Under review as a conference paper at ICLR 2025

POLICY DECORATOR: MODEL-AGNOSTIC ONLINE RE-
FINEMENT FOR LARGE POLICY MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in robot learning have used imitation learning with large
models and extensive demonstrations to develop effective policies. However, these
models are often limited by the quantity, quality, and diversity of demonstrations.
This paper explores improving offline-trained imitation learning models through
online interactions with the environment. We introduce Policy Decorator, which
uses a model-agnostic residual policy to refine large imitation learning models
during online interactions. By implementing controlled exploration strategies,
Policy Decorator enables stable, sample-efficient online learning. Our evaluation
spans eight tasks across two benchmarks—ManiSkill and Adroit—and involves
two state-of-the-art imitation learning models (Behavior Transformer and Diffusion
Policy). The results show Policy Decorator effectively improves the offline-trained
policies and preserves the smooth motion of imitation learning models, avoiding
the erratic behaviors of pure RL policies. See our project page for videos.

1 INTRODUCTION

Encouraged by thg recent success of large Al Maniskill Adroit
language and vision foundation models _ 8 tasks 4tasks 4tasks
(Brown et al., 2020; Kirillov et al., 2023), g g2 el JIm e
the field of robot learning has seen signif- € & ¥/ 5 o Rl = g 015 o
: N I PR 5 e @ £ % e |8 £
icant advances through imitation learn- g £ S ¢ & 5] &5
. - . . 8wl £% 8 wil &8 8 4wl | LB
ing (particularly behavior cloning), where 57 1S £ 3 1S £ 3 T
large models leverage extensive robotic & £ -2 & Ll = i s el

. . . S olclm o oLiclm o olllm m
demonstrations to develop effective poli- o

cies (Bousmalis et al., 2023; Brohan et al., 100+

100 q 100

. o o o o) o o
2022; 2023; Ahn et al., 2022). Despite § 3 4] £ 2 oo £ 5 w0 £
these advancements, the performance of & < ,|F & £ € LIEE € 1 Eg
s Qs c & c 5 g i 5 4 c 5
learned models is limited by the quan- g & , || & 8 € il |E B 8 wll|<E
. . . . a 5 S € g S < g S <
tity, quahtyZ and dlversu.y qf Rre-f:ollected § 3 20/ % % T 20 % % 5 0] % %
demonstration data. This limitation often + il = @ @ = @

0- 0- 0-
prevents models from handling all poten-
tial corner cases, as demonstrations cannot
cover every possible scenario (e.g., test-
time objects can be entirely different from
training ones). Unlike NLP and CV, scaling up demonstration collection in robotics, such as RT-1
(Brohan et al., 2022) and Open X-Embodiment (Collaboration, 2023), requires extensive time and
resources, involving years of data collection by numerous human teleoperators, making it costly and
time-consuming. In contrast, cognitive research indicates that infants acquire skills through active
interaction with their environment rather than merely observing others (Saylor & Ganea, 2018; Sheya
& Smith, 2010; Adolph et al., 1997; Corbetta, 2021). This raises a natural question: Can we further

improve an offline-trained large policy through online interactions with the environment?

Figure 1: Policy Decorator improves base policy to near-
perfect performance on two benchmarks, outperforming
fine-tuning and non-fine-tuning baselines.

The most straightforward approach to improving an offline-trained imitation learning policy is to
fine-tune it using reinforcement learning (RL) with a sparse reward (Kumar et al., 2022; Yang et al.,
2023a). However, several challenges hinder this strategy. Firstly, many state-of-the-art imitation
learning models have specific designs to accommodate the multimodal action distributions in the
demonstrations, which unfortunately make them non-trivial to fine-tune using RL. For example,

https://sites.google.com/view/policy-decorator/home

Under review as a conference paper at ICLR 2025

Evaluation
observation
def policy_decorator(base_pi):
def policy(obs):
sparse base_pi(obs) +
reward residual_pi(obs)
policy
Large Policy Model Base Policy Residual Policy @policy_decorator

(Diffusion Policy, BeT, etc.) () () def base_policy(obs):

2/ v

base action + residual action

w

. action
Demonstrations

Figure 2: Our framework (Policy Decorator) improves large policy models through online inter-
actions. We learn a residual policy via RL using controlled exploration strategies (Sec. 4.2). Once
learned, it functions similarly to Python decorators—wrapping the base policy with an additional
function to boost performance.

Behavior Transformer (Shafiullah et al., 2022), MCNN (Sridhar et al., 2023), and VINN (Pari et al.,
2021) all incorporate some non-differentiable components (clustering, nearest neighbor search) which
are incompatible with the gradient-based optimization in RL. Similarly, Diffusion Policy (Chi et al.,
2023) requires ground truth action labels to supervise its denoising process, but these action labels
are unavailable in RL setups (refer to Appendix H.1 for a more detailed discussion). Secondly, even if
an imitation learning model were compatible with RL, the fine-tuning process would be prohibitively
costly for two reasons: 1) the increasing number of parameters in modern large policy models, and 2)
the extensive gradient updates required during sparse-reward RL training, a process known for its
poor sample efficiency.

To devise a method for online improvement, we must first understand why an offline-trained imitation
learning policy sometimes fails to solve tasks. As studied in (Ross et al., 2011; Ross & Bagnell, 2010;
Syed & Schapire, 2010; Chang et al., 2015; Xu et al., 2020), a major issue with policies learned
from purely offline data is compounding error. Small errors gradually accumulate, eventually
leading the policy to states not covered in the demonstration dataset. However, correcting these
errors may only require minimal effort. Even if the final trajectory deviates significantly from the
correct path, slight adjustments can bring it back on track, as shown in Fig. 3. In other words, the
model only needs "refinement" for the finer parts of the tasks. Modeling such small adjustments
typically does not necessitate complex architectures or large numbers of parameters. Therefore, we
propose to online learn a residual policy (parameterized by a small network) to correct the behavior
of the offline-trained imitation learning models, referred to as the "base policy" throughout this paper.
This approach addresses the incompatibility between models and RL and avoids the costly gradient

updates on large models.
_ States Covered by

While learning a residual policy through online RL (Jo- ~ Training Data X
hannink et al., 2019; Alakuijala et al., 2021; Silver et al.,

2018; Zhang et al., 2019) can, in principle, refine a base /\U
policy, practical implementation is still challenging. As / \
demonstrated in our experiments (Sec. 5), without con- Small Adjustment One of the Demo
straints, random exploration during RL training often leads
to failure in tasks requiring precise control, resulting in no
learning signals in sparse reward settings (see

for an example). To overcome these challenges and enable stable, sample-efficient learning, we
propose a set of strategies to ensure the RL agent (with the residual policy) explores the environment
in a controlled manner. This approach ensures that the agent continuously receives sufficient success
signals while adequately exploring the environment. We call this framework the Policy Decorator
because it functions similarly to decorators in Python—enhancing the original policy by wrapping it
with an additional function to boost its performance, as illustrated in Fig. 2. Like Python decorators,
our framework does not require any prior knowledge of the original policy and treats it as a black
box, making it model-agnostic.

Figure 3: Small adjustments can bring
deviated trajectories back on track.

We evaluate our approach across a variety of benchmarks and imitation learning models. Specifically,
we examine 8 tasks from 2 benchmarks: ManiSkill (Mu et al., 2021; Gu et al., 2023) and Adroit
(Rajeswaran et al., 2017), in conjunction with 2 state-of-the-art imitation learning models: Behavior

https://sites.google.com/view/policy-decorator/home/random-residual-actions

Under review as a conference paper at ICLR 2025

Transformer (Shafiullah et al., 2022) (action clustering + regression) and Diffusion Policy (Chi et al.,
2023) (diffusion models + receding horizon control). Our results demonstrate that the Policy Decorator
consistently improves various offline-trained large policy models to near-optimal performance in most
cases. Furthermore, the learned policy maintains the desirable properties of the imitation learning
policy, producing smooth motions rather than the jerky motions generated by pure RL policies.

To summarize, our contributions are as follows:

* Conceptually, we raise the critical research question: "How can large policy models be improved
through online interactions?", and identify limitations of fine-tuning and vanilla residual RL.

¢ Technically, we propose Policy Decorator, a model-agnostic framework for refining large policy
models through online environmental interactions.

* Empirically, we conduct extensive experiments on 8 challenging robotic tasks and 2 state-of-the-art
imitation learning models, demonstrating Policy Decorator’s advantages in both task performance
and learned policy properties.

2 RELATED WORKS

Learning from Demo Learning control policies through trial and error can be inefficient and unstable,
prompting research into leveraging demonstrations to enhance online learning. Demonstrations can
be utilized through pure offline imitation learning, including behavior cloning (Pomerleau, 1988) and
inverse reinforcement learning (Ng et al., 2000). Alternatively, demonstrations can be incorporated
during online learning, serving as off-policy experience (Mnih et al., 2015; Hessel et al., 2018; Ball
et al., 2023; Nair et al., 2018) or for on-policy regularization (Kang et al., 2018; Rajeswaran et al.,
2017). Furthermore, demonstrations can be used to estimate reward functions for RL problems (Xie
et al., 2018; Aytar et al., 2018; Vecerik et al., 2019; Zolna et al., 2020; Singh et al., 2019). When the
offline dataset includes both demonstrations and negative trajectories, offline-to-online RL approaches
first apply offline RL to learn effective policy and value initializations from offline data, followed by
online fine-tuning (Nair et al., 2020; Kostrikov et al., 2021; Lyu et al., 2022; Nakamoto et al., 2024).
In this work, we adopt a more direct approach: distilling demonstrations into a large policy model
and subsequently improving it through online interactions.

Residual Learning The concept of learning residual components has been widely applied across
various domains, including addressing the vanishing gradient problem in deep neural networks (He
et al., 2016; Vaswani, 2017) and parameter-efficient fine-tuning (Hu et al., 2021). In robotic control,
researchers have employed online RL to learn corrective residual components for various base
policies, such as hand-crafted controllers (Johannink et al., 2019), non-parametric models (Haldar
et al., 2023b), and pre-trained neural networks (Alakuijala et al., 2021; Ankile et al., 2024). Residual
learning can also be achieved through supervised learning (Jiang et al., 2024). Our work focuses
on the online improvement of large policy models, identifying residual policy learning as an ideal
solution due to its model-agnostic nature. We highlight the uncontrolled exploration issue in vanilla
residual RL, propose a set of strategies to address it, and further enhance its efficiency through careful
examination of design choices.

Advanced IL Architecture Imitation learning methods offer an effective approach to teaching robots
complex skills. However, they often struggle with the challenge of modeling multi-modal distributions
within demonstration datasets (Chi et al., 2023; Jia et al.). To tackle this issue, specialized approaches
such as transformer-based methods (Shafiullah et al., 2022), diffusion-based methods (Chi et al., 2023;
Reuss et al., 2023), mixture of experts methods (Blessing et al., 2024), and nearest-neighbor methods
(Sridhar et al., 2023) have been developed. While these techniques are effective in learning from
multi-modal data, they frequently incorporate non-differentiable modifications or are incompatible
with reinforcement learning (RL). This limitation motivates our use of online residual policy learning
to enhance these imitation learning models.

3 PROBLEM SETUP

In this paper, we focus on improving an offline-trained large policy (referred to as "base policy")
through online interactions. We make the following assumptions:

1. An environment is available for online interactions with task success signals (sparse rewards).

Under review as a conference paper at ICLR 2025

2. The base policy may have a large number of parameters or complex architectures, making fine-
tuning non-trivial or computationally expensive. This assumption holds for many modern large
policy models (Brohan et al., 2022; 2023; Chi et al., 2023; Shafiullah et al., 2022).

3. The base policy exhibits reasonable initial performance, though not perfect (i.e., it can make
progress towards task completion, which is achievable by many state-of-the-art IL methods with
a reasonable amount of demonstrations). An excessively poor base policy is not worth improving.

Note that our approach does not make any specific assumptions about model architectures or training
methods. Instead, we treat these models as black boxes that take observations as input and produce
actions as output. In our experiments, we choose to improve base policies trained by imitation
learning rather than offline RL policies. This is because: 1) collecting demonstrations alone is more
cost-effective and thus more common; 2) as demonstrated in multiple studies (Mandlekar et al., 2021;
Florence et al., 2022), imitation learning outperforms offline RL in demonstration-only settings.

4 PoLiCcY DECORATOR: MODEL-AGNOSTIC ONLINE REFINEMENT

In this work, our goal is to online improve a large policy model, which is usually offline-trained
by imitation learning and usually has some specific designs in model architecture. To this end, we
propose Policy Decorator, a model-agnostic framework for refining large policy models via online
interactions with environments. Fig. 2 provides an overview of our framework.

Policy Decorator is grounded on learning a residual policy via reinforcement learning with sparse
rewards, which is described in Sec. 4.1. On top of it, we devise a set of strategies to ensure the RL
agent (in combination with the base policy and the residual policy) explores the environment in a
controlled manner. Such a controlled exploration mechanism is detailed in Sec. 4.2. Finally, we
discuss several important design choices that further enhance learning efficiency in Sec. 4.3.

4.1 LEARNING RESIDUAL POLICY VIA RL

Given the base policy 7pqs¢, We then train a residual policy 7.5 on top of it using reinforcement
learning. The base policy 745 can be either deterministic (e.g., Behavior Transformer (Shafiullah
et al., 2022)) or stochastic (e.g., Diffusion Policy (Chi et al., 2023)), and it remains frozen during the
RL process. The residual policy 7,5 is updated through RL gradients, so it should be a differentiable
function compatible with RL gradients. In this work, we model the residual policy 7.5 as a
Gaussian policy parameterized by a small neural network (either an MLP or a CNN, depending on the
observation modality). To interact with the environment, the actions from both policies are combined
by summing their output actions, i.e., the action executed in the environment is Tpgse(S) + Tres(S).
For stochastic policies, actions are sampled individually from both policies and then summed.

The residual policy is trained to maximize the expected discounted return derived from the sparse
reward (i.e., the task’s success signal). We employ the Soft Actor-Critic (SAC) algorithm (Haarnoja
et al., 2018) due to its superior sample efficiency and stability. Several important design choices arise
when implementing SAC for learning the residual policy, which we discuss in Sec. 4.3. Our method
is also compatible with PPO (Schulman et al., 2017), as illustrated in Appendix D.3.

4.2 CONTROLLED EXPLORATION

While learning a residual policy by RL can in principle refine a base policy, practical implementation
can be challenging. As demonstrated in our experiments (Sec. 5), without constraints, random
exploration during RL training often leads to failure in tasks requiring precise control, resulting in
no learning signals in sparse reward settings (see for an example). To overcome these
challenges and enable stable, sample-efficient learning, we propose a set of strategies ensuring the
RL agent (in combination with the base policy and the residual policy) explores the environment in
a controlled manner. The goal is to make sure the agent continuously receives sufficient success
signals while adequately exploring the environment.

Bounded Residual Action When using the residual policy to correct the base policy, we do not want
the resulting trajectory to deviate too much from the original trajectory because it usually leads to
failure. Instead, we expect the residual policy to only make a bit "refinement" at the finer parts of the
tasks. To reflect this spirit, we bound the output of the residual policy within a certain scale. Since we

https://sites.google.com/view/policy-decorator/home/random-residual-actions

Under review as a conference paper at ICLR 2025

Figure 5: Tasks Visualizations. ManiSkill (Ieft four figures) and Adroit (right four figures).

use SAC as our backbone RL algorithm, the output of the policy is naturally bounded by a squashing
function (tanh), whose range is (—1, 1). We further scale the action sampled from the Gaussian
policy with a hyperparameter «, making the range of the residual action (—c, «). We found that an
appropriate scale of residual action bound can be crucial for some precise tasks. We investigated the
effects of hyperparameter « in Sec. 5.4.2.

Progressive Exploration Schedule Given that our residual policy is randomly initialized, the agent
(combined with the base policy and residual policy) may exhibit highly random behavior and fail
to succeed at the initial stage of learning. Therefore, the base policy alone, trained by imitation
learning, can be more reliable during the early stages. As training progresses, the residual policy can
be gradually improved, making it safer to incorporate its suggestions.

Inspired by the e-greedy strategy used in DQN (Mnih et al., 2015),
we propose to progressively introduce actions from the residual policy
into the agent’s behavior policy. Specifically, the behavior policy will
use actions from the residual policy to complement the base policy
with probability € and rely solely on the base policy with probability
1 — €. Formally, during training, 0.0 %

e: Prob of Residual

H
. Environment Steps
Thehavior(s) = Thase(s) + Tres(s) Umforr'n(O, 1) <e (D) Figure 4: Progressive Explo-
Thase (S) otherwise ration Schedule.

The parameter € increases linearly from 0 to 1 over a specified number of time steps, as shown in
Fig. 4, where H is a hyperparameter. Our experiments in Sec. 5.4.2 indicate that while tuning H can
enhance sample efficiency, using a large H is generally a safe choice.

4.3 DESIGN CHOICES & IMPLEMENTATION DETAILS

We investigated a few important design choices in the implementation of Policy Decorator, with
supporting experiments provided in Appendix E.

Input of Residual Policy The residual policy can receive input in the form of either observation
alone or both observation and action from the base policy. Our experiments indicate that using only
observation typically produces better results, as illustrated in Fig. 19.

Input of Critic In SAC, the critic (s, a) takes an action as input, and there are several design
choices regarding this action: we can use 1) the sum of the base action and residual action; 2) the
concatenation of both; or 3) the residual action alone. Based on our experiments shown in Fig. 20,
using the sum of both actions yields the best performance.

5 EXPERIMENTS

The goal of our experimental evaluation is to study the following questions:

1. Can Policy Decorator effectively refine offline-trained imitation policies using online RL with
sparse rewards under different setups (different tasks, base policy architectures, demonstration
sources, and observation modalities)? (Sec. 5.3)

2. What are the effects of the components introduced by the Policy Decorator? (Sec. 5.4)

3. Does Policy Decorator generate better task-solving behaviors compared to other types of
learning paradigms (e.g., pure IL and pure RL)? (Sec. 5.5)

Under review as a conference paper at ICLR 2025

5.1 EXPERIMENTAL SETUP

To validate Policy Decorator’s versatility, our experimental setup incorporates variations across the
following dimensions:

» Task Types: Stationary robot arm manipulation, mobile manipulation, dual-arm coordination,
dexterous hand manipulation, articulated object manipulation, and high-precision tasks. Fig. 5
illustrates sample tasks from each benchmark.

* Base Policies: Behavior Transformer and Diffusion Policy
* Demo Sources: Teleoperation, Task and Motion Planning, RL, and Model Predictive Control

* Observation Modalities: State observation (low-dim) and visual observation (high-dim)

We summarize the key details of our setups as follows (further details on the task descriptions,
demonstrations, and base policy implementation can be found in Appendix A and B.1).

5.1.1 TASK DESCRIPTION

Our experiments are conducted on 8 tasks across 2 benchmarks: ManiSkill (robotic manipulation; 4
tasks), and Adroit (dexterous manipulation; 4 tasks). See Fig. 5 for illustrations.

ManiSKkill We consider four challenging tasks from ManiSkill. StackCube and PeglnsertionSide
demand high-precision control, with Peglnsertion featuring a mere 3mm clearance. TurnFaucet and
PushChair introduce object variations, where the base policy is trained on source environment objects,
but target environments for online interactions contain different objects. These complexities make it
challenging for pure offline imitation learning to achieve near-perfect success rates, necessitating
online learning approaches. For all ManiSkill tasks, we use 1000 demonstrations provided by the
benchmark (Mu et al., 2021; Gu et al., 2023) across all methods. These demonstrations are generated
through task and motion planning, model predictive control, and reinforcement learning.

Adroit We consider all four dexterous manipulation tasks from Adroit: Door, Hammer, Pen, and
Relocate. The tasks should be solved using a complex, 24-DoF manipulator, simulating a real hand.
For all Adroit tasks, we use 25 demonstrations provided by the original paper (Rajeswaran et al.,
2017) for all methods. These demonstrations are collected by human teleoperation.

5.1.2 BASE PoLiCY MODEL

We selected two popular imitation learning models as our base policy models for improvement.

Behavior Transformer (Shafiullah et al., 2022) is a GPT-based policy architecture for behavior
cloning. It handles multi-modal action distribution by representing an action as a combination of a
cluster center (predicted by a classification head) and an offset (predicted by a regression head). The
action cluster centers are determined by k means, which is non-differentiable, thus only the offset can
be fine-tuned using RL gradients.

Diffusion Policy (Chi et al., 2023) is a state-of-the-art imitation learning method that leverages
recent advancements in denoising diffusion probabilistic models. It generates robot action sequences
through a conditional denoising diffusion process and employs action sequences with receding horizon
control. The training of Diffusion Policy requires ground truth action labels to supervise its denoising
process; however, these action labels are unavailable in RL setups, making the original training recipe
incompatible with RL. Nevertheless, recent approaches have been developed to fine-tune diffusion
models using RL in certain scenarios. See Appendix H for a more detailed discussion.

The implementation details of these two base policies can be found in Appendix B.1. To further
demonstrate the versatility of our method, we also present the results on other types of base policies
(including MLP, RNN, and CNN) in Appendix D.1.

5.2 BASELINES

We compare our approach against a set of strong baselines for online policy improvement, including
both fine-tuning-based methods and methods that do not involve fine-tuning. A brief description
of each baseline is provided below, with further implementation details available in Appendix B.5.

Under review as a conference paper at ICLR 2025

5.2.1 FINE-TUNING METHODS

As discussed in Sec. 1, making our base policies compatible with online RL is non-trivial. We
implemented several specific modifications to the base policies to enable fine-tuning, as detailed in
Appendix B.4. Since we consider the problem of improving large policy models where full-parameter
fine-tuning can be costly, we employ LoRA (Hu et al., 2021) for parameter-efficient fine-tuning.

Our fine-tuning baseline selection follows this rationale: we first choose a basic RL algorithm for each
base policy based on their specific properties, which serves as a basic baseline. Additionally, assuming
access to the demonstrations used to train the base policies, we consider various learning-from-
demonstration methods as potential baselines. Table 1 lists the most relevant learning-from-demo
baselines. From these, we select the strongest and most representative methods in each category and
implement them on top of the basic RL algorithm we initially selected.

Basic RL We use SAC (Haarnoja et al., 2018) as our basic fine-tuning method for Behavior Trans-
former, and use DIPO (Yang et al., 2023b) for Diffusion Policy (see Appendix H.2 for a discussion on
other RL methods for Diffusion Policy). For both methods, we initialize the actor with the pre-trained
base policy and use a randomly initialized MLP for the critic (refer to Appendix F.5.1 for an ablation
study on this design choice). We also noticed a new method (DPPO (Ren et al., 2024)) for fine-tuning
Diffusion Policy using RL, which was released around three weeks before the ICLR deadline.
Although we had insufficient time to fully adapt it to our tasks, we conducted preliminary experiments
comparing our approach with DPPO on their tasks. Results indicate that our method significantly
outperforms DPPO. See Appendix C.2 for more details.

RLPD (Ball et al., 2023) is a
state-of-the-art online learning-
from-demonstration method that
utilizes demonstrations as off-
policy experience. It enhances
vanilla SACfd with critic layer
normalization, symmetric sam-
pling, and sample-efficient RL
techniques.

ROT (Haldar et al., 2023a) is
a representative online learning-

Table 1: Potential Fine-tuning Baselines with Demos. We
categorize potential learn-from-demo baselines into four distinct
categories, and choose the best and most representative methods
from each category as our main points of comparison. Selected
baselines are in bold.

Method

ROT (Haldar et al., 2023a)
GAIL (Ho & Ermon, 2016)
DAC (Kostrikov et al., 2018)
RLPD (Ball et al., 2023)
SACAd (Vecerik et al., 2017)

Category

Dense Reward Learning

Demo as Off-Policy Experience

from-demonstration algorithm
that utilizes demonstrations to
derive dense rewards and for
policy regularization. It adap-
tively combines offline behavior

Demo as On-Policy Regularization

Offline RL Online Fine-tuning

ROT (Haldar et al., 2023a)
DAPG (Rajeswaran et al., 2017)
AWAC (Nair et al., 2020)
Cal-QL (Nakamoto et al., 2024)
IQL (Kostrikov et al., 2021)
CQL (Kumar et al., 2020)

cloning with online trajectory-
matching based rewards.

Cal-QL (Nakamoto et al., 2024) is a state-of-the-art offline-to-online RL method that "calibrates" the
Q function in CQL (Kumar et al., 2020) for efficient online fine-tuning. In our setting, we use the
same demonstration set used in other baselines as the offline data for Cal-QL. Unlike other fine-tuning
baselines that initialize the critic randomly, Cal-QL can potentially benefit from the pre-trained critic.

5.2.2 NON-FINE-TUNING METHODS

JSRL (Uchendu et al., 2023) is a curriculum learning method that employs a guiding policy to bring
the agent closer to the goal. In our setting, the pre-trained base policy serves as the guiding policy.

Residual RL (Johannink et al., 2019) learns a residual control signal on top of a hand-crafted
conventional controller. Unlike our approach, it explores the environment in an entirely uncontrolled
manner. For a fair comparison, we replace its hand-crafted controller with our base policies.

FISH (Haldar et al., 2023b) builds upon Residual RL by incorporating a non-parametric VINN (Pari
et al., 2021) policy and learning an online offset actor with optimal transport rewards.

Under review as a conference paper at ICLR 2025

Success Rate %

80

60

40

20

80

60

ManiSkill: StackCube

ManiSkill: PeglnsertionSide

ManiSkill: TurnFaucet

ManiSkill: PushChair

e

0 05 10 15

Adroit: Door

20

0
00 05 10 15 20 25 30 35 40 00

Adroit: |

05 10 15

1 2 3 4 5 6

Adroit: Pen

Adroit: Relocate

100

80

60

40

Success Rate %

20

i

05 1.0 15 20 25
Environment Steps (millions)

N A M

o
000 025 050 075 100 125 150 175 2.00
Environment Steps (millions)

0 0 0
0.0 30 00 05 10 15 20 25 0.0

Environment Steps (millions)

3.0 05 10 15 20 25

Environment Steps (millions)

—— Policy Decorator (ours) JSRL —— Residual RL — FISH —— SAC — ROT RLPD —— Cal-QL —=—- Base Policy

Figure 6: Results (with Behavior Transformer): During training, we evaluate the agent for 50
episodes every S0K environment steps. The curves depict the evaluation success rates averaged over
ten seeds for our approach and three seeds for baselines. Shaded areas represent standard deviations.
Our method consistently improves the base policy and outperforms all other baselines.

ManiSkill: PeginsertionSide

ManiSkill: TurnFaucet ManiSkill: PushChair

Success Rate %

1 2 3 0.5 1.0 15 2.0

Adroit: Hammer Adroit: Relocate

80

60

40

Success Rate %

20

O.‘S 1 ‘0 1.‘5
Environment Steps (millions)

0‘5 1 ‘0 |‘.5
Environment Steps (millions)

0‘.5 |‘.0 |.‘5 2.‘0 2.‘5
Environment Steps (millions)

0
0.0 3.0 20

——— Policy Decorator (ours) JSRL —— Residual RL —— FISH —— DIPO == Base Policy

Figure 7: Results (with Diffusion Policy): The setup is similar to Fig. 6, but with different baselines
due to the nature of Diffusion Policy. Since DIPO does not work at all on any tasks, we did not include
other fine-tuning-based baselines built on top of DIPO. In addition, we did not test on StackCube and
Adroit Door because the base policy is already near-optimal (99%-+ success rates).

5.3 MAIN RESULTS & ANALYSIS

Our Approach We evaluate Policy Decorator with Behavior Transformer and Diffusion Policy as
base policies, and the results are summarized in Fig. 6 and 7, respectively (see Fig. 1 for a barplot).
Policy Decorator improves the performance of both offline-trained policies to a near-perfect level on
all tasks across ManiSkill and Adroit when given low-dimensional state observations. For Diffusion
Policy, we did not test on StackCube and Door since the base policy already achieves near-optimal
performance in these tasks.

Non-Finetuning Baselines Overall, JSRL performs the best among all baselines but only exceeds
the base policy’s performance on around half of the scenarios. Additionally, JSRL does not actually
"improve" the base policy but instead learns an entirely new policy. This means that even if it achieves
a high success rate, it does not preserve the desired properties of the original base policy, such as
smooth and natural motion. See for videos comparing the behavior of JSRL and the learned
policy from our framework. Residual RL improves the base policy on 3 out of 6 tasks when combined
with Diffusion Policy, but performs quite poorly when combined with Behavior Transformer. We
suspect that this is because residual RL agents have a higher chance of obtaining task success signals
through random exploration due to the stronger performance and robustness of the Diffusion Policy
models. FISH performs poorly on most tasks, primarily due to the weak performance of the VINN.
See Appendix G for detailed discussion on the failure of non-fine-tuning baselines.

https://sites.google.com/view/policy-decorator/home/compare-with-jsrl

Under review as a conference paper at ICLR 2025

ManiSkill: TurnFaucet ManiSkill: PushChair Adroit: Door Adroit: Pen

100

80

60

40
20

o o o o
0.00 025 050 075 1.00 125 150 175 2.00 o 1 2 3 4 5 0.0 0.5 1.0 15 20 25 3.0 0.0 0.5 1.0 15 20 25 3.0
Environment Steps (millions) Environment Steps (millions) Environment Steps (millions) Environment Steps (millions)

Success Rate %

—— Policy Decorator (ours) JSRL —— Residual RL — FISH == Base Policy

Figure 8: Results on Image Observations (with Diffusion Policy): Similar to Fig. 7, but using
image observations instead of low-dimensional state observations. We selected two tasks with
complex visual appearances from each benchmark.

Finetuning Baselines All fine-tuning-based baselines generally perform poorly in our evaluation.
Cal-QL and RLPD can improve Behavior Transformer on a few Adroit tasks but completely fail
on ManiSkill tasks. We suspect this is because the randomly initialized critic network cannot
provide meaningful gradients and quickly causes the agent to deviate significantly from the original
trajectories. In contrast, our controlled exploration strategies help the agent remain exposed to
success signals. While Cal-QL can theoretically learn a good critic from offline data, we found that
the learned critic does not aid online fine-tuning when it is trained purely on demonstration data
without negative trajectories. This degradation over the course of Cal-QL online training has also
been observed by Yang et al. (2023a). Another reason for the failure of fine-tuning-based methods is
the long-horizon nature of our tasks. We observed that RL fine-tuning becomes effective when the
task horizon is reduced (see Fig. 23). A detailed analysis of the failure of fine-tuning baselines is
presented in Appendix F. For Diffusion Policy, we observed that DIPO failed to obtain any success
signals across all tasks, so we did not further test other fine-tuning-based methods that rely on DIPO
as the backbone RL algorithm. We hypothesize that this failure is due to the receding horizon control
in Diffusion Policy, which complicates the fine-tuning process. For instance, when Diffusion Policy
predicts 16 actions but only the first 8 are executed in the environment, there is no clear method to
supervise the latter 8 actions during fine-tuning. Keeping the latter 8 actions unchanged is incorrect
because once the first 8 actions are modified through fine-tuning, they may bring the agent to a new
state where the latter 8 actions no longer apply.

Visual Observations Finally, we conducted experiments with visual observations. As shown in Fig.
8, the results validated that Policy Decorator also performs well with high-dim visual observations.

5.4 ABLATION STUDY

We conducted various ablations on Stack Cube and Push Chair tasks to provide further insights.

5.4.1 RELATIVE IMPORTANCE OF EACH COMPONENT

We examined the relative importance of Policy o ManiSkill: StackCube o ManiSkill: PushChair
Decorator’s main components: 1) residual pol- «] w0
. . . . 2
icy learning; 2) progressive exploration sched- & 4] 60
ule; and 3) bounded residual action. We thor- § . op
oughly evaluated all possible combinations of & 2] 20 /

i i i AadaAAANF WA
these components, with results shown in Fig.) Y A

. 0.0 05 1.0 15 20 25 3.0 0 1 2 3 4 5 6
9. Each component great]y contributes to the Environment Steps (millions) Environment Steps (millions)
overall performance, both individually and col- — All(ours) —— LoRA Fine-tune + Prog Schedule
Residual + Bounded Res Act ~ —— Residual Only

lectively. While residual policy learning estab-
lishes the foundation of our framework, using
it alone does not sufficiently improve the base
policy. Bounded residual action is essential for effective residual policy learning, and the progressive
exploration schedule further enhances sample efficiency.

—— Residual + Prog Schedule

Figure 9: The importance of each component.

5.4.2 INFLUENCE OF KEY HYPERPARAMETERS

Bound o of Residual Actions The hyperparameter « determines the maximum adjustment the
residual policy can make. Fig. 10 illustrates how « affects the learning process. If « is too small,
the final performance may be adversely affected. Conversely, if « is too large, it may lead to poor
sample efficiency during training. Although certain values achieve optimal sample efficiency, «
values within a broad range (e.g., 0.1 to 0.5 for PushChair and 0.03 to 0.1 for StackCube) eventually

Under review as a conference paper at ICLR 2025

ManiSkill: StackCube ManiSkill: PushChair ManiSkill: StackCube ManiSkill: PushChair

100 100 100 100

80 804 804

60 60 4 60 4

—_—H=0
H = 100K 10 —_—H=0

—_— =01

a=02

10 " 10

— H = 300K H=2M

Success Rate %
Success Rate %

v =i 7 =i | i =
0 0 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 1 5 6 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 1 5 6
Environment Steps (millions) Environment Steps (millions) Environment Steps (millions) Environment Steps (millions)
Figure 10: Different values of the bound « for Figure 11: Different values of H in Progressive
Residual Actions. Exploration Schedule.

converge to similar success rates, albeit with varying sample efficiencies. This indicates that while
the choice of « is impactful, our method remains robust across a wide range of « values. In
practice, tuning « is relatively straightforward: we typically set it close to the action scale observed
in the demonstration dataset and make minor adjustments as necessary.

H in Progressive Exploration Schedule The hyperparameter H (see Fig. 4 for an illustration)
controls the rate at which we switch from the base policy to the residual policy. From Fig. 11, we
observe that a too-small H can lead to complete failure due to aggressive exploration, while a large H
may result in relatively poor sample efficiency. Therefore, tuning H can enhance sample efficiency
and ensure stable training. However, using a large H is generally a safe choice if sample efficiency
is not the primary concern.

5.4.3 ADDITIONAL ABLATION STUDIES

Additional ablation studies are provided in Appendix D, with key conclusions summarized as follows:

* Policy Decorator also works with other types of base policies (e.g., MLP, RNN, and CNN). D.1
* Policy Decorator remains effective when applied to low-performing checkpoints. D.2
* Policy Decorator is also effective when using PPO as the backbone RL algorithm. D.3

5.5 PROPERTIES OF THE REFINED POLICY

An intriguing aspect of Policy Decorator is its ability to combine the strengths of both Imitation
Learning and Reinforcement Learning policies. Previous observations have highlighted that
robotic policies trained solely by RL often exhibit jerky actions, rendering them unsuitable for real-
world application (Qin et al., 2022). Conversely, policies derived from demonstrations, whether from
human teleoperation or motion planning, tend to produce more natural and smooth motions. However,
the performance of such policies is constrained by the diversity and quantity of the demonstrations.

Our refined policy, learned through Policy Decorator, achieves remarkably high success rates while
retaining the favorable attributes of the base policy. This is intuitive — by constraining residual
actions, the resulting trajectory maintains proximity to the original trajectory, minimizing deviation.

Comparison with RL policies reveals that our refined approach exhibits significantly smoother
behavior (see videos). Furthermore, when compared with offline-trained base policies, our
refined policy demonstrates superior performance, effortlessly navigating through the finest part of
the task (shown in).

6 CONCLUSIONS, DISCUSSIONS, & LIMITATIONS

We propose the Policy Decorator framework, a flexible method for improving large behavior models
using online interactions. We introduce controlled exploration strategies that boost the base policy’s
performance efficiently. Our method achieves near-perfect success rates on most tasks while preserv-
ing the smooth motions typically seen in imitation learning models, unlike the jerky movements often
found in reinforcement learning policies.

Limitations Enhancing large models with online interactions requires significant training time and
resources. While learning a small residual policy reduces computational costs compared to fully
fine-tuning the large model, the process remains resource-intensive, especially for slow-inference
models like diffusion policies. We found that only a few critical states need adjustment. Future
research could focus on identifying and correcting these points more precisely to improve efficiency.

10

https://sites.google.com/view/policy-decorator/home/compare-with-rl-policy
https://sites.google.com/view/policy-decorator/home/compare-with-base-policy

Under review as a conference paper at ICLR 2025

REFERENCES

Karen E Adolph, Bennett I Bertenthal, Steven M Boker, Eugene C Goldfield, and Eleanor J Gibson.
Learning in the development of infant locomotion. Monographs of the society for research in child
development, pp. i—162, 1997.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal, Jean Ponce, and Cordelia Schmid. Residual
reinforcement learning from demonstrations. arXiv preprint arXiv:2106.08050, 2021.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement—residual 1l for precise visual assembly. arXiv preprint arXiv:2407.16677, 2024.

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando De Freitas. Playing
hard exploration games by watching youtube. Advances in neural information processing systems,
31, 2018.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR, 2023.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Denis Blessing, Onur Celik, Xiaogang Jia, Moritz Reuss, Maximilian Li, Rudolf Lioutikov, and
Gerhard Neumann. Information maximizing curriculum: A curriculum-based approach for learning
versatile skills. Advances in Neural Information Processing Systems, 36, 2024.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X Lee, Maria Bauza,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-improving
foundation agent for robotic manipulation. arXiv preprint arXiv:2306.11706, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, and John Langford. Learning
to search better than your teacher. In International Conference on Machine Learning, pp. 2058—
2066. PMLR, 2015.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Open X-Embodiment Collaboration. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864, 2023.

Daniela Corbetta. Perception, action, and intrinsic motivation in infants’ motor-skill development.
Current Directions in Psychological Science, 30(5):418-424, 2021.

11

https://arxiv.org/abs/2310.08864

Under review as a conference paper at ICLR 2025

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

Ying Fan and Kangwook Lee. Optimizing ddpm sampling with shortcut fine-tuning. arXiv preprint
arXiv:2301.13362, 2023.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on Robot Learning, pp. 158—168. PMLR, 2022.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiaing Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. Maniskill2: A unified benchmark for generalizable manipulation skills. In International
Conference on Learning Representations, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. PMLR, 2018.

Siddhant Haldar, Vaibhav Mathur, Denis Yarats, and Lerrel Pinto. Watch and match: Supercharging
imitation with regularized optimal transport. In Conference on Robot Learning, pp. 32-43. PMLR,
2023a.

Siddhant Haldar, Jyothish Pari, Anant Rai, and Lerrel Pinto. Teach a robot to fish: Versatile imitation
from one minute of demonstrations. arXiv preprint arXiv:2303.01497, 2023b.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Xiaogang Jia, Denis Blessing, Xinkai Jiang, Moritz Reuss, Atalay Donat, Rudolf Lioutikov, and
Gerhard Neumann. Towards diverse behaviors: A benchmark for imitation learning with human
demonstrations. In The Twelfth International Conference on Learning Representations.

Yunfan Jiang, Chen Wang, Ruohan Zhang, Jiajun Wu, and Li Fei-Fei. Transic: Sim-to-real policy
transfer by learning from online correction. arXiv preprint arXiv:2405.10315, 2024.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
robot control. In 2019 international conference on robotics and automation (ICRA), pp. 6023-6029.
IEEE, 2019.

12

Under review as a conference paper at ICLR 2025

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In International
conference on machine learning, pp. 2469-2478. PMLR, 2018.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation
learning. arXiv preprint arXiv:1809.02925, 2018.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of
trials. arXiv preprint arXiv:2210.05178, 2022.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711-1724, 2022.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning from offline
human demonstrations for robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Cathera Yang, Xuanlin Li, Stone Tao, Zhiao Huang,
Zhiwei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6292—6299. IEEE, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
Advances in Neural Information Processing Systems, 36, 2024.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The surprising effectiveness of representation learning for visual imitation. arXiv preprint
arXiv:2112.01511, 2021.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via gq-score matching. arXiv preprint arXiv:2312.11752, 2023.

13

Under review as a conference paper at ICLR 2025

Yuzhe Qin, Hao Su, and Xiaolong Wang. From one hand to multiple hands: Imitation learning for
dexterous manipulation from single-camera teleoperation. IEEE Robotics and Automation Letters,
7(4):10873-10881, 2022.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
arXiv preprint arXiv:2409.00588, 2024.

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation
learning using score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661-668. IMLR
Workshop and Conference Proceedings, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627-635, 2011.

M Saylor and P Ganea. Active learning from infancy to childhood. Springer, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning £ modes with one stone. Advances in neural information processing systems,
35:22955-22968, 2022.

Adam Sheya and Linda B Smith. Development through sensorimotor coordination. 2010.

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning. arXiv
preprint arXiv:1812.06298, 2018.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic
reinforcement learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, James Weimer, and Insup Lee. Memory-
consistent neural networks for imitation learning. arXiv preprint arXiv:2310.06171, 2023.

Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to classification.
Advances in neural information processing systems, 23, 2010.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In
International Conference on Machine Learning, pp. 34556-34583. PMLR, 2023.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothorl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817,
2017.

Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothorl, Todd Hester, and Jon Scholz. A practical
approach to insertion with variable socket position using deep reinforcement learning. In 2019
international conference on robotics and automation (ICRA), pp. 754-760. IEEE, 2019.

14

Under review as a conference paper at ICLR 2025

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn. Few-shot goal inference for visuomotor
learning and planning. In Conference on Robot Learning, pp. 40-52. PMLR, 2018.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. Advances in
Neural Information Processing Systems, 33:15737-15749, 2020.

Jingyun Yang, Max Sobol Mark, Brandon Vu, Archit Sharma, Jeannette Bohg, and Chelsea Finn.
Robot fine-tuning made easy: Pre-training rewards and policies for autonomous real-world rein-
forcement learning. arXiv preprint arXiv:2310.15145, 2023a.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023b.

Shangtong Zhang, Wendelin Boehmer, and Shimon Whiteson. Deep residual reinforcement learning.
arXiv preprint arXiv:1905.01072, 2019.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf
Aytar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. arXiv preprint arXiv:2011.13885, 2020.

15

Under review as a conference paper at ICLR 2025

A FURTHER DETAILS ON THE EXPERIMENTAL SETUP

A.1 TASK DESCRIPTIONS

We consider a total of 8 continuous control tasks from 2 benchmarks: ManiSkill (Mu et al., 2021),
and Adroit (Rajeswaran et al., 2017). This section provides detailed task descriptions on overall
information, task difficulty, object sets, state space, and action space. Some task details are listed in
Table 2.

A.1.1 MANISKILL TASKS

For all tasks we evaluated on ManiSkill benchmark, we use consistent setup for state space, and
action space. The state spaces adhere to a standardized template that includes proprioceptive robot
state information, such as joint angles and velocities of the robot arm, and, if applicable, the mobile
base. Additionally, task-specific goal information is included within the state. ManiSkill tasks we
evaluated are very challenging because two of them require precise control and another two involve
object variations. Below, we present the key details pertaining to the tasks used in this paper.

Stack Cube

* Overall Description: Pick up a red cube and place it onto a green one.

* Task Difficulty: This task requires precise control. The gripper needs to firmly grasp the red cube
and accurately place it onto the green one.

* Object Variations: No object variations.
* Action Space: Delta position of the end-effector and joint positions of the gripper.

« State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information.

* Visual Observation Space: one 64x64 RGBD image from a base camera and one 64x64 RGBD
image from a hand camera.

Peg Insertion Side

* Overall Description: Insert a peg into the horizontal hole in a box.

 Task Difficulty: This task requires precise control. The gripper needs to firmly grasp the peg,
perfectly aligns it horizontally to the hole, and inserts it.

* Object Variations: The box geometry is randomly generated
* Action Space: Delta pose of the end-effector and joint positions of the gripper.

* State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information.

* Visual Observation Space: one 64x64 RGBD image from a base camera and one 64x64 RGBD
image from a hand camera.

Turn Faucet

 Overall Description: Turn on a faucet by rotating its handle.

» Task Difficulty: This task needs to handle object variations. The dataset contains trajectories of 10
faucet types, while in online interactions, the agent needs to deal with 3 novel faucets not present
in the dataset. See Fig 12.

* Object Variations: We have a source environment containing 10 faucets, and the dataset is collected
in the source environment. The agent interacts with the target environment online, which contains
3 novel faucets.

* Action Space: Delta pose of the end-effector and joint positions of the gripper.

* State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, the mobile base, and task-specific goal information.

16

Under review as a conference paper at ICLR 2025

* Visual Observation Space: one 64x64 RGBD image from a base camera and one 64x64 RGBD
image from a hand camera.

Push Chair

* Overall Description: A dual-arm mobile robot needs to push a swivel chair to a target location
on the ground (indicated by a red hemisphere) and prevent it from falling over. The friction and
damping parameters for the chair joints are randomized.

* Task Difficulty: This task needs to handle object variations. The dataset contains trajectories of 5
chair types, while in online interactions, the agent needs to deal with 3 novel chairs not present in
the dataset. See Fig 12.

* Object Variations: We have a source environment containing 5 chairs, and the dataset is collected
in the source environment. The agent interacts with the target environment online, which contains
3 novel chairs.

* Action Space: Joint velocities of the robot arm joints and mobile robot base, and joint positions of
the gripper.

* State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, task-specific goal information.

* Visual Observation Space: three 50x125 RGBD images from three cameras 120° apart from each
other mounted on the robot.

Source Environment Target Environment

Turn Faucet

Push Chair

Figure 12: For the Turn Faucet and Push Chair tasks in the ManiSkill benchmark, we have a source
environment with various object variations from which the dataset is collected. The agent interacts
with a target environment that features novel object variations. Please refer to the information above
for specific details.

A.1.2 ADROIT TASKS

Adroit Door

* Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree
of freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of
freedom arm. The task to be completed consists on undoing the latch and swing the door open.

 Task Difficulty: The latch has significant dry friction and a bias torque that forces the door to
stay closed. No information about the latch is explicitly provided. The position of the door is
randomized.

* Object Variations: No object variations.

* Action Space: Absolute angular positions of the Adroit hand joints.

17

Under review as a conference paper at ICLR 2025

* State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as state of the latch and door.

* Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Pen

* Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of freedom
arm. The task to be completed consists on repositioning the blue pen to match the orientation of
the green target.

* Task Difficulty: The target is also randomized to cover all configurations.

* Object Variations: No object variations.

* Action Space: Absolute angular positions of the Adroit hand joints.

* State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as the pose of the real pen and target goal.

* Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Hammer

* Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of freedom
arm. The task to be completed consists on picking up a hammer with and drive a nail into a board.

* Task Difficulty: The nail position is randomized and has dry friction capable of absorbing up to
15N force.

* Object Variations: No object variations.
* Action Space: Absolute angular positions of the Adroit hand joints.

* State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
the pose of the hammer and nail, and external forces on the nail.

* Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Relocate

* Overall Description: The environment is based on the Adroit manipulation platform, a 30 degree
of freedom system which consists of a 24 degrees of freedom ShadowHand and a 6 degree of
freedom arm. The task to be completed consists on moving the blue ball to the green target.

« Task Difficulty: The positions of the ball and target are randomized over the entire workspace.

* Object Variations: No object variations.

* Action Space: Absolute angular positions of the Adroit hand joints.

* State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as kinematic information about the ball and target.

* Visual Observation Space: one 128x128 RGB image from a third-person view camera.

18

Under review as a conference paper at ICLR 2025

Table 2: We consider 8 continuous control tasks from 2 benchmarks. We list important task details

below.
Task State Observation Dim Action Dim Max Episode Step
ManiSkill: StackCube 55 4 200
ManiSkill: PeglnsertionSide 50 7 200
ManiSkill: TurnFaucet 43 7 200
ManiSkill: PushChair 131 20 200
Adroit: Door 39 28 300
Adroit: Pen 46 24 200
Adroit: Hammer 46 26 400
Adroit: Relocate 39 30 400

A.2 DEMONSTRATIONS

This subsection provides the details of demonstrations used in our experiments. See Table 3. Man-
iSkill demonstrations are provided in Gu et al. (2023), and Adroit demonstrations are provided in

Rajeswaran et al. (2017).

Table 3: We list the number of demonstrations and corresponding generation methods below.

Task Num of Demo Trajectories Generation Method
ManiSkill: StackCube 1000 Task and Motion Planning
ManiSkill: PeglnsertionSide 1000 Task and Motion Planning
ManiSkill: TurnFaucet 1000 Model Predictive Control
ManiSkill: PushChair 1000 Reinforcement Learning
Adroit: Door 25 Human Teleoperation
Adroit: Pen 25 Human Teleoperation
Adroit: Hammer 25 Human Teleoperation
Adroit: Relocate 25 Human Teleoperation

B IMPLEMENTATION DETAILS

B.1 BASE POLICIES

We experiment with 2 state-of-the-art imitation learning models: Behavior Transformer and Diffusion

Policy.

B.1.1 BEHAVIOR TRANSFORMER

We follow the setup of Behavior Transformer in the original paper (Shafiullah et al., 2022). The
architecture hyperparameters are included in Table 4, and the training hyperparameters are included

in Table 5.

19

Under review as a conference paper at ICLR 2025

Table 4: We list the important architecture hyperparameters of Behavior Transformer used in our
experiments.

Hyperparameter Value

Context Window 10/20

Num Clusters 4/8

Num Layers 4

Num Heads 4
Embedding Dimensions 128

Trainable Parameters approximately 1 Million

Table 5: We list the important training hyperparameters of Behavior Transformer in ManiSkill and
Adroit tasks below.

Hyperparameter Value (ManiSkill) Value (Adroit)
Gradient Steps 200000 5000

Batch Size 2048 20438

Learning Rate le-4 le-4

Evaluation Frequency 100 episodes every 5000 steps 100 episodes every 100 steps
Optimizer AdamW Optimizer AdamW Optimizer

B.1.2 DIFFUSION POLICY

We follow the setup of U-Net version of Diffusion Policy in the original paper (Chi et al., 2023). The
architecture hyperparameters are includes in Table 6, and the training hyperparameters are included
in Table 7.

Table 6: We list the important architecture hyperparameters of Diffusion Policy used in our experi-
ments.

Hyperparameter Value

Action Horizon 4
Observation Horizon 2

Prediction Horizon 16
Embedding Dimensions 64
Downsampling Dimensions 256,512, 1024
Trainable Parameters approximately 4 Million

Table 7: We list the important training hyperparameters of Diffusion Policy in ManiSkill and Adroit
tasks below.

Hyperparameter Value (ManiSkill) Value (Adroit)
Gradient Steps 200000 200000

Batch Size 1024 1024

Learning Rate le-4 le-4

Evaluation Frequency 100 episodes every 5000 steps 100 episodes every 5000 steps
Optimizer AdamW Optimizer AdamW Optimizer

20

Under review as a conference paper at ICLR 2025

B.1.3 CHECKPOINT SELECTION

We evaluate the base policy for 50 episodes every specific number of gradient steps during training.
We select the checkpoint with the highest evaluation success rate.

B.2 PoLICY DECORATOR (OUR APPROACH)

Policy Decorator framework introduces two key hyperparameters: H in Progressive Exploration
Schedule and Bound « of Residual Actions. We list the values of these two key hyperparameters
across all tasks in the table below. Both of them are not too difficult to tune. We typically set « close
to the action scale observed in the demonstration dataset and make minor adjustments. H has a wide
workable range, and using a large H is generally a safe choice if sample efficiency is not the primary
concern. See Section 5.4.2 for more disccusion on the influence of these two hyperparameters.

Table 8: The values of H in Progressive Exploration Schedule and Bound « of Residual Actions
across all tasks.

Task H «

ManiSkill: StackCube (BeT, state) 1M 0.03
ManiSkill: PeglnsertionSide (BeT, state) M 1.0
ManiSkill: TurnFaucet (BeT, state) 500K 0.2
ManiSkill: PushChair (BeT, state) IiM 0.2
Adroit: Door (BeT, state) 100K 0.3
Adroit: Pen (BeT, state) 100K 0.3
Adroit: Hammer (BeT, state) 100K 0.3
Adroit: Relocate (BeT, state) 100K 0.2
ManiSkill: PeglnsertionSide (Diffusion Policy, state) 30K 0.03
ManiSkill: TurnFaucet (Diffusion Policy, state) 100K 0.1
ManiSkill: PushChair (Diffusion Policy, state) 100K 0.2
Adroit: Pen (Diffusion Policy, state) 100K 0.2
Adroit: Hammer (Diffusion Policy, state) 100K 0.1
Adroit: Relocate (Diffusion Policy, state) 300K 0.1
ManiSkill: TurnFaucet (Diffusion Policy, visual) 30K 0.05
ManiSkill: PushChair (Diffusion Policy, visual) 100K 0.2
Adroit: Door (Diffusion Policy, visual) 1M 0.1
Adroit Pen (Diffusion Policy, visual) 100K 0.8

B.3 IMPORTANT SHARED HYPERPRAMETERS AMONG POLICY DECORATOR AND OTHER
BASELINES

As all baselines use SAC as the backbone RL algorithm, we include some important shared hyper-
parameters used among the Policy Decorator and baselines in our experiments. See the Table 9 for
more details.

21

Under review as a conference paper at ICLR 2025

Table 9: We list the important shared hyperparameters among Policy Decorator and other baselines in
ManiSkill and Adroit tasks below.

Hyperparameter Value (ManiSkill) Value (Adroit)
Gamma 0.90 0.97
Batch Size 1024 1024
Learning Rate le-4 le-4
Policy Update Frequency 1 1
Training Frequency 64 64
Update-to-data Ratio 0.25 0.25
Target Network Update Frequency 1 1

Tau 0.01 0.01
Learning Starts 8000 8000

B.4 ENABLE RL FINE-TUNING ON BASE POLICIES

B.4.1 SAC FOR BEHAVIOR TRANSFORMER

Special Modifications on BeT Special adaptations relate to SAC’s Gaussian Tanh Policy, which
requires the actor backbone to output in the ATANH space of action rather than the regular space. This
requirement complicates the initialization of the Behavior Transformer (BeT) as the actor backbone.
Therefore, we allow the clustering process in BeT to operate in the regular action space, but the
regression head outputs in the ATANH action space. The final action is then computed as:

Afinal = arCtanh(abin) + Aregression output

Since the atanh function is defined between -1 and 1, some action dimensions (e.g., gripper actions)
need to be scaled to avoid numerical issues. In ManiSkill, we multiply the gripper dimension (last
action dimension) by 0.3; in Adroit, we multiply all actions by 0.5. The actions are rescaled back
after going through tanh. Our BeT, specially modified for fine-tuning, achieves similar performance
in evaluations in order to enable fair comparison. See Table 10 for evaluation success rate of BeT and
BeT modified version in ManiSkill and Adroit tasks.

Following the general paradigm of fine-tuning GPT-based models in natural language processing, we
add LoRA to all attention layers and final regression heads.

Table 10: We list the evaluation success rate of BeT and BeT modified version in ManiSkill and
Adroit tasks. BeT modifiled version is used in fine-tuning baselines, and original BeT is used in
Policy Decorator and non-fine-tuning baselines.

Task BeT BeT modified version
ManiSkill: StackCube (state) 71% 67%
ManiSkill: PeglnsertionSide (state) 15% 13%
ManiSkill: TurnFaucet (state) 41% 35%
ManiSkill: PushChair (state) 18% 23%
Adroit: Door (state) 78% 77%
Adroit: Pen (state) 65% 63%
Adroit: Hammer (state) 23% 21%
Adroit: Relocate (state) 20% 13%

Special Modifications on SAC We use SAC as our primary fine-tuning algorithm for Behavior
Transformer, with actor initialized using a pre-trained Behavior Transformer and a MLP as Q function.
See Appendix F.5.1 for discussion on the architecture choice of Q function.

22

Under review as a conference paper at ICLR 2025

B.4.2 DIPO FOR DIFFUSION POLICY

Special Modifications on DIPO DIPO uses action gradients to optimize the actions, and convert
online training to supervised learning, also refer to H.2. Since the Diffusion Policy employs a
prediction horizon that exceeds the action horizon (receding horizon), during the DIPO training phase,
we focus on optimizing only the first action horizon within the total prediction horizon using action
gradients. This approach prevents dynamics inconsistencies that would arise from optimizing the
remaining actions.

Following the general paradigm of fine-tining diffusion-based models in visual, we add LoRA to all
layers of diffusion policy.

B.5 BASELINES

In our experiments, we compare Policy Decorator with several strong baseline methods. The following
section provides implementation details for these baseline approaches.

Basic RL See Appendix B.4.

Regularized Optimal Transport (ROT) (Behavior Transformer Only). ROT (Haldar et al., 2023a)
is an online fine-tuning algorithm that fine-tunes a pre-trained base policy using behavior cloning
(BC) regularization with adaptive Q-filtering and optimal transport (OT) rewards. We use pre-trained
Behavior Transformer as base policy. For Behavior Cloning regularization, we allow BeT to output
the entire window of actions and apply the regularization accordingly. In experiments involving state
observations, the optimal transport (OT) rewards are computed using a ’trunk’ network within the
value function, which consists of a single-layer neural network. In contrast, for experiments with
visual observations, the OT rewards are computed directly using the visual encoder network. The
other experimental setup follows SAC.

Reinforcement Learning with Prior Data (RLPD) (Behavior Transformer Only). RLPD (Ball
et al., 2023) is a state-of-the-art online learn-from-demo method that enhances the vanilla SACfd
with critic layer normalization, symmetric sampling, and sample-efficient RL (Q ensemble + high
UTD). We add layer normalization to critic network. We maintain one offline buffer, which includes
demonstration data, and one online buffer, which contains online data. For online updates, we sample
50% batch from offline buffer and 50% batch from online buffer. We omit the sample-efficient RL
(Q ensemble + high UTD) due to the significant training costs associated with these components
and to ensure a fair comparison with other methods. The omitted component pursues extreme
sample efficiency at the cost of significantly increased wall-clock training time, which is impractical,
especially when fine-tuning a large model. The other experiment setup follows SAC.

Calibrated Q-Learning (Cal-QL) (Behavior Transformer Only). Cal-QL (Nakamoto et al., 2024)
is an offline RL online fine-tuning method that "calibrates" the Q function of vanilla CQL. We
pre-train a Q function using Cal-QL in the offline stage and then use SAC for fine-tuning in the online
stage with this pre-trained value function. We opted for this offline-to-online strategy because, in the
online stage of the original Cal-QL paper, calculating the critic loss requires querying the actor 20
times. This process is time-intensive, especially considering that the actor is initialized as a large
base model. The performance of curve C in Fig. 22 demonstrates the effectiveness of this strategy.
See F.3 for more discussion. In offline stage, we use pre-trained BeT with gradients open as actor and
an MLP as critic. In online stage, we use pre-trained BeT as actor and offline-trained MLP as critic.
The other experiment setup follows SAC.

Jump-Start Reinforcement Learning (JSRL) (Both Behavior Transformer and Diffusion Policy).
JSRL (Uchendu et al., 2023) is a curriculum learning algorithm that uses an expert teacher policy to
guide the student policy. In our setting, we use a pre-trained large policy (BeT or diffusion policy) as
the guiding policy and an MLP as the online actor. The initial jump start steps are the average length
of success trajectories in 100 evaluations of the pre-trained base policy. Following the setup in the
original paper, we maintain a moving window of evaluation success rate and best moving average
success rate. If current moving evaluation success rate is within the range of [best moving average -
tolerance, best moving average + tolerance], then we go 10 steps backwards.

Residual Reinforcement Learning (Residual RL) (Both Behavior Transformer and Diffusion
Policy). Residual RL (Johannink et al., 2019) learns a residual policy in an entirely uncontrolled

23

Under review as a conference paper at ICLR 2025

manner. In our experiments, We use a pre-trained large policy as the base policy and a small MLP as
the online residual actor. We follow the setting in the original paper that in online interactions, final
action = base action + online residual action.

Fast Imitation of Skills from Humans (FISH) (Both Behavior Transformer and Diffusion
Policy). FISH (Haldar et al., 2023b) builds upon Residual RL by incorporating a non-parametric
nearest neighbor search VINN policy (Pari et al., 2021) and learning an online offset actor with
optimal transport rewards. In our experiments, we use a GPT backbone as the representation network
for BeT experiments, a FiLM encoder (Perez et al., 2018) for diffusion state observation mode
experiments, and a visual encoder for visual observation mode experiments. See Appendix G.2.1 for
the performance of VINN policy.

C ADDITIONAL RESULTS OF POLICY DECORATOR

C.1 THE PERFORMANCE OF RL FROM SCRATCH

The RL training from scratch baseline has been incorporated into Fig. 13. We only plot results on
Adroit, as RL training from scratch achieves 0% success rate on ManiSkill tasks.

Adroit: Door Adroit: H Adroit: Pen Adroit: Relocate
100 100

B0 e s et b ek e 80

60 60

Success Rate %

40 40 N
20 A 20T TR %’/ # 20
AV
o 2 M| o UAYald /A o VA W MMW
0.00 025 050 075 1.00 125 150 175 2.00 0.0 05 1.0 15 20 25 3.0 0.0 05 1.0 15 20 25 3.0 0.0 0.5 1.0 15 20 25 3.0
Environment Steps (millions) Environment Steps (millions) Environment Steps (millions) Environment Steps (millions)
—— Ours JSRL —— Residual RL —— FISH —— SAC —— ROT RLPD —— Cal-QL SAC from scratch == Base Policy

Figure 13: Add SAC (training from scratch) to Fig. 6. Results are only shown for Adroit tasks, as it
achieves 0% success rate on all ManiSkill tasks with sparse reward.

C.2 COMPARISON WITH DPPO
C.2.1 SETUP

DPPO (Ren et al., 2024), a very recent work, successfully fine-tunes diffusion policies using PPO,
achieving state-of-the-art performance. Key tricks include fine-tuning only the last few denoising
steps and fine-tuning DDIM sampling. Given that this project was released around three weeks
before the ICLR deadline, we lacked sufficient time to fully adapt it to our tasks. Nevertheless,
we conducted preliminary experiments comparing our approach with DPPO on their tasks. Even if
DPPO is carefully tuned on their tasks, we are still able to beat it.

Specifically, we applied Policy Decorator (our approach) to the two most challenging robotic
manipulation tasks in their paper: Square and Transport. We used the Diffusion Policy checkpoints
provided by the DPPO paper as our base policies.

24

Under review as a conference paper at ICLR 2025

C.2.2 RESULTS

RoboMimic: Transport

100 1

80 1

60

40

Success Rate %

p— —— DPPO

Policy Decorator (ours)
0 T T T
0 1 2 3 4

Environment Steps (millions)

201

Figure 14: Policy Decorator (ours) vs. DPPO on the Transport task.

As shown in Fig. 14, our approach significantly outperforms DPPO on the Transport task. According
to Figure 5 in the DPPO paper, DPPO requires approximately 16 million steps to converge to 80%-+
success rate on the Transport task. In contrast, our Policy Decorator achieves this performance in
only 4 million steps, demonstrating a nearly 4x improvement in sample efficiency.

RoboMimic: Square RoboMimic: Square
(w/o Early Termination) (w/ Early Termination)
100 4 100
AN
R 80 o R 801
: : _/_/-/_
© ©
o 60 & 604
o ® /
(7] [7]
8 40 8 401
o o
=] =]
7] 7]
20 —— DPPO 20 —— DPPO
Policy Decorator (ours) Policy Decorator (ours)
0 : : : : : 0 : : :
0 1 2 3 4 5 6 0.0 05 1.0 1.5 2.0
Environment Steps (millions) Environment Steps (millions)

Figure 15: Policy Decorator (ours) vs. DPPO on the Square task.

On the Square task, our approach performs comparably to DPPO (left subfigure in Fig. 15). Upon
further investigation, we discovered that DPPO uses a fixed episode length without early termination
upon success signals. Empirically, this setup may negatively impact the sample efficiency of RL
algorithms, as transitions after task completion contribute minimally to learning. Consequently, we
conducted an additional experiment implementing early task termination upon success signals. The
results (right subfigure in Fig. 15) demonstrate that our approach outperforms DPPO in this
more reasonable setup.

C.2.3 SUMMARY
These experiments demonstrate that our method outperforms DPPO on challenging robotic
manipulation tasks. It is crucial to note that our approach is model-agnostic, whereas DPPO is

restricted to a specific case of Diffusion Policy (where all predicted actions are executed in the
environment, which is not the typical implementation of Diffusion Policy).

D ADDITIONAL ABLATION STUDIES

This section includes additional ablation studies results about base policies, low-performing check-
points, and PPO. In detail, Section D.1 discusses Policy Decorator also works with other types of

25

Under review as a conference paper at ICLR 2025

base policies (e.g., MLP, RNN, and CNN); Section D.2 demonstrates that Policy Decorator stays
effective in improving low-performing BeT checkpoints; Section D.3 indicates that Policy Decorator
is compatible with PPO as backbone RL algorithm.

D.1 ADDITIONAL BASE POLICIES

To demonstrate that Policy Decorator is truly versatile to all types of base policy, we further experiment

with model architecture of low representation power like MLP, BC-RNN, and CNN as well as low
performance checkpoints of Behavior Transformer.

Fig. 16 demonstrates that the Policy Decorator significantly enhances the performance of MLP,
BC-RNN, and CNN policies by interacting with environments.

Base Policy: MLP Base Policy: BC-RNN Base Policy: CNN
100 { 100 100

80 80 80

60 1 60 60

40 4 40

Success Rate %

40 o e o o o

Success Rate %
Success Rate %

20 4 wes Policy Decorator (ours) P — - === Policy Decorator (ours) , 20 4 wesPolicy Decorator (ours)
= w— === Base Policy (mlp) == = Base Policy (BC-RNN) == = Base Policy (CNN)
0 ™ ™ ™ 0 ™ ™ ™ o T ™ ™ ™
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 15 2.0 0 1 2 3 4
Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6

Figure 16: Policy Decorator with more base policies (MLP, BC-RNN, CNN) on TurnFaucet task
through online interactions.

D.2 USING OTHER CHECKPOINTS OF BASE POLICIES

As we claim that Policy Decorator is model-agnostic and is versatile to all types of base policies,
it is necessary to demonstrate that it not only improves well-trained base policy but also improves
low-performing checkpoints of base policy. Fig. 17 shows that the Policy Decorator achieves a
substantial improvement in the low-performance BeT checkpoint.

ManiSkill: TurnFaucet
100

80

60 A
=== Policy Decorator (ours)

== | Base Policy (BeT low)
40 1

Success Rate %

20 —— —————— — -

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

Figure 17: Policy Decorator with a low-performance BeT checkpoint.

26

Under review as a conference paper at ICLR 2025

D.3 CHANGE BACKBONE RL ALGORITHM TO PPO

Adroit: Pen

—————— m==m=_Policy Decorator (PPO)

=== PPO Fine-tuning
== Resiudual RL (PPO)
== Base Policy

Success Rate %

Environment Steps 1e6

Figure 18: Use PPO as the backbone RL algorithm in our method, RL fine-tuning, and Residual RL.

While we use SAC as the backbone RL algorithm in our experiments due to its high sample efficiency,
it is essential to demonstrate that the Policy Decorator can be integrated with other categories of
RL algorithms, such as policy optimization, to provide greater flexibility. We changed backbone
RL algorithm of our method, RL fine-tuning baseline, and residual RL baseline from SAC to PPO
(Schulman et al., 2017). As shown in Fig. 18, Policy Decorator with PPO successfully improves the
base policy and considerably outperforms all baselines.

E IMPORTANT DESIGN CHOICES

This section presents ablation results on a few key design choices, including the inputs for the residual
policy and the inputs for the critic.

E.1 INPUT OF RESIDUAL PoOLICY

The residual policy can receive input in the form of either observation alone or both observation and
action from the base policy. Our experiments indicate that using only observation typically produces
better results, as illustrated in Fig. 19.

ManiSkill: StackCube

100 A
O\o 80 -
Q
2
©
@ 60
n
3
o 401
3]
3
» 204 === Obs Only

_\ 7 Obs & Base Action
0 == T T T
0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

Figure 19: Different variants of input of residual policy.

E.2 INPUT OF CRITIC

In SAC, the critic Q(s, a) takes an action as input, and there are several design choices regarding this
action: we can use 1) the sum of the base action and residual action; 2) the concatenation of both;
or 3) the residual action alone. Based on our experiments shown in Fig. 20, using the sum of both
actions yields the best performance.

27

Under review as a conference paper at ICLR 2025

ManiSkill: StackCube

100

2 g0
Q
2
©
@ 60
n
]
8 40
g == Concat(Base, Residual)
9 204 Sum(Base, Residual)
== Residual Only
0 T T T T T
0.0 0.5 1.0 15 2.0 25 3.0

Environment Steps (millions)

Figure 20: Different variants of input of critic.

F FAILURE OF FINE-TUNING BASELINES

In this section, we analyze the poor performance of fine-tuning baselines in our experiments. We
provide an overall explanation for these failures in Sec. F.1. Then, Sec. F.2, F.3, and F.4 offer
illustrative experiments supporting the arguments presented in Sec. F.1. Finally, Sec. F.5
presents some additional ablation studies on design choices in fine-tuning baselines, demonstrating
our careful tuning of baseline implementations to achieve better performance.

F.1 OVERALL EXPLANATION

Even if we have selected the strongest learning-from-demo methods, most of them are still not
specifically designed for fine-tuning, and they do not intentionally prevent the unlearning of the
base model, i.e., the performance can drop significantly at the very beginning of training. This
phenomenon has also been discussed in Nakamoto et al. (2024). According to our observations, we
believe that performance degradation is probably due to the following two reasons:

1. Random Ceritic Initialization: We believe the randomly initialized critic network cannot
provide meaningful gradients to guide the policy. Such a noisy gradient can easily cause the
policy to deviate significantly from the initial weights. Once the unlearning happens, it becomes
very hard to relearn the policy since it cannot get the sparse reward signal anymore. Sec. F.2
presents an illustrative experiment to show this policy degradation with randomly initialized
critic. On the other hand, Cal-QL (Nakamoto et al., 2024) can theoretically learn a critic from
offline data. However, our empirical results indicate that when trained purely on demonstration
data without negative trajectories, the learned critic does not significantly improve online fine-
tuning. This performance degradation during Cal-QL online training aligns with observations
reported by (Yang et al., 2023a). Experimental evidence supporting this analysis is presented in
Sec. F.3.

2. Long Task Horizon: Long task horizon also significantly increases the difficulty of fine-tuning,
particularly in sparse reward settings. As the task horizon increases, the agent’s likelihood of
discovering sparse rewards through random exploration diminishes. Additionally, the sparse
reward signal requires more time to propagate through longer trajectories. The experiments
presented in Sec. F.4 empirically validate that the long task horizon is a key factor contributing
to the failure of fine-tuning baselines.

F.2 PoOLICY DEGRADATION WITH RANDOM INITIALIZED CRITIC
This section presents illustrative experiments demonstrating how updating the base policy with a
randomly initialized critic function Q(s, a) results in significant deviations from its original trajectory.

In the StackCube task, a robot arm must pick up a red cube and stack it on a green cube. Initially,
a pre-trained base policy (Behavior Transformer) successfully grasps the red cube and accurately
places it on the green cube, as shown in

28

https://sites.google.com/view/policy-decorator/home/policy-degradation

Under review as a conference paper at ICLR 2025

After fine-tuning the base policy with a randomly initialized critic for 100 gradient steps, the policy
begins to deviate slightly from the original trajectory, as shown in . While still able to grasp
the red cube, it fails to precisely place it on the green cube.

Following an additional 100 updates (200 total), the base policy deviates further from the original
trajectory, struggling to effectively grasp the red cube, as shown in

In summary, these experiments suggest that fine-tuning the base policy with a randomly
initialized critic can lead to unlearning. Once unlearning occurs, it becomes very hard to
relearn the policy since it cannot get the sparse reward signal anymore.

F.3 PRE-TRAINING CRITIC ON DEMO-ONLY DATASET DOES NOT HELP

Cal-QL (Nakamoto et al., 2024), a state-of-the-art offline RL method, aims to pre-train a critic
for efficient online fine-tuning. Our experiments show that pre-training a critic using Cal-QL on
demonstration-only datasets (without negative experiences) provides limited benefits for online
fine-tuning, as illustrated in Fig. 21. This section presents experiments explaining why it does not
help and validates the correctness of our Cal-QL baseline results.

The original Cal-QL paper reported much better results on Adroit tasks compared to our Cal-QL
baseline. We believe this discrepancy is mainly due to differences in experimental setups:

1. Offline Dataset: The original Cal-QL paper uses an offline dataset consisting of 25 human
teleoperation demonstrations and additional trajectories from a BC policy. Our Cal-QL baseline
uses only 25 human demonstrations, ensuring fair comparison with other learning-from-demo
baselines that only utilize demonstrations. We also made this assumption in Sec. 3.

2. Actor Architecture: The original Cal-QL paper employs a small MLP as the actor, while we
use a pre-trained Behavior Transformer (BeT) to align with our goal of improving the pre-trained
base policy.

3. Online Algorithm: The original Cal-QL paper uses Cal-QL algorithm in both offline and online
stage. However, computing critic loss in Cal-QL algorithm requires querying the actor 20 times
in each update, which is extremely time-consuming given that the actor is a large model in our
settings. Therefore, we use SAC in the online phase instead of Cal-QL.

To verify whether these setup differences cause the divergent results, we designed the following
experimental setups for Cal-QL, interpolating between the original setup and ours:

* A: Small MLP actor + Mixed dataset + online Cal-QL (Cal-QL’s original setting)

e C: Small MLP actor + Demo-only dataset + online SAC
* D: Large GPT actor + Demo-only dataset + online SAC

e E: BeT actor + Demo-only dataset + online SAC (the setup used in our experiments)

The experimental results of these setups are shown in Fig. 22. In Cal-QL’s paper, they only report
the results up to 300k steps, and our curve A perfectly matches the official results, which
suggests that our implementation is correct. Interestingly, Cal-QL exhibits instability when run
for longer periods (e.g., 3M steps), even in its original setup. Comparing curve A and
illustrates Cal-QL’s strong dependence on a large, diverse dataset comprising both demonstrations
and negative trajectories. Cal-QL’s sample efficiency deteriorates a lot when the offline dataset is
limited to a few demonstrations without negative trajectories. The comparison between and
curve C demonstrates that while using SAC as an online algorithm results in slightly reduced sample
efficiency, it still achieves 90%+ success rates. This trade-off suggests that sacrificing a little bit of
sample efficiency is acceptable in exchange for significant wall-clock time savings. The comparison
between curve C and curve D illustrates that a large GPT actor can also negatively impact Cal-QL’s
performance. Curve D and curve E demonstrate that using a pre-trained BeT outperforms a randomly
initialized GPT, which is expected.

In conclusion, the divergent results between Cal-QL’s original paper and our baseline can be
attributed to different experimental setups. Our results are validated and reliable.

29

https://sites.google.com/view/policy-decorator/home/policy-degradation
https://sites.google.com/view/policy-decorator/home/policy-degradation

Under review as a conference paper at ICLR 2025

Adroit: Pen Adroit: Pen
100 4 100 4
o 0 A: MLP + Mixed Dataset + online Cal-QL
i 80 1 % 807 (Cal-QL's original setting)
S 04 g o B: MLP + Demo Dataset + onll.ne Cal-QL
@ @ = C: MLP + Demo Dataset + online SAC
8 40 8 404 = D: GPT + Demo Dataset + online SAC
3 rrrar 5 E: BeT + Demo Dataset + online SAC
o 20 == Critic Initialized Randomly @ 204 ~ (setup in our experiment)
=== Critic Pre-trained by Cal-QL
0 0
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 20 25 3.0
Environment Steps (millions) Environment Steps (millions)

Figure 21: Pre-training a critic Figure 22: To verify whether the setup differences cause the
by Cal-QL on demo-only datasets divergent results, we designed different experimental setups for
does not help online fine-tuning. Cal-QL, interpolating between the original setup and ours.

F.4 LONG TASK HORIZON MAKES FINE-TUNING HARD

This section presents experiments exploring how task horizon affects the fine-tuning of the base
policy.

In the TurnFaucet task, no fine-tuning baselines achieve non-zero success rates. To shorten the
effective task horizon, we roll out the pre-trained base policy (Behavior Transformer) for a specific
number of steps (40, 100, or 120) in each episode. This approach likely brings the agent closer to
success, thus shortening the effective task horizon. We then perform regular RL fine-tuning for the
remaining steps of an episode.

Fig. 23 demonstrates that shortening the task horizon by 100 steps results in a significant improvement,
while reducing it by 120 steps achieves a 100% success rate. This experiment clearly shows that
the long task horizon is a major factor in fine-tuning failure, and reducing the task horizon
substantially eases RL fine-tuning difficulties.

ManiSkill: TurnFaucet

I\r\,\/v\/jv-

=== Reduce horizon by 0
Reduce horizon by 40

=== Reduce horizon by 100

=== Reduce horizon by 120

100 4

80

60

40

Success Rate %

20+

0 T T T
0.0 0.5 1.0 1.5 2.0

Environment Steps (millions)

Figure 23: Fine-tuning Behavior Transformer using SAC with different effective task horizons.

F.5 ABLATION STUDY ON DESIGN CHOICES IN FINE-TUNING BASELINES
This section contains ablation studies on some design choices in fine-tuning-based baselines. In detail,

Section F.5.1 discusses different choices of Q function architecture, while Section F.5.2 illustrates the
effects of using warmstart in Q function training.

F.5.1 ARCHITECTURE OF Q FUNCTION

The architecture of the Q function can be important in designing fine-tuning baselines. We essentially
have three options:

1. Q-function using an MLP
2. Q-function using a shared GPT backbone with the actor
3. Q-function using a separate GPT backbone

30

Under review as a conference paper at ICLR 2025

As shown in Fig. 24, we experimented with all the aforementioned Q-function architectures in
SAC and PPO fine-tuning experiments. The results indicate that SAC fine-tuning with an MLP
Q-function slightly improves the base policy, whereas SAC fine-tuning with the other two Q-function
architectures does not yield such improvements. In contrast, PPO fine-tuning across all Q-function

architectures demonstrates poor performance. Based on these observations, we chose to use the MLP
Q-function in our fine-tuning baselines.

Adroit: Pen Adroit: Pen
100 A 100
® 807 ® 80
o o === Policy Decorator (PPO)
g e gl pilgey -y 2l £ 60 = == ™= "em= PPO Fine-tune (MLP) v
73 » === PPO Fine-tune (shared backbone)
3 === Policy Decorator (SAC) % PPO Fine-tune (separate backbone)
g 401 s SAC Fine-tune (MLP) g 40 = Base Policy
(3 === SAC Fine-tune (shared backbone) a
20 1 SAC Fine-tune (separate backbone) 20
g = | Base Policy B
0 .m,;,zm 04 . : " -
0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5
Environment Steps 1e6 Environment Steps 1e6

Figure 24: SAC/PPO fine-tuning with different critic architectures.

F.5.2 EFFECT OF WARM-START IN Q FUNCTION TRAINING

Warm-starting Q function training is a widely used technique to ensure that the actor is updated
with a reliable Q function. We also tried this technique in designing fine-tuning baselines. We
experimented with a warm-start critic for a number of steps without training the actor. However, as
shown in Fig. 25, this approach causes alpha, the learnable entropy coefficient in SAC, to increase
massively, leading to an explosion in Q loss. We also compared vanilla fine-tuning with fine-tuning
using a warm-start and fixed alpha. As indicated in Fig. 26, empirical results demonstrate that vanilla
fine-tuning outperforms fine-tuning with a warm-start and fixed alpha. Upon closer examination,
we found that fine-tuning with a warm-start and fixed alpha results in very unstable critic training.
Therefore, we do not warm-start Q function training in our fine-tuning baselines.

Adroit: Pen 1e9 Adroit: Pen
120 | e Alpha s Q LoSS

100 31
80

2
60

40 4 1]
204

0 0

T T : T T v
0 50000 100000 150000 200000 0 50000 100000 150000 200000
Environment Steps Environment Steps

Figure 25: Critic warm start results in alpha and Q loss explosion when auto entropy tuning is
enabled.

Adroit: Pen, SAC fine-tune

[y = Vanilla SAC Fine-tune

o g0 = Warm-start (fixed alpha) M
og == = Base Policy
S g et e e e e
[
8
o 40 A
o
3
@
20

0.0 0.5 1.0 1.5 2.0 25 3.0
Environment Steps 1e6

Figure 26: Warm-start the critic during fine-tuning.

31

Under review as a conference paper at ICLR 2025

G FAILURE OF NON-FINE-TUNING BASELINES

In this section, we analyze the poor performance of non-fine-tuning baselines in our experiments. We
discusses the failure of vanilla Residual RL in Section G.1. We provides the explanations of failure
of FISH in Section G.2.

G.1 FAILURE OF VANILLA RESIDUAL RL

The residual RL baseline uses identical settings to our method, excluding the controlled exploration
module. The primary failure mode of residual RL stems from 2 points:

1. Random residual actions in early training stages, causing the agent to deviate significantly from
the base policy. This deviation leads to not getting any success signals for guiding learning. (see
for an example).

2. Residual policy does not know it aims to minor fix the base policy, so during training, the
average size of residual actions go beyond the average size of base policy actions, destroying
the performance of base policy.

This is also supported by our ablation study (Fig. 10 and 11). As we gradually remove controlled

exploration strategies (reducing H to 0 or increasing alpha to 1), our method approaches vanilla
residual RL, resulting in deteriorating performance.

G.2 FAILURE OF FISH

The primary failure mode of FISH stems from the extremely poor performance of non-parametric
VINN policy in our experiments. See Section G.2.1 for the performance of VINN policy.

G.2.1 VINN PERFORMANCE
The performance of VINN base policy are shown below.

Table 11: The performance of VINN base policy using GPT backbone from BeT under state
observation.

Task Success Rate
ManiSkill: StackCube 0%
ManiSkill: PeglnsertionSide 0%
ManiSkill: TurnFaucet 1%
ManiSkill: PushChair 0%
Adroit: Door 12%
Adroit: Pen 16%
Adroit: Hammer 0%
Adroit: Relocate 2%

Table 12: The performance of VINN base policy using FILM encoder from Diffusion Policy under
state observation.

Task Success Rate
ManiSkill: PeglnsertionSide 0%
ManiSkill: TurnFaucet 0%
ManiSKkill: PushChair 0%
Adroit: Pen 16%
Adroit: Hammer 0%
Adroit: Relocate 0%

32

https://sites.google.com/view/policy-decorator/home/random-residual-actions

Under review as a conference paper at ICLR 2025

Table 13: The performance of VINN base policy using visual encoder from Diffusion Policy under
visual observation.

Task Success Rate
ManiSkill: TurnFaucet 0%
ManiSkill: PushChair 0%
Adroit: Door 0%
Adroit: Pen 8%

H FINE-TUNING DIFFUSION POLICY USING RL

H.1 WHY FINE-TUNING DIFFUSION POLICY USING RL IS NON-TRIVIAL

Diffusion Models (Ho et al., 2020) and their applications in robotic control (Chi et al., 2023; Janner
et al., 2022; Ajay et al., 2022) have traditionally been trained using supervised learning, where ground
truth labels (e.g., images, actions) are required to supervise the denoising process.

Recently, novel approaches (Fan & Lee, 2023; Black et al., 2023; Uehara et al., 2024) have emerged,
proposing the use of reinforcement learning (RL) to train diffusion models. The high-level idea
involves modeling the denoising process as a Markov Decision Process (MDP) and assigning rewards
based on the quality of the final denoised samples. This allows RL gradients to be backpropagated
through the inference process, updating the model weights accordingly. This training paradigm
represents a significant departure from conventional diffusion model training methods and may face
challenges when the number of denoising steps is large. To date, these methods have primarily
been applied in the domains of image generation, molecule design, and DNA synthesis.

However, this training paradigm does not directly transfer to robotic control problems, par-
ticularly in sparse reward tasks. As discussed in Ren et al. (2024), fine-tuning diffusion models
in robotic control can be viewed as a "two-layer" MDP, where a complete denoising process with
hundreds of steps represents a single decision step in the robotic control MDP. For example, if
a robotic task requires 200 decision steps (actions) to complete, and a diffusion model uses 100
denoising steps to generate a decision (action), the reward in a sparse-reward robotic control task
would be received only every 20,000 denoising steps. This presents a significantly greater challenge
than training a diffusion model to generate images using RL, where rewards are typically received
every 100 denoising steps under the same assumptions.

H.2 How "BAsic RL FOR DIFFUSION POLICY" BASELINE IS SELECTED

Despite the challenges in training diffusion policies for robotic control using RL, recent attempts
have emerged. These can be broadly grouped into three categories. We will briefly explain each
method and discuss the selection of the "Basic RL" baseline for fine-tuning diffusion policy.

Converting RL into Supervised Learning Methods in this category adhere to the conventional
training recipe of the diffusion models, and try to define a "ground truth action label" for supervision.
DIPO (Yang et al., 2023b) introduces "action gradient," using gradient descent on (s, a) to estimate
the optimal action for state s. DIPO is selected as the basic RL algorithm in our experiments.
IDQL (Hansen-Estruch et al., 2023) constructs an implicit policy by reweighting samples from a
diffusion-based policy, and using the implicit policy to supervise the training of the diffusion-based
policy. We did not select it as the fine-tuning baseline for two reasons: 1) the training can be
extremely slow especially with large base policies, because IDQL involves sampling the diffusion
model multiple times (32 to 128 in their code) to compute the implicit policy; 2) as reported in its
paper, IDQL performs worse than Cal-QL and RLPD, which are included in our baselines.

Matching the Score to the Q Function QSM (Psenka et al., 2023) aims to match the score W of
the diffusion-based policy to the gradient of the Q function V,QY (s, a) using supervised learning.
According to Ren et al. (2024), QSM performs poorly in robotic manipulation tasks, thus it is not
considered a competitive baseline.

33

Under review as a conference paper at ICLR 2025

Backpropagating RL Gradients Through the Inference Process Methods in this category adapt
the training recipe discussed in H.1 to robotic control tasks, employing additional techniques to
make it work. The actor’s training objective is to maximize Q(s, a). Diffusion QL (Wang et al.,
2022) represents a basic version of these methods, primarily used in offline RL settings. However, its
online performance is poor, as reported by Ren et al. (2024). Consistency AC (Ding & Jin, 2023)
distills diffusion models into consistency models, significantly shortening the gradient propagation
path. Nevertheless, its offline-to-online performance, as reported in its own paper, is even worse than
Diffusion QL, thus we do not consider it a competitive baseline.

DPPO (Ren et al., 2024), a very recent work, successfully fine-tunes diffusion policies using PPO,
achieving state-of-the-art performance. Key tricks include fine-tuning only the last few denoising
steps and fine-tuning DDIM sampling. Given that this project was released around three weeks
before the ICLR deadline, we lacked sufficient time to fully adapt it to our tasks. Nevertheless,
we conducted preliminary experiments comparing our approach with DPPO on their tasks. Results
indicate that our method significantly outperforms DPPO on their tasks. See Appendix C.2 for more
details.

34

Under review as a conference paper at ICLR 2025

I HUMAN-ENGINEERED DENSE REWARDS (FOR REVIEWER PZEK)

All our experiments are conducted in sparse reward settings. While we utilize sparse rewards, all the
tasks addressed in this paper come with existing human-engineered dense reward formulations. We
summarize their dense reward implementations as follows:

e ManiSkill StackCube: 87 lines of code, 14 tunable hyperparameters

* ManiSkill PeglnsertionSide: 82 lines of code, 18 tunable hyperparameters
e ManiSkill TurnFaucet: 41 lines of code, 6 tunable hyperparameters

e ManiSkill PushChair: 69 lines of code, 18 tunable hyperparameters

* Adroit Door: 18 lines of code, 9 tunable hyperparameters

¢ Adroit Hammer: 18 lines of code, 10 tunable hyperparameters

* Adroit Pen: 11 lines of code, 8 tunable hyperparameters

* Adroit Relocate: 17 lines of code, 9 tunable hyperparameters

As shown in the above codes, these human-engineered dense rewards are not as “easily-specified”
as people may expect. They typically require dozens of lines of Python code and numerous tunable
parameters. Designing these rewards manually involves extensive iteration over potential reward
terms and tuning hyperparameters through trial and error. This process is laborious but critical for the
success of human-engineered rewards.

J FORWARD AND BACKWARD TIME BENCHMARK (FOR REVIEWER PZRBK)

Compared to fine-tuning the base policy, our Policy Decorator eliminates the backward pass compu-
tation of the base policy while retaining the forward pass. To demonstrate that the backward pass is
indeed the dominant computational factor, we conducted benchmarks on the Behavior Transformer’s
backward pass (gradient update) and forward pass (inference) running times. Results are shown in
Fig. 27.

Running Time of BeT

o
3

—— Forward Pass
—8— Backward Pass

Running Time (Second)
© © o o o
N w B 6] [}

o
e
!

o
o

2 4 6 8 10 12 14 16 18
Num of Model Parameters (Million)

o

Figure 27: Running time comparison of forward and backward passes of the Behavior Transformer
under different numbers of parameters.

The results demonstrate that BeT’s forward pass is significantly faster than its backward pass, with
this gap becoming more pronounced as model size increases. This confirms that the backward pass
constitutes the major training time bottleneck.

Implementation Details:

e Batch Size: 1024

35

https://github.com/haosulab/ManiSkill/blob/v0.5.3/mani_skill2/envs/pick_and_place/stack_cube.py#L134-L220
https://github.com/haosulab/ManiSkill/blob/v0.5.3/mani_skill2/envs/assembly/peg_insertion_side.py#L183-L264
https://github.com/haosulab/ManiSkill/blob/v0.5.3/mani_skill2/envs/misc/turn_faucet.py#L350-L390
https://github.com/haosulab/ManiSkill/blob/v0.5.3/mani_skill2/envs/misc/turn_faucet.py#L350-L390
https://github.com/Farama-Foundation/Gymnasium-Robotics/blob/main/gymnasium_robotics/envs/adroit_hand/adroit_door.py#L293-L311
https://github.com/Farama-Foundation/Gymnasium-Robotics/blob/main/gymnasium_robotics/envs/adroit_hand/adroit_hammer.py#L307-L324
https://github.com/Farama-Foundation/Gymnasium-Robotics/blob/main/gymnasium_robotics/envs/adroit_hand/adroit_pen.py#L314-L324
https://github.com/Farama-Foundation/Gymnasium-Robotics/blob/main/gymnasium_robotics/envs/adroit_hand/adroit_relocate.py#L297-L313

Under review as a conference paper at ICLR 2025

* GPU: NVIDIA GeForce RTX 2080 Ti

* Results averaged over 100 independent runs

Additionally, we present the actual training wall-clock time comparison below, demonstrating that
our Policy Decorator is indeed more time-efficient compared to naive fine-tuning.

Table 14: Training time of Policy Decorator and SAC fine-tuning on StackCube. The base policy is
Behavior Transformer. SM environment steps.

StackCube, BeT, SM Env Steps

Policy Decorator (ours) 7h 23m
SAC Fine-tuning 33h 52m

K ADDITIONAL BASELINE (GAIL + MLP) (FOR REVIEWER PZBK)

As mentioned in Chi et al. (2023), simple architectures like MLP cannot capture the multi-modality
of data. To further demonstrate this point, we have now implemented and tested the GAIL + MLP
baseline, as suggested by reviewer P ZbK. The results in Fig. 28 show that this baseline achieves
0% success rate on StackCube and about 20% success rate on TurnFaucet after 3M environment
interactions. These results are expected given that the demonstrations were collected task and motion
planning (for StackCube) and model predictive control (for TurnFaucet) - resulting in naturally
multi-modal distributions. These results suggest that simple MLPs may be insufficient for capturing
multi-modal distributions and highlight the need for large policy models for effectively utilizing
multi-modal demonstrations.

ManiSkill: StackCube ManiSkill: TurnFaucet
1001 === Policy Decorator w/ BeT ™ 1001 === Policy Decorator w/ BeT |
2 g0l GAIL w/ MLP 2 804 GAIL w/ MLP
2 2
© ©
o 601 o 60
(] 3
]]
8 40 8 404
o o
3 =3
@0 204 » 20
0 ' . . t ' 0 :
00 05 10 15 20 25 30 00 05 10 15 20 25 30
Environment Steps (millions) Environment Steps (millions)

Figure 28: Comparison of GAIL + MLP and Policy Decorator.

Additionally, in offline imitation learning scenarios, MLP also performs significantly worse than large
policy models, as shown in the table below:

Table 15: Performance comparison across tasks (StackCube and TurnFaucet).

Model StackCube TurnFaucet
MLP 0% 10%
Behavior Transformer T1% 41 %
Diffusion Policy 99% 55%

These results together demonstrate that simple MLPs are insufficient for capturing multi-modal

distributions and highlight the need for large policy models to effectively utilize multi-modal demon-
strations.

36

Under review as a conference paper at ICLR 2025

L MULTI-MODALITY PROPERTY OF THE COMBINED POLICY (FOR
REVIEWERS PZBK AND MDBH)

In this paper, applying a small residual action to correct a multi-modal base policy typically maintains
its multi-modal property. We illustrate this point through both an illustrative example and a real case
study from our experiments.

L.1 ILLUSTRATIVE EXAMPLE

Sum of Two Distributions

o
>
)

7 = Bimodal

- 0.35 - Gaussian
o = Sum
S 0.30
I
> 0251
2
$ 0.20
[=]
£0.15
=
S o010
[4
2 0.05

0.00

-10 -5 0 5 10 15 20

Figure 29: Illustrative Example. Adding a Gaussian distribution to a multi-modal distribution
typically maintains its multi-modal property.

As demonstrated in Fig. 29, when a bimodal distribution (blue) is combined with a Gaussian
distribution (orange), the sum distribution (green) still preserves its bimodal nature. This process
effectively shifts the multi-modal distribution and adjusts the standard deviation of its modes. The
multi-modal property is maintained as long as the Gaussian distribution’s variance remains relatively
small compared to the separation between modes.

Implementation Notes:
* The probability density function (PDF) of the bimodal distribution (blue):
frimodal (7) = w1 - N (3 i1, 07) + wa - N(2; p2, 03),

where N represents the Gaussian distribution.
* The PDF of the Gaussian distribution (orange):

fGaussian(l’) = N(J?, s, O'g)
* The PDF of the sum of the two distributions (green) can be computed analytically:

fsum(x) = w1 'N(:C;/M’Ji) + w2 -N(ac;,u5,ag),

e = p1 + W3, 042\/U§+0§, ps = pi2 + pg, 05 =1/03 +03.

* The parameters used in the plot are:

where:

wy =0.5, wy=0.5, w3 =05 wpue=0>5 wu3s=3, o1=1, o9=1, o3=1.

L.2 REAL CASE STUDY FROM OUR EXPERIMENTS

To demonstrate the preservation of multi-modality in practice, we visualize action distributions from
a specific state in the ManiSkill StackCube task, using Behavior Transformer as the base policy.

37

Under review as a conference paper at ICLR 2025

We sampled 1000 actions from both base and residual policies, then applied PCA dimensionality
reduction for visualization purposes. We use histograms to visualize these action samples. The results
are shown in Fig. 30.

Sum of Two Distributions

Combined Policy
0.08 - Residual Policy
Base Policy
0.06 A
2
]
c
0
8 0.04
0.02
0.00 -
-0.15 -0.10 -0.05 0.00

Action (1st principal component)

Figure 30: Real Case Study from Our Experiments. Applying a small residual action to correct a
multi-modal base policy typically matains its multi-modal property.

We can see that the base policy exhibits a clear bimodal distribution. When combined with the residual
policy, the sum distribution maintains its bimodal nature while exhibiting slight shifts in position and
variance. Note that the residual policy here is actually a squashed Gaussian distribution (as per SAC
(Haarnoja et al., 2018)) rather than a pure Gaussian, due to SAC’s action bounds requirement. This
practical example aligns well with our illustrative example, confirming that multi-modal property is
preserved in our actual experiments.

M FREEZING ENTROPY COEFFICIENT DURING WARM-START AND RE-ENABLE
AUTOTUNING IN SUBSEQUENT FINE-TUNING (FOR REVIEWER P ZBK)

As shown in Appendix F.5.2, directly warm-starting Q function training causes alpha and critic loss
explosion when auto entropy tuning is enabled. In this section, we try to verify whether this issue can
be addressed by freezing the entropy coefficient during warm-start and unfreezing it in subsequent
fine-tuning.

Learnable Entropy Coefficient 169 Critic Loss
15.0
=== Runs that blow up 54— Runs that blow up
12.5 1 Runs that succeed Runs that succeed
4
10.0 1
2 25
S 751 _°‘
® 50 T2
2.5 11
0.0 0
0.00 005 0.10 0.5 020 025 0.30 0.35 0.00 005 010 015 020 025 030 035
Environment Steps (millions) Environment Steps (millions)

Figure 31: Entropy coefficient and critic loss. We fixed the entropy coefficient alpha during the
warm-start phase (0.2M steps) and unfreeze it during fine-tuning. We merge six independent runs
into two groups: three of them blow up while the other three remain stable.

Following this idea, we fixed the entropy coefficient during the warm-start phase and enabled auto-
tuning during subsequent fine-tuning. Results are shown in Fig. 31. From six independent runs, three

38

Under review as a conference paper at ICLR 2025

of them still blow up upon unfreezing while the other three remained stable. This result indicates
that this unfreezing strategy does not effectively address the training stability issue associated with
warm-starting.

39

	Introduction
	Related Works
	Problem Setup
	Policy Decorator: Model-Agnostic Online Refinement
	Learning Residual Policy via RL
	Controlled Exploration
	Design Choices & Implementation Details

	Experiments
	Experimental Setup
	Task Description
	Base Policy Model

	Baselines
	Fine-tuning Methods
	Non-fine-tuning Methods

	Main Results & Analysis
	Ablation Study
	Relative Importance of Each Component
	Influence of Key Hyperparameters
	Additional Ablation Studies

	Properties of the Refined Policy

	Conclusions, Discussions, & Limitations
	Further Details on the Experimental Setup
	Task Descriptions
	ManiSkill Tasks
	Adroit Tasks

	Demonstrations

	Implementation Details
	Base Policies
	Behavior Transformer
	Diffusion Policy
	Checkpoint Selection

	Policy Decorator (Our Approach)
	Important Shared Hyperprameters among Policy Decorator and other Baselines
	Enable RL Fine-tuning on Base Policies
	SAC for Behavior Transformer
	DIPO for Diffusion Policy

	Baselines

	Additional Results of Policy Decorator
	The Performance of RL from scratch
	Comparison with DPPO
	Setup
	Results
	Summary

	Additional Ablation Studies
	Additional Base Policies
	Using Other Checkpoints of Base Policies
	Change Backbone RL Algorithm to PPO

	Important Design Choices
	Input of Residual Policy
	Input of Critic

	Failure of Fine-tuning Baselines
	Overall Explanation
	Policy Degradation with Random Initialized Critic
	Pre-training Critic on Demo-only Dataset Does Not Help
	Long Task Horizon Makes Fine-tuning Hard
	Ablation Study on Design Choices in Fine-tuning Baselines
	Architecture of Q Function
	Effect of Warm-start in Q Function Training

	Failure of Non-fine-tuning Baselines
	Failure of Vanilla Residual RL
	Failure of FISH
	VINN Performance

	Fine-tuning Diffusion Policy using RL
	Why Fine-tuning Diffusion Policy using RL is Non-trivial
	How "Basic RL for Diffusion Policy" Baseline is Selected

	Human-engineered Dense Rewards (for reviewer red PZbK)
	Forward and Backward Time Benchmark (for reviewer red PZbK)
	Additional Baseline (GAIL + MLP) (for reviewer red PZbK)
	Multi-Modality Property of the Combined Policy (for reviewers red PZbK and teal mdBH)
	Illustrative Example
	Real Case Study from Our Experiments

	Freezing Entropy Coefficient during warm-start and re-enable autotuning in subsequent fine-tuning (for reviewer red PZbK)

