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Abstract
Data-centric AI (DCAI) is an emerging paradigm
that prioritizes the quality, diversity, and repre-
sentation of data over model architecture and
hyperparameter tuning. DCAI emphasizes up-
stream data operations such as cleaning, balanc-
ing, and preprocessing, rather than solely focus-
ing on downstream model selection and optimiza-
tion. This work aims to push DCAI into the
model-building phase itself, observing whether
benefits downstream can be as significant in a
classical, well studied algorithm like k-means.
We introduce data-centric k-means (or k-means-
d for short). k-means-d is a novel adaptation
of k-means clustering that achieves significant
speedups while preserving algorithmic accuracy.
The key innovation classifies data points as high
expressive (HE), impacting the objective func-
tion significantly, or low expressive (LE), with
minimal influence. By categorizing data points as
HE/LE, k-means-d extracts quality signals from
data to improve scalability and reduce compu-
tational overhead. Comprehensive experimental
evaluation demonstrate substantial performance
gains of k-means-d over existing alternatives.
The novelty lies in the pioneering integration of
data-centric principles within a fundamental al-
gorithm’s iterative core. By rethinking k-means
through a data lens, k-means-d delivers superior
efficiency without sacrificing properties like accu-
racy and convergence, paving the way for infusing
data-centricity into other canonical algorithms.

Data-centric AI (DCAI) is a very recent, somewhat radical
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approach to building better AI applications. It observes
that AI models, in large part, have not changed in some
time. Indeed, traditional AI focuses on modestly improving
model performance above all else; data, however, is con-
tinually becoming larger, and more complex, with higher
throughput accompanied by new concerns of security, pri-
vacy, and ethics. Notably, the number of submissions to the
first NeurIPs workshop (https://datacentricai.org/neurips21/)
on data-centric AI (DCAI), was in the several hundreds.
There was an overwhelming consensus that DCAI is a valid
and crucial rethinking of AI. Consequently, data-centric
approaches have gained attention as a means to improve
the performance of AI models by enhancing the quality
and representation of training data itself. However, what’s
largely missing is a general push of data-centric techniques
into the basic framework of machine learning algorithms.
To that end, a rethinking of how DCAI can be used to re-
tool existing AI algorithms, must take place. This work
introduces k-means-d, a novel data-centric adaptation of
the classical k-means algorithm that achieves significant
computational speedups while preserving the exactness of
the original algorithm.

The work is novel in a number of ways: we are pushing
DCAI which is mostly upstream in AI to downstream into
the heart of the algorithm. We modify the algorithm to be
data-driven by expressiveness (separating high from low
expressive data) rather than the traditional full indiscrimi-
nate iteration. It should be pointed out that expressive levels
of data change, often at each iteration, which means this
approach is a deterministic algorithm supplemented by a
data-driven heuristic. Data expressiveness is measured by
how much the objective function is affected. Convergence
is faster in accordance with the growing amount of low ex-
pressive (LE) data. Ultimately, what is left is a small pool
of high expressive (HE) data, that is ambiguous–noise. We
call our approach kmeans-data-centric (or, k-means-d in
short). By dynamically identifying HE and LE points dur-
ing iterations, k-means-d avoids redundant computations on
LE points, significantly reducing the computational over-
head. k-means-d assigns data identical to k-means, ensuring
convergence to the same solution. Through comprehensive
experiments on real-world and large synthetic datasets, k-
means-d achieve substantial performance gains over it’s
counterparts. Depending on the dataset, k-means-d achieves
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up to 19× reduction in distance computations and 303×
speedup in runtime compared to existing faster k-means
variant.

The contributions of this paper are as follows: (1) a demon-
stration that data-centric principles can further enhance the
SOTA k-means, (2) a novel and more efficient data-centric k-
means (k-means-d), (3) comprehensive experimental study
to show that k-means-d outperforms contemporary alterna-
tives in runtime, while reducing distance computations (DC),
(4) a systematic integration of data-driven heuristic with the
iterative framework of k-means, and (5) a formal proof
showing that k-means-d converges to the same solution as
k-means. The rest of the paper is organized as follows:
Sec. 1 provides an overview of existing work. Sec. 2 present
formal elements of this work and describe the algorithm.
Experimental setup, dataset details, and results are discussed
in Sec. 3. Finally, Sec. 4 discuss broader implications on
data-centric AI, provide a summary and some directions for
future work.

1. Related work
k-means clustering remains a cornerstone technique in ma-
chine learning due to its simplicity, efficiency, and versa-
tility, making it highly relevant across applications Jain
(2010); Ikotun et al. (2023). Diverse techniques have been
devised to expedite the conventional k-means algorithm.
These approaches include, methods that yield the same so-
lution as the original k-means clustering but with enhanced
computational efficiency (Pelleg & Moore, 1999; Moore,
2000; Phillips, 2002; Elkan, 2003; Hamerly, 2010; Ding
et al., 2015; Kanungo et al., 2002), algorithms that achieve
notably faster computation, albeit at the cost of an approxi-
mate solution diverging from the standard k-means (Fränti
& Sieranoja, 2019; Dav, 2010; Philbin et al., 2007; Philbin
& of Oxford, 2010; Fah). Lastly, methods focused on ex-
pediting convergence through preprocessing steps, notably
centroid initialization (Bradley & Fayyad, 1998), (Bachem
et al., 2016b), (Bachem et al., 2016a), (Newling & Fleuret,
2017). Good initialization i.e. k++ often leads to faster con-
vergence, but does not ameliorate the problem of redundant
DC

Various strategies for reducing distance calculations have
been proposed. For instance, (Pelleg & Moore, 1999) and
(Kanungo et al., 2002) employ k-d trees for data partitioning
and storage, conducting distance calculations solely with the
neighbor nodes of data. However, while k-d tree methods ex-
cel in lower dimensions, their performance wanes in higher
dimensions (Curtin, 2017). Another widely used alterna-
tive is the use of distance bounds to select specific data for
performing distance computations. Notably, this line of re-
search has produced several variants (Elkan, 2003; Hamerly,
2010; Hamerly & Drake, 2015; Newling & Fleuret, 2016).

However, a recent approach, Ball-kmeans (Xia et al., 2022),
adopts a bound-free (referred here as unbounded) method
wherein distance computations are confined to data within
specific annulus regions, termed as active area. Ball-kmeans
has demonstrated similar or better performance compared
to existing k-means variants. It’s worth noting that the pur-
suit of reducing distance computations is not exclusive to
k-means. In the realm of probabilistic soft-clustering, for
example, Expectation-Maximization (EM) algorithm, data
expressiveness is used to measure the propensity of datum
towards changing its cluster membership (Sharma et al.,
2022; Kurban & Dalkilic, 2017b; Kurban et al., 2017; 2021).
However, majority of improvements in this area are based
on bounded/unbounded DC or model-oriented approach,
whereas data is largely treated in an ad-hoc manner. To
that end, we propose a novel design, which is faster, exact
(results in the same solution) as k-means, and demonstrate
a principled application of data-centric ideas for enhancing
the venerable k-means clustering.

2. Methods
Table 1 summarize the notations used throughout the paper.
The set of clusters at tth iteration is represented as C(t) =

{c(t)1 , . . . , c
(t)
k }. Clusters will be underlined to denote k-

means-d-C. Similarly, set of cluster mean (centroids) at
the tth iteration is denoted by µ(t) = {µ(t)

1 , . . . , µ
(t)
k } for

k-means. Centroids will be underlined to denote k-means-d
e.g., µ. Additionally, we overload the centroid as: µi(D) =

D
′ ⊂ D to indicate the data (D

′
) assigned to ith cluster.

Subscripts are added to midpoint i.e. Mij , to indicate it’s
the midpoint of line segment connecting centroid µi and µj .

Table 1. List of notation
Notation Meaning Explanation

D Dataset D = {x1, . . . ,xm} is
set of m vectors

x Vector x ∈ Rd is a d
dimensional vector

xi Scalar ith element of x
||x|| Norm of x

√
x · x

||x− y||2 Distance between x and y
√∑d

i=1(xi − yi)2
−→xy Vector A vector from x to y

M(µi, µj)
Coordinates of midpoint
(mean) of line
segment µi, µj

1
2

(∑d
i=1(µi + µj)

)
k Number of clusters k ∈ N
HE(x) Expressiveness x is high expressive
LE(x) Expressiveness x is low expressive
ci Cluster index ith cluster
µi Vector Centroid of ith cluster

Definition 2.0.1 (Radius) The radius of a cluster is the dis-
tance between it’s centroid µ and the furthest member point:
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r(c) = argmax
||x−µ||

{||x− µ|| s.t. ||x− µ|| ≥ ||y − µ||}

(1)

∀ x,y ∈ µ(D). ■

Definition 2.0.2 (Neighbors (Xia et al., 2022)) Given
centroids µi and µj; µj is considered neighbor of µi, if half
of the distance between µi and µj is less than the radius of
cluster ci. Recall that µi, µj denote centers of cluster ci,
cj , respectively.

1

2
||µi − µj || < r(ci) (2)

Set of all neighbors of µi can be represented as:

n(µi) = {µj |
1

2
||µi − µj || < r(ci)} (3)

∀ µi, µj ∈ µ ∧ µi ̸= µj .

2.1. Significance of Neighbors

Lloyd’s k-means computes distances between data points
and all centroids. However, as noted by (Ryšavỳ & Hamerly,
2016), significant computations can be saved by only consid-
ering centroids which qualify as neighbors of a given cluster.
For instance: if x ∈ µi(D) then x is closer to the neigh-
bors of µi than µj where µj ̸= n(µi). DC between x and
µj are, therefore, not required. In Ball-kmeans, neighbors
are established by comparing the inter-centroid distances
with cluster radius. Additional information such as state of
clusters (number of neighbors) is used from the previous
iteration to evaluate if the current iteration mandates pre-
determination of neighborhood. Under specific situations,
for example when the neighborhood size grows or when
centroids remain relatively stable, this design truncates the
time required for finding the neighbors. Ball-kmeans also
impose an additional step to sort neighbors to select spe-
cific data points during distance computations. However, in
the worst-case scenario, computational complexity remains
O(k2), particularly during initial algorithmic phase marked
by frequent centroid shifts. Notably, k-means-d obviates the
need for sorting neighbors, instead only necessitating the
tracking of the nearest centroid. The pseudo code is given
in Sec. B.

2.2. Data Expressiveness

The concept of categorizing data as HE or LE was first re-
ported in (Kurban et al., 2017) for probabilistic clustering.
The work was subsequently extended to k-means in (Kur-
ban & Dalkilic, 2017a). The authors utilize probabilities

Figure 1. Pictorial representation of neighborhood: Three clusters
are denoted with their centers-µ1 (green), µ2 (skyblue) and µ3

(purple). R1, R2 and R3 are the respective radii. M1 and M2 are
the midpoints of line segments µ1µ2 and µ2µ3. µ1 is a neighbor
of µ2 because the length of segment µ2M1 is less than R2. In case
of µ2 and µ3, none of the clusters satisfy neighborhood criteria,
neither µ2 is neighbor of µ3 nor µ3 is a neighbor of µ2.

to order the data in the nodes of heaps such that HE data
is stored in leaves, facilitating quick retrieval during the
execution. (Sharma et al., 2022) benchmarked this approach
and replaced heaps with balanced binary trees that achieved
a significant reduction in the run-time (Kurban et al., 2021).
Though, the existing definitions provide a way to effectively
separate data into HE and LE, they lack in dynamic treat-
ment of data size. Specifically, (Kurban & Dalkilic, 2017a)
use 50% of data in the leaves of the heap (identified as HE),
while (Sharma et al., 2022) uses 30% of data as HE. In keep-
ing with the data-centric philosophy i.e. data is the first class
citizen rather an atomic entity, we propose a novel method
of dynamically finding HE data. Particularly, k-means-d
finds HE/LE points in a data-driven manner without rely-
ing on user specified threshold. This new design ensures
adaptability and better scalability to larger datasets. In the
following sections, we formalize the notion of LE and HE
data, and explain how the native geometry of data is useful
in reducing DC. We now present the essential properties of
k-means-d that tie DC, and LE/HE together.

2.3. Expressiveness and DC

First we establish that low expressive data does not change
its membership, hence it can be safely ignored from distance
computations. Consequently, by finding LE data in each
iteration-it is possible to actively divert distance computa-
tions towards HE data.

Lemma 2.0.1 (Distance and LE) A data point
x ∈ µi(D) is defined as LE, if ||x − µi|| <
1
2 ||µi − µj || ∃µj ∈ n(µi). LE data point x will not
change its membership; consequently, a distance computa-
tion is not required.
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PROOF We show that: if ||x − µi|| < 1
2 ||µi − µj ||, then

||x− µi|| < ||x− µj ||, which implies that x is closer to µi;
hence will remain assigned to µi.

Assume: ||x− µi|| < 1
2 ||µi − µj ||: Then

2 ||x− µi|| < ||µi − µj || (4)

From triangle inequality:

||µi − µj || ≤ ||x− µi||+ ||x− µj || (5)

From Eqs. 4 and 5

2 ||x− µi|| < ||µi − µj || ≤ ||x− µi||+ ||x− µj || (6)
2 ||x− µi|| < ||x− µi||+ ||x− µj || (7)

||x− µi|| < ||x− µj || (8)

Therefore, for a data point x ∈ µi(D),∃µj ∈ n(µi), if
distance between x and µi is less than 1

2 ||µi − µj ||, then x
is nearer to µi, and distance computation with centroids
can be ignored. Note that amongst all neighbors of µi, it
suffice to check if x is LE w.r.t the closest neighbor µj We
note that: when d(x, µi) = 1

2d(µi, µj) then membership
depends on how ties are broken, this is discussed in Sec. A.1
(Appendix). ■

Lemma 2.0.2 (Distance and HE) As a corollary of
Lemma 2.0.1, a data point x ∈ µi(D), is HE, if
||x − µi|| > 1

2 ||µi − µj || ∀µj ∈ n(µi). Such a HE data
point may or may not change it’s membership and require a
distance computation. ■

Lemma 2.0.1 and 2.0.2 facilitates the classification of data
as either LE or HE solely based on distance. However, it
can be further refined by considering the orientation of a
data point. For example, let’s examine the scenario depicted
in Fig. 2. Suppose points A, B, C, and D are assigned to
cluster µ2. As per lemma 2.0.2, all four points would be
labeled as HE, necessitating distance computation. Never-
theless, it is evident that A and B are already proximate to
µ2 (oriented towards µ2) and, thus can be safely exempted
from the distance calculation. Only C,D are true HE data.
Interestingly, not all points that satisfy lemma 2.0.2 will
change their membership. The difficulty lies in discerning
between LE and HE without resorting to distance computa-
tion. In this instance, the distinction is made by observing
the orientation of data in the native space. Specifically, LE
points, A and B are oriented towards µ2 (closer to µ2) and
will remain assigned to µ2, while C,D are oriented towards
µ1 (closer to µ1), therefore are HE due to their potential to
switch membership, consequently affecting centroid compu-
tation. In essence, our objective is to exclusively calculate

Figure 2. Three clusters are denoted with their centers-µ1 (green),
µ2 (skyblue) and µ3 (purple). M1 and M2 are the midpoints of
line segments µ1µ2 and µ2µ3. For clusters µ1 and µ2, only C,D
are valid HE points because they are oriented in the same direction
as
−−−→
M1µ1. For clusters µ2 and µ3, P,Q are HE as they are oriented

in same direction as
−−−→
M2µ3

distances for HE data (avoid LE data). HE data is formally
elucidated below:

Lemma 2.0.3 (Geometrical Orientation and HE)
Recall that Mij denotes the coordinates for the mid-
point of line segment, µiµj . For a pair of centroids
µi, µj ∧ µj ∈ n(µi). A data point x ∈ µi(D) is HE when:

−−−→
Mijx ·

−−−−→
Mijµj > 0 (9)

PROOF
For angle θ and vectors a,b

cos(θ) =
a · b
||a|| ||b||

(10)

We then define scalar s as:

s = ||a|| cos(θ) = a · b
||b||

(11)

sign(s) =

{
0o ≤ θ ≤ 90o > 0
90o < θ ≤ 180o ≤ 0

(12)

from the definition of cos.
Using assumption 9 and Eq. 12, we have cos(θ) > 0, so
0o ≤ θ ≤ 90o. Hence,

−−−→
Mijx and

−−−−→
Mijµj are oriented in the

same direction; therefore x is HE. ■

Lemma 2.0.4 (Distance, Orientation, and HE) x is HE
and x ∈ µi(D), Lemma 2.0.2→ Lemma 2.0.3.
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PROOF
x lies in the quadrants nearest to the neighboring centroid
which makes the projection positive. ■

In essence, k-means-d not only restricts the distance compu-
tations to neighbors but also uses Lemma 2.0.4 to determine
HE data in each iteration. The pseudo-code for k-means-d
is shown in Alg. 1.

Algorithm 1 k-means-d
Require: D (data), k (clusters), maxIter (maximum iterations),

ϵ (convergence threshold)
{Output: µ (set of centroids), C (set of final clus-
ters/partitions)}

Ensure: µold = randomly assign k points from data as initial
centroids
{Assign data to it’s closest centroid; µ1(D), µ2(D) . . . µk(D)}
counter = 0
while counter < maxIter do

for i = 1 k do
Calculate µnew

i as the centroid of data points in cluster ci
end for
if ||µold − µnew|| ≤ ϵ then

break
end if
{NEIGHBORS, Sec. B, Appendix}
N,M,A,CDIST ← NEIGHBORS(µnew, R)
for i = 1 to k do

D
′
← µi(D)

for x in D
′

do
if |n(µi)| == 0 then

continue
end if
{Get closest neighbor; j ← n(µi)[1]}
{if LE, continue}
if ||x− µi|| < CDISTij then

continue
end if
for µl ∈ n(µi) do

if
−−−→
Milx ·Ail > 0 then
compute ||x−µl||; if ||x−µl|| < ||x−µi|| assign
x to cl.

end if
end for

end for
end for
µold = µnew

end while
µ,C

2.4. Proof of Symmetry & Complexity Analysis

Due to page limit constraints, we defer the detailed discus-
sion of proof and complexity to Sec. A.2 and A.3 (Ap-
pendix), and share the intuition with the reader. We proof
that assignment of data to clusters by k-means-d is identi-
cal with k-means, thus k-means-d converges to same local
optimum as k-means. Specifically, note that in a given itera-
tion of k-means-d, data is categorized as HE or LE. Recall
that HE data is subject to distance computation similar to

k-means, therefore all HE points will undergo distance com-
putation and are assigned to the closest centroid (this is same
in both k-means and k-means-d). However, LE data is not
included in distance computations, results can differ only
if k-means-d assign LE data differently than k-means. In
the proof, we show that this is not possible. Consequently,
iterations of the algorithm are actively channeled towards
specific data by dynamically identifying HE and LE points.

3. Experiments & Analysis
Experiments are performed with varying values of m: size,
d: dimension, and k: cluster number. Specifically, 20 data
sets are used (6 real-world and 14 synthetically generated
large data). Additionally, two different centroid initializa-
tion schemes, random and k++ seeding are used to confirm
seeding does not bias results. Table 2 gives details. Ball-
kmeans has been shown to perform at-par or better than
existing k-means alternatives, consequently, we compare
k-means-d with Ball-kmeans, whereas k-means is used as
the baseline. Since all algorithms converge to same solution,
performance is evaluated by comparing runtime and dis-
tance computations. Further details on computing platform
and generation of synthetic data are found in Appendix A.

Table 2. Data used in experiments
(A) Real-world Data

Data m d k

BreastCancer 569 30 K
CreditRisk 1000 7 K
Census 45222 6 K
Birch 106 2 K
Cropland 321093 10 K
Twitter 583249 78 K

K = 5, 8, 12, 15, 20; source
(Asuncion & Newman, 2007)

(B) Synthetic Data

Data m d k

Clus. 106 10 K
Dim. 106 D 10
Size M 10 10

M = {1, 3, 5, 8} × 106;
D = {2, 3, 4, 5, 6} × 102;
K = {2, 4, 6, 8, 10} × 10

3.1. Experiments on Real Data

Experiments are repeated twice (for the two types of seed-
ing) over 10 trials for a total of 20. Iterations (max = 2000)
and convergence (threshold = 0.001) are used for stopping;
algorithm terminates when either maximum iterations or
convergence is reached. Summary statistics are shown via
box plots, and average results are reported in the appendix.

Results & Analysis (Random Seeding) Fig. 3 (A) show
runtime comparison for random seeding. k-means-d con-
sistently outperforms both k-means and Ball-kmeans. The
performance gap widens as m, k increase. In particular,
k-means-d achieves significant reduction in distance compu-
tations, with maximum distance speedup of 19× on Twitter
(Table 5, Appendix C). On the other hand, Ball-kmeans
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Figure 3. Evaluation on real world data via random and k++ seeding. k-means-d performs significantly better than k-means and Ball-
kmeans as m, k increase.
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performs better than k-means only on small data (Breast-
cancer and CreditRisk). On moderately sized data (Census
and Birch), Ball-kmeans takes more time than k-means for
small values of k, and improves on k = 12, 15, 20. On Crop
data, Ball-kmeans performs better only for k = 20, but
runs slower than k-means for the remaining values of k. On
Twitter data, Ball-kmeans runs slower than k-means for all
values of k. Since, Ball-kmeans does fewer distance com-
putations, its performance appears counter-intuitive. The
cause is found in the structures for DC reduction: on small
clusters, the computation of neighbors and stable/active ar-
eas is relatively costly. k-means performs much better since
an extra overhead does not exist. As the data becomes larger,
neighborhood computations in specific active areas reduce
increasingly larger DC. Further analysis is found in Sec. 3.4.

Results & Analysis (k++ Seeding) Results of k++ ini-
tialization are shown in Fig. 3 (B). On smaller datasets-
Breastcancer and CreditRisk, k-means-d and Ball-kmeans
perform similarly, and Ball-kmeans is only slightly better
for k = 15, 20. For remaining data sets, k-means-d out-
performs Ball-kmeans and k-means, and the performance
gap widens with increase in m, k. The design overhead for
small data, discussed in the previous sections, is observed
again here. On Census and Birch Ball-kmeans does worse
than k-means on small values of k. On Crop, Ball-kmeans
only performs better for k = 20. On Twitter dataset, Ball-
kmeans does better than k-means only on k = 15, 20.

Experimental results demonstrate that, k-means-d achieves
good performance, and is able to sustain higher speed-up
across different sizes, cluster count, dimensions and initial-
ization schemes. It should be noted that on smaller datasets,
all algorithms execute quickly-the actual runtime is in mi-
croseconds (for consistency, time was converted to millisec-
onds); therefore, even though it may appear that one method
is better than others, it is difficult to determine whether the
difference is due to algorithmic design or variation in system
workload. Nevertheless, k-means-d still has comparable ef-
ficiency. Average runtime and DC are reported in Table 6,
Appendix C.

3.2. Synthetic Data

Experiments are designed with two objectives: (1) to ob-
serve how the algorithms would perform on big data, i.e.,
large values of m, d and k; (2) to study the impact of vary-
ing a single property while holding others constant. To
complete the experiments in a reasonable time, we omitted
k-means due to its long runtime. Results are given in Table 3.
k-means-d demonstrate better performance across experi-
ments and did notably better in scalability experiments. In
clustering and dimensionality experiments, the results are
average of 10 trials. Scalability experiments are not repeated
due to long runtime.

Table 3. Synthetic Data Experiments. Cluster number, dimension,
and size (scalability) are varied examining DC and runtimes.

Clustering Experiments m = 106, d = 10

Clusters Ball-kmeans k-means-d

k DC RT DC RT DC(S) RT (S)

20 1e10 81.9 8e8 12.3 12.4 6.6
40 1e10 69.0 1e9 21.2 14.4 3.2
60 2e10 86.6 1e9 38.7 16.1 2.2
80 2e10 107.1 1e9 46.4 17.6 2.3

100 5e10 138.6 2e9 95.5 21.2 1.4

Dimensionality Experiments k = 10,m = 106

Dimensions Ball-kmeans k-means-d

d DC RT DC RT DC(S) RT (S)

200 5e8 40 1e8 13.6 0.32 4.5
300 3e8 38.2 1e8 15.2 0.38 3.1
400 5e8 78 1e8 26.9 0.31 4
500 3e8 59 1e8 24.7 0.41 2.4
600 3e8 67.3 1e8 30.7 0.36 2.6

Scalability Experiments k = 10, d = 10

|D| = me6 Ball-kmeans k-means-d

m DC RT DC RT DC(S) RT (S)

1 2e9 65 5e8 3 4.7 21.6
3 4e9 402 1e9 7 4.5 57.4
5 1e10 1110 2e9 18 6.1 61.6
8 2e10 5464 2e9 18 7.1 303

DC is distance computations; RT is run time in seconds;
DC(S) is the distance speed-up of k-means-d over Ball-kmeans;
RT (S) is the runtime speed-up of k-means-d over Ball-kmeans.
Entries in bold indicate superior performance.

3.3. Quantifying Reduction in DC

Two kinds of experiments are done to observe the effect of
cluster number and data size on DC reduction of k-means-d
over Ball-kmeans. In the first experiment, samples without
replacement of 20%, 40% and 80% from D are made. Ten
trials for each sample size are performed, and the average
DC is found. Fig. 4 (A) shows k-means-d reduces the most
DC, becoming more significant on larger data. In the second
experiment, k is doubled for each data set while observing
reduction in DC. Ten trials are performed for each k, and the
average DC is calculated. The results (Fig. 5, Appendix C)
replicate the previous conclusion and show that there are less
DC in k-means-d than Ball-kmeans. For instance, on Twitter
data, where the observed gain is minimum, Ball-kmeans
performed 1.12×, 1.42×, 1.89×, and 2.69× more DC than
k-means-d. On Crop dataset, Ball-kmeans executed 2.61×,
3.27×, 4.35×, 5.77× more DC (Table 7, B.0.2)
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Figure 4. Doubling experiments & ablation study: k-means-d does
fewer distance computations as compared to k-means and Ball-
kmeans.

3.4. Ablation Experiments & Analysis

As observed in Sec.3.1, on some datasets, Ball-kmeans un-
derperform with respect to k-means and achieves similar
performance only for large k. This appears to be indepen-
dent of seeding even though Ball-kmeans does fewer DC.
Interestingly, the current implementation of Ball-kmeans
relies on an external linear algebra library that includes
vectorization, possibly achieving orders of magnitude per-
formance improvement for some operations. To better un-
derstand what role this plays, vectorization is disabled for
all algorithms, and while leveraging optimizations is sen-
sible, making comparisons become less meaningful when
juxtaposing the algorithms themselves.

Three data sets are selected where the performance of Ball-
kmeans improved using k = 30, 40, 50, 60, 80. Results
without vectorization are shown in Fig. 4 (B). k-means-d
still performs better. On Census, Ball-kmeans is the slowest
across all values of k, and on Birch, k-means is slowest with
the exception at k = 30 where it is better than Ball-kmeans.
On Twitter, Ball-kmeans takes the most execution time but
all algorithms began to converge at k = 70, 80. However, k-
means-d is still better than both Ball-kmeans and k-means
for k = 30, 40, 50. The experimental findings with vec-
torization are given in Fig. 4 (C). When vectorization is
enabled, Ball-kmeans generally performs better on larger

values of k and agrees with findings in (Xia et al., 2022).
On Census, Ball-kmeans is better than other algorithms for
all k (except for k = 30 where k-means-d performs similar).
On Birch, Ball-kmeans and k-means-d perform similar. On
Twitter, Ball-kmeans is superior except for k = 30 where
k-means-d is the fastest. The results indicate that in direct
algorithmic comparison without vectorization, k-means-d
outperform other algorithms by significant margin. When
vectorization is enabled, performance of Ball-kmeans pri-
marily improves for large values of k, and is partially driven
by vectorization.

4. Summary & Future Work
This work introduces k-means-d, a novel data-centric adap-
tation of the classic k-means clustering algorithm. By
integrating data expressiveness principles into the algo-
rithm’s core, k-means-d achieves significant computational
speedups while preserving exactness. It exemplifies the sys-
tematic identification of quality signals (HE points) from
data that significantly affect the algorithm’s convergence.
By actively focusing distance computations on HE points, k-
means-d avoids redundant calculations for LE points. Exper-
iments show that, compared to it’s counterparts, k-means-d
performs noticeably better. The work demonstrates the suc-
cessful application of data-centric thinking in optimizing
fundamental ML algorithms. Future work could explore the
impact of data expressiveness on robustness and scalability
to massive datasets, and applications to other core machine
learning techniques.

5. Impact Statement
This work on data-centric k-means (k-means-d) has the
potential for significant broader impact in the fields of data-
centric AI, machine learning, and data science. By demon-
strating how core algorithmic improvements can be achieved
by focusing on the data itself rather than just model archi-
tecture, this research opens up new avenues for enhancing
the efficiency and effectiveness of fundamental machine
learning techniques. As data continues to grow in volume
and complexity, the ability to extract insights and make de-
cisions quickly and accurately will be a key competitive
advantage. Consequently, data-centric techniques like k-
means-d could become essential tools in domains such as
scientific research, business strategy, and government policy.
However, we do not foresee any imminent harmful impact
of our work on the society.

6. Code & Reproducibility
Code and reproducibility instructions are shared
at https://github.com/parichit/Data_
Centric_KMeans.
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A. Introduction
This document serves as the supplementary and provide additional information that could not be described in the manuscript
due to constraints on page limit. For the reviewers, the document provides information such as – supplementary proofs,
system and hardware details and additional results.

A.1. Distance and LE

For a data point x ∈ µi(D), ∃µj ∈ n(µi), if d(x, µi) =
1
2d(µi, µj); whether membership of x changes or not depends on

how one choose to break the ties.

DISCUSSION
Assume: d(x, µi) =

1
2d(µi, µj). Then:

2d(x, µi) = d(µi, µj) (13)

From triangle inequality: d(µi, µj) ≤ d(x, µi) + d(x, µj). We can write d(µi, µj) as:

d(µi, µj) = d(x, µi) + d(x, µj)− ϵ (ϵ ≥ 0) (14)

Using Eqs. 13 and 14

2d(x, µi) = d(x, µi) + d(x, µj)− ϵ (15)
d(x, µi) = d(x, µj)− ϵ (16)

d(x, µi) + ϵ = d(x, µj) (17)

CASE 1: If ϵ = 0:

d(x, µi) = d(x, µj) (18)

From Eq. 18, x is equidistant from µi and µj , hence we have a tie for membership; therefore one can choose to either keep
x assigned to µi, or re-assign x to µj . It depends on how one choose to implement the algorithm. However, as long as
x is assigned the same way in k-means and k-means-d - both algorithms will converge to the same solution. In our
implementation, we keep x assigned to it’s current cluster. This is similar to considering x as LE, since LE does not change
it’s membership.

CASE 2: If ϵ > 0:

d(x, µj) = d(x, µi) + ϵ (from Eq. 17) (19)

If ϵ > 0 then Eq. 19 is true when: d(x, µj) > d(x, µi). Hence, x is nearer to µi and will not change it’s membership.
Therefore, distance does not need to be computed.

From case 1, we observe that x can be treated as LE by keeping it assigned to the current cluster. Further, if ties are broken
in same way in both k-means and k-means-d then both algorithms will converge to the same solution. From case 2, we
see that x is closer to µi than µj ; hence distance computation is not required. Hence, when x ∈ µi(D), ∃µj ∈ n(µi), if
d(x, µi) =

1
2d(µi, µj) then x can be safely treated as LE.

11
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A.2. Proof of symmetry with k-means

We proof that assignment of data to clusters by k-means-d is identical with k-means, thus k-means-d converges to same
local optimum as k-means. We show that k-means-d will converge to the same solution as k-means and take the same
number of steps while potentially minimizing redundant distance computations affected by the separation of HE and LE data.
Specifically, note that k-means-d is similar to k-means except that the distance computation is only done for HE data. First
we describe critical steps that both algorithms share. We then prove assignment of data points to centroids is symmetric.

1. Initialize: Initialize k centroids for both algorithms as follows: µ(1)
1 , µ

(1)
2 , ..., µ

(1)
k and µ1

(1), µ2
(1), ..., µk

(1), where

µi
(1) ← µ

(1)
i for 1 ≤ i ≤ k.

2. Assign data: Calculate pairwise distances between data and centroids-assign data to its nearest centroid. This step is
same in both k-means and k-means-d so we will obtain identical partitions i.e. ci(2) = c

(2)
i for 1 ≤ i ≤ k.

3. Update centroids: The update is based on the assignments in step 2); thus µi
(2) = µ

(2)
i for 1 ≤ i ≤ k.

4. Re-assign data: At this step, the algorithms begin to diverge, particularly k-means will recalculate distances for all
data, but k-means-d will only calculate distances for HE data and assign them to the nearest centroid. Consider a cluster
represented by the centroid µi. Notice that µi(D) = µi(D) due to step-3. After distance computations, the results can
differ only if k-means-d assigns data differently than k-means. At this point, we observe by Theorem A.1 that this is
not possible, and therefore, both k-means and k-means-d will produce exactly the same assignments at each step, thus
resulting in identical results.

Theorem A.1 (Symmetry of assignment) No data point can be assigned differently by k-means and k-means-d.

Consider a data point x ∈ µi(D), assume that x is assigned to cluster ci. Since, x can be categorized as either HE or
LE; we examine each case separately.

Case 1: HE(x) : Since HE(x), both k-means and k-means-d will compute distances identically. x will get assigned to
it’s closest centroid.

Case 2: LE(x) : Since LE(x) k-means-d will not compute distances. x cannot be assigned to a different cluster
cz ̸= ci by k-means.

PROOF: From the triangle inequality

||x− µi||+ ||x− µz|| ≥ ||µi − µz|| (20)

Assume that k-means assign x differently than k-means-d i.e. x got assigned to cz . Then

||x− µz|| < ||x− µi|| (21)

Since, x is LE, hence by Lemma 2.0.1:

||x− µi|| <
1

2
||µi − µz|| (22)

From Eqs. 21 and 22

||x− µz|| <
1

2
||µi − µz|| (23)

Add Eqs. 22 and 23

12



What Data-Centric AI Can Do For k-means: a Faster, Robust k-means-d

||x− µi||+ ||x− µz|| < ||µi − µz|| (24)

Eq. 24 contradicts the law of triangle inequality (Eq. 20). Specifically, Eqs. 20-24 forms a contradiction; thus, k-means
won’t assign LE data differently than k-means-d. ■

5. Continue with the next iterations: After the second iteration, both algorithms will assign data points in exactly the
same way; as a result, ci(3) = c

(3)
i for 1 ≤ i ≤ k. Iterations continue, and both algorithms will converge to the same

solution.

A.3. Runtime and Space Complexity

Table 4 summarizes the time and space complexity of the three algorithms. For k clusters and data having m points, worst
case time complexity of k-means is O(mk). k-means-d is different from traditional Lloyd’s k-means by including 1)
neighbor computation, and 2) performing distance computation only between HE and neighbor clusters. Although, our
implementation for finding neighbors use a nested loop over k, but the worst case complexity is notO(k2), ratherO(k2−k).
We observe due to symmetric structure of distance matrix: corresponding elements in the upper triangular part of the
matrix will be equal to the lower triangular elements, with diagonal elements being 0 i.e. d(i, j) = d(j, i) and d(i, i) = 0.
Therefore, the inner loop shown in NEIGHBORS pseudo code (Appendix B) will compute distances only if i < j, this is
akin to calculating values for upper triangular elements. A matrix with k rows contains 1

2 (k
2 − k) upper triangular elements

(ignoring the diagonal elements). Thus, worst case complexity of our neighbor finding algorithm is O(k2 − k).

If we denote the average number of neighbor centroids by n and average number of HE data by m′, distance computations
between HE data and neighbor centroids will costO(m′n). Additionally, to determine if a data point is LE, we calculate the
distance of each data point to it’s own cluster, the runtime complexity of this step is O(m). Time complexity of k-means-d
can be obtained by adding together time complexities of its component steps as: O(k2 − k +m′n+m). As the algorithm
proceeds, the centroids become stable and an increasingly large fraction of data become LE; by complement HE data
decreases, hence m′ ≪ m, and results of our empirical evaluations confirms this belief. In contrast, if we denote the average
number neighbor clusters by n and average number of data points for which Ball-kmeans perform distance computations by
m′′ then time complexity of Ball-kmeans is O(k2 + knlog(n) + nm′′ +m) (Xia et al., 2022). Experimental evaluations
show that m′′ ≫ m′, and in some cases, m′′ is one to two order of magnitude more than m′. As a consequence, depending
on the data, the worst case complexity of Ball-kmeans could be higher than k-means-d.

Standard k-means requires O(k +m) space to store k centroids and m data points. Ball-kmeans needs O(k2 + kn) space
to store, 1) distances between the centroids (O(k2)), 2) distances between data and centroids for finding the active or stable
areas (O(kn)). Space complexity of k-means-d is O(k2 + kn) and subsumes the costs of storing mid-points and vectors.

Table 4. Runtime and Space Complexity

Algorithm Runtime Space

k-means O(mk) O(k +m)
Ball-kmeans O(k2 + knlog(n) + nm′′ +m) O(k2 + km)
k-means-d O(k2 +m′n+m) O(k2 +m)

A.3.1. DETAILS OF COMPUTING PLATFORM(S) USED IN THE EXPERIMENTS

Experiments on real and synthetic data were done on a 64-bit Ubuntu Linux system with 512GB of main memory and 24
AMD cores. The C++ code used in real-world and synthetic data experiments was compiled with g++ version 9.4.0. The
-O3 flag (used for vectorization) was toggled in ablation experiments to compare direct algorithmic performance with and
without vectorization.

A.3.2. SYNTHETIC DATA GENERATION PROCESS

The data with large dimensions and size was generated by sampling from a multivariate Gaussian via the MASS [1] package.
The cluster centers were randomly selected from the range [1, k+100], where k is the total number of clusters in the data. R
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package clusterGeneration [2] was used to generate the initial co-variances matrices and the ratio of highest to lowest eigen
values for the co-variance was set to 10. For generating the clustering data, we used the make blobs() function of the sklearn
package, and the data was generated to contain both well separable and overlapping clusters to simulate real-world data sets.

B. Pseudo code for Neighbor Finding Algorithm

Algorithm 2 NEIGHBORS
Require: Centroids µ, Radii R = {r(c1), . . . , r(ck)}
{Output: N = {ni, . . . , nk} (Neighbors), M (matrix), CDIST (matrix), A (matrix)}
{ni : neighbors of centroid µi, M : stores mid-point coordinates, CDIST : stores inter centroid distances, A : stores vectors}
for i = 1 to k do

limit =∞
closest = 1
for j = 1 to k do

if i < j then
dist = ||ci − cj ||
CDISTij = ( 1

2
)dist

CDISTji = CDISTij

end if
if i ̸= j ∧ CDISTij < ri then

Add µj to n(µi)
if CDISTij < limit then
closest = j
limit = CDISTij

end if
Mij = midpoint of µi, µj

Mji = Mij

Aij =
−−−−→
Mijµj

end if
{Track closest neighbor}
if n(µi)[1] ̸= closest then

temp← n(µi)[1]
n(µi)[1]← n(µi)[closest]
n(µi)[closest]← temp

end if
end for

end for
N,M,A,CDIST

C. Additional experimental results
Results in the following sections show the average values of RT and DC. Note that the reported speed-up is in comparison
with k-means, and the corresponding entries will be 0 for k-means. These results provide detailed insight into the
performance of different algorithms.

C.0.1. EXPERIMENTS ON REAL DATA SETS

The results on real-world data sets including random, and k++ seeding based experiments are reported in Table 5 and 6,
respectively. Results are average of 10 trials.

Algorithm Data Clusters RT RT/Iter DC DC(S)

Kmeans Breastcancer 5 0.2276 0.075867 8819 0
Kmeans-d Breastcancer 5 0.179 0.059667 4255 2.07262
Ball-Kmeans Breastcancer 5 0.1909 0.063633 5086 1.733976
Kmeans Breastcancer 8 0.4709 0.117725 21394 0
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Kmeans-d Breastcancer 8 0.2981 0.074525 7148 2.993005
Ball-Kmeans Breastcancer 8 0.3363 0.084075 9355 2.286905
Kmeans Breastcancer 12 0.7804 0.15608 38236 0
Kmeans-d Breastcancer 12 0.4391 0.08782 10075 3.795136
Ball-Kmeans Breastcancer 12 0.4849 0.09698 13299 2.875103
Kmeans Breastcancer 15 1.0125 0.2025 50356 0
Kmeans-d Breastcancer 15 0.544 0.1088 12206 4.125512
Ball-Kmeans Breastcancer 15 0.5829 0.11658 16399 3.070675
Kmeans Breastcancer 20 1.4703 0.24505 75108 0
Kmeans-d Breastcancer 20 0.6956 0.115933 15958 4.706605
Ball-Kmeans Breastcancer 20 0.7353 0.12255 21612 3.475291
Kmeans CreditRisk 5 1.1186 0.0799 72500 0
Kmeans-d CreditRisk 5 0.5765 0.041179 19215 3.773094
Ball-Kmeans CreditRisk 5 1.0823 0.077307 26667 2.718716
Kmeans CreditRisk 8 2.2948 0.11474 164800 0
Kmeans-d CreditRisk 8 0.7988 0.042042 27600 5.971014
Ball-Kmeans CreditRisk 8 1.5766 0.07883 39588 4.162878
Kmeans CreditRisk 12 2.7521 0.161888 211200 0
Kmeans-d CreditRisk 12 0.8654 0.048078 30936 6.826998
Ball-Kmeans CreditRisk 12 1.3759 0.080935 38621 5.468527
Kmeans CreditRisk 15 3.2282 0.201762 252000 0
Kmeans-d CreditRisk 15 0.8824 0.051906 32994 7.637753
Ball-Kmeans CreditRisk 15 1.3134 0.082088 39772 6.336116
Kmeans CreditRisk 20 4.8293 0.254174 380000 0
Kmeans-d CreditRisk 20 0.9052 0.064657 37128 10.234863
Ball-Kmeans CreditRisk 20 1.5167 0.079826 49552 7.668712
Kmeans Census 5 48.799999 1.952 5833638 0
Kmeans-d Census 5 41.299999 1.652 1388441 4.201574
Ball-Kmeans Census 5 140.699997 5.628 4716650 1.236818
Kmeans Census 8 66.099998 2.754167 9008222 0
Kmeans-d Census 8 52.700001 2.195833 1496347 6.020143
Ball-Kmeans Census 8 128.300003 5.345833 5284831 1.704543
Kmeans Census 12 143.600006 3.682051 21435228 0
Kmeans-d Census 12 109 2.794872 2345608 9.138453
Ball-Kmeans Census 12 180.800003 4.409756 9845485 2.177163
Kmeans Census 15 120.699997 4.47037 18654076 0
Kmeans-d Census 15 91.300003 3.381482 1935190 9.639402
Ball-Kmeans Census 15 126.800003 4.696296 7449954 2.503918
Kmeans Census 20 199.199997 5.691429 31836288 0
Kmeans-d Census 20 144.100006 4.117143 2512365 12.671841
Ball-Kmeans Census 20 160.899994 4.597143 10266363 3.101029
Kmeans Crop 5 355.799988 17.789999 33554218 0
Kmeans-d Crop 5 286.5 14.325 8183553 4.100202
Ball-Kmeans Crop 5 2230.300049 111.514999 28148246 1.192054
Kmeans Crop 8 619.099976 23.811537 66787340 0
Kmeans-d Crop 8 492.600006 18.946154 10828380 6.167805
Ball-Kmeans Crop 8 2093.100098 80.503853 41694028 1.601844
Kmeans Crop 12 1086.900024 32.936363 127152832 0
Kmeans-d Crop 12 875.5 26.530304 14399448 8.830397
Ball-Kmeans Crop 12 2262.899902 68.572723 61506744 2.067299
Kmeans Crop 15 1458.099976 40.502777 176280048 0
Kmeans-d Crop 15 1182.599976 32.849998 16528090 10.665483
Ball-Kmeans Crop 15 2101.5 56.797298 76177720 2.314063
Kmeans Crop 20 2951.399902 51.778946 367330368 0
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Kmeans-d Crop 20 2424 42.526318 24805820 14.808233
Ball-Kmeans Crop 20 2787.100098 48.053452 136842400 2.684331
Kmeans Twitter 5 13386.29981 157.485886 249631008 0
Kmeans-d Twitter 5 5190 61.058823 53728632 4.646145
Ball-Kmeans Twitter 5 40887.80078 492.624115 68305232 3.65464
Kmeans Twitter 8 36062.60156 238.82518 708765376 0
Kmeans-d Twitter 8 12561.09961 83.186089 95132880 7.450267
Ball-Kmeans Twitter 8 89997.39844 596.009277 152914048 4.635057
Kmeans Twitter 12 124328.1016 343.447784 2535037696 0
Kmeans-d Twitter 12 41141.30078 113.650002 220661376 11.488361
Ball-Kmeans Twitter 12 240938.9063 671.139038 423068032 5.992033
Kmeans Twitter 15 167048.9063 423.981995 3450506752 0
Kmeans-d Twitter 15 57582.19922 146.14772 241474256 14.289336
Ball-Kmeans Twitter 15 282325 720.216858 525011616 6.572248
Kmeans Twitter 20 220736.2031 558.825806 4618173440 0
Kmeans-d Twitter 20 83566.20313 212.636642 244296528 18.903967
Ball-Kmeans Twitter 20 304495 778.759583 632416960 7.302419
Kmeans Birch 5 76.400002 3.321739 11550000 0
Kmeans-d Birch 5 46.400002 2.017391 2750928 4.198583
Ball-Kmeans Birch 5 251.5 10.934783 4784961 2.413813
Kmeans Birch 8 119 4.576923 21120000 0
Kmeans-d Birch 8 60.5 2.326923 3386407 6.236699
Ball-Kmeans Birch 8 187.300003 7.203846 5079951 4.15752
Kmeans Birch 12 225.5 6.094594 44760000 0
Kmeans-d Birch 12 90.699997 2.451351 4883625 9.165323
Ball-Kmeans Birch 12 194.100006 5.245946 6925377 6.463186
Kmeans Birch 15 275.100006 7.435135 56849996 0
Kmeans-d Birch 15 99 2.675676 5249538 10.829524
Ball-Kmeans Birch 15 186.899994 5.051351 7158197 7.941944
Kmeans Birch 20 414.600006 9.422728 88400000 0
Kmeans-d Birch 20 121.5 2.761364 6379389 13.857126
Ball-Kmeans Birch 20 178.199997 4.05 7517125 11.759815

Table 5: Experimental results of random seeding on real-world data sets:
average of 10 trials are shown. The reported runtime is in milliseconds.
RT/Iter indicates the runtime per iteration.

Algorithm Data Clusters RT RT/Iter DC DC(S)

Kmeans Breastcancer 5 1.287 0.6435 5974 0
Kmeans-d Breastcancer 5 0.7723 0.38615 3514 1.700057
Ball-Kmeans Breastcancer 5 0.7468 0.3734 3726 1.603328
Kmeans Breastcancer 8 3.3793 1.68965 9559 0
Kmeans-d Breastcancer 8 1.7899 0.89495 5225 1.829474
Ball-Kmeans Breastcancer 8 1.7314 0.8657 5499 1.738316
Kmeans Breastcancer 12 4.6266 2.3133 15021 0
Kmeans-d Breastcancer 12 2.3801 1.19005 7619 1.971519
Ball-Kmeans Breastcancer 12 2.3378 1.1689 8034 1.869679
Kmeans Breastcancer 15 2.2615 1.13075 23044 0
Kmeans-d Breastcancer 15 1.1389 0.56945 9716 2.371758
Ball-Kmeans Breastcancer 15 1.0425 0.52125 10420 2.211516
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Kmeans Breastcancer 20 2.6915 0.897167 38692 0
Kmeans-d Breastcancer 20 1.473 0.491 13240 2.922357
Ball-Kmeans Breastcancer 20 1.0477 0.349233 14599 2.650319
Kmeans CreditRisk 5 2.5952 0.51904 25000 0
Kmeans-d CreditRisk 5 1.0302 0.25755 8715 2.868617
Ball-Kmeans CreditRisk 5 1.3134 0.26268 9800 2.55102
Kmeans CreditRisk 8 2.5845 0.8615 28800 0
Kmeans-d CreditRisk 8 1.0549 0.351633 10772 2.673598
Ball-Kmeans CreditRisk 8 1.0523 0.350767 11198 2.571888
Kmeans CreditRisk 12 2.976 0.5952 66000 0
Kmeans-d CreditRisk 12 1.4516 0.29032 16112 4.096326
Ball-Kmeans CreditRisk 12 1.397 0.2794 17461 3.779852
Kmeans CreditRisk 15 3.1062 0.77655 73500 0
Kmeans-d CreditRisk 15 1.3839 0.345975 18924 3.883957
Ball-Kmeans CreditRisk 15 1.2269 0.306725 20202 3.638254
Kmeans CreditRisk 20 3.339 0.83475 86000 0
Kmeans-d CreditRisk 20 1.4748 0.3687 24170 3.55813
Ball-Kmeans CreditRisk 20 1.0545 0.263625 24901 3.453676
Kmeans Census 5 40.900002 1.947619 4770921 0
Kmeans-d Census 5 34.200001 1.628572 1156349 4.125849
Ball-Kmeans Census 5 117.699997 5.604762 3401185 1.402723
Kmeans Census 8 68.300003 2.732 9297643 0
Kmeans-d Census 8 53.200001 2.128 1498130 6.206166
Ball-Kmeans Census 8 110.400002 4.416 5074189 1.832341
Kmeans Census 12 99.400002 3.681482 14706195 0
Kmeans-d Census 12 71.5 2.648148 1745856 8.423487
Ball-Kmeans Census 12 115.400002 4.274074 6374667 2.306975
Kmeans Census 15 129.300003 4.458621 19671570 0
Kmeans-d Census 15 91.400002 3.151724 1969797 9.986598
Ball-Kmeans Census 15 124.599998 4.296552 7557563 2.602899
Kmeans Census 20 223.300003 5.725641 35634936 0
Kmeans-d Census 20 157.399994 4.035897 2673354 13.329674
Ball-Kmeans Census 20 178.899994 4.363414 11404094 3.124749
Kmeans Crop 5 296.700012 17.452942 27774544 0
Kmeans-d Crop 5 226.699997 13.335294 6926706 4.009777
Ball-Kmeans Crop 5 1157 68.058823 20509556 1.354225
Kmeans Crop 8 414.299988 24.370588 44182396 0
Kmeans-d Crop 8 325.100006 19.123529 7869399 5.614456
Ball-Kmeans Crop 8 1108 65.176468 26101188 1.692735
Kmeans Crop 12 1013.900024 33.796669 117134720 0
Kmeans-d Crop 12 816.900024 27.230001 13473291 8.693846
Ball-Kmeans Crop 12 1688.099976 56.27 55601108 2.106698
Kmeans Crop 15 1405.599976 40.16 169055456 0
Kmeans-d Crop 15 1155.5 33.014286 15944056 10.60304
Ball-Kmeans Crop 15 1702.800049 50.082355 70772104 2.38873
Kmeans Crop 20 2671.199951 52.376469 331368000 0
Kmeans-d Crop 20 2226.399902 43.6549 22904080 14.467641
Ball-Kmeans Crop 20 2290.600098 44.913727 119144432 2.781229
Kmeans Twitter 5 9573.200195 159.553329 176724752 0
Kmeans-d Twitter 5 3141.600098 52.360001 37719880 4.685189
Ball-Kmeans Twitter 5 10587.79981 179.454239 43043568 4.105718
Kmeans Twitter 8 16304.2002 239.767654 320087616 0
Kmeans-d Twitter 8 4275.899902 62.880882 44163036 7.247863
Ball-Kmeans Twitter 8 15475.09961 227.574997 57027768 5.612838
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Kmeans Twitter 12 52064.19922 344.796021 1058248832 0
Kmeans-d Twitter 12 11319.7002 75.464668 94552144 11.192225
Ball-Kmeans Twitter 12 40057.89844 267.052643 140855008 7.513037
Kmeans Twitter 15 67950 427.35849 1398925056 0
Kmeans-d Twitter 15 14093.09961 88.635849 101578952 13.7718
Ball-Kmeans Twitter 15 47725.60156 300.161011 167272784 8.363136
Kmeans Twitter 20 95092.60156 562.678101 1980717056 0
Kmeans-d Twitter 20 18007.69922 106.554436 110250664 17.96558
Ball-Kmeans Twitter 20 52723.5 311.973358 197060736 10.051303
Kmeans Birch 5 90.900002 3.366667 13950000 0
Kmeans-d Birch 5 54 2 3214585 4.339596
Ball-Kmeans Birch 5 207.600006 7.688889 5565331 2.506589
Kmeans Birch 8 108.800003 4.533333 19280000 0
Kmeans-d Birch 8 50.400002 2.1 3132497 6.154834
Ball-Kmeans Birch 8 128.399994 5.35 4518277 4.267113
Kmeans Birch 12 222.100006 6.169445 44040000 0
Kmeans-d Birch 12 76.699997 2.130555 4793662 9.187131
Ball-Kmeans Birch 12 143.699997 3.991667 6110797 7.206916
Kmeans Birch 15 325.399994 7.395454 67049996 0
Kmeans-d Birch 15 96 2.181818 5902405 11.359776
Ball-Kmeans Birch 15 149.399994 3.395454 6968780 9.621483
Kmeans Birch 20 308.399994 9.345454 66200000 0
Kmeans-d Birch 20 76 2.30303 5236634 12.641708
Ball-Kmeans Birch 20 117 3.545455 6108654 10.837085

Table 6: Experimental results of k++ seeding on real-world data sets:
average of 10 trials are shown. The reported runtime is in milliseconds.
RT/Iter indicates the runtime per iteration.

C.0.2. DOUBLING EXPERIMENTS

The results of doubling the data proportion and clusters are reported in Table 7 and 8, respectively. Additionally, for doubling
clusters experiment, the 5 point summary statistics are shown in Fig. 5.

Algorithm Data Clusters Proportion(%) DC
Kmeans Census 5 0.2 1279867
Kmeans-d Census 5 0.2 301041
Ball-Kmeans Census 5 0.2 1025282
Kmeans Census 5 0.4 2758572
Kmeans-d Census 5 0.4 641974
Ball-Kmeans Census 5 0.4 2178464
Kmeans Census 5 0.8 5661857
Kmeans-d Census 5 0.8 1310568
Ball-Kmeans Census 5 0.8 4463415
Kmeans Census 5 1 6579801
Kmeans-d Census 5 1 1539259
Ball-Kmeans Census 5 1 5249293
Kmeans Crop 5 0.2 6165024
Kmeans-d Crop 5 0.2 1535281
Ball-Kmeans Crop 5 0.2 4904793
Kmeans Crop 5 0.4 12073172
Kmeans-d Crop 5 0.4 3000988
Ball-Kmeans Crop 5 0.4 9163316
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Kmeans Crop 5 0.8 25173750
Kmeans-d Crop 5 0.8 6196285
Ball-Kmeans Crop 5 0.8 20039320
Kmeans Crop 5 1 22637056
Kmeans-d Crop 5 1 5986605
Ball-Kmeans Crop 5 1 18869396
Kmeans Twitter 5 0.2 34586728
Kmeans-d Twitter 5 0.2 7631821
Ball-Kmeans Twitter 5 0.2 10173062
Kmeans Twitter 5 0.4 79322000
Kmeans-d Twitter 5 0.4 17382364
Ball-Kmeans Twitter 5 0.4 23151786
Kmeans Twitter 5 0.8 174275104
Kmeans-d Twitter 5 0.8 37635800
Ball-Kmeans Twitter 5 0.8 48953868
Kmeans Twitter 5 1 243798496
Kmeans-d Twitter 5 1 52370316
Ball-Kmeans Twitter 5 1 66806380
Kmeans Birch 5 0.2 2770000
Kmeans-d Birch 5 0.2 643677
Ball-Kmeans Birch 5 0.2 1140333
Kmeans Birch 5 0.4 4560000
Kmeans-d Birch 5 0.4 1087669
Ball-Kmeans Birch 5 0.4 1834783
Kmeans Birch 5 0.8 10960000
Kmeans-d Birch 5 0.8 2556481
Ball-Kmeans Birch 5 0.8 4508577
Kmeans Birch 5 1 13950000
Kmeans-d Birch 5 1 3226912
Ball-Kmeans Birch 5 1 5656765

Table 7: Results of doubling proportion experiments. The Proportion
column indicates the percentage of data used and DC indicates the actual
number of distance computations.

Algorithm Data Clusters DC
Kmeans Census 3 3866480
Kmeans-d Census 3 1407186
Ball-Kmeans Census 3 4248497
Kmeans Census 6 6457701
Kmeans-d Census 6 1346151
Ball-Kmeans Census 6 4509229
Kmeans Census 12 17365248
Kmeans-d Census 12 1998822
Ball-Kmeans Census 12 7394168
Kmeans Census 24 47537368
Kmeans-d Census 24 3093131
Ball-Kmeans Census 24 12934750
Kmeans Crop 3 7224593
Kmeans-d Crop 3 3170468
Ball-Kmeans Crop 3 8266640
Kmeans Crop 6 32558828
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Kmeans-d Crop 6 7180463
Ball-Kmeans Crop 6 23506770
Kmeans Crop 12 142565280
Kmeans-d Crop 12 15648925
Ball-Kmeans Crop 12 68095344
Kmeans Crop 24 505528832
Kmeans-d Crop 24 28524432
Ball-Kmeans Crop 24 164678368
Kmeans Twitter 3 58966572
Kmeans-d Twitter 3 21270556
Ball-Kmeans Twitter 3 23812666
Kmeans Twitter 6 326853312
Kmeans-d Twitter 6 58969016
Ball-Kmeans Twitter 6 83568736
Kmeans Twitter 12 2560234240
Kmeans-d Twitter 12 222402208
Ball-Kmeans Twitter 12 419586240
Kmeans Twitter 24 8416997376
Kmeans-d Twitter 24 367948800
Ball-Kmeans Twitter 24 989714944
Kmeans Birch 3 5520000
Kmeans-d Birch 3 2080539
Ball-Kmeans Birch 3 3871890
Kmeans Birch 6 14040000
Kmeans-d Birch 6 2885427
Ball-Kmeans Birch 6 4861603
Kmeans Birch 12 43200000
Kmeans-d Birch 12 4750219
Ball-Kmeans Birch 12 7053666
Kmeans Birch 24 133920000
Kmeans-d Birch 24 7956828
Ball-Kmeans Birch 24 8771822

Table 8: Results of doubling clusters experiments. The Clusters column
indicates the of number of clusters and DC indicates the actual number of
distance computations.
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Figure 5. Doubling experiments: Comparison of DC as a function of doubling the number of clusters.
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C.0.3. ABLATION EXPERIMENTS

Results of experiments with and without vectorization are reported in Table 9 and 10, respectively.

Algorithm Data Clusters RT RT/Iter DC DC(S)
Kmeans Census 30 50.400002 10.08 7868628 0
Kmeans-d Census 30 41.599998 8.32 1624226 4.84454
Ball-Kmeans Census 30 40.700001 8.14 3191343 2.465616
Kmeans Census 50 71.400002 14.280001 11305500 0
Kmeans-d Census 50 58.5 11.7 2485040 4.549424
Ball-Kmeans Census 50 42 8.4 4020819 2.811741
Kmeans Census 60 85 17 13837933 0
Kmeans-d Census 60 71.400002 14.280001 2952545 4.686781
Ball-Kmeans Census 60 46.299999 9.26 4703294 2.942179
Kmeans Census 80 113.099998 22.619999 18450576 0
Kmeans-d Census 80 93.599998 18.719999 3867476 4.770702
Ball-Kmeans Census 80 53.200001 10.64 5722497 3.224218
Kmeans Twitter 30 84029.29688 840.292969 1767247488 0
Kmeans-d Twitter 30 56579.10156 565.791016 79366000 22.267059
Ball-Kmeans Twitter 30 98689.29688 986.892944 321812544 5.491543
Kmeans Twitter 50 139168.9063 1391.689087 2945412608 0
Kmeans-d Twitter 50 106728.8984 1067.28894 91476304 32.198639
Ball-Kmeans Twitter 50 105830.2969 1058.302979 464467104 6.341488
Kmeans Twitter 60 166479.5938 1664.795898 3534494976 0
Kmeans-d Twitter 60 130971.6016 1309.716064 97433752 36.275879
Ball-Kmeans Twitter 60 109170.5 1091.704956 536030304 6.593834
Kmeans Twitter 80 223673.7031 2236.737061 4712659968 0
Kmeans-d Twitter 80 189776.9063 1897.769043 109485784 43.043579
Ball-Kmeans Twitter 80 114305.6016 1143.05603 695732800 6.773664
Kmeans Birch 30 498.100006 15.09394 99000000 0
Kmeans-d Birch 30 111.5 3.378788 6265351 15.801189
Ball-Kmeans Birch 30 142.800003 4.327273 7218448 13.714859
Kmeans Birch 50 1893.800049 23.672501 401500000 0
Kmeans-d Birch 50 269.700012 3.37125 13114883 30.614075
Ball-Kmeans Birch 50 204.800003 2.56 11611740 34.577076
Kmeans Birch 60 2155.600098 27.635899 471600032 0
Kmeans-d Birch 60 276.700012 3.502532 14114643 33.412113
Ball-Kmeans Birch 60 203.699997 2.611538 12881577 36.610428
Kmeans Birch 80 3246.199951 35.284782 744000000 0
Kmeans-d Birch 80 365.899994 3.977174 17571762 42.34066
Ball-Kmeans Birch 80 266.799988 2.9 17451788 42.631737

Table 9: Ablation study with vectorization: average of 10 trials are shown.
RT/Iter indicates the runtime per iteration.

Algorithm Data Clusters RT RT/Iter DC DC(S)
Kmeans Census 30 532.299988 106.459999 7868628 0
Kmeans-d Census 30 443.600006 88.720001 1624226 4.84454
Ball-Kmeans Census 30 2136.800049 427.360016 3191343 2.465616
Kmeans Census 50 742.5 148.5 11305500 0
Kmeans-d Census 50 631.400024 126.280006 2485040 4.549424
Ball-Kmeans Census 50 1562.300049 312.460022 4020819 2.811741
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Kmeans Census 60 909.900024 181.980011 13837933 0
Kmeans-d Census 60 788.799988 157.759995 2952545 4.686781
Ball-Kmeans Census 60 1637.599976 327.519989 4703294 2.942179
Kmeans Census 80 1177.400024 235.480011 18450576 0
Kmeans-d Census 80 1004.099976 200.819992 3867476 4.770702
Ball-Kmeans Census 80 1622.5 324.5 5722497 3.224218
Kmeans Twitter 30 896613.3125 8966.132812 1767247488 0
Kmeans-d Twitter 30 757723.6875 7577.236816 79366000 22.267059
Ball-Kmeans Twitter 30 1786030.75 21780.86328 283065696 6.243241
Kmeans Twitter 50 1451841.75 14518.41797 2945412608 0
Kmeans-d Twitter 50 1420208.125 14202.08106 91476304 32.198639
Ball-Kmeans Twitter 50 1806122.625 22297.81055 407760000 7.223398
Kmeans Twitter 60 1744898 17448.98047 3534494976 0
Kmeans-d Twitter 60 1740760 17583.43359 97374136 36.298088
Ball-Kmeans Twitter 60 1807583.25 22594.79102 465726208 7.589212
Kmeans Twitter 80 1814403.625 23261.58398 3709469952 0
Kmeans-d Twitter 80 1809125.625 27410.99414 88936560 41.709167
Ball-Kmeans Twitter 80 1810063.625 23205.94336 593397632 6.251238
Kmeans Birch 30 4319.700195 130.900009 99000000 0
Kmeans-d Birch 30 711.700012 21.566668 6265351 15.801189
Ball-Kmeans Birch 30 7774.799805 235.599991 7218448 13.714859
Kmeans Birch 50 16619.19922 207.73999 401500000 0
Kmeans-d Birch 50 1787.5 22.34375 13114883 30.614075
Ball-Kmeans Birch 50 8113.799805 101.422501 11611740 34.577076
Kmeans Birch 60 19244.90039 246.729492 471600032 0
Kmeans-d Birch 60 1828.400024 23.144304 14114643 33.412113
Ball-Kmeans Birch 60 7855.299805 100.708969 12881577 36.610428
Kmeans Birch 80 29984.90039 325.922821 744000000 0
Kmeans-d Birch 80 2428.800049 26.4 17571762 42.34066
Ball-Kmeans Birch 80 9069.5 98.58152 17451788 42.631737

Table 10: Ablation study without vectorization: average of 10 trials are
shown. RT/Iter indicates the runtime per iteration.
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