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Abstract

We study the task of list-decodable linear regres-
sion using batches. A batch is called clean if the
points it contains are i.i.d. samples from an un-
known linear regression distribution. For a param-
eter α ∈ (0, 1/2), an unknown α-fraction of the
batches are clean and no assumptions are made
on the remaining batches. The goal is to output a
small list of vectors at least one of which is close
to the true regressor vector in ℓ2-norm. (Das et al.,
2023) gave an efficient algorithm for this task,
under natural distributional assumptions, with the
following guarantee. Under the assumption that
the batch size n satisfies n ≥ Ω̃(α−1) and the
number of batches is m = poly(d, n, 1/α), their
algorithm runs in polynomial time and outputs a
list of O(1/α2) vectors at least one of which is
Õ(α−1/2/

√
n) close to the target regressor. Here

we design a new polynomial-time algorithm for
this task with significantly stronger guarantees
under the assumption that the low-degree mo-
ments of the covariates distribution are Sum-of-
Squares (SoS) certifiably bounded. Specifically,
for any constant δ > 0, as long as the batch size is
n ≥ Ωδ(α

−δ) and the degree-Θ(1/δ) moments
of the covariates are SoS certifiably bounded,
our algorithm uses m = poly((dn)1/δ, 1/α)
batches, runs in polynomial-time, and outputs
an O(1/α)-sized list of vectors one of which is
O(α−δ/2/

√
n) close to the target. That is, our al-

gorithm achieves substantially smaller minimum
batch size and final error, while achieving the
optimal list size. Our approach leverages higher-
order moment information by carefully combin-
ing the SoS paradigm interleaved with an iterative
method and a novel list pruning procedure for this
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setting. In the process, we give an SoS proof of
the Marcinkiewicz-Zygmund inequality that may
be of broader applicability.

1. Introduction
In several modern applications of data analysis, includ-

ing federated learning (Wang et al., 2021), sensor networks
(Wax & Ziskind, 1989), and crowdsourcing (Steinhardt et al.,
2016), it is typically infeasible to collect large datasets from
a single source. Instead, samples are collected in batches
from multiple sources. Unfortunately, it is often hard to find
sources that provide many samples, i.e., that have large-size
batches. A standard example is a movie recommendation
system using rates collected from users. Here, an individual
user is often unlikely to provide rating scores for a large
number of movies, frequently resulting in data batches with
relatively small sizes. Even less favorable, in such crowd-
sourcing settings, it is also the case that a majority of the
participants might be unreliable (Steinhardt et al., 2017;
2016; Charikar et al., 2017). Such practical settings serve
as motivation for this work. Formally, we study the task
of linear regression under the assumption that we are given
access to the model through small batches of samples col-
lected from different sources. Importantly, as motivated by
our running example, we consider the setting where most
batches might not be collected from reliable sources.

Definition 1.1 (List-Decodable Linear Regression using
Batches). Let Dβ∗ be the distribution on pairs (X, y) ∈
Rd+1 such that y = β∗⊤X+ ξ, for ξ ∼ N (0, σ2) and X ∼
G that are drawn independently from each other. Suppose
we are given m batches of size n each, where for each
batch, with probability α the batch consists entirely of i.i.d.
samples from Dβ∗ and with probability 1 − α it is drawn
from some arbitrary distribution. The goal is to output a list
L of vectors in Rd with |L| ≤ O(1/α), and the guarantee
that there is a β̂ ∈ L such that ∥β̂ − β∗∥2 is small.

For the vanilla setting of linear regression, with batch
size n = 1 and no outliers, the classical least-squares esti-
mator is essentially optimal. Unfortunately, even a single
outlier is enough to force the least-squares estimator to de-
viate arbitrarily. To address this discrepancy, Huber (1964);
Rousseeuw & Leroy (1987) proposed classical robust es-
timators that could handle a constant fraction of outliers.
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However, these estimators are computationally intractable
(i.e., have runtime exponential in the dimension). Start-
ing with the works of Diakonikolas et al. (2016); Lai et al.
(2016), there have been a flurry of results for efficient es-
timators which are robust to a small constant fraction of
outliers in the data. See Diakonikolas & Kane (2023) for an
overview of this field.

The regime where a majority of the data might be out-
liers, known as list-decodable setting, was initially examined
for mean estimation, where Charikar et al. (2017) demon-
strated the first polynomial-time algorithm. Their algorithm
computes a small list of hypotheses with the guarantee that
one element in the list is close to the target. Generating a list
of candidates, as opposed to a single solution, is information-
theoretically necessary (intuitively because the outliers can
mimic legitimate data points). The size of the list typically
scales polynomially with the inverse of the inlier fraction,
α. The problem of list-decodable linear regression (with
batches of size n = 1) was first studied in Karmalkar et al.
(2019); Raghavendra & Yau (2020). Unfortunately, the al-
gorithms obtained in both of these works had sample and
computational complexities scaling exponentially in 1/α,
specifically of the form dpoly(1/α) for d dimensions. Inter-
estingly, it was subsequently shown (Diakonikolas et al.,
2021) that such a dependence may be inherent (for Statis-
tical Query algorithms and low-degree polynomial tests —
two powerful, yet restricted, models of computation).

Motivated by this hardness result, Das et al. (2023) pro-
posed the batch version of the problem (Definition 1.1). The
hope was that by introducing (sufficiently large) batches,
the exponential complexity dependence on 1/α can be elim-
inated. Before we summarize their results, some comments
are in order regarding Definition 1.1. First, in the extreme
case where the batch size is n = 1, we recover the standard
list-decodable setting. Second, in the other extreme where
n = Ω(d), the problem becomes straightforward, since one
batch contains sufficient information to recover the target
regression vector. As discussed in our running example, the
batch size, which corresponds to the number of samples
collected from a single source, is rarely large enough in
real-world applications with high-dimensional data. This
leaves the regime of 1 < n ≪ d as the most meaningful.
Das et al. (2023) showed that using m = poly(d, n, 1/α)
batches of size n ≥ Ω̃(1/α), it is possible to efficiently
recover a list of size O(1/α2) containing an element β̂ with
∥β̂ − β∥2 = O(σ/

√
nα). Their algorithm runs in fully

polynomial time, thus escaping the exponential dependence
on 1/α.

The linear dependence on 1/α in the minimum batch
size n is inherent in the approach of Das et al. (2023). Moti-
vated by the practical applications of the batch setting, here
we ask whether efficient algorithms are possible that suc-
ceed with significantly smaller batch size and/or with better
error guarantees:

Is there a computationally efficient algorithm for
list-decodable linear regression in the batch setting with

significantly improved batch size and/or error guarantees?

Here we answer this question in the affirmative. In
particular, we provide an algorithm that for any constant δ >
0, it runs in polynomial time and succeeds with minimum
batch size n = Θδ(α

−δ) achieving error Oδ(σα
−δ/2/

√
n).

As a note regarding notation, we will switch from using the
parameter δ > 0 to using k = ⌈1/δ⌉ throughout the paper.

1.1. Our Results

Throughout our work, we assume that the clean covariate
distribution satisfies the following conditions.

Assumption 1.2. Let X be the clean covariates distribution
from Definition 1.1. We assume that
1. X is L4-L2 hypercontractive, i.e., for any u ∈ Rd, it

holds E
[
(u⊤X)4

]
≤ O(1) E

[
(u⊤X)2

]2
.

2. X has identity second moment, i.e., E[XX⊤] = I.
3. There exists Q ≥ 1 1 and an integer ∆ such that for

all integer t ∈ [∆] the degree-2t moments of X are
SoS certifiably bounded by Q (see Definition 3.2 for the
formal definition).

We note that assumptions 1 and 2 are common in the con-
text of robust linear regression (see, e.g., Das et al. (2023);
Cherapanamjeri et al. (2020)). Assumption 3 is made so
that the algorithm can take advantage of higher-order mo-
ment information from the distribution and is satisfied by
a wide range of structured distributions, e.g., all strongly
logconcave distributions.

Our main result is the following theorem.

Theorem 1.3 (Main Algorithmic Result). Let α ∈ (0, 1/2),
σ>0, k ∈ Z+ and β∗ ∈ Rd. Assume that σ≤R, ∥β∗∥2≤R,
and k ≤ ∆/2. There is an algorithm that takes as input
α, σ,R, k, draws m = Õ

((
(kd)O(k)/α+ α−3

)
log
(
R
σ

))
batches of size n = O(k2Q2/kα−6/k) from the distri-
bution of Definition 1.1, and returns a list of estimates
of size O(α−1), such that, with high probability, there
exists at least one estimate β̂ satisfying ∥β̂ − β∗∥2 =
O
(
kQ1/kσα−3/k/

√
n
)
.

Some remarks are in order. Theorem 1.3 provides
a substantial qualitative improvement over the bounds of
Das et al. (2023) by succeeding for a dramatically smaller
batch size while at the same time improving the estima-
tion error. Concretely, our algorithm can use batch size of
n = O(k2α−6/k) for any k ∈ Z+ of our choice, while
Das et al. (2023) was only able to work with n = Ω(1/α).
We note that these improvements are possible due to our

1Since X has identity covariance, this implies that the bound
Q has to be at least 1.
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stronger distributional assumptions that allow us to leverage
higher moments.

Conceptually, we view the capability of our algorithm
to work with a flexible batch size as a valuable feature—
especially in real-world applications where the batch size
corresponds to quantities that are not controllable by algo-
rithm designers, i.e., the number of datapoints contributed
by each provider. Our result essentially shows that there
is a smooth tradeoff between the batch size provided and
the computational resources required. More generally, our
algorithm can cover the entire regime of C log2(1/α) ≤
n ≤ C/α, if we do not necessarily restrict k to be an ab-
solute constant. A limitation is that reaching the lower end
of the regime would require k to be super-constant, namely
k ∼ log2(1/α), which would result in quasi-polynomial
runtime. Interestingly, even for that lower regime of n, The-
orem 1.3 gives the first non-trivial (i.e., sub-exponential
time) algorithm for the task.

Complementing our upper bounds, we point out that the
super-polynomial dependence for extremely small values
of n might be inherent. Via a simple reduction from the
non-batch to the batch-setting (combined with the lower
bound of Diakonikolas et al. (2021)), we give evidence
that the computational resources used in the algorithm of
Theorem 1.3 do not suffice for n significantly smaller than
log(1/α). See Appendix F for the relevant discussion.

1.2. Technical Overview

Prior Techniques We start by reviewing the algorithm of
Das et al. (2023), which uses a batch size of n = Ω̃(1/α).
For simplicity, consider the case where the covariates are
standard normal. The high-level idea in Das et al. (2023)
is to search for approximate stationary points 2 of the L2-
loss, f(β) = 1

2 E(X,y)

[
(β⊤X − y)2

]
. Without outliers,

the expected gradient precisely equals β−β∗. If we recover
a ξ-approximate stationary point for the inlier distribution,
we can estimate β∗ up to an error of O(ξ), given enough
samples. With outliers, the method exploits an upper bound
on the covariance of the gradient distribution of the inliers to
detect outliers and to control their influence. They then use
the multi-filter approach for list-decodable estimation (Di-
akonikolas et al., 2020) to find a subset of the samples
with the covariance matrix of the gradients being upper
bounded by O(1) ∥β − β∗∥22/nI, with an α overlap with
the inliers. This ensures that a ξ-approximate stationary
point under the corrupted sample distribution will still be a
(ξ + ∥β − β∗∥2/

√
nα)-approximate stationary point under

the inlier distribution. This means that β approximates β∗

up to an error of ξ + ∥β − β∗∥2/
√
nα. Unfortunately, this

results in ∥β − β∗∥2 ≤ O(ξ) only when n ≫ 1/α, since

2A vector β ∈ Rd is called a ξ-approximate stationary point of
some function f : Rd 7→ R if it holds ∥∇f(β)∥2 ≤ ξ.

√
αn needs to be larger than 1.

In the remainder of this section, we outline the ideas of our
approach.

Iterative Estimation of the Regressor Our main idea is to
incorporate higher moment information into the estimator
to alleviate the requirement on batch sizes. There are two
main challenges in exploiting higher moment information.
First, existing multi-filter approaches in the literature do not
exploit higher moments, thus they are not easily modified.
Second, existing higher-moment filters are not designed for
iterative use. They can generate a list of potential candidates
but cannot progressively refine sample clusters for cleaner
data segmentation, as the gradient descent method by Das
et al. (2023) requires.

To address this, our approach adopts a similar frame-
work to Diakonikolas et al. (2019) for robust linear regres-
sion with a small fraction of outliers, but in a non-batch
setting. Here is an overview of their algorithm: They be-
gin by estimating the mean of the product of the covariate
X with the label y. In the outlier-free setting, this expec-
tation equals to the true regressor β∗, and the covariance
matrix can be bounded above by O

(
∥β∗∥22

)
I (assuming

∥β∗∥2 ≫ σ). They then use an algorithm for robust mean
estimation for bounded-covariance distributions to derive
an initial estimate β̂ with a bounded error relative to β∗.
They then improve the error by bootstrapping this approach.
To do this, they adjust the labels via the transformation
y′ = y − β̂⊤X . This reduces the problem of learning β∗ to
another robust linear regression instance whose solution has
much smaller norm. Repeating this process iteratively al-
lows them to refine their estimate to a final error of O(

√
ϵσ).

In our setting, a natural strategy is to replace the ro-
bust mean estimation algorithm with one designed for list-
decodable mean estimation, since the fraction of corruptions
is larger than 1/2. Suppose that we have an algorithm A
which produces a list of candidate regressors {βi}mi=1 such
that at least one of them satisfies ∥βi − β∗∥2 ≤ ∥β∗∥2/2.
By applying the transformation y′ = y − β⊤

i X , we can
create m distinct linear regression instances such that the
regressor of one of these will have a significantly smaller
norm. This allows us to compute more accurate estimates
in the next iteration.

Beyond Second Moments As mentioned in the last para-
graph above, the natural approach is to iteratively use a
list-decodable mean estimation algorithm like the one from
Diakonikolas et al. (2020) in order to estimate the mean
of the random variable W = 1

|B|
∑

(X,y)∈B yX (where
B is an inlier batch) and reduce the error by a factor of
2 in each iteration. List-decodable mean estimators that
rely only on second moment information have error behav-
ing like

√
∥Cov(W )∥op/

√
α, where

√
∥Cov(W )∥op =
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O (∥β∗∥2/
√
n) is the maximum standard deviation of W

along any direction. This already reveals the problem with
this approach: for the error to become less than ∥β∗∥2/2,
we need batch size n ≫ 1/α.

We overcome this (Proposition 3.1) by using a list-
decodable mean estimator that uses higher moment infor-
mation, like Theorem 5.5 from Kothari & Steinhardt (2017),
or Theorem 6.17 from Diakonikolas & Kane (2023). These
algorithms are based on the Sum-of-Squares hierarchy and
their guarantee is that whenever the higher moments of
the inliers are “SoS-certifiably bounded” by M , then the
estimation error is O(M1/(2k)α−3/k).

However, to leverage the above SoS-based algorithm,
we require sharp SoS bounds on moments of the batched re-
gressor estimator W = 1

|B|
∑

(X,y)∈B yX , which is a sum
of i.i.d. random variables, while our distributional assump-
tion only posits that the covariate X has certifiably bounded
moments. The fact that W should also have bounded mo-
ments (but not necessarily SoS certifiable) follows from the
famous Marcinkiewicz Zygmund Inequality. Unfortunately,
to the best of our knowledge, an SoS proof of this inequal-
ity does not exist in the literature. We give the first SoS
proof of the inequality using combinatorial arguments (cf.
Lemma 3.3). We believe that this technical lemma may be
of broader applicability.

Given the SoS moment bounds on W , the SoS-
based list-decoding algorithm allows us to construct a
list of size O(1/α) such that one of the estimates is
Ok(((∥β∗∥2k2 /n2k)1/(2k)α−3/k)-close to β∗. Hence, we
will have some estimate βi satisfying ∥βi−β∗∥2 ≤ ∥β∗∥/2
whenever n ≫ α−3/k, which is a significant relaxation from
the condition n ≫ 1/α required by both the first approach
and the approach of Das et al. (2023).

List Size Pruning Having gotten the right estimate for one
step, we bootstrap this to design an iterative algorithm such
that the final list will contain an element that is sufficiently
close. A significant challenge arises during the iterative
phase of our list decoding algorithm. Initially, we gener-
ate a list of O(1/α) hypotheses, with the guarantee that at
least one of them is near β∗. For each hypothesis, iterating
further produces another O(1/α) hypotheses for each of
the original hypotheses. Without careful management, this
process can lead to an increase in the number of hypothe-
ses that scales exponentially with the number of iterations,
rendering the algorithm’s complexity infeasible.

We overcome this (Proposition 3.6) with techniques
inspired by Theorem A.1 in Diakonikolas et al. (2020) (see
also Exercise 5.1 in Diakonikolas & Kane (2023)), which
performs list-size reduction for list-decodable mean estima-
tion. The general principle behind these methods is to check
whether each hypothesis in the list has a Θ(α)-fraction sub-
set of the samples associated with it such that the hypothesis

“explains” these samples. This results in certain “consis-
tency” tests, on the basis of which we can prune elements
of the list. The tests are designed such that (i) β∗ and the
subset of inlier samples should pass the consistency tests,
and that (ii) for any pair of sufficiently separated hypotheses,
if they both pass the tests, their corresponding sets cannot
have a large overlap. Given property (ii), the argument from
Diakonikolas et al. (2020) shows that we can find a small
cover of the set of plausible hypotheses.

In the list pruning step for list-decodable mean esti-
mation, one usually leverages the fact that the inlier sam-
ples cluster closely around the learned mean (see, e.g., Di-
akonikolas et al. (2018; 2020)). This ensures survival of
the optimal mean from the pruning procedure. One may
want to generalize the test to the linear regression setting by
asserting that Xy should concentrate around the candidate
regressor β. However, such a test turns out to be sub-optimal
for linear regression 3. Instead, we design the following
“cross-candidate” test: we keep β only if β demonstrates
a smaller empirical ℓ2 error for an α-fraction of selected
batches in comparison to any other regressor significantly
distant from β. One may wonder whether the best regressor
in the list can still survive the test, as there may be multiple
equally good candidate regressors in the list with respect
to the same cluster of batches. However, we note that the
regressor is only compared to distant regressors. Conse-
quently, they must all be far from the optimal regressor (by
the triangle inequality), ensuring the survival of the best
regressor. This is formally shown in Lemma 3.8.

1.3. Related Work

In this section we discuss related works from list-
decodable linear regression and robust learning from
batches. The problem of mixed linear regression is related
very closely to our work as well, but due to space restric-
tions, we defer the relevant discussion to Appendix A.

List-decodable Linear Regression The list-decoding
framework was first introduced in the context of machine
learning in Charikar et al. (2017). They derived the first poly-
nomial time algorithm for list-decodable mean estimation
when the covariance is bounded. Later work considered the
problem of list-decodable linear regression in the non-batch
setting (Karmalkar et al., 2019; Raghavendra & Yau, 2020).
Unfortunately the runtime and sample complexity had an
exponential dependence on 1/α, this was later shown to be
necessary for SQ algorithms (Diakonikolas et al., 2021).

Robust Learning from Batches The problem of learning
discrete distributions from untrusted batches was introduced

3Intuitively, this is because such a test fails to take into account
the influence of the size of β on the concentration of the inlier
samples.
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in Qiao & Valiant (2018), which gave exponential-time so-
lutions. Progress was made by Chen et al. (2020b) and Jain
& Orlitsky (2020), achieving quasi-polynomial and polyno-
mial runtimes, respectively, with the latter also obtaining
optimal sample complexity. Further developments by Jain
& Orlitsky (2021) and Chen et al. (2020a) expanded this
work to one-dimensional structured distributions. Das et al.
(2023) was the first to study the problem of list-decodable
linear regression in the batch setting. Compared to Das et al.
(2023), our method demonstrates substantial improvements
in the error and the required batch size, when the covariates
are i.i.d. samples from N (0, I). This can be attributed to
our algorithm’s ability to efficiently utilize higher moment
information, allowing for smaller batch sizes of Ω(kα−6/k)
and achieving an error of Ok,σ(σα

−3/k/
√
n), marking a

significant improvement over a batch size of Ω(α−1) and
error of O(σ/

√
αn), achieved in Das et al. (2023).

Organization In Section 2, we define our notation and
state some basic definitions about SoS programming. In
Section 3, we describe the main parts of our algorithm in
Sections 3.1, and 3.2; we then put things together to prove
our main theorem in Section 3.3.

2. Preliminaries
Notation We use X ∼ D to denote that a random variable
X is distributed according to the distribution D. We use
N (µ,Σ) for the Gaussian distribution with mean µ and
covariance matrix Σ. For a set S, we use X ∼ S to denote
that X is distributed uniformly at random from S. We write
a ≪ b to denote that α ≤ c · b for a sufficiently small
absolute constant c > 0. We use a(n) = Ok(b(n)) to
denote that there is a constant C such that for all n > C,
a(n) ≤ Ck · b(n) for a constant Ck that can arbitrarily
depend on k.

Sum-of-Squares Preliminaries The following notation and
preliminaries are specific to the SoS part of this paper. We
refer to Barak & Steurer (2016) for a more complete treat-
ment of the SoS framework.

Definition 2.1 (Symbolic Polynomial). A degree-k sym-
bolic polynomial p with input dimension d is a collection
of indeterminates p̂(α), one for each multiset α ⊆ [d] of
size at most k. We think of it as representing a degree-k
polynomial p : Rd → R whose coefficients are themselves
indeterminates via p(x) =

∑
α⊆[d],|α|≤k p̂(α)x

α.

Definition 2.2 (SoS Proof). Let x1, . . . , xn be indetermi-
nates and A be a set of polynomial equalities {p1(x) =
0, · · · , pw(x) = 0}. An SoS proof of the inequal-
ity r(x) ≥ 0 consists of two sets of polynomials
{ri(x)}i∈[m]∪{r̄i(x)}i∈[w] such that r(x) =

∑m
i=1 r

2
i (x)+∑w

i=1 pi(x)r̄i(x). If the polynomials {r2i (x)}mi=1 ∪
{r̄i(x)pi(x)}wi=1 all have degree at most K, we say that

this proof is of degree K and write A K r(x) ≥ 0. When
we want to emphasize that x is the indeterminate in a partic-
ular SoS proof, we write A K

x
r(x) ≥ 0. When A is empty,

we omit it from the notation.

3. SoS Based Algorithm for List-Decodable
Linear Regression with Batches

Our algorithm iteratively updates a list of candidates,
ensuring that, in every iteration, at least one candidate from
the list is close to the target regressor. It does so by iter-
atively applying two subroutines. In Subsection 3.1, we
discuss a list-decoding subroutine that, given batch sam-
ple queries, generates a list of candidates containing some
near-optimal regressor. In Subsection 3.2, we discuss a prun-
ing subroutine that ensures that the size of our list remains
bounded. Finally, in Subsection 3.3 we combine these com-
ponents into the main algorithm (Algorithm 2) and prove
our main theorem.

3.1. Single Iteration: Approximate Estimation of β∗

In this section, we construct an efficient SoS-based list-
decoding algorithm to estimate the regressor β∗, assuming
that ∥β∗∥2 ≤ R. Specifically, this can be used to perform
crude list-decodable estimation of the optimal regressor. In
the final algorithm, we will bootstrap this method to generate
our final list with improved error guarantee.

Proposition 3.1. Let α ∈ (0, 1/2), δ ∈ (0, 1), m,n, k ∈
Z+, σ,R > 0, β∗ ∈ Rd. Assume ∥β∗∥2 ≤ R and
k ≤ ∆/2. Then, there exists an algorithm that takes
α, k, δ, σ,R in the inputs, it draws m = O

(
(4kd)8kQ−1 +

1
)
α−1 log(1/δ) many batches from the corrupted batch

distribution of Definition 1.1, runs in time poly(dkm),
and outputs O(log(1/δ)α−1) many estimations such that
there exists at least one estimation β̂ satisfying ∥β̂ −
β∗∥2 ≤ O

(
(k
√
n) Q1/(2k) (R+ σ) α−3/k

)
with proba-

bility at least 1− δ over the randomness of the batches.

A standard way of estimating the regressor is to con-
sider the random variable yX . When there are no out-
liers, yX gives an unbiased estimator of β∗. In the batch
setting, a natural estimator is to use the batch average
ZB := 1

n

∑
(X,y)∼B yX . The main idea behind Propo-

sition 3.1 is that we can leverage the property that the batch
average estimator ZB has SoS-certifiably bounded central
moments when B consists of i.i.d. samples from the un-
corrupted linear regression distribution Dβ∗ (cf. Defini-
tion 1.1).

Definition 3.2 (SoS-Certifiably Bounded Central Moments).
Let M > 0, k be an even integer, and D be a distribu-
tion with mean µ. We say that D has (M,k,K)-certifiably
bounded moments if {∥v∥22 = 1} K

v
EX∼D

[
(v⊤(X −
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µ))k
]
≤ M. We say a set of points T has 2k-th central

moments SoS-certifiably bounded by M if the empirical
distribution over these points does so.

Observe that ZB is the sum of n i.i.d. copies of yX , and
X has SoS-certifably bounded moments by Assumption 1.2.
Applying the Marcinkiewicz-Zygmund Inequality, which
controls the moments of i.i.d. random variables by their
individual moments, will almost immediately yield that ZB

also has bounded central moments. To further show that the
bound is SoS-certifiable, we thus require an SoS version of
this moment inequality, which is provided below.

Lemma 3.3 (SoS Marcinkiewicz-Zygmund Inequality). Let
v ∈ Rd, X1, · · · , Xn be i.i.d. random real vectors in Rd,
and p : Rd × Rd 7→ R be a degree-t polynomial. Assume
that

{∥v∥22 = 1} 2kt

v
E
[
(p(v,Xi)−E[p(v,Xi)])

k
]
≤ M

for some number M > 0. Then the degree-k central moment
of the sum of p(v,Xi) is also SoS-certifiably bounded:

{∥v∥22 = 1} kt

v
E

( n∑
i=1

(p(v,Xi)−E[p(v,Xi)])

)k


≤ (kn)k/2 M. (1)

Combining the above SoS inequality with the fact that
yX =

(
β ∗⊤ X + ξ

)
X is a degree-2 polynomial in X ,

which has SoS certifiably bounded moments, and ξ, which
follows the Gaussian distribution, then gives essentially a
population version of the moment bound. The SoS moment
bound on the empirical distribution over samples then fol-
lows by a careful analysis on the concentration properties
of the empirical moments of ZB . See Appendix D for the
detailed argument.

Lemma 3.4 (SoS Moment Bound). Let α ∈ (0, 1/2), σ>0,
k ∈ Z

+, β∗ ∈ Rd. Let T be a set of m batches drawn
according to the distribution Dβ∗ defined in Definition 1.1,
and batch size n. Assume that the clean covariates distribu-
tion X satisfies Assumption 1.2 and k ≤ ∆/2. Define ZB =
1
n

∑
(X,y)∈B Xy. Suppose m ≫

(
(4kd)8kQ−1 + 1

)
α−1.

Then the following holds with probability at least 0.9: (a)
{ZB | B ∈ T} has (M, 2k, 4k)-certifiably bounded mo-
ments for some M = O((2k)2k/nk) Q (σ2k + 2 ∥β∗∥2k2 ),
and (b) CovB∼T [ZB ] ⪯ O((∥β∗∥22 + σ2)/n)I.

Once we have that the central moments of ZB are certi-
fiably bounded, Proposition 3.1 follows from the following
SoS-based list-decodable mean-estimation algorithm:

Lemma 3.5 (Theorem 5.5 from Kothari & Steinhardt
(2017)). Let S be a set of points in Rd containing a
subset Sgood with |Sgood| ≥ α|S|. Moreover, assume
that Sgood has (M, 2k,K)-certifiably bounded moments

for some positive integers k,K and M > 0. Then there
exists an algorithm that, given S, k,K,M and α, runs
in time poly(dK , |S|), and with probability 0.9, returns
a list of O(1/α) many vectors containing some µ̂ with
∥µ̂− µSgood∥2 = O

(
M1/(2k)α−3/k

)
.

Proof of Proposition 3.1. Suppose we take m ≫(
(4kd)8kQ−1 + 1

)
α−1 many batches. Then

m Ω(α) ≫ (4kd)8kQ−1 + 1 many of these batches
are of inlier type with high constant probability.
We denote the set of these batches by G. Define
ZB = 1

n

∑
(X,y)∈B Xy. Let D⊗n

β∗ be the distribu-
tion of a clean batch of size n whose samples are all
i.i.d. from Dβ∗ (cf. Definition 1.1). As shown in the
proof of Lemma 3.4, we have EB∼D⊗n

β∗
[ZB ] = β∗

and CovB∼D⊗n
β∗

[ZB ] ⪯ O
((
σ2 +R2

)
/n
)
I. Since

|G| ≫ (4kd)8kQ−1 + 1, by Markov’s inequality, it holds
that ∥∥∥∥ ∑

B∈G

ZB/|G| − β∗
∥∥∥∥
2

≤ O((σ +R)/
√
n) (2)

with high constant probability. Besides, since |G| ≫
(4kd)8kQ−1 + 1, Lemma 3.4 shows that Z := {ZB | B ∈
G} has 2k-th central moments SoS-certifiably bounded by

M = O((2k)2k/nk) Q (σ2k + 2 ∥β∗∥2k2 ) (3)

with high constant probability. Moreover, the covariance of
Z can be bounded from above by

CovZ∼Z [Z] ⪯ O
(
(σ2 +R2)/n

)
I (4)

with high constant probability. By the union bound,
Equation (2), Equation (3), and Equation (4) hold si-
multaneously with high constant probability. Condi-
tioned on that, Lemma 3.5 thus allows us to esti-
mate the mean of {ZB | B ∈ G} up to accuracy
O
(
(k/

√
n) Q1/(2k) (σ +R) α−3k

)
. Our estimate is then

O
(
(k/

√
n) Q1/(2k) (σ +R) α−3k

)
close to β∗ by Equa-

tion (2), and the triangle inequality. This concludes the
proof of Proposition 3.1. Finally we can boost the proba-
bility of success to 1 − δ by running the above procedure
log(1/δ) many times and combining the lists obtained.

3.2. Pruning Routine

In this subsection, we show that there is an algo-
rithm, Pruning, which reads a list L containing a candidate
close to β∗, and returns a sub-list L′ ⊆ L of size O(1/α)
also containing a candidate close to β∗.

Proposition 3.6 (Pruning Lemma). Let α ∈ (0, 1/2),
δ ∈ (0, 1), k, n ∈ Z+, σ,R > 0, and β∗ ∈ Rd. Let
L ⊂ Rd be a list of candidate regressors, and β ∈ L
be a regressor such that ∥β − β∗∥2 < R. Assume
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that the batch size n satisfies that n ≫ k Q2/k α−2/k

and k ≤ ∆/2. Then there exists an algorithm Pruning
that takes the list L, and the numbers α, δ,R as input,
draws m = O

(
min

(
log(|L|), d2

)
log(1/δ) α−3

)
many

batches from the corrupted batch distribution of Defini-
tion 1.1, runs in time poly(dm|L|), and outputs at most
O(1/α) candidate regressors L′ ⊆ L such that there is
at least one regressor β ∈ L′ satisfying ∥β − β∗∥22 ≤
O
(
R+ kα−1/kσQ1/k/

√
n
)

with probability at least 1− δ
over the randomness of the batches drawn.

The Pruning algorithm involves two phases. Initially,
it filters regressors β ∈ L by keeping those matching a
certain set of solvable linear inequalities. Then it selects
a subset of the remaining regressors, ensuring each pair
is adequately distant. Lemmas 3.7 and 3.8 respectively
show that the refined list is not excessively large and that
it contains a vector near the true regressor β∗, if such
a candidate exists in the original list L. The proof of
Proposition 3.6 follows from the above two lemmas.

For each regressor, we now describe the set of linear
inequalities used in the pruning process involving a weight-
ing function W over the set of batches T . At a high level,
a weighting function can be interpreted as a “soft cluster”
for each candidate regressor β, and the inequalities aim to
identify a soft cluster for each candidate regressor β by en-
suring: (i) at least an α-fraction of batches are included in
the cluster, and (ii) β has a smaller empirical ℓ2 error in
comparison to any other regressor β′ that is significantly dis-
tant from β, based on the following conditions involving the
constant c, radius R, standard deviation σ, and batch size n.
We denote this set of linear inequalities by IE(β;L, T,R),
i.e., IE(β;L, T,R) is the following set of inequalities in the
variable(s) W : T 7→ [0, 1]:∑

B∈T W(B) ≥ 0.9α|T |, (5)

∀β′ ∈ L satisfying ∥β′ − β∥2 ≥ c

(
R+

kα−1/kσQ1/k

√
n

)
for some sufficiently large constant c ,∑

B∈T 1{
∑

(X,y)∈B

(
y −X⊤β

)2
≤
∑

(X,y)∈B

(
y −X⊤β′)2} W(B) ≤ α

20

∑
B∈T W(B) .

(6)

We now provide some intuition about why there cannot be
too many regressors whose associated linear inequalities are
satisfiable subject to the constraint that they are all suffi-
ciently separated. At a high level, this is because condition
(ii) enforces the soft clusters associated with two sufficiently
separated candidate regressors must have small intersection
as two candidate regressors cannot simultaneously do bet-
ter than the other in terms of their empirical errors on the
same batch. We now precisely state the lemmas. For proofs,
please see Appendix E.

Lemma 3.7 (List Size Bound). Let R > 0, and L be a list of
candidate regressors. Let T be a set of batches. Let L′ ⊆ L
be a sublist of candidate regressors satisfying the following
conditions: (1) IE(β;L, T,R) has solutions for each β ∈
L′, and (2) ∥β1 − β2∥2 ≥ c

(
R+ kα−1/kσQ1/k/

√
n
)

for
any two β1, β2 ∈ L′. Then it holds the size of L′ is at most
O(1/α).

The next lemma we need shows that the list after an
application of Lemma 3.7 contains an element close to β∗.
To get some intuition, let us fix some β that is close to β∗

and some β′ that is far from β. By the triangle inequality,
β′ therefore should be far from β∗ as well. As the square
loss of a candidate regressor can be viewed as a surrogate
for the distance between the regressor and the optimal, it
follows that

∑
(X,y)∈B

(
y −XTβ

)2
must be significantly

less than
∑

(X,y)∈B

(
y −XTβ′)2 over all inlier batches in

expectation. Due to L2-L4 hypercontractivity of X , we can
show that

(
y −XTβ′)2 must be weakly anti-concentrated.

On the other hand, due to the bounds on the higher-order
moments of X , we can show that

(
y −XTβ

)2
must be

sufficiently concentrated around its mean. Combining the
two observations then show that Equation (6) must hold
with high probability over the inlier distributions. Therefore,
setting W to be the indicator variables for inlier batches
must constitute a valid solution to the set of inequalities
IE(β;L, T,R) constructed. The full proof can be found in
Appendix E.

Lemma 3.8 (Error Bound). Let α ∈ (0, 1/2), δ ∈ (0, 1),
n,K ∈ Z+, σ,R > 0, and β∗ ∈ Rd. Let L be a list of
candidate regressors of size K , and β ∈ L be a regres-
sor such that ∥β − β∗∥2 < R. Let n ≫ k Q2/k α−2/k

be the batch size parameter. Suppose T is a set of m ≫
min

(
log(K), d2

)
log(1/δ) α−3 many batches of size n

drawn from the corrupted batch distribution of Defini-
tion 1.1. With probability at least 1−δ over the randomness
of T , we have that the system IE(β;L, T,R) has solutions.

Proposition 3.6 now follows by an application of the
above lemmas.

Proof of Proposition 3.6. The pruning procedure proceeds
in two steps. First, it filters out the β such that IE(β;L, T,R)
has no solution. Second, among the remaining regres-
sors, it adds them into the output list as long as it is not
c
(
R+ kα−1/kσQ1/k/

√
n
)

-close to some existing regres-
sor in the output list for sufficiently large constant c. Then
the size of the output list is at most O(1/α) by Lemma 3.7.

It remains to show that there exists some β′ close to
β∗ in the output list if there exists some β satisfying
∥β − β∗∥2 < R in the input list. By Lemma 3.8, β
will not be filtered out with probability at least 1 − δ
in the first step. In the second step, either β is added
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to the output list or there must be some β′ satisfying
∥β′−β∥2 ≤ O

(
R+ kα−1/kσQ1/k/

√
n
)
. Hence, we must

have ∥β′ − β∗∥2 ≤ O
(
R+ kα−1/kσQ1/k/

√
n
)

by the tri-
angle inequality. This concludes the proof.

3.3. Putting Things Together

Algorithm 1 Batch-List-Decode-LRegression (Informal)
Require: Batch sample access to the linear regression in-

stance, σ,R as specified in Theorem 1.3.
1: Initialize a list L = {0} to hold candidate regressors.
2: for t = 0, · · · , log(R/σ) do
3: Initialize an empty list L′ to store refined candidate

regressors.
4: for candidate regressor β̂ ∈ L do
5: Take sufficiently many batched samples T .
6: For each (X, y) in T , compute the residue

(X, y−β̂⊤X). Denote the resulting new set of
batches as T ′.

7: Learn a new list of regressors by running the al-
gorithm from Proposition 3.1 on T ′, and add the
results to L′ .

8: end for
9: Replace L with L′.

10: Run algorithm from Proposition 3.6 to prune the list
L into one with size O(1/α).

11: end for
12: Return L.

In this section, we prove our main theorem, starting
with a high-level overview of the algorithm, which mirrors
the structure of the robust linear regression algorithm from
Diakonikolas et al. (2019) that can tolerate a small constant
fraction of outliers. The process begins with estimating β∗,
as outlined in Corollary 3.1, to obtain a list L. We then
create new linear regression instances by transforming each
sample (X, y) into (X, y − β⊤X) for every β in L. This
ensures that for at least one transformed instance, the norm
of the optimal regressor decreases significantly. Applying
Corollary 3.1 to these instances and merging the resulting
lists yields a list containing a candidate regressor that is
closer to β∗. We iterate this process until we get a list with
an element that is sufficiently close to β∗. One issue is
that the list size will increase exponentially in terms of the
number of iterations. To counter this, Proposition 3.6 is
employed to prune the list to an optimal size while main-
taining the error of the best candidate regressor to within a
constant factor. The pseudocode of an informal version of
the algorithm is provided in Algorithm 1. See Algorithm 2
in the appendix for the formal version.

Proof of Theorem 1.3. Suppose ∥β∗∥2 ≤ R. We claim that
with high constant probability the list L will include a can-

didate β such that ∥β − β∗∥2 ≤ O(σ) after all but the
last iteration with respect to t. This is trivially true if
R = O(σ). Otherwise, if R ≫ σ, we use induction to
argue that for all t = 0, · · · ,max(log(c0R/σ), 0)− 1, with
probability at least (1− 2τ)

t, the list L will contain some
candidate regressor β such that ∥β − β∗∥2 ≤ R 2−t after
the t-th iteration. Note that this implies the above claim for
t = max(log(c0R/σ), 0) − 1, and for all t considered in
the inductive hypothesis we have σ ≪ R2−t.

Conditioned on the existence of such a β in the list after
the (t− 1)-th round. By Proposition 3.1, when we execute
line 2 in the iteration where β̂ = β(1), we obtain a list of
regressors such that with probability at least 1 − τ there
exists some β(2) ∈ L0 and some small constant c such that

∥β(2) + β(1) − β∥2

≤ O

(
(k Q1/(2k)

(
R 2−t+1 + σ

)
α−3/k)

√
n

)
≤ c R 2−t ,

where the last inequality is true as long as n ≫
k2 α−6/k Q1/k, and R 2−t ≫ σ. The list L0 is now of size
O(log(1/τ)/α). Thus, after Line 2, by Proposition 3.6, the
list L gets pruned into one with size O(1/α) with probabil-
ity at least 1− τ . Moreover, L still contains some candidate
β(3) such that

∥β(3)−β∥2 ≤ O
(
c R 2−t + kα−1/kσQ1/k/

√
n
)
< R 2−t ,

as long as c is sufficiently small, n ≫ k2α−2/kQ2/k, and
R2−t ≫ σ. This concludes the induction.

In the last round, since we have R ≤ O(σ), with a
similar argument, we arrive at a list of size O(1/α) that
contains some β satisfying

∥β − β∗∥2 ≤ O

(
(k Q1/(2k) σ α−3/k)/

√
n

+ (kα−1/kσQ1/k)/
√
n

)
= O

(
(k/

√
n) Q1/k σ α−3/k

)
.

It is not hard to see that the total number of samples con-
sumed by the algorithm is at most

O

(
(4kd)8kQ−1

α
+

log (log(1/τ)/α)

α3

)
log(1/τ) log(R/σ)

= Õ
((
(4kd)8kQ−1/α+ α−3

)
log (R/σ)

)
.

Moreover, the runtime is polynomial in the sample size
times d2k, which is the space complexity required for repre-
senting a moment 2k tensor.

Impact Statement
This work is predominantly theoretical and does not

present any immediate societal or ethical considerations
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requiring special attention. Its contribution lies in advancing
foundational understanding rather than influencing direct
real-world applications or policy.
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Supplementary Material
Organization In Appendix A we discuss work on the problem of mixed linear regression, which is very related to the
setting we consider here. In Appendix B we state some basic SoS facts. Then, in Appendix D we adapt proofs from
(Diakonikolas et al., 2022a) to show that if the original distribution has certifiably bounded moments, then the uniform
distribution over a sufficiently large sample also has certifiably bounded moments. We then use this to prove Lemma 3.4.
In Appendix E we prove the lemmas required to get our pruning guarantee in Subsection 3.2. Finally, in Appendix F we
present a simple reduction of our problem to the problem of list-decodable linear regression in the non-batch setting.

A. Related Work on Mixed Linear Regression
Mixed Linear Regression The mixed linear regression setting is when the data is generated by a mixture of t distributions
D1, . . . , Dt, each on Rd × R such that (X, y) ∼ Di is equivalent to y = βT

i X + ξ for X ∼ N (0, I) and ξ ∼ N (0, σ2)
(DeVeaux, 1989; Jordan & Jacobs, 1994). We refer the reader to Section 1.2 of (Chen et al., 2020b) for a detailed summary
of prior work for this problem. In the non-batch setting, this problem suffers from an exponential dependence on t. This is
inherent in moment-based approaches, as shown in (Chen et al., 2020b). The most efficient algorithm for the problem is due
to (Diakonikolas & Kane, 2020) which runs in time and needs samples quasi-polynomial in t.

In the batch setting, this was first studied for covariates drawn from N (0, I) by (Kong et al., 2020a;b). Here, all
the samples from each batch belong to a single component. (Kong et al., 2020b) design an algorithm that requires O(d)
batches of size O(

√
t) to solve the problem efficiently (including in terms of the parameter t). Subsequently, (Kong et al.,

2020a) uses the sum-of-squares hierarchy to design a class of algorithms that can trade between the batch size and sample
complexity while being robust to a small fraction of outliers. 4 Finally, (Jain et al., 2023) greatly generalize the scope by
designing an algorithm that can recover the regressors for all components such that at least an α fraction of the batches
satisfy a linear-regression model with variance in the noise bounded by σ2. Their algorithm works even when the covariates
for each component are different, varying, and heavy-tailed. They do this by allowing for batches of nonuniform size. They
require Õ(d/α2) batches of size ≥ 2 and Ω̃min(

√
t, 1/

√
α)/α batches of size Ω̃min(

√
t, 1/

√
α). This is very close to the

list-decodable setting we study in this paper; however, we do not allow for nonuniform batch sizes. Even so, our algorithm
can improve the batch size required by a constant power of the algorithm designer’s choice in the exponent.

B. Further background of SoS Proofs and Moment Bounds
It is a standard fact that several commonly used inequalities like the triangle inequality, Cauchy-Schwartz, or AM-GM

inequalities have an SoS version.
Fact B.1 (SoS Cauchy-Schwartz and Hölder (see, e.g., (Hopkins, 2018))). Let f1, g1, . . . , fn, gn be indeterminates. Then,

2

f1,...,fn,g1,...,gn


(
1

n

n∑
i=1

figi

)2

≤

(
1

n

n∑
i=1

f2
i

)(
1

n

n∑
i=1

g2i

) .

Fact B.2 (SoS Triangle Inequality). If k is an even integer, k

a1,a2,...,an
{
(
∑n

i=1 ai)
k ≤ nk

(∑n
i=1 a

k
i

)}
.

Fact B.3 (SoS AM-GM Inequality, see, e.g., Chapter 2 of (Hardy et al., 1952)). Let k be an even integer, and {wi}ni=1 be
integers such that

∑n
i=1 wi = k. Then it holds that

k

x1....,xn

{∏
i

xwi
i ≤

n∑
i=1

wi

k
xk
i

}
.

Using these inequalities, we can construct SoS proofs for bounds of moments of sum of i.i.d. random variables with SoS
certifiably bounded moments. The non-sos version of the inequality is commonly known as the Marcinkiewicz-Zygmund
inequality.

Proof of Lemma 3.3. For notational convenience, we define yi = p(v,Xi)−E[p(v,Xi)]. Note that each yi is a degree-t
polynomial in v and Xi. If we expand (

∑n
i=1 yi)

k, we get nk many monomials of the form
∏k

j=1 yσj
for some σj ∈ [n]k.

4This is similar in flavor to what we do in this paper but for the much harder problem of list-decodable linear regression.
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If the degree of some yi is 1, the expected value of that monomial will be 0 since E[yi] = E[p(v,Xi)−E[p(v,Xi)]] = 0.
Hence, E[

∏k
j=1 yσj

] is non-zero only if the number of variables appeared is at most k/2 since otherwise some yi must
have degree-1 by the pigeonhole principle. By a simple counting argument, we have that the number of monomials with
non-zero expectations is then at most

(
n

(k/2)

)
kk/2. Let

∏n
i=1 y

wi
i be one of such monomial with non-zero expectation,

where
∑n

i=1 wi = k. We can bound its expectation from above by

{∥v∥22 = 1} v
2kt

E

[
n∏

i=1

ywi
i

]
≤

n∑
i=1

wi

k
E
[
yki
]
≤ M ,

where the first inequality is by Fact B.3, and the second inequality is by our assumption that {∥v∥22 = 1} v
2kt

E[yki ] =

E
[
(p(v,Xi)−E[p(v,Xi)])

k
]
≤ M . Since there are at most nk/2 kk/2 such monomials with non-zero expectation, it then

follows that

{∥v∥22 = 1} v
2kt

E

( n∑
i=1

yi

)k
 ≤ (kn)k/2 M.

C. Algorithm Pseudocode

Algorithm 2 Batch-List-Decode-LRegression
Require: Batch sample access to the linear regression instance, and α, σ,R, k as specified in Theorem 1.3.

1: Initialize L = {0}.
2: Set failure probability τ = 0.001/ log(R/σ).
3: Let c0 be some sufficiently small constant and C be some sufficiently large constant.
4: for t = 0, · · · ,max(log(c0R/σ), 0) do
5: Initialize L0 = {0}
6: for candidate regressor β̂ ∈ L do
7: for r = 0, · · · , log(1/τ) do
8: Take a batch of C (2dk)10k/α samples T .
9: For each (X, y), compute (X, y−β̂⊤X). Denote the new set of batches as T ′.

10: Learn a list L1 of regressors by running the algorithm from Proposition 3.1 on T ′.
11: Add the candidate regressors {β̂′ + β̂ | β̂′ ∈ L1} into L0.
12: end for
13: end for
14: Set L = L0.
15: Draw C min

(
log(log(1/τ)/α), d2

)
log(1/τ)α−3 batch of samples T ′.

16: Run algorithm from Proposition 3.6 on T ′ to prune the list L with failure probability τ .
17: end for
18: Return L.

D. Certifiably Bounded Moments of the Regressor Estimator
In this subsection, we give the proof of Lemma D.4. We first give several preliminary lemmas regarding the concentration

properties of empirical higher order moment tensors of distribution with bounded central moments. The proof is similar, for
example, to Lemma A.4 from (Diakonikolas et al., 2022b).

Lemma D.1. Let D be a distribution over Rd with mean µ and t ∈ Z+. Suppose that D has its covariance bounded from
above by κI , and its degree-2t central moments bounded by F , i.e., EX∼D

[∣∣vT (X − µ)
∣∣2t] ≤ F . Let X1, . . . , Xm be m

i.i.d. samples from D. The following inequalities hold with high constant probability.∥∥∥∥ E
i∼[m]

[(Xi − µ)⊗t]− E
X∼D

[(X − µ)⊗t]

∥∥∥∥
∞

≤ O
(
dt
√

tF/m
)
.

12
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Define µ = 1
m

∑m
i=1 Xi. We also have that

∥µ− µ∥2 ≤ O
(√

κd/m
)
.

Proof. Note that each entry within the tensor EX∼D [(X − µ)⊗t] is of the form EX∼D [T (x− µ)], where T : Rd 7→ R is
some monomial of degree t. Fix some degree t monomial T : Rd 7→ R, and consider the random variable Y = T (X − µ),
where X ∼ D. The corresponding entry within the tensor Ei∼[m] [(Xi − µ)⊗t] has the same distribution as the average of
m i.i.d. copies of Y . We will bound from above the variance of Y . We will need the following claim regarding expectations
of monomials.

Claim D.2. Let t ∈ Z+ be an even integer. Suppose the distribution D has its t-th central moments bounded from above by
M . Let T : Rd 7→ R be a monomial of degree t. Then it holds

E
X∼D

[T (X − µ)] ≤ tM.

Proof. Suppose T (X − µ) =
∏d

i=1(Xi − µi)
si , where

∑d
i=1 si = t. Then we have

E
X∼D

[T (X − µ)] ≤ E
X∼D

[(
max

i∈[d]:si>0
|Xi − µi|

)t
]

= E
X∼D

[
max

i∈[d]:si>0

(
|Xi − µi|t

)]
≤

∑
i∈[d]:si>0

E
X∼D

[
(Xi − µi)

t
]
≤ tM ,

where in the first inequality we bound (Xi − µi) from above by maxi∈[d]:si>0 |Xi − µi|, in the second inequality we bound
the maximum of a set of non-negative numbers by their sum, and in the last inequality we use the fact that there are at
most t non-zero si’s, and that D has its t-th central moments bounded from above by M . This concludes the proof of
Claim D.2.

We can therefore bound from above the variance of Y by

Var[Y ] ≤ E[Y 2] = E[T 2(X − µ)] ≤ O (tF ) ,

where in the last inequality we note that T 2 is a degree 2t monomial, and thus we can apply Claim D.2. Hence, by
Chebyshev’s inequality, we have that

| E
i∼[m]

[T (Xi − µ)]− E
X∼D

[T (X − µ)]| ≤ O
(
dt
√

tF/m
)
,

with probability at least 1− o (d−t). It then follows from the union bound that∥∥∥∥ E
i∼[m]

[(Xi − µ)⊗t]− E
X∼D

[(X − µ)⊗t]

∥∥∥∥
∞

≤ O
(
dt
√

tF/m
)
. (7)

with high constant probability. Lastly, we bound from above ∥µ− µ̄∥2. Since D has its covariance bouned from above by
κI , it holds that the random vector µ− µ̄ has mean 0 and covariance bounded from above by κ/mI . Hence, the expected
squared ℓ2 norm of the vector is at most κd/m. It then follows from Markov’s inequality that ∥µ− µ∥2 ≤ O

(√
κd/m

)
holds with high constant probability. This concludes the proof of Lemma D.1.

The next lemma provides a sum of square proof that bounds from above the square of a polynomial in terms of its
coefficients.

Lemma D.3. Let p(v) = v⊗tAv⊗t for some dt × dt matrix A with ∥A∥∞ ≤ a. Then

2t
v

p(v) ≤ adt∥v∥2t2 .

13
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Proof. Since the Frobenious norm of A is at most adt, we have that A is bounded from above by adtI in Lowner order.
Thus, we can write v⊗t(adtI)v⊗t − v⊗tAv⊗A as a sum of squares by diagonalizing I and A. The lemma then follows by
noting that the expression is exactly adt∥v∥2t2 − p(v).

We can now put these together to get the lemma we need.

Lemma D.4. Let D be a distribution over Rd with mean µ and t be a positive even integer. Assume that (i) the covariance
of D is bounded from above by κI , (ii) the degree-2t central moments of D is bounded from above by F > 0, and (iii) there
exists M > 0 such that D has (M, t,K)-certifably bounded moments. Let S = {X1, . . . , Xm} be a set of m i.i.d. samples
from D, D′ be the uniform distribution over S, and µ := EX∼D′ [X]. If m ≫ (td)4t(F/M2) + dκM−2/t, then D′ will
have (2t+2M, t,K)-certifiably bounded moments with probability at least 0.9.

Proof. From Lemma D.1 and that m ≫ (td)4t(F/M2) + dκM−2/t, we have that the ℓ∞ norm of the difference between
the expected and empirical t-th tensors (X − µ)⊗t of D and D′ is small, i.e.,∥∥∥∥ E

i∼[m]
[(Xi − µ)⊗t]− E

X∼D
[(X − µ)⊗t]

∥∥∥∥
∞

≤ M√
dt

, (8)

and that the empirical mean and the distribution mean are close, i.e.,

∥µ− µ∥2 ≤ M1/t (9)

with high constant probability.

Let q(v) := Ei∼[m][⟨v,Xi − µ⟩t]−EX∼D[⟨v,X − µ⟩t]. Combining Lemma D.3 and Equation (8) gives that

t
v

E
i∼[m]

[
⟨v,Xi − µ⟩t

]
− E

X∼D

[
⟨v,X − µ⟩t

]
≤

√
dt∥v∥t2

∥∥∥∥ E
i∼[m]

[(Xi − µ)⊗t]− E
X∼D

[(X − µ)⊗t]

∥∥∥∥
∞

≤ ∥v∥t2M. (10)

Observe that

t
v

E
i∼[m]

[
⟨v,Xi − µ⟩t

]
= E

i∼[m]

[
⟨v,Xi − µ⟩t

]
− E

X∼D

[
⟨v,X − µ⟩t

]
+ E

X∼D

[
⟨v,X − µ⟩t

]
≤ 2∥v∥t2M , (11)

where in the second line we use Equation (10) and our assumption that D has certifiably bounded central moments.

Lastly, to prove bounded central moments of D′ (the uniform distribution over the samples in S), we note that

t
v

E
i∼[m]

[
⟨v,Xi − µ⟩t

]
≤ 2t E

i∼[m]

[
⟨v,Xi − µ⟩t

]
+ 2t E

i∼[m]

[
⟨v, µ− µ⟩t

]
≤ 2t+1 E

i∼[m]

[
⟨v,Xi − µ⟩t

]
+ 2t∥v∥t2∥µ− µ∥t2

≤ 2t+2∥v∥t2M ,

where in the first line we use the SoS triangle inequality (Fact B.2), in the second line we use SoS Cauchy’s inequality
(Fact B.1), and the last inequality follows from Equations (9) and (11).

Lemma D.5 (SoS Moment Bound). Let α ∈ (0, 1/2), σ>0, k ∈ Z
+, β∗ ∈ Rd. Let T be a set of m batches drawn

according to the distribution Dβ∗ defined in Definition 1.1, and batch size n. Assume that the clean covariates distribution
X satisfies Assumption 1.2 and k ≤ ∆/2. Define ZB = 1

n

∑
(X,y)∈B Xy. Suppose m ≫

(
(4kd)8kQ−1 + 1

)
α−1. Then

the following holds with probability at least 0.9: (a) {ZB | B ∈ T} has (M, 2k, 4k)-certifiably bounded moments for some
M = O((2k)2k/nk) Q (σ2k + 2 ∥β∗∥2k2 ), and (b) CovB∼T [ZB ] ⪯ O((∥β∗∥22 + σ2)/n)I.

Proof. We first prove that the population version of the above inequality has SoS proof. Specifically, we show that

{∥v∥22 = 1} 4k

v
E

B∼Dβ∗

[(
v⊤
(
ZB − E

B′∼T
[ZB′ ]

))2k]
≤ (2k)2k

nk
Q
(
σ2k + ∥β∗∥2k2

)
. (12)
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We can rewrite the left hand side as

E
(Xi,yi)∼Pβ∗∀i∈[n]

(( 1

n

n∑
i=1

v⊤Xiyi − E
X,y∼Pβ∗

[v⊤Xy]

))2k


=
1

n2k
E

(Xi,yi)∼Pβ∗∀i∈[n]

( n∑
i=1

(
v⊤Xiyi − v⊤β∗))2k

 . (13)

We first show that E
[(
v⊤(Xy − β∗)

)2k]
is SoS-certifiably bounded. In particular, we claim that

{∥v∥22 = 1} 4k

v
E

(X,y)∼Pβ∗

[(
v⊤(Xy − β∗)

)2k] ≤ (2k)k Q
(
σ2k + ∥β∗∥2k2

)
. (14)

Note that

{∥v∥22 = 1} 4k

v
E

(X,y)∼Pβ∗

[(
v⊤(Xy − β∗)

)2k]
= E

(X,y)∼Pβ∗

[(
v⊤XX⊤β∗ + v⊤Xξ − v⊤β∗)2k]

≤ 32k E
(X,y)∼Pβ∗

[(
v⊤XX⊤β∗)2k +

(
v⊤Xξ

)2k
+
(
v⊤β∗)2k] ,

where in the last line we apply the SoS triangle inequality (Fact B.2). We then tackle the three terms separately. For the first
term, we note that

{∥v∥22 = 1} 4k

v
E

(X,y)∼Pβ∗

[(
v⊤XX⊤β∗)2k] ≤ ∥β∗∥2k2

2
E

(X,y)∼Pβ∗

[
(v⊤X)4k + (X⊤β∗/∥β∗∥2)4k

]
≤ ∥β∗∥2k2 Q.

where in the first inequality we use the SoS AM-GM inequality (Fact B.3), and in the second inequality we use the
assumption that the degree-4k moments of X are SoS certifiably bounded by Q (Assumption 1.2). For the second term,
note that

{∥v∥22 = 1} 2k

v
E

(X,y)∼Pβ∗

[(
v⊤Xξ

)2k]
= E

(X,y)∼Pβ∗

[(
v⊤X

)2k]
E[ξ2k] ≤ (2k)kσ2kQ ,

where in the first equality we use that X and ξ are independent, and in the second inequality we use again the assumption
on the moments of X and that the degree 2k moments of ξ is bounded by (2k)kσ2k. For the last term, we note that
(v⊤β∗)2k ≤ ∥v∥2k2 ∥β∗∥2k2 by an application of the SoS Cauchy’s inequality (Fact B.1). Combining the above analysis then
shows Equation (14).

By Lemma 3.3, we then have the SoS proof

{∥v∥22 = 1} 2k

v
E

(Xi,yi)∼Pβ∗∀i∈[n]

( n∑
i=1

(
v⊤Xiyi − v⊤β∗))2k

 ≤ nk(2k)2kQ
(
σ2k + ∥β∗∥2k2

)
(15)

Combining this with Equation (13) then yields an SoS proof for Equation (12).

In order to establish an SoS proof for the empirical moments, we will additionally need to bound the covariance of the
empirical distribution over {ZB}B∈T . Since an SoS proof on the bound of the covariance is not needed, we can readily
apply the L2 − L4 hypercontractivity of X . In particular, this shows that E[(uTX)4] ≤ O(1)

(
E
[
(uTX)2

])2 ≤ O(1) for
any unit vector u. With an argument almost identical to the SoS bound on the degree-2k moments, we can show that

E
(Xi,yi)∼Pβ∗∀i∈[n]

( 1

n

n∑
i=1

(
v⊤Xiyi − v⊤β∗))2

 ≤ O

(
σ2 + ∥β∗∥22

n

)
.
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This shows property (b) in the lemma.

Let C be a sufficiently large constant. The SoS proof for the empirical moments then follows by an application of
Lemma D.4 with t = 2k, κ := C 1

n

(
σ2 + ∥β∗∥22

)
, M := (2k)2k

nk Q
(
σ2k + ∥β∗∥2k2

)
, F := (4k)4k

n2k Q
(
σ4k + ∥β∗∥4k2

)
≤

24kM2Q−1, and

m ≫ (2kd)8k 24k Q−1 +
d

n

(
σ2 + ∥β∗∥22

)
M−1/k + 1.

It is not hard to see that

(2kd)8k 24k Q−1 +
d

n

(
σ2 + ∥β∗∥22

)
M−1/k + 1 ≤ O(1)

(
(4kd)8kQ−1 + dQ−1/k + 1

)
≤ O

(
(4kd)8kQ−1

)
,

where the last inequality can be shown by examining the cases where dQ−1/k ≥ 1 and dQ−1/k < 1 separately. This
concludes the proof of Lemma 3.4.

E. Pruning Procedure and its Analysis
The main theorem for this subsection is the following:

Proposition E.1 (Pruning Lemma). Let α ∈ (0, 1/2), δ ∈ (0, 1), k, n ∈ Z+, σ,R > 0, and β∗ ∈ Rd. Let L ⊂ Rd be a
list of candidate regressors, and β ∈ L be a regressor such that ∥β − β∗∥2 < R. Assume that the batch size n satisfies
that n ≫ k Q2/k α−2/k and k ≤ ∆/2. Then there exists an algorithm Pruning that takes the list L, and the numbers
α, δ,R as input, draws m = O

(
min

(
log(|L|), d2

)
log(1/δ) α−3

)
many batches from the corrupted batch distribution of

Definition 1.1, runs in time poly(dm|L|), and outputs at most O(1/α) candidate regressors L′ ⊆ L such that there is at
least one regressor β ∈ L′ satisfying ∥β − β∗∥22 ≤ O

(
R+ kα−1/kσQ1/k/

√
n
)

with probability at least 1 − δ over the
randomness of the batches drawn.

The Pruning algorithm involves two phases: initially, it filters regressors β ∈ L by retaining those matching a certain
set of solvable linear inequalities. Then, it selects a subset of the remaining regressors, ensuring each pair is adequately
distant. Lemmas 3.7 and 3.8 respectively prove that the refined list is not excessively large and contains a regressor near the
optimal β∗, given one exists in the original list L. The proof of Proposition 3.6 follows from the above two lemmas.

For each regressor, we restate the set of linear inequalities IE(β;L, T,R) in the weighting function W over the set of
batches T .

∑
B∈T

W(B) ≥ 0.9α|T |, (16)

∀β′ ∈ L such that ∥β′ − β∥ ≥ c
(
R+ kα−1/kσQ1/k/

√
n
)

for some sufficiently large constant c ,

∑
B∈T

1

 ∑
(X,y)∈B

(
y −X⊤β

)2 ≤
∑

(X,y)∈B

(
y −X⊤β′)2W(B) ≤ α

20

∑
B∈T

W(B). (17)

We now show there cannot be too many regressors whose associated linear inequalities are satisfiable subject to the
constraint that they are all sufficiently separated. This mainly comes from the observation that Condition 17 enforces the
soft clusters associated with two sufficiently separated candidate regressors must have small intersection.

Lemma E.2 (List Size Bound). Let R > 0, and L be a list of candidate regressors. Let T be a set of batches. Let L′ ⊆ L
be a sublist of candidate regressors satisfying the following conditions: (1) IE(β;L, T,R) has solutions for each β ∈ L′,
and (2) ∥β1 − β2∥2 ≥ c

(
R+ kα−1/kσQ1/k/

√
n
)

for any two β1, β2 ∈ L′. Then it holds the size of L′ is at most O(1/α).

Proof. Let I be a set of weighting functions W : T 7→ [0, 1] over batches. We first define the union and disjoint operators
for weighting functions as follows( ⋃

W∈I

W

)
(B) = max

W∈I
W(B) ,

( ⋂
W∈I

W

)
(B) = min

W∈I
W(B).
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Moreover, for a weighting function W : T 7→ [0, 1], we define W(T ) =
∑

B∈T W(B). Let β1, β2 be two vectors from
the sublist L′, and W1,W2 be the solutions of IE(β1;L, T,R) and IE(β2;L, T,R) respectively. We proceed to argue that
(W1 ∩W2)(T ) < 0.1α (W1(T ) +W2(T )). For the sake of contradiction, we assume that

(W1 ∩W2)(T ) > 0.1α (W1(T ) +W2(T )) . (18)

Define the following two subsets of batches:

E1 :=

{
B ∈ T :

∑
(X,y)∈B

(
y −X⊤β1

)2 ≤
∑

(X,y)∈B

(
y −X⊤β2

)2}
,

and E2 :=

{
B ∈ T :

∑
(X,y)∈B

(
y −X⊤β2

)2 ≤
∑

(X,y)∈B

(
y −X⊤β1

)2}
.

Since each batch B belongs to either E1 or E2, we have either (W1 ∩W2) (E1) ≥ (W1 ∩W2) (T )/2 or (W1 ∩W2) (E2) ≥
(W1 ∩W2) (T )/2. Without loss of generality, assume that we are in the former case. This then implies that∑

B∈T

1

{∑
(X,y)∈B

(
y −X⊤β1

)2 ≤
∑

(X,y)∈B

(
y −X⊤β2

)2}W1(B)

≥ 0.05α (W1(T ) +W2(T )) >
α

20

∑
B∈T

W1(T ) ,

which contradicts Equation (17) for β1. This shows the opposite of Equation (18).

Lastly, assume that there are more than 4/α many candidate regressors in the sublist L′ for the sake of contradiction.
Arbitrarily pick ℓ = ⌈4/α⌉ many regressors from L′, and let W1, . . . ,Wℓ be the solutions to the linear inequalities associated
with the candidate regressors picked. Then,

|T | ≥

(
ℓ⋃

i=1

Wi

)
(T )

≥
ℓ∑

i=1

Wi(T )−
∑

i<j∈[ℓ]

(Wi ∩Wj)(T )

≥
ℓ∑

i=1

Wi(T )− 0.1α
∑

i<j∈[ℓ]

(Wi(T ) +Wj(T ))

= (1− 0.1α(ℓ− 1))

ℓ∑
i=1

Wi(T )

≥ (1− 0.1(ℓ− 1)α) ℓ(0.9α)|T |
≥ 2.88|T | ,

where in the first line we use the fact that the weights are bounded from above by 1, in the second line we use the approximate
inclusion-exclusion principle, in the third line we use the opposite of Equation (18), in the fourth line we use the elementary
fact that

∑
i ̸=j∈[ℓ](xi+xj) = (ℓ−1)

∑ℓ
i=1 xi, in the fifth line we use Wi(T ) ≥ 0.9α|T | as they need to satisfy Condition 5,

and in the last line we use the definition of ℓ = ⌈4/α⌉. This is clearly a contradiction, and hence concludes the proof of
Lemma 3.7.

Next we show that the set of linear inequalities constructed for some β admit solutions with high probability as long as
β is close to β∗.

Lemma E.3 (Error Bound). Let α ∈ (0, 1/2), δ ∈ (0, 1), n,K ∈ Z+, σ,R > 0, and β∗ ∈ Rd. Let L be a list of candidate
regressors of size K , and β ∈ L be a regressor such that ∥β − β∗∥2 < R. Let n ≫ k Q2/k α−2/k be the batch size
parameter. Suppose T is a set of m ≫ min

(
log(K), d2

)
log(1/δ) α−3 many batches of size n drawn from the corrupted

batch distribution of Definition 1.1. With probability at least 1 − δ over the randomness of T , we have that the system
IE(β;L, T,R) has solutions.
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To prove Lemma 3.8, we will make essential use of the following anti-concentration inequalities.

Fact E.4 (Paley–Zygmund Inequality). If Z ≥ 0 is a positive random variable with finite variance, and θ ∈ [0, 1], then it
holds

Pr[Z ≥ θE[Z]] ≥ (1− θ)2
E[Z]2

E[Z2]
.

Combining the above with our distributional assumption that the clean covariates distribution satisfies L2-L4 hypercon-
tractivity, we obtain the following weak anti-concentration property.

Corollary E.5 (Weak Anti-concentration). Let v be a unit vector in Rd, and X be a random unit vector satisfying
Assumption 1.2. Then it holds

Pr[(vX)2 ≥ 1/2] ≥ Ω(1).

We are now ready to give the proof of Lemma 3.8.

Proof of Lemma 3.8. Let β be a regressor within the list such that ∥β − β∗∥2 < R. Our goal is to show that the associated
linear inequalities IE(β;L, T,R) admits solutions. In particular, we claim that setting W(B) = 1 for all inlier batch B and
W(B) = 0 for all outlier batch B gives a solution. Condition 5 is satisfied since in expectation there should be α-fraction of
inlier batches. Since we take C log(δ/α)/α2 many batches, the actual fraction of inlier batches should be at least 0.9α with
probability at least 1− δ when C is sufficiently large by the Chernoff bound.

Next we show Condition 6 is satisfied with high probability over the randomness of T . Fix some β′ satisfying
∥β′ − β∥2 ≫ R+ kα−1/kσQ1/k/

√
n. We will analyze the random variable

Zβ′(B) :=
∑

(X,y)∼B

(
y −X⊤β′)2 − ∑

(X,y)∼B

(
y −X⊤β

)2
,

where B ∼ Dβ∗ . Recall that we have y = X⊤β∗ + ξ, where ξ ∼ N (0, σ2). We will rewrite Z(β′) slightly with the random
variables {(X(i), ξ(i))}ni=1, where each X(i) is drawn independently from a distribution satisfying Assumption 1.2 , and
each ξ(i) is independently distributed as N (0, σ2). We thus have that

Zβ′(B) =

n∑
i=1

(
(β′ − β∗)⊤X(i)

)2
−
(
(β − β∗)⊤X(i)

)2
+ 2ξ(i) (β − β′)

⊤
X(i).

Denote the three terms in the summation by:

Z1 :=

n∑
i=1

(
(β′ − β∗)⊤X(i)

)2
, Z2 :=

n∑
i=1

(
(β − β∗)⊤X(i)

)2
, Z3 :=

n∑
i=1

2ξ(i) (β − β′)
⊤
X(i).

We proceed to argue that Z1 is bounded from below, and Z2, Z3 are bounded from above with high probability. 5.

For Z1, applying the weak anti-concentraiton property of X (Corollary E.5) gives that

Pr

[(
(β′ − β∗)⊤X(i)

)2
≥ ∥β′ − β∗∥22/2

]
≥ γ.

for some universal constant γ. By the Chernoff bound, given that n ≫ log(1/α), the fraction of X(i) such that(
(β′ − β∗)⊤X(i)

)2 ≥ ∥β′ − β∗∥22/2 will be at least γ/2 with probability at least 1− α/120. It then follows that

Pr
[
Z1 ≤ γn

4
∥β′ − β∗∥22

]
≥ 1− α/120. (19)

For Z2, since E[X(i)
(
X(i)

)†
] = I by Assumption 1.2, it follows that E[Z2] = n∥β − β∗∥22. In order to show that Z2 is

sufficiently concentrated, we will bound from above the k-th central moments of Z2 for some even integer k ≤ ∆. Define

5Note that there are correlations between Z1, Z2, Z3. Nonetheless, these correlations will not affect our analysis.
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yi =
(
(β − β∗)⊤X(i)

)2
. We note that the yis are i.i.d. random variables with their degree-k central moments bounded from

above by

E

[((
(β − β∗)⊤X(i)

)2
− ∥β − β∗∥22

)k
]
≤ 2k E

[(
(β − β∗)⊤X(i)

)2k
+ ∥β − β∗∥2k2

]
≤ 2k+1 ∥β − β∗∥2k2 Q

where in the first line we apply the triangle inequality (Fact B.2), and in the second line we use the assumption on the degree
2k moments of X . Hence, applying Lemma 3.3 gives that the degree k moment of Z2 is bounded from above by

E

( n∑
i=1

(yi −E[yi])

)k
 ≤ 2 (4kn)k/2 ∥β − β∗∥2k2 Q .

In other words, we have that E

( n∑
i=1

(yi −E[yi])

)k
1/k

≤ 21/k
√
4kn Q∥β − β∗∥22.

By Chebyshev’s inequality, we thus have that

Pr
[
Z2 ≥ ∥β − β∗∥22

(
n+ 100

√
kn Q1/k

)]
≤ α/120. (20)

For Z3, note that E[Z3] = 0 since ξ(i) has mean 0. To argue for its concentration, we again proceed to bound its
degree-k moment for some even integer k. Similarly, we define zi = ξ(i)(β − β′)⊤X(i). The degree-k central moments of
zi can be bounded from above by

E

[(
ξ(i)(β − β′)⊤X(i)

)k]
= E

[(
ξ(i)
)k]

E

[(
(β − β′)⊤X(i)

)k]
.

We can apply the upper bounds on the degree-k moments of ξ(i) and X(i) respectively. This allows us to conclude that

E

[(
ξ(i)(β − β′)⊤X(i)

)k]
≤ kk/2Qσk∥β − β′∥k2 .

Applying Lemma 3.3 then gives that

E

( n∑
i=1

zi

)k
 ≤ nk/2 kkQσk∥β − β′∥k2 .

In other words, we have that E

( n∑
i=1

zi

)k
1/k

≤ k
√
n σ ∥β − β′∥2Q.

By Chebyshev’s inequality, it holds that

Pr
[
Z2 > 10k

√
n σQ ∥β − β′∥2

]
≤ α/120. (21)

By the union bound, the events in Equation (19), Equation (20), and Equation (21) are satisfied simultaneously with
probability at least 1− α/40. When that happens, Zβ′(B) will be bounded from below by

γ

4
n ∥β′ − β∗∥22 − ∥β − β∗∥22 α−1/k

(
n+ 100

√
kn Q1/k

)
− 10k

√
n σQ α−1/k ∥β − β′∥2. (22)

19



Batch List-Decodable Linear Regression via Higher Moments

First, we claim that

∥β′ − β∗∥2 ≫ ∥β − β∗∥2 (23)
∥β′ − β∗∥2 ≥ (1− o(1))∥β − β′∥2. (24)

To prove Equation (24), we note that

∥β′ − β∗∥2 ≥ ∥β′ − β∥2 − ∥β − β∗∥2 ≥ (1− o(1))∥β − β′∥2.

where the first inequality is the triangle inequality, and the second inequality is true by our assumption that ∥β − β∗∥2 <
R ≪ ∥β′ − β∥2. Equation (23) then follows immediately as ∥β − β′∥2 ≫ ∥β − β∗∥2.

With the above inequalities in mind, we proceed to argue that the positive term dominates all the negative terms in
Equation (22). Since γ is a universal constant, it follows that

γn ∥β′ − β∗∥22 ≫ ∥β − β∗∥22n.

Next recall that n ≫ k Q2/k α−2/k by our assumption on n. It then follows that

γn ∥β′ − β∗∥22 ≫ ∥β − β∗∥22 100
√
kn Q1/k α−1/k.

Lastly, recall that we assume ∥β−β′∥2 ≫ kσQ α−1/k/
√
n. Combining this with Equation (24) and Equation (23) then gives

that ∥β′−β∗∥2 ≥ (1−o(1)) ∥β−β′∥2 ≫ kσQ α−1/k/
√
n, which implies that ∥β′−β∗∥22 ≫ ∥β−β′∥2kσQ α−1/k/

√
n.

It then follows that
γn ∥β′ − β∗∥22 ≫ 10k

√
n σQ α−1/k ∥β − β′∥2

Combining the above gives that

Pr
B∼Dβ∗

[Zβ′(B) > 0] > 1− α/40 , (25)

as long as n ≫ k Q2/k α−2/k and ∥β − β′∥2 ≫ R+ kα−1/kσQ1/k/
√
n.

Since the inlier batches are all drawn independently, it holds the faction of inlier batches violating the condition is at
most α/20 with probability at least 1− δ/K2 when the number of inlier batches drawn are at least N ≫ log(K/δ)α−2.
Since the size of L is at most K, there are at most K − 1 many β′ we need to consider. Condition 6 is therefore satisfied
with probability at least 1− δ by the union bound.

When we have log(K) > d2, we will need an alternative argument. We note that Z1 and Z2 are both linear functions in
the random variables

∑n
i=1 X

(i)X(i)T of dimension d2, and Z3 is a linear function in the random variables
∑n

i=1 ξ
(i) X(i).

Thus, overall, for any β′ ∈ Rd, Zβ′(B) is a linear function in O
(
d2
)

many random variables. It then follows that, for any
β′ ∈ Rd, 1{Zβ′(B) > 0} is an O(d2)-dimensional linear threshold function, which has VC-dimension O(d2). Let G be
N ′ ≫ d2α−2 log(1/δ) many inlier batches drawn from Dβ∗ . By the VC-inequality, we thus have

Pr
G

[
sup

β′∈Rd

∣∣∣∣ PrB∼G
[ZB(β

′) > 0]− Pr
B∼Dβ∗

[ZB(β
′) > 0]

∣∣∣∣ > α/20

]
≤ δ.

Combining this with Equation (25) then shows that Condition 6 is satisfied with probability at least 1− δ.

F. Reduction from the Batch-Setting to the Non-Batch Setting
We point out a simple reduction (in Claim F.1), which allows one to solve list-decodable linear regression in the

non-batch setting using an algorithm for the batch-setting in a black-box manner. The idea is the trivial observation we can
construct our own batches of size n just by collecting together n individual labeled examples. Denote by α the probability
that an individual example is inlier. Then the probability that a batch made in the aforementioned way consists only of
inliers is αB = αn. Then, running any algorithm designed for the batch setting should yield guarantees where the corruption
rate is being replaced by αn. In particular, if we denote by m(αB , d), ℓ(αB) and error(αB) the sample complexity, list size
and error guarantee of the black-box algorithm (which are functions of the corruption rate αB and maybe other parameters
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like the dimension d which do not matter for this discussion), then the resulting algorithm for solving the problem in the
non-batch setting will have its sample complexity, lits size and error rate being m(αn, d), ℓ(αn) and error(αn) respectively.

For convenience, throughout this section we will restrict our ourselves to the case α < 1/2, which corresponds to more
than half of the data being corrupted. We are interested only in this since this is the truly “list-decodable setting”. For this
reason, we will use n ≪ log(1/αB) in the claim below (because we have already mentioned that α = α

1/n
B , thus in order to

have α < 1/2 we need n ≪ log(1/αB)).

Claim F.1. Denote by d the ambient dimension and by α ∈ (0, 1/2) the corruption level for the non-batch setting. Let c > 0
be a sufficiently small absolute constant. Suppose that A is an algorithm with the guarantee that for any αB ∈ (0, 1/2) it
can draw m(αB , d) batches of size n = c log(1/αB) from the corrupted distribution of Definition 1.1 with corruption level
αB , and output a list of size ℓ(αB) of vectors which contains a vector β̂ with ∥β̂ − β∗∥2 ≤ error(αB). Then, there exists
another algorithm A′ that draws m(αn, d) batches of size 1 from the corrupted distribution of Definition 1.1 with rate of
corruption α, and outputs a list of size ℓ(αn) of vectors which contains a vector β̂ with ∥β̂ − β∥2 ≤ error(αn).

This reduction, in combination with the lower bound of (Diakonikolas et al., 2021), can serve as informal evidence
that doing list-decodable linear regression with batch sizes n ≪ log(1/αB) likely requires exponential time. In particular,
Theorem 1.5 in (Diakonikolas et al., 2021) provides evidence6 that any algorithm with polynomial sample complexity needs
exponential list-size or exponential runtime. Let n = c log(1/αB) for some constant c ≪ 1. If Theorem 1.3 were to allow
for that batch size of n = c log(1/αB) (recall that it right now only works for n ≫ log(1/αB)), then, by the reduction
above (Claim F.1) we would obtain an algorithm for the non-batch setting, with quasi-polynomial runtime and list size
which would contradict the hardness evidence.

6By “evidence” we mean that the lower bound is only about the Statistical Query model. Although this does not imply hardness results
for the class of all algorithms, SQ lower bounds have long served as strong indication of hardness.
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