100</td>
</tr>
<tr>
<td>fc3</td>
<td>(80+1)*10</td>
<td>(100+1)*400</td>
</tr>
<tr>
<td>Total (number)</td>
<td>1706458</td>
<td>51900</td>
</tr>
<tr>
<td>Total (MB/GB)</td>
<td>6.5096 MB</td>
<td>0.1980 MB</td>
</tr>
</tbody>
</table>

Figure 8: (a): the ratio of computational complexity (FLOPs) between HN(small) and HN(large) varies with the hypernetwork’s output dimension; (b-c): PM’s accuracy of pFedKT with HN(small) and HN(large) on CIFAR-10/100 datasets varies with rounds.

3321, our pFedKT has a comparable storage cost to pFedHN. But in the cross-silo FL scenario, there are often no more than 3 companies or institutions joining in FL (Kairouz & et al., 2021), so our pFedKT has obvious strength than pFedHN in terms of storage cost.

H.3 Model Performance

We have compared the model performances of pFedHN and our pFedKT in Sec. 5.2, here we do not repeat it. As illustrated above, we require to call HN(large) once or HN(small) multiple times to generate parameters for one NN. Here, we also test our pFedKT with private HN(small) and private HN(large) on CIFAR-10/100 datasets, and the results are shown in Tab. 13 and Fig. 8 (b)-(d). It can be seen that pFedKT with HN(large) shows similar model performances with FedAvg, which is consistent with our conclusion of the case study on HN’s size in Sec. 5.3.2: larger HN is harder to train, hence showing worse model accuracy. This evaluation also verifies the strength of our calling HN(small) multiple times on model performances.

Table 13: The results of pFedKT with HN (large) and HN (small) on CIFAR-10/100 datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>PM@Acc</td>
<td>PM@Acc</td>
</tr>
<tr>
<td>FedAvg</td>
<td>51.64</td>
<td>4.39</td>
</tr>
<tr>
<td>pFedHN</td>
<td>90.34</td>
<td>58.2</td>
</tr>
<tr>
<td>pFedKT (small HN)</td>
<td>90.34</td>
<td>61.66</td>
</tr>
<tr>
<td>pFedKT (large HN)</td>
<td>51.67</td>
<td>5.04</td>
</tr>
</tbody>
</table>