
Improving Few-Shot Generalization by Exploring and
Exploiting Auxiliary Data

Alon Albalak
University of California,

Santa Barbara
alon_albalak@ucsb.edu

Colin Raffel
University of Toronto

Vector Institute
craffel@gmail.com

William Yang Wang
University of California,

Santa Barbara
william@cs.ucsb.edu

Abstract

Few-shot learning is valuable in many real-world applications, but learning a
generalizable model without overfitting to the few labeled datapoints is challenging.
In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a
training paradigm that assumes access to auxiliary data during few-shot learning
in hopes of improving generalization. Previous works have proposed automated
methods for mixing auxiliary and target data, but these methods typically scale
linearly (or worse) with the number of auxiliary datasets, limiting their practicality.
In this work we relate FLAD to the explore-exploit dilemma that is central to the
multi-armed bandit setting and derive algorithms whose computational complexity
is independent of the number of auxiliary datasets, allowing us to scale to 100×
more auxiliary datasets than prior methods. We propose two algorithms – EXP3-
FLAD and UCB1-FLAD – and compare them with prior FLAD methods that either
explore or exploit, finding that the combination of exploration and exploitation is
crucial. Through extensive experimentation we find that our methods outperform
all pre-existing FLAD methods by 4% and lead to the first 3 billion parameter
language models that outperform the 175 billion parameter GPT-3.

1 Introduction

Few-shot learning is an attractive learning setting for many reasons: it promises efficiency in cost
and time, and in some scenarios data is simply not available due to privacy concerns or the nature
of the problem. However, few-shot learning is also a challenging setting that requires a delicate
balance between learning the structure of the feature and label spaces while preventing overfitting to
the limited training samples [1, 2, 3]. One approach to improving the generalizability of models in
the few-shot setting is Few-shot Learning with Auxiliary Data (FLAD), where additional auxiliary
datasets are used to improve generalization on the target few-shot task [4, 5, 6, 7].

However, FLAD methods introduce their own challenges, including increased algorithmic and
computational complexity. Manually designing the curriculum for training on large quantities of
auxiliary data is not feasible, and hand-picking which auxiliary data to use based on heuristics (e.g.
from the same domain or task as the target few-shot dataset) can lead to sub-optimal results [8].
Additionally, prior auxiliary learning algorithms often assume that only 1-3 related auxiliary datasets
are available and design algorithms whose computational complexity grows linearly (or worse) with
the number of auxiliary datasets [9, 8], motivating the search for more efficient methods.

To overcome the challenges of prior works, we desire a FLAD algorithm that (1) makes no assump-
tions on available auxiliary data a-priori (in-domain, on-task, quality, quantity, etc.), (2) scales well
with the number of auxiliary datasets, and (3) adds minimal memory and computational overhead.
We design algorithms that satisfy our desiderata by drawing inspiration from the central problem
in multi-armed bandit (MAB) settings: the exploration-exploitation trade-off [10, 11]. We relate

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.

3. Calculate auxiliary and target gradients, update model

Model
5. Update policy
according to

1. Select
dataset
according to

Policy

4. Calculate
Reward

Learner Environment

2.
Sample a batch

Figure 1: Overview of few-shot learning with auxiliary data (FLAD) as a multi-armed bandit
problem. On the left is the learner which defines a policy π that determines which auxiliary dataset
to sample from. On the right is the environment that includes the set of auxiliary datasets DA, target
dataset DT , and the model fθ. At each turn t, the following five steps take place, further described in
Section 2: 1. The learner selects an auxiliary dataset Da according to its policy π. 2. The environment
samples a batch {x,y} ∼ Da. 3. The model fθ calculates gradients for the sampled batch (∇a) and
the target dataset (∇T), then updates the parameters θ. 4. A reward Ra,t is calculated based on ∇a

and ∇T . 5. The learner updates π based on Ra,t.

the set of auxiliary datasets to the arms of a MAB and tailor the classic EXP3 [12] and UCB1 [13]
algorithms to fit the FLAD framework by designing three efficient gradient-based reward signals.
The combination of our MAB-based algorithms and efficient gradient-based rewards allows us to
scale to 100× more auxiliary datasets than previous methods. Figure 1 provides a basic illustration
of how we formulate FLAD as a MAB problem.

To validate our approaches, we focus on few-shot training of language models. We evaluate our
methods on the same held-out tasks as the T0 language model [14] and show that, when using the
same collection of auxiliary datasets, our algorithms outperform a directly fine-tuned T0 by 5.6%
(EXP3-FLAD) and 5.7% (UCB1-FLAD) absolute. Furthermore, incorporating all available datasets
in P3 [15] increases the improvement to 9.1% and 9.2%. Finally, we compare models trained with our
methods against state-of-the-art few-shot methods, finding that our methods improve performance
by >3%, even though one model utilizes a large collection of unlabeled target dataset samples.
Furthermore, to the best of our knowledge, our methods lead to the first 3 billion parameter model
that improves over 175B GPT-3 using few-shot in-context learning.

2 Multi-armed bandits for few-shot learning with auxiliary data

In this section, we first define the few-shot learning with auxiliary data (FLAD) setting. Then, we
formulate FLAD as a multi-armed bandits (MAB) problem, shown in Figure 1. Next, we define
reward functions that are efficient to compute and appropriate for FLAD. Finally, we describe our
adaptations of two popular MAB algorithms: EXP3-FLAD and UCB1-FLAD.

FLAD problem setting. Few-shot learning with auxiliary data (FLAD) fits into the following
setting: assume access to a large set of auxiliary datasets DA where, for all a ∈ A, Da is an individual
auxiliary dataset. Given a small quantity of data belonging to a target dataset DT , the goal of FLAD
is to find parameters θ of a model fθ that achieve high performance on the unknown distribution
underlying DT while utilizing only the available data, DT ∪ DA.

Formulating FLAD as MAB. In this work, we adopt the multi-armed bandit (MAB) setting
by formulating FLAD as a Markov decision process [16] and defining a learner and environment,
illustrated in Figure 1. The learner consists of a policy π defining a selection strategy over all
Da ∈ DA. The environment consists of the target dataset DT , auxiliary datasets DA, and model
fθ. In this formulation the learner interacts with the environment over N rounds. At each round t
the learner selects one of the environment’s |A| datasets Da ∈ DA. Next, the environment samples
a batch {x,y} ∼ Da and calculates the gradient w.r.t. θ using a task-appropriate loss function as
∇a = ∇θL(fθ,x,y). Then, the environment computes the target gradient ∇T = ∇θL(fθ,DT),
and updates model parameters w.r.t. ∇T +∇a. Finally, the learner uses a gradient-based reward
Ra,t(∇a,∇T) to update its policy π. See Appendix A and Lattimore & Szepesvári [17] for further
details on multi-armed bandits.

2

Designing the reward functions. We design the reward function R with our desiderata in mind.
To ensure that our algorithm adds minimal memory and computational overhead we consider rewards
that utilize information intrinsic to the model and the losses being optimized, not an external model
or metric (e.g. accuracy or BLEU). In this work we propose three gradient-based reward functions
inspired by previous works: gradient alignment [6, 18, 19], gradient magnitude similarity [20, 21],
and their aggregation. Formally, at turn t let ∇a be the gradient of the auxiliary batch and ∇T be
the target dataset gradient. Gradient alignment is defined as RGA

a,t = ∇a·∇T
∥∇a∥2∥∇T ∥2

, i.e. the cosine
similarity between the gradients of the sampled auxiliary dataset batch and the whole target dataset.
Gradient magnitude similarity is defined as RGMS

a,t = 2∥∇a∥2∥∇T ∥2

∥∇a∥2
2+∥∇T ∥2

2
so that when the two gradients

have equal magnitude, this value is equal to 1 and as the magnitudes differ the value goes to zero. In
addition to the individual reward functions, we also consider an aggregate reward. To ensure that the
aggregate is not dominated by either individual reward, we normalize RGA ∈ [0, 1], the same range

as RGMS and define the aggregate to be their sum: RAGG
a,t =

1+RGA
a,t

2 +RGMS
a,t .

Adapting MAB for FLAD. We adapt two MAB algorithms for use in FLAD. We base our first
algorithm, EXP3-FLAD on the EXP3 algorithm [12] (“Exponential-weight algorithm for Exploration
and Exploitation”), which targets the adversarial MAB setting. We base our second algorithm,
UCB1-FLAD, on the upper confidence bound algorithm [13], which was originally designed to be
optimal for stationary, normally distributed reward functions. For further details on how we adapt
these algorithms to FLAD, please see Sections A.1 and A.2 in the Appendix.

Algorithms The EXP3-FLAD and UCB1-FLAD algorithms are visualized in Figure 1. At each
turn, both methods will first select an auxiliary dataset Da. EXP3-FLAD first computes the current
exploration rate Et and samples Da according to the distribution defined by πt(A), while UCB1-
FLAD greedily selects Da∗ corresponding to the arm with largest upper confidence bound, a∗ =
argmaxa∈A UCBa,t. Next, for both methods, the environment samples a batch from the selected
dataset, {x,y} ∼ Da, and calculates the gradient ∇a = ∇θL(fθ,x,y). Let G be the number of
rounds between model updates, then the previous steps will repeat G times, at which point the
environment calculates the gradient of the target dataset ∇θL(fθ,DT) and updates the model w.r.t.
∇T +

∑
a ∇a. Finally, EXP3-FLAD calculates the importance-weighted reward for each auxiliary

batch using the observed rewards, while UCB1-FLAD calculates the smoothed estimated mean
reward. Pseudocode is found in Appendix B.

3 Experimental setup

Models. For our experiments, we use the LM-adapted T5 (T5-LM) and T0. The T5-LM model
trains the T5.1.1 model for 100,000 steps (corresponding to 100B tokens) from the C4 dataset [22] on
the prefix language modeling objective [23]. The T0 model was initialized from T5-LM and further
trained on a multitask mixture of prompted datasets as described by Sanh et al. [14]. We repeat each
experiment with T5-LM XL (hereafter T5-XL) and T0-3B as our base model. Both models use the
same architecture with 2.85 billion parameters, and we used model checkpoints from Hugging Face
Transformers [24]).

Target datasets. To evaluate our few-shot methods, we utilize the same held-out datasets as T0,
which cover four distinct tasks: sentence completion (COPA [25], HellaSwag [26], Story Cloze [27]),
natural language inference (ANLI [28], CB [29], RTE [30]), coreference resolution (WSC [31],
Winogrande [32]), and word sense disambiguation (WiC [33]). For each dataset, we randomly
sample five few-shot splits from their training data, containing the same number of training examples
as previous works, between 20 to 70 [34, 35]. We further divide each split into equal training
and validation partitions for true few-shot learning [36](e.g. 10 train and 10 validation samples for
HellaSwag). Only ANLI datasets have a publicly available test set, so for all other datasets we
evaluate models on the original validation set (not utilized for few-shot training or validation).

Auxiliary datasets. We compare the performance of our methods using two sets of auxiliary data
and never include any of the target datasets as part of auxiliary data. First, we use the collection of
datasets used for multitask training of T0 (henceforth referred to as T0Mix), including 35 unique
datasets covering question answering, sentiment analysis, topic classification, summarization, para-
phrase detection and structure-to-text. Second, we utilize all datasets in P3 [15] (which forms a

3

BASE MODEL T5-XL T0-3B
Training Method \ Auxiliary Data T0Mix P3 T0Mix P3

Target-Only 52.82 56.44
Loss-Scaling [6] (GA) 53.22 55.19 59.47 60.66
Loss-Scaling [6] (GMS) 55.98 56.40 60.47 60.70
Explore-Only [8] 59.18 60.64 61.17 62.77
Exploit-Only [8] 59.79 60.49 60.87 62.87
EXP3-FLAD (RAGG) 62.05 65.47 62.84 66.84
UCB1-FLAD (RAGG) 62.08 65.63 62.93 66.29

Table 1: Main results. Each cell is the score of training a base model (top row) with auxiliary data
(second row) using the specified training method (left column) on 11 target datasets on 5 random
seeds (average of 55 experiments). Expanded results are found in Appendix D.

superset of T0Mix) and prevent data leakage by filtering out datasets that overlap with any target
dataset, leading to 260 available datasets (list in Appendix H).

Baseline methods. We compare our proposed methods with several baselines. Target-Only (non-
FLAD) fine-tunes the base model on the target dataset (i.e. without using auxiliary data). Explore-
Only [8] is a FLAD method which simultaneously trains on auxiliary and target data by mixing
auxiliary datasets equally. Originally called Multitask in [8], we call this Explore-Only because it is
equivalent to continuously exploring auxiliary data and never exploiting its relation to the target data.
Exploit-Only computes gradient alignment prior to training (as in UCB1), and multitask trains the
model by mixing auxiliary datasets according to a Gibbs distribution over alignments (similar to that
in EXP3), resulting in an algorithm that exploits the relations determined prior to training, but never
explores. Loss-Scaling [6] is a FLAD method that scales auxiliary batch losses by their gradient
alignment. Du et al. [6] originally propose to use gradient alignment (Loss-Scaling (GA)), but we
also propose a version that scales losses by gradient magnitude similarity (Loss-Scaling (GMS)).

Training details. For each proposed method and baseline, we train and evaluate a model on each
of the 11 target datasets. We repeat training and evaluation on 5 random seeds and include the
aggregated results in Table 1. Each cell shows the accuracy averaged across all 55 (11 target datasets,
5 random seeds) experiments. We include the non-aggregated results in Appendix D. Implementation
details, including hyperparameters, can be found in Appendix C.

4 Findings and analysis

In Table 1 we compare the empirical results of our MAB-based methods (EXP3-FLAD and UCB1-
FLAD) and corresponding baselines on 11 target datasets (expanded results in Appendix D. For
each base model and auxiliary data combination (each column) EXP3-FLAD and UCB1-FLAD
outperform all the baselines. In fact, we find that for every single task our methods always perform
equal to or better than the baselines. This demonstrates that our MAB-based methods provide a strong
improvement in few-shot generalization over previous FLAD methods. We find small performance
differences between EXP3-FLAD and UCB1-FLAD across the three reward functions (shown in
Table D in the Appendix). In general, RAGG leads to the best performance, but we perform a
two-sided Wilcoxon rank-sum test to check for significance between average scores and find that the
other rewards frequently have no significant difference (p > 0.05).

The importance of prioritized sampling. Loss-Scaling was originally proposed for use with
only a single auxiliary dataset and it was unclear, a priori, how it would cope with larger quantities.
Additionally, Du et al. [6] purposefully choose an auxiliary dataset that is related to the target, while
in our setting we make no such assumptions. We find that our methods outperform Loss-Scaling
methods by 6.3% on average. In Figure 3 (and Figure 4 in Appendix E) we show that, over the course
of training, the value of gradient alignments and gradient magnitude similarities for most datasets
will converge to 0, leading to very small gradient updates for Loss-Scaling. More importantly, the
auxiliary data that is relevant to the target task is seen less frequently for Loss-Scaling than our
MAB-based methods. This can be seen by comparing the difference in performance of Loss-Scaling
methods when using less (T0Mix) vs. more (P3) auxiliary data. We find that, at best, Loss-Scaling
(GA) improves 2% when using T5 and, at worst, only 0.2% for Loss-Scaling (GMS) with T0. This

4

60

62

64

66

68

70

35

40

45

50

ANLI-R1

30.0

32.5

35.0

37.5

40.0

42.5
ANLI-R2

35.0

37.5

40.0

42.5

45.0

ANLI-R3

70

80

90

CB

60

70

80

90
RTE

60

70

80

WSC

50

60

70

80
Winogrande

70

80

90

100
COPA

75

80

85

90

95

100
StoryCloze

40

50

60

70

80
HellaSwag

45

50

55

60
WiC

Average Accuracy
Natural Language Inference

Coference Resolution Sentence Completion Word Sense

EXP3-FLAD (T5) EXP3-FLAD (T0) UCB1-FLAD (T5) UCB1-FLAD (T0) T-Few DEFT-Few GPT-3 (175B)

Figure 2: Comparison of state-of-the-art few-shot methods with FLAD methods trained on
P3 using RAGG. T-Few scores are from [35]. DEFT-Few scores are from [37]. GPT-3 scores are
from [34] and utilize few-shot in-context learning. All models utilize the same number of few-shot
examples and (other than GPT-3) have 3B parameters.

is compared with the notable improvements of EXP3-FLAD and UCB1-FLAD of 2.6-4% when
considering the same data increase from T0Mix to P3.

The importance of exploration and exploitation. Interestingly, we expected that Exploit-Only
would outperform the Explore-Only method because it utilizes relational information between the
target and auxiliary tasks, but find no statistical difference between the methods (two-sided Wilcoxon
rank-sum test gives p > 0.05). Furthermore, when comparing the ability to leverage additional
auxiliary data (i.e. going from T0Mix to all of P3), we find that the improvement for Explore- and
Exploit-Only methods is minimal with only 0.7-2% improvement. On the other hand, EXP3-FLAD
and UCB1-FLAD show a notable improvement of 2.6-4%, emphasizing the importance of both
exploration and exploitation, particularly when dealing with large collections of auxiliary data.

FLAD provides improved generalization over non-FLAD methods. Next, we compare the
performance of our best models trained on P3 using RAGG with state-of-the-art few-shot methods:
T-Few, DEFT-Few, and GPT-3. T-Few [35] is a variant of the T0-3B model that multi-task pre-trains
parameter-efficient (IA)3 modules followed by target-only fine-tuning of the (IA)3 modules. DEFT-
Few [37] is a variant of the T5-XL model that uses retrieved auxiliary data for multi-task training. It
first trains a T5-XL model on the 500 nearest neighbor samples from P3 using 1000 unlabeled target
dataset samples, and then performs few-shot target-only fine-tuning with the (IA)3 modules from
Liu et al. [35]. Finally, we also compare against the 175 billion parameter variant of GPT-3 [34],
which utilizes in-context learning. We find that, on average, models trained using our FLAD-based
methods outperform all other methods and, to the best of our knowledge, our methods lead to the
first 3 billion parameter model that outperforms GPT-3 on this dataset mixture. Additionally, we
find that our FLAD-based methods provide robust performance across datasets, achieving the best or
second-best performance on 8/11 datasets, and never performing worst. These results demonstrate
that with the same data, simultaneously fine-tuning with auxiliary and target data leads to improved
few-shot generalization.

Investigating the Reward-Generating Processes. To gain a deeper understanding of our reward-
generating processes, we examine the distribution of each reward using 5,000 samples from all 35
auxiliary datasets of T0Mix and 32 samples from a few-shot target dataset, WSC [31]. The resulting
histograms at every 100 steps can be found in Appendix E, and Figure 3 shows an abbreviated version.
The left side of Figure 3 demonstrates that for RGA, almost every dataset yields a Gaussian reward
distribution, with a few multi-modal distributions. Notably, WikiBio [38] (dark orange) exhibits
peaks at 0.25 and -0.75. Interestingly, RGA results in polarized rewards across datasets, with minimal
distribution density between -0.75 and 0.25. In contrast, the right side of Figure 3 displays more
non-Gaussian distributions for RGMS , as well as flatter distributions compared to RGA. Remarkably,

5

Gradient Alignment Gradient Magnitude Similarity

St
ep

 0
St

ep
 3

00

Figure 3: Reward distributions of RGA and RGMS prior to training (step 0) and after 300 gradient
updates for the T5-XL model with T0Mix as the auxiliary dataset and WSC [31] as the target dataset.
Each quadrant shows the histograms of reward distributions for all 35 auxiliary datasets. By step 300
most auxiliary datasets provide 0 reward, while only the few remaining “beneficial” datasets provide
positive rewards. Results from every 100 gradient updates are shown in Figure 4 in Appendix E.

we observe that RGA produces more stationary reward distributions, as the distribution for almost
every dataset (30/35) converges rapidly towards 0 after only 100 steps. Although most distributions
for RGMS also converge towards 0, the convergence occurs at a slower pace, taking nearly 500 steps.

Probing the training dynamics. To better understand the training dynamics of our proposed
methods, we perform a case study on T5-XL with T0Mix and RGA and find two datasets where either
algorithm improves significantly over the other (full details and figures in Appendix F). First, we
study RTE, where UCB1-FLAD outperforms EXP3-FLAD. We calculate the empirical distribution of
samples seen from each auxiliary dataset and find that EXP3-FLAD samples nearly uniformly from
all datasets while UCB1-FLAD forms a bimodal sampling distribution with peaks at 2.5% and 3.25%
(30% relative difference). The uniformity of the EXP3-FLAD distribution is counterintuitive, as we do
find that it achieves separation between auxiliary tasks in the cumulative estimated reward (as shown
in Figure 6), but this does not lead to separation in the sampling probability space. Additionally we
find that even on COPA, where EXP3-FLAD outperforms UCB1-FLAD, EXP3-FLAD still achieves
good separation between cumulative estimated rewards, but has a unimodal sampling distribution,
while UCB1-FLAD does not have as clear of a bimodal distribution as in RTE. The difference in
empirical sampling distributions is likely due to the difference between the greedy policy of UCB1-
FLAD and the stochastic policy of EXP3-FLAD. Empirically, we find that EXP3-FLAD very rarely
assigns an auxiliary dataset a probability < 1%, leading to many “bad” batches over the course of
thousands of turns. On the other hand, the optimistic policy of UCB1-FLAD spends much less time
exploring and will sample “bad” batches much less frequently.

5 Conclusion

Recall the desiderata for our algorithm, expressed in the introduction: our algorithm should (1)
make no assumptions on the available auxiliary data a-priori, (2) scale well with the number of
auxiliary datasets, and (3) add minimal memory and computational overhead. (1) When designing
our algorithm, we purposefully formulate the problem as a multi-armed bandit. MAB algorithms,
in general, make no assumptions on the quality of rewards and, in particular, EXP3 even assumes
that the auxiliary datasets will play an adversarial role when returning rewards. (2) As previously
mentioned, our algorithms have a single-turn computational complexity that is independent of the
number of auxiliary datasets. (3) Finally, our method adds minimal computational overhead beyond
usual training computations. Every gradient that we utilize for our reward functions are also used to
update the model, adding no additional computations. The only computational overhead is to compute
gradient alignment (three vector dot products, two scalar square roots, and two scalar multiplications)
or magnitude similarity (four vector dot products, two scalar square roots, three scalar multiplications,
and one scalar addition).

6

References
[1] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Interna-

tional Conference on Learning Representations, 2017.

[2] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. Generalizing from a few
examples: A survey on few-shot learning. ACM Comput. Surv., 53(3), jun 2020.

[3] Archit Parnami and Minwoo Lee. Learning from few examples: A summary of approaches to
few-shot learning, 2022.

[4] Pengcheng Wu and Thomas G. Dietterich. Improving svm accuracy by training on auxiliary data
sources. In Proceedings of the Twenty-First International Conference on Machine Learning,
ICML ’04, page 110, New York, NY, USA, 2004. Association for Computing Machinery.

[5] Reza Esfandiarpoor, Amy Pu, Mohsen Hajabdollahi, and Stephen H. Bach. Extended few-shot
learning: Exploiting existing resources for novel tasks, 2020.

[6] Yunshu Du, Wojciech M. Czarnecki, Siddhant M. Jayakumar, Mehrdad Farajtabar, Razvan
Pascanu, and Balaji Lakshminarayanan. Adapting auxiliary losses using gradient similarity,
2020.

[7] Sam Verboven, Muhammad Hafeez Chaudhary, Jeroen Berrevoets, Vincent Ginis, and Wouter
Verbeke. Hydalearn. Applied Intelligence, Jul 2022.

[8] Alon Albalak, Yi-Lin Tuan, Pegah Jandaghi, Connor Pryor, Luke Yoffe, Deepak Ramachandran,
Lise Getoor, Jay Pujara, and William Yang Wang. FETA: A benchmark for few-sample task
transfer in open-domain dialogue. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 10936–10953, Abu Dhabi, United Arab Emirates,
December 2022. Association for Computational Linguistics.

[9] Shuxiao Chen, Koby Crammer, Hangfeng He, Dan Roth, and Weijie J Su. Weighted training
for cross-task learning. In International Conference on Learning Representations, 2022.

[10] William G Macready and David H Wolpert. Bandit problems and the exploration/exploitation
tradeoff. IEEE Transactions on evolutionary computation, 2(1):2–22, 1998.

[11] Alex Simpkins, Raymond De Callafon, and Emanuel Todorov. Optimal trade-off between
exploration and exploitation. In 2008 American Control Conference, pages 33–38. IEEE, 2008.

[12] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[13] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

[14] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush.
Multitask prompted training enables zero-shot task generalization. In International Conference
on Learning Representations, 2022.

[15] Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak,
Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan Dey,
Andrea Santilli, Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gunjan Chhablani, Han Wang,
Jason Fries, Maged Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru
Tang, Dragomir Radev, Mike Tian-jian Jiang, and Alexander Rush. PromptSource: An integrated
development environment and repository for natural language prompts. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pages 93–104, Dublin, Ireland, May 2022. Association for Computational Linguistics.

7

[16] RICHARD BELLMAN. A markovian decision process. Journal of Mathematics and Mechanics,
6(5):679–684, 1957.

[17] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[18] Xingyu Lin, Harjatin Baweja, George Kantor, and David Held. Adaptive auxiliary task weighting
for reinforcement learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[19] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating
and improving multi-task optimization in massively multilingual models. In International
Conference on Learning Representations, 2021.

[20] Wufeng Xue, Lei Zhang, Xuanqin Mou, and Alan C. Bovik. Gradient magnitude similarity
deviation: A highly efficient perceptual image quality index. IEEE Transactions on Image
Processing, 23(2):684–695, 2014.

[21] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

[22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(1), jun 2020.

[23] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics.

[24] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics.

[25] Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of
plausible alternatives: An evaluation of commonsense causal reasoning. In *SEM 2012: The
First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of
the main conference and the shared task, and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012), pages 394–398, Montréal, Canada, 7-8 June
2012. Association for Computational Linguistics.

[26] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 4791–4800, Florence, Italy, July 2019. Association
for Computational Linguistics.

[27] Rishi Sharma, James Allen, Omid Bakhshandeh, and Nasrin Mostafazadeh. Tackling the
story ending biases in the story cloze test. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 752–757,
Melbourne, Australia, July 2018. Association for Computational Linguistics.

[28] Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela.
Adversarial NLI: A new benchmark for natural language understanding. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 4885–4901,
Online, July 2020. Association for Computational Linguistics.

[29] Marie-Catherine de Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank:
Investigating projection in naturally occurring discourse. In Sinn und Bedeutung, 2019.

8

[30] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché
Buc, editors, Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object
Classification, and Recognising Tectual Entailment, pages 177–190, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[31] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

[32] Keisuke Sakaguchi, Ronan Bras, Chandra Bhagavatula, and Choi Yejin. Winogrande: An
adversarial winograd schema challenge at scale. Proceedings of the AAAI Conference on
Artificial Intelligence, 34:8732–8740, 04 2020.

[33] Mohammad Taher Pilehvar and Jose Camacho-Collados. WiC: the word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 1267–1273, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[34] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[35] Haokun Liu, Derek Tam, Muqeeth Mohammed, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[36] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

[37] Hamish Ivison, Noah A. Smith, Hannaneh Hajishirzi, and Pradeep Dasigi. Data-efficient
finetuning using cross-task nearest neighbors, 2022.

[38] Rémi Lebret, David Grangier, and Michael Auli. Generating text from structured data with
application to the biography domain. CoRR, abs/1603.07771, 2016.

[39] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In Proceedings of IEEE 36th annual
foundations of computer science, pages 322–331. IEEE, 1995.

[40] Yevgeny Seldin, Csaba Szepesvári, Peter Auer, and Yasin Abbasi-Yadkori. Evaluation and
analysis of the performance of the exp3 algorithm in stochastic environments. In Marc Peter
Deisenroth, Csaba Szepesvári, and Jan Peters, editors, Proceedings of the Tenth European
Workshop on Reinforcement Learning, volume 24 of Proceedings of Machine Learning Research,
pages 103–116, Edinburgh, Scotland, 30 Jun–01 Jul 2013. PMLR.

[41] Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching
bandit problems. In Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas Zeugmann,
editors, Algorithmic Learning Theory, pages 174–188, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[42] Lai Wei and Vaibhav Srivastava. Nonstationary stochastic multiarmed bandits: Ucb policies
and minimax regret, 2021.

9

[43] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963.

[44] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4596–4604. PMLR, 10–15 Jul 2018.

10

A Multi-armed bandits

The Multi-Armed Bandit (MAB) setting is a problem from machine learning where a learner interacts
with an environment over N rounds by following a policy π. At each round t the learner chooses
one of the environment’s K arms, a ∈ A where K = |A|, after which the environment provides a
reward Rt. Rewards for unplayed arms are not observed. The goal of the learner is to adopt a policy
π that selects actions that lead to the largest cumulative reward over N rounds, R =

∑N
t=1 Rt. In

this work we assume a finite K and that the underlying reward distribution of each arm may have a
variety of properties (e.g. stochasticity or stationarity) depending on the exact scenario, leading to
different optimal policies [17].

Adversarial MAB. The adversarial MAB setting assumes that the reward-generating process is
controlled by an adversary. This assumption allows for modelling non-stationary and highly stochastic
reward signals. We will later show why our FLAD formulation fits into this setting. Under this setting,
it is assumed that an adversary is given access to the learner’s policy π and determines the sequence
of rewards, (Ra,t)

N
t=1, for each arm prior to play [39]. At each turn π determines a distribution

over actions, p(A), and an action is sampled from the distribution, a ∼ p(A). See Lattimore &
Szepesvári [17] for further details.

The EXP3 algorithm. The EXP3 algorithm (“Exponential-weight algorithm for Exploration and
Exploitation”) targets the adversarial multi-armed bandit problem by choosing arms according to a
Gibbs distribution based on the empirically determined importance-weighted rewards of arms [12].
To allow for exploration, EXP3 mixes the Gibbs distribution with a uniform distribution.

Formally, let the exploration rate be γ ∈ (0, 1]. At round t, π defines the probability of selecting a
given arm, a ∈ A, as a linear combination of Gibbs and uniform distributions

pt(a) = (1− γ)
exp(γR̂a,t−1/K)∑
a′ exp(γR̂a′,t−1/K)

+
γ

K
(1)

where the importance weighted reward R̂a,t is calculated as

R̂a,t = R̂a,t−1 +
Ra,t

pt−1(a)
(2)

and Ra,t denotes the observed reward. All unplayed arms, a′ ̸= a have unchanged importance
weighted rewards; R̂a′,t = R̂a′,t−1.

Algorithmically, EXP3 takes the following steps at each round: First, calculate the sampling distribu-
tion pt and sample an arm from the distribution. Then a reward Ra,t is observed and the algorithm
updates the importance weighted reward R̂a,t for the played arm.

Informally, the use of an importance-weighted estimated reward compensates the rewards of actions
that are less likely to be chosen, guaranteeing that the expected estimated reward is equal to the
actual reward for each action. EXP3 is designed to be nearly optimal in the worst case, but due to the
exploration rate it will select “bad” actions at a rate of γ/K. The exploration of EXP3 combined
with importance-weighting allows the policy to handle non-stationary reward-generating processes.

The UCB1 algorithm. While the adversarial setting makes almost no assumptions about the
reward-generating process and therefore maintains its performance guarantees under almost any
circumstances, it can be outperformed in settings that are constrained. In this section we assume
that the reward-generating processes are stationary Gaussian distributions. A common policy used to
solve this MAB setting is the Upper Confidence Bound (UCB1) algorithm, which assigns each arm a
value called the upper confidence bound based on Hoeffding’s inequality [13]. The UCB1 algorithm
is based on the principle of optimism in the face of uncertainty, meaning that with high probability
the upper confidence bound assigned to each arm is an overestimate of the unknown mean reward.

Formally, let the estimated mean reward of arm a after being played na times be R̂a and the true
mean reward be Ra, then

P
(
Ra ≥ R̂a +

√
2 ln(1/δ)

na

)
≤ δ ∀δ ∈ (0, 1)

11

derived from Hoeffding’s inequality (following equation 7.1 of Lattimore & Szepesvári [17]), where
δ is the confidence level that quantifies the degree of certainty in the arm. In this work we let δ = 1/t
where t is the number of rounds played, shrinking the confidence bound over rounds. Thus, we define
the upper confidence bound for arm a at turn t as

UCBa,t =

{
∞, if na = 0

R̂a +
√

2 ln t
na

, otherwise
(3)

Algorithmically, UCB1 takes the following steps at each round. First, the UCB1 policy plays the arm
with largest upper confidence bound, a∗ = argmaxa∈A UCBa,t. Next, a reward Ra∗,t is observed
and the algorithm updates R̂a∗ (the estimated mean reward for a∗) and the upper confidence bounds
for all a. Informally, this algorithm suggests that the learner should play arms more often if they
either 1. have large expected reward, R̂, or 2. na is small because the arm is not well explored.

A.1 Adapting the EXP3 algorithm.

EXP3 Background We base our first algorithm, EXP3-FLAD, on the EXP3 algorithm [12]
(“Exponential-weight algorithm for Exploration and Exploitation”). EXP3 targets the adversarial
MAB setting, which assumes that the reward-generating process is controlled by an adversary who is
given access to the learner’s policy π and determines the sequence of rewards, (Ra,t)

N
t=1, for each

arm prior to play [39]. We consider the adversarial MAB formulation due to the highly non-convex
loss landscape of deep neural networks and our use of stochastic gradient descent-based optimization
methods. These factors imply that we cannot guarantee our rewards to be stationary, independent, or
follow any particular distribution (e.g. Gaussian). Further details on adversarial MAB are included in
Appendix A and in [12].

In EXP3-FLAD, the learner selects arms according to a Gibbs distribution based on the empirically
determined importance-weighted rewards of arms [40]. To allow for exploration, we mix the Gibbs
distribution with a uniform distribution [12]. Formally, let Et be the exploration rate at turn t
and, recalling that K = |A| is the number of auxiliary datasets, then π defines the probability
of selecting a given arm a ∈ A as the linear combination of Gibbs and uniform distributions
πt(a) = (1 − KEt) exp(Et−1R̂a)∑

a′ exp(Et−1R̂a′)
+ Et where R̂a,t is the importance weighted reward R̂a,t =

R̂a,t−1 +
Ra,t

πt−1(a)
. We want the learner to explore more in early training than in later stages, so we

use a decaying exploration rate Et = min
{

1
K ,

√
lnK
K·t

}
as proposed by Seldin et al. [40]. The use of

an importance-weighted estimated reward compensates the rewards of actions that are less likely to
be chosen, guaranteeing that the expected estimated reward is equal to the actual reward for each
action. EXP3-FLAD is designed to be nearly optimal in the worst case, but due to the exploration
rate it will select “bad” actions at a rate of Et. The exploration of EXP3-FLAD combined with
importance-weighting allows the policy to handle non-stationary reward-generating processes.

A.2 Adapting the UCB1 algorithm.

UCB1 background. While EXP3-FLAD is applicable in unconstrained settings with highly stochas-
tic and non-stationary rewards, it can be outperformed by other algorithms in settings that are con-
strained. One such algorithm is the upper confidence bound (UCB1) algorithm [13], which was
originally designed to be optimal for stationary, normally distributed reward functions. Neverthe-
less, variants of UCB1 have been demonstrated to be effective in a range of settings, such as those
involving non-stationary, sub-Gaussian, or heavy-tailed distributions [41, 42]. The UCB1 algorithm
and its variants assign each arm a value called the upper confidence bound based on Hoeffding’s
inequality [43] and are based on the principle of optimism in the face of uncertainty, meaning that
with high probability the upper confidence bound assigned to each arm is an overestimate of the
unknown mean reward.

In UCB1-FLAD, the learner greedily selects arms according to their upper confidence bound. UCB1
is originally designed for stationary reward-generating processes, so to accommodate non-stationarity
we include an exponential moving average when estimating the mean reward for a given arm.
Formally, let Ra,t be the observed reward for arm a at turn t, then we calculate the estimated mean

12

reward as R̂a = (1 − β)R̂a + βRa,t where β is the smoothing factor. Then, we define the upper

confidence bound to be UCBa,t = R̂a +
√

2 ln t
na

. In the original MAB setting all interactions with
the environment occur online, but FLAD is a unique situation where the learner can interact with the
auxiliary data prior to training. To take advantage of this, rather than initializing estimated rewards
with a single mini-batch, we initialize them with larger data quantities to improve the approximation
of the true dataset gradients. This is done for each auxiliary dataset by calculating the gradient
∇a = ∇θL(fθ,x,y), where the number of samples in {x,y} can be significantly larger than a
mini-batch, and can be up to the size of the full dataset. In practice, we use 1,000 examples which is
computed in ∼ 2 minutes on a single GPU.

B Pseudo-code

We include here pseudo-code for our 2 proposed algorithms. Algorithm 1 contains the pseudo-code
for EXP3-FLAD, and Algorithm 2 contains the pseudo-code for UCB1-FLAD.

Algorithm 1 EXP3-FLAD
Require: DA,DT : Auxiliary and target datasets
Require: fθ: Parameterized model
Require: G: Gradient accumulation steps
1: Initialize: K = |A|; E0 = 1

K
;

∀a ∈ A : ∇a = 0, R̂a = 1
2: for t = 1, 2, . . . , N do
3: Et = min

{
1
K
,
√

lnK
K·t

}
4: ∀a ∈ A : π(a)← (1−KEt) exp(Et−1R̂a)∑

a′ exp(Et−1Ra′)
+ Et

5: Sample a ∼ π(A) and batch {x,y} ∼ Da

6: ∇a←∇a +∇θL(fθ,x,y)
7: if t (mod G) ≡ 0 then
8: ∇T ← ∇θL(fθ,DT)
9: Update model parameters w.r.t.∇T +

∑
a∇a

10: for all {a ∈ A|∇a ̸= 0} do
11: R̂a ← R̂a +

Ra,t

π(a)

12: ∇a ← 0
13: end for
14: end if
15: end for

13

Algorithm 2 UCB1-FLAD
Require: DA,DT : Auxiliary and target datasets
Require: fθ: Parameterized model
Require: G: Gradient accumulation steps
Require: β: Smoothing factor
1: Initialize:
∀a ∈ A : na = 1,

R̂a = cos(∇θL(fθ,DT),∇θL(fθ,Da))
2: for t = 1, 2, . . . , N do
3: a∗ = argmax

a∈A
R̂a +

√
2 ln t
na

4: Sample batch {x,y} ∼ Da∗

5: ∇a∗ ←∇a∗ +∇θL(fθ,x,y)
6: na∗ ← na∗ + 1
7: if t (mod G) ≡ 0 then
8: ∇T ← ∇θL(fθ,DT)
9: Update model parameters w.r.t. ∇T +

∑
a∇a

10: for all {a ∈ A|∇a ̸= 0} do
11: R̂a ← (1− β)R̂a + βRa,t

12: ∇a ← 0
13: end for
14: end if
15: end for

C Training details

For the Target-only baseline, we use learning rates in {1e-4, 3e-4}. For all other methods, we always
use a learning rate of 1e-4. For target-, explore-, and exploit-only baselines we use batch sizes in
{32, 128}. For loss-scaling, EXP3-FLAD, and UCB1-FLAD we use mini-batches of 8 samples
and let G be in {4, 16} to match the batch size of all methods. For all experiments we use the
Adafactor optimizer [44] and validation-based early stopping for model checkpoint selection. In
preliminary experiments we found that calculating rewards using gradients from the weights of the
output vocabulary matrix (language modeling head) led to the best performance, and contains only
2.3% of the full model parameters, significantly reducing memory consumption. For UCB1-FLAD
we found the smoothing factor β = 0.9 to work well in preliminary experiments and initialize
auxiliary dataset gradient alignment using 1,000 samples from each auxiliary dataset.

We train all models (FLAD and non-FLAD) on 40Gb A100s.

For all experiments, we use validation-based early stopping, and train for a maximum of 10,000
gradient update steps. In practice, we find that early-stopping leads to significantly fewer than 10,000
updates, usually between 50-150 for direct fine-tuning, and 1-2,000 for other methods.

For the smoothing factor, β, in UCB1-FLAD we ran preliminary experiments using values of
{0.99, 0.9, 0.75, 0.5} and found 0.9 to work well across datasets. All reported scores use β = 0.9.

In preliminary experiments we consider rewards using gradients from multiple model partitions: the
full model, encoder-only, decoder-only, and language modelling head (token classifier). We find that
using the parameters from the LM head provides best performance, followed by the decoder-only,
encoder-only, and full model gradients. The differential from best to worst method was ∼ 3% relative
performance. Recall that with a gradient accumulation factor of G, our algorithms need to store
at most G + 1 gradients at any time. So not only does using the LM head provide performance
improvements, but also saves memory. For the models we use, the LM head contains only 2.3% of
the full model parameters.

D Full results

The full results of experiments on target-only fine-tuning, explore-only, exploit-only, EXP3-FLAD,
and UCB1-FLAD are found on the next page.

14

Table 2: Detailed results from the main experiment including direct fine-tuning, exploration-only,
exploitation-only baselines and our proposed methods, EXP3-FLAD and UCB1-FLAD.

D
ataset

A
nli-r1

A
nli-r2

A
nli-r3

C
B

C
O

PA
H

ellaSw
ag

R
T

E
Story

C
loze

W
iC

W
inogrande

W
SC

A
verage

D
irectFine-Tuning

37.6
36.2

35.0
83.2

53.8
51.0

54.2
75.9

51.6
49.6

53.1
52.8

T
5-3B

T
0M

ix

L
oss-Scaling

(G
A

)
35.7

36.4
35.3

82.5
58.0

51.8
59.0

79.6
49.8

50.4
46.9

53.2
L

oss-Scaling
(G

M
S

)
37.8

37.6
36.0

80.0
76.4

52.6
55.3

85.7
50.6

52.0
51.7

56.0
E

xploration-O
nly

38.1
40.3

36.7
88.6

85.6
51.2

67.6
88.8

51.0
55.5

47.7
59.2

E
xploitation-O

nly
38.8

40.5
38.0

86.1
86.0

51.1
69.4

89.5
52.8

59.2
46.3

59.8
E

X
P3-FL

A
D

(R
G

A
)

40.6
39.9

36.9
86.1

89.8
52.0

76.7
90.8

50.5
60.3

52.9
61.5

U
C

B
1-FL

A
D

(R
G

A
)

41.8
39.0

38.0
85.4

87.0
52.0

79.1
91.4

49.7
62.7

56.2
62.0

E
X

P3-FL
A

D
(R

G
M

S
)

42.0
40.2

36.6
87.1

87.2
52.4

77.5
90.9

51.1
61.9

51.9
61.7

U
C

B
1-FL

A
D

(R
G

M
S

)
41.3

39.7
38.0

82.5
89.8

51.0
76.6

90.5
51.0

62.0
56.0

61.7
E

X
P3-FL

A
D

(R
A

G
G

)
38.6

39.8
39.1

86.8
91.2

51.2
78.8

90.4
50.7

63.0
52.9

62.0
U

C
B

1-FL
A

D
(R

A
G

G
)

42.0
41.0

36.6
88.2

86.8
51.0

77.3
90.3

51.1
63.3

55.4
62.1

P3

L
oss-Scaling

(G
A

)
38.7

39.5
34.8

80.7
64.4

52.7
62.9

80.1
50.3

51.9
51.2

55.2
L

oss-Scaling
(G

M
S

)
39.2

38.7
36.4

85.0
67.8

51.9
62.4

84.8
50.3

51.8
52.1

56.4
E

xploration-O
nly

40.1
37.7

36.0
85.4

83.6
52.1

77.3
89.1

51.5
57.2

57.1
60.6

E
xploitation-O

nly
40.4

37.2
37.3

87.1
84.4

51.0
78.6

90.3
51.3

56.2
51.5

60.5
E

X
P3-FL

A
D

(R
G

A
)

46.9
38.8

40.2
89.6

88.0
51.5

76.9
91.2

53.4
66.2

61.9
64.1

U
C

B
1-FL

A
D

(R
G

A
)

49.1
38.8

40.1
88.6

88.2
51.6

83.7
90.2

54.3
68.0

68.3
65.5

E
X

P3-FL
A

D
(R

G
M

S
)

46.2
40.6

39.4
88.9

90.4
51.6

85.1
91.3

54.4
65.8

67.5
65.6

U
C

B
1-FL

A
D

(R
G

M
S

)
48.1

40.1
39.1

87.5
89.4

52.0
83.7

89.4
51.7

65.8
70.6

65.2
E

X
P3-FL

A
D

(R
A

G
G

)
47.6

40.6
40.6

90.0
90.6

51.4
84.5

91.0
53.2

66.7
64.0

65.5
U

C
B

1-FL
A

D
(R

A
G

G
)

47.1
39.0

41.2
86.8

90.4
51.5

85.5
91.1

52.7
66.3

70.6
65.6

D
irectFine-Tuning

40.9
39.1

37.1
79.6

66.4
43.5

67.1
83.2

52.5
54.6

56.7
56.4

T
0-3B

T
0M

ix

L
oss-Scaling

(G
A

)
41.3

40.0
36.9

81.8
78.0

51.2
76.5

86.9
50.7

54.7
56.2

59.5
L

oss-Scaling
(G

M
S

)
40.5

40.5
37.8

81.1
79.0

52.0
77.0

88.8
52.7

55.0
60.8

60.5
E

xploration-O
nly

44.4
40.3

37.0
82.5

85.6
47.9

77.6
90.1

52.1
58.6

56.9
61.2

E
xploitation-O

nly
42.5

39.3
37.2

84.3
82.8

48.1
79.7

88.8
52.8

57.8
56.3

60.9
E

X
P3-FL

A
D

(R
G

A
)

46.2
41.5

37.7
83.9

87.6
49.4

80.0
90.1

52.6
63.4

59.0
62.9

U
C

B
1-FL

A
D

(R
G

A
)

43.7
40.8

37.6
86.1

85.4
48.6

80.5
91.3

53.4
63.5

61.0
62.9

E
X

P3-FL
A

D
(R

G
M

S
)

43.4
41.1

38.2
84.6

86.6
49.1

81.0
90.6

53.0
63.1

59.8
62.8

U
C

B
1-FL

A
D

(R
G

M
S

)
43.2

41.2
38.7

86.4
86.6

48.4
82.8

91.4
52.2

61.0
59.4

62.8
E

X
P3-FL

A
D

(R
A

G
G

)
43.8

41.6
38.0

83.9
87.8

48.9
81.9

90.7
52.5

62.3
59.8

62.8
U

C
B

1-FL
A

D
(R

A
G

G
)

44.0
41.6

38.3
85.4

87.4
48.6

81.1
90.6

53.0
63.1

59.2
62.9

P3

L
oss-Scaling

(G
A

)
44.0

40.4
38.9

86.4
77.6

51.0
75.1

86.8
51.7

55.6
59.8

60.7
L

oss-Scaling
(G

M
S

)
43.8

38.6
39.3

82.5
79.2

50.6
80.6

89.1
51.6

56.6
56.0

60.7
E

xploration-O
nly

45.4
40.3

38.0
82.5

87.8
50.6

82.2
88.8

52.4
61.8

60.6
62.8

E
xploitation-O

nly
45.5

40.0
38.8

87.5
82.2

49.9
79.6

90.9
52.2

60.1
64.8

62.9
E

X
P3-FL

A
D

(R
G

A
)

50.4
40.0

41.2
87.9

88.4
49.7

86.1
91.6

52.8
67.5

70.4
66.0

U
C

B
1-FL

A
D

(R
G

A
)

48.2
41.8

41.2
90.0

86.6
50.0

86.1
91.5

53.6
65.6

74.6
66.3

E
X

P3-FL
A

D
(R

G
M

S
)

49.5
40.8

39.5
87.1

89.2
49.4

85.8
91.4

53.9
65.4

68.7
65.5

U
C

B
1-FL

A
D

(R
G

M
S

)
48.2

41.8
40.5

89.6
88.0

49.6
83.2

91.6
52.6

66.1
74.6

66.0
E

X
P3-FL

A
D

(R
A

G
G

)
51.1

40.3
39.9

89.6
91.4

49.0
86.5

91.6
52.6

66.4
76.7

66.8
U

C
B

1-FL
A

D
(R

A
G

G
)

49.8
39.9

40.8
86.8

88.4
49.6

84.7
91.0

53.2
68.0

76.9
66.3

15

E Probing the reward generating processes.

Gradient Alignment Gradient Magnitude Similarity

St
ep

 0
St

ep
 3

00
St

ep
 2

00
St

ep
 1

00
St

ep
 4

00
St

ep
 5

00

Figure 4: Reward distributions of RGA and RGMS prior to training and every 100 gradient updates
thereafter. We probe the reward distributions using the T5-XL model with the T0Mix auxiliary dataset
and WSC [31] as the target dataset.

16

F EXP3-FLAD and UCB1-FLAD training dynamics

The following 4 pages include a case study on the training dynamics of EXP3-FLAD and UCB1-
FLAD when training T5-XL using T0Mix as the auxiliary data. First, we find datasets where
EXP3-FLAD and UCB1-FLAD improve significantly over the baseline FLAD methods, but also
where either EXP3-FLAD or UCB1-FLAD clearly outperforms the other. The two datasets that fulfill
our interests are RTE and COPA.

We find that UCB1-FLAD outperforms EXP3-FLAD on RTE, and show their respective training
dynamics in Figure 5 (UCB1) and Figure 6 (EXP3).

We find that EXP3-FLAD outperforms UCB1-FLAD on COPA, and show their respective training
dynamics in Figure 7 (UCB1) and Figure 8 (EXP3).

We include details and takeaways in the caption for each figure. For EXP3-FLAD figures, we include
charts of the cumulative estimated reward, empirical gradient alignment, instantaneous sampling
distribution determined by the policy, and the empirical sampling distribution determined by the total
number of samples seen per dataset as a fraction of the total samples seen. For UCB1-FLAD figures,
we include charts of the upper confidence index, estimated gradient alignment, and the empirical
sampling distribution.

17

0.0

0.5

1.0

1.5

2.0

2.5

Up
pe

r C
on

fid
en

ce
 B

ou
nd amazon_polarity

imdb
kilt_tasks/hotpotqa
qasc
wiki_qa

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Es
tim

at
ed

Gr
ad

ie
nt

 A
lig

nm
en

t

0 1600 3200 4800 6400 8000 9600
Number of Auxiliary Batches Seen

0.02

0.03

0.04

0.05

Cu
m

ul
at

iv
e

Em
pi

ric
al

Sa
m

pl
in

g
Di

st
rib

ut
io

n

Figure 5: Training dynamics of UCB1-FLAD, a case study using RTE as target dataset and T0Mix as
auxiliary data, where UCB1-FLAD outperforms EXP3-FLAD. Colored lines are a sample of auxiliary
datasets with interesting properties, the remaining datasets are shown in grey. We find that even
though wiki_qa’s estimated gradient alignment falls to below 0 (middle), UCB1 does not abandon
sampling from it in the future, finding that between 3200 and 4800 batches, it becomes the dataset
with largest upper confidence bound (top). Similarly, we see that UCB1 alternates between wiki_qa,
amazon_polarity, and qasc as the datasets with higher gradient alignment and upper confidence
bounds. kilt_tasks/hotpotqa has a very high gradient alignment prior to training, but UCB1 samples
very infrequently from it, due to it’ls lower upper confidence bound. This is a failure case for transfer
learning-based methods. Interestingly, UCB1 never estimates imdb to have a negative gradient, and
gradually samples from it more and more frequently over the course of training.

18

12000

10000

8000

6000

4000

2000

0
Cu

m
ul

at
iv

e
Es

tim
at

ed
 R

ew
ar

d

amazon_polarity
imdb
kilt_tasks/hotpotqa
qasc
wiki_qa

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Gr
ad

ie
nt

 A
lig

nm
en

t

0.00

0.01

0.02

0.03

0.04

0.05

In
st

an
ta

ne
ou

s
Sa

m
pl

in
g

Di
st

rib
ut

io
n

0 3200 6400 9600 12800
Number of Auxiliary Batches Seen

0.01

0.02

0.03

0.04

0.05

Cu
m

ul
at

iv
e

Em
pi

ric
al

Sa
m

pl
in

g
Di

st
rib

ut
io

n

Figure 6: Training dynamics of EXP3-FLAD, a case study using RTE as target dataset and T0Mix
as auxiliary data, where UCB1-FLAD outperforms EXP3-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. We find that
the gradient alignment signal is particularly noisy for EXP3-FLAD, possibly leading to it’s slightly
worse performance on RTE. All five highlighted auxiliary datasets have high instantaneous sampling
probability, but over the course of training, the empirical sampling distribution is very condensed
across the full set of auxiliary datasets, unlike UCB1 which is able to find better separation.

19

0.0

0.5

1.0

1.5

2.0

2.5

Up
pe

r C
on

fid
en

ce
 B

ou
nd cnn_dailymail/3.0.0

multi_news
qasc
quartz
trec

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Es
tim

at
ed

Gr
ad

ie
nt

 A
lig

nm
en

t

0 3200 6400 9600 12800 16000
Number of Auxiliary Batches Seen

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Cu
m

ul
at

iv
e

Em
pi

ric
al

Sa
m

pl
in

g
Di

st
rib

ut
io

n

Figure 7: Training dynamics of UCB1-FLAD, a case study using COPA as target dataset and T0Mix
as auxiliary data, where EXP3-FLAD outperforms UCB1-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. We find
that although qasc and quartz start with very high gradient alignment, they very quickly fall to
negative alignment (middle figure, green and yellow). In the end, we find that the algorithm samples
much more from qasc than from quartz (bottom figure). Interestingly, we find that although both
cnn_dailymail and multi_news start off with very negative gradient alignment, they quickly become
the most aligned with the target task (middle figure, blue and red). We find that the three auxiliary
datasets with highest upper confidence index (top figure) and largest sampling percent (bottom figure)
are cnn_dailymail, multi_news, and trec even though these all considered dissimilar to the target prior
to training.

20

750

500

250

0

250

500

750

Cu
m

ul
at

iv
e

Es
tim

at
ed

 R
ew

ar
d

cnn_dailymail/3.0.0
multi_news
qasc
quartz
trec

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Gr
ad

ie
nt

 A
lig

nm
en

t

0.01

0.02

0.03

0.04

0.05

In
st

an
ta

ne
ou

s
Sa

m
pl

in
g

Di
st

rib
ut

io
n

0 3200 6400 9600 12800 16000 19200
Number of Auxiliary Batches Seen

0.01

0.02

0.03

0.04

0.05

Cu
m

ul
at

iv
e

Em
pi

ric
al

Sa
m

pl
in

g
Di

st
rib

ut
io

n

Figure 8: Training dynamics of EXP3-FLAD, a case study using COPA as target dataset and T0Mix
as auxiliary data, where EXP3-FLAD outperforms UCB1-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. This is
an impressive example of the importance-weighted estimated reward. We see that cnn_dailymail
and multi_news both start with very negative alignment, but EXP3 quickly updates it’s estimated
reward once their alignment becomes positive. Similar to RTE, we see that EXP3 never makes large
separations in the empirical sampling distribution, possibly a reason why UCB1 outperforms EXP3
overall. Compared to RTE, we find that gradient alignments are much less variable, with a maximum
alignment close to 0.5 and minimum alignment close to -0.5. Whereas in RTE, alignments regularly
reach close to 1.0 and -1.0.

21

Explore-Only Exploit-Only EXP3-FLAD (RGA) UCB1-FLAD (RGA)

|A| = 35 (T0Mix) 570.9 549.1 769.1 700.0
|A| = 260 (P3) 863.6 692.7 832.7 794.5

% increase 51.3% 26.2% 8.3% 13.5%
Table 3: Number of training iterations for T0-3B to converge using a training method (column) and a
set of auxiliary datasets (row). The number of iterations to convergence is averaged across 11 target
datasets and 5 seeds, leading to 55 experiments aggregated per cell.

G Effect of scaling |A| on time-to-convergence

As we have described in this work, the computational complexity for a single turn of our methods
are independent of the number of auxiliary datasets. However, it is unclear whether the computation
complexity of the multi-armed bandits are dependent on the number of auxiliary datasets through
their exploration rates. Thus, the computational complexity of an individual training run may be
influenced by the number of auxiliary datasets (|A|), but it is not possible to characterize this relation
explicitly as it relates to the complex and stochastic process of training and large language model.

To better understand the empirical effects of increasing |A| on the time-to-model-convergence, we
perform a study on the number of iterations to convergence for different FLAD algorithms. Table 3
shows that all methods require longer training to converge when increasing from |A| = 35 to 260.
We find that, compared with baseline methods, our MAB-based methods require more steps for the
smaller set of auxiliary datasets, but the number of additional steps required to train our methods only
increases modestly (∼ 10%) when increasing |A| by a factor of nearly 10. In contrast, the Explore-
and Exploit-Only methods do not scale nearly as well when increasing the number of auxiliary
datasets. Notably, the Explore-Only method requires over 50% more training iterations for P3 than
for T0Mix, at which point it takes longer to converge than either of the MAB-based methods.

H Auxiliary Datasets

Here we include the full list of auxiliary datasets from P3 [15] used to train models for the ANLI target
tasks. Other target datasets have slightly different auxiliary datasets due to test set decontamination,
but are generally the same. Datasets are listed by their name as found in HuggingFace Datasets1.

Zaid/quac_expanded, acronym_identification, ade_corpus_v2/Ade_corpus_v2_classification,
ade_corpus_v2/Ade_corpus_v2_drug_ade_relation, ade_corpus_v2/Ade_corpus_v2_drug_dosage_relation,
adversarial_qa/adversarialQA, adversarial_qa/dbert, adversarial_qa/dbidaf, adversarial_qa/droberta,
aeslc, ag_news, ai2_arc/ARC-Challenge, ai2_arc/ARC-Easy, amazon_polarity, ama-
zon_reviews_multi/en, amazon_us_reviews/Wireless_v1_00, ambig_qa/light, app_reviews,
aqua_rat/raw, art, asset/ratings, asset/simplification, banking77, billsum, bing_coronavirus_query_set,
biosses, blbooksgenre/title_genre_classifiction, blended_skill_talk, cbt/CN, cbt/NE, cbt/P,
cbt/V, cbt/raw, cc_news, circa, climate_fever, cnn_dailymail/3.0.0, codah/codah, codah/fold_0,
codah/fold_1, codah/fold_2, codah/fold_3, codah/fold_4, code_x_glue_tc_text_to_code, com-
mon_gen, commonsense_qa, conv_ai, conv_ai_2, conv_ai_3, cord19/metadata, cos_e/v1.0,
cos_e/v1.11, cosmos_qa, covid_qa_castorini, craffel/openai_lambada, craigslist_bargains,
crows_pairs, dbpedia_14, discofuse/discofuse-sport, discofuse/discofuse-wikipedia, discov-
ery/discovery, docred, dream, drop, duorc/ParaphraseRC, duorc/SelfRC, e2e_nlg_cleaned,
ecthr_cases/alleged-violation-prediction, emo, emotion, enriched_web_nlg/en, esnli, ev-
idence_infer_treatment/1.1, evidence_infer_treatment/2.0, fever/v1.0, fever/v2.0, finan-
cial_phrasebank/sentences_allagree, freebase_qa, generated_reviews_enth, gigaword,
glue/ax, glue/cola, glue/mnli, glue/mnli_matched, glue/mnli_mismatched, glue/mrpc,
glue/qnli, glue/qqp, glue/rte, glue/sst2, glue/stsb, glue/wnli, google_wellformed_query,
great_code, guardian_authorship/cross_genre_1, guardian_authorship/cross_topic_1,
guardian_authorship/cross_topic_4, guardian_authorship/cross_topic_7, gutenberg_time,
hans, hate_speech18, head_qa/en, health_fact, hlgd, hotpot_qa/distractor, hotpot_qa/fullwiki,

1https://huggingface.co/datasets

22

humicroedit/subtask-1, humicroedit/subtask-2, hyperpartisan_news_detection/byarticle, hyperparti-
san_news_detection/bypublisher, imdb, jfleg, kelm, kilt_tasks/hotpotqa, kilt_tasks/nq, lama/trex,
lambada, liar, limit, math_dataset/algebra__linear_1d, math_dataset/algebra__linear_1d_composed,
math_dataset/algebra__linear_2d, math_dataset/algebra__linear_2d_composed, math_qa,
mc_taco, mdd/task1_qa, mdd/task2_recs, mdd/task3_qarecs, medal, medical_questions_pairs,
meta_woz/dialogues, mocha, movie_rationales, multi_news, multi_nli, multi_x_science_sum, mwsc,
narrativeqa, ncbi_disease, neural_code_search/evaluation_dataset, newspop, nlu_evaluation_data,
nq_open, numer_sense, onestop_english, openai_humaneval, openbookqa/additional, open-
bookqa/main, paws-x/en, paws/labeled_final, paws/labeled_swap, paws/unlabeled_final, piqa,
poem_sentiment, pubmed_qa/pqa_labeled, qa_srl, qa_zre, qasc, qed, quac, quail, quarel,
quartz, quora, quoref, race/all, race/high, race/middle, riddle_sense, ropes, rotten_tomatoes,
samsum, scan/addprim_jump, scan/addprim_turn_left, scan/filler_num0, scan/filler_num1,
scan/filler_num2, scan/filler_num3, scan/length, scan/simple, scan/template_around_right,
scan/template_jump_around_right, scan/template_opposite_right, scan/template_right, scicite,
scientific_papers/arxiv, scientific_papers/pubmed, sciq, scitail/snli_format, scitail/tsv_format,
scitldr/Abstract, selqa/answer_selection_analysis, sem_eval_2010_task_8, sem_eval_2014_task_1,
sent_comp, sick, sms_spam, snips_built_in_intents, snli, social_i_qa, species_800, squad,
squad_adversarial/AddSent, squad_v2, squadshifts/amazon, squadshifts/new_wiki, squadshifts/nyt,
sst/default, stsb_multi_mt/en, subjqa/books, subjqa/electronics, subjqa/grocery, subjqa/movies,
subjqa/restaurants, subjqa/tripadvisor, super_glue/axb, super_glue/axg, super_glue/boolq, su-
per_glue/multirc, super_glue/record, swag/regular, tab_fact/tab_fact, tmu_gfm_dataset, trec,
trivia_qa/unfiltered, turk, tweet_eval/emoji, tweet_eval/emotion, tweet_eval/hate, tweet_eval/irony,
tweet_eval/offensive, tweet_eval/sentiment, tweet_eval/stance_abortion, tweet_eval/stance_atheism,
tweet_eval/stance_climate, tweet_eval/stance_feminist, tweet_eval/stance_hillary, ty-
diqa/primary_task, tydiqa/secondary_task, web_questions, wiki_bio, wiki_hop/masked,
wiki_hop/original, wiki_qa, wiki_split, wino_bias/type1_anti, wino_bias/type1_pro,
wino_bias/type2_anti, wino_bias/type2_pro, winograd_wsc/wsc273, winograd_wsc/wsc285,
wiqa, xnli/en, xquad/xquad.en, xquad_r/en, xsum, yahoo_answers_qa, yahoo_answers_topics,
yelp_polarity, yelp_review_full, zest

23

	Introduction
	Multi-armed bandits for few-shot learning with auxiliary data
	Experimental setup
	Findings and analysis
	Conclusion
	Multi-armed bandits
	Adapting the EXP3 algorithm.
	Adapting the UCB1 algorithm.

	Pseudo-code
	Training details
	Full results
	Probing the reward generating processes.
	EXP3-FLAD and UCB1-FLAD training dynamics
	Effect of scaling A on time-to-convergence
	Auxiliary Datasets

