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ABSTRACT

SimCLR is one of the most popular contrastive learning methods for vision tasks.
It pre-trains deep neural networks based on a large amount of unlabeled data by
teaching the model to distinguish between positive and negative pairs of aug-
mented images. It is believed that SimCLR can pre-train a deep neural network to
learn efficient representations that can lead to a better performance of future super-
vised fine-tuning. Despite its effectiveness, our theoretical understanding of the
underlying mechanisms of SimCLR is still limited. In this paper, we theoretically
introduce a case study of the SImCLR method. Specifically, we consider training
a two-layer convolutional neural network (CNN) to learn a toy image data model.
We show that, under certain conditions on the number of labeled data, SImCLR
pre-training combined with supervised fine-tuning achieves almost optimal test
loss. Notably, the label complexity for SImCLR pre-training is far less demanding
compared to direct training on supervised data. Our analysis sheds light on the
benefits of SimCLR in learning with fewer labels.

1 INTRODUCTION

In recent years, self-supervised learning has emerged as a promising machine learning paradigm,
offering a way to learn meaningful representations from vast amounts of unlabeled data. Self-
supervised learning is of vital importance because the success of supervised learning is dependent
on the accessibility of a large number of carefully labeled data, while the high-quality labeled data
is expensive and time-consuming to obtain. Self-supervised learning leverages a large amount of
unlabeled data to pre-train the representations for the following supervised fine-tuning learning task
without requiring more labeled data.

Major categories of self-supervised learning methods include contrastive learning (Oord et al.,2018;
Chen et al., [2020; [He et al) [2020) and generative self-supervised learning (Kingma & Welling,
2013} |Goodfellow et al., 2014). Among the various self-supervised learning methods, SimCLR
(Chen et al., 2020) algorithm has gained significant attention due to its simplicity and remarkable
performance for vision tasks. SImCLR leverages the idea of contrastive learning, where representa-
tions are learned by maximizing agreement between differently augmented views of the same image
while minimizing agreement between views of different images. Compared with purely supervised
learning, this approach has demonstrated exceptional capabilities in capturing high-level semantic
information and achieving state-of-the-art results on various downstream tasks.

While such a contrastive learning method has demonstrated great success from the empirical per-
spective, it remains relatively unclear how the pre-training scheme helps improve the performance
of the fine-tuning. Some recent papers have been devoted to the theoretical understanding of con-
trastive learning (Saunshi et al.| 2019; Tsai et al., 2020; |Wen & Li, 2021). |Saunshi et al.[(2019) in-
troduced a theoretical framework that contains latent classes and presented the generalization bound
to demonstrate provable good performance and reduced sample complexity of downstream tasks,
but this framework fails to explain the case of over-parameterization. {Tsai et al.| (2020) provided an
information-theoretical framework based on mutual information to explain the good performance
of self-supervised learning. However, the aforementioned papers focus on the setting where the
hypothesis class has limited complexity, and cannot handle the setting where the number of model
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parameters is larger than the sample size, which is more common in modern deep learning, espe-
cially for vision tasks. Wen & Li|(2021) considered the over-parameterized setting and analyzed the
feature learning process of contrastive learning and the dependence of learned features on data aug-
mentations. However, Wen & Lil (2021) only analyzed a very specific type of learning task solved
by a slightly non-standard optimization algorithm. Therefore, current theoretical understanding of
contrastive learning is still quite limited.

In this paper, how SimCLR pre-training method makes improvements in the fine-tuning training
of a two-layer convolutional neural network (CNN) is studied. The case we focus on is a binary
classification problem on a toy image data model, which has been studied in a series of recent works
(Cao et al.l 2022 Jelassi & Li, 2022} Kou et al., 2023b)). Under certain conditions related to the
number of labeled and unlabeled data and the signal-to-noise ratio (SNR), we study SimCLR-based
pre-training followed by supervised fine-tuning, and establish convergence as well as generalization
guarantees of the obtained two-layer CNN.

The contributions of this paper are summarized as follows.

* We consider using CNNs given by SimCLR pre-training and supervised fine-tuning to learn a
certain type of signal-noise data studied in recent works. Under certain conditions on the amount
of unlabeled data and labeled data, we establish training loss convergence guarantees as well as
generalization guarantees for two-layer CNNs trained by SimCLR pre-training and supervised
fine-tuning. Specifically, our results demonstrate that, although the training losses in the pre-
training and fine-tuning are both highly non-convex, the training of the CNN will successfully
minimize the training loss. Moreover, although we consider an over-parameterized setting where
the CNN overfits the training data, our results demonstrate that the CNN will achieve a small test
loss.

* The learning task we investigate is a standard toy data model that has been studied by many
recent works (Cao et al., [2022; Jelassi & Li, 2022; |[Kou et al.l |2023b). This enables an easy
comparison between the theoretical guarantees of learning with SimCLR pre-training and those
without SimCLR pre-training. In particular, Cao et al.| (2022) showed that, direct supervised
learning on the data model can achieve small test loss if and (almost) only if the condition 7 -
SNR? = Q(1) holds, where SNR is a notion of the signal-to-noise ratio, n is the labeled sample
size, and q is a constant related to the activation function. In comparison, the label complexity for
SimCLR pre-training followed by supervised fine-tuning is far less demanding: our results show
that when the unlabeled sample size ng and labeled sample size n satisfy ng - SNR? = Q(1),

n = (1), the obtained CNN can achieve small training and test losses. Clearly, our analysis
demonstrates the advantage of SImCLR in reducing label complexity in learning tasks with low
signal-to-noise ratio. Our result serves as a concrete example where SimCLR-based pre-training
is provably helpful.

* In our theoretical analysis, we introduce many novel analysis tools that enable the study of the
SimCLR algorithm. In particular, we establish a key result that, up to sufficiently many iterations,
the SIimCLR pre-training updates can be characterized by the power method based on a matrix
defined by the pre-training data and their augmentations. Notably, although our analysis focuses
on a very specific toy data model, we believe similar results on the connection between SimCLR
and power method should hold for more general settings. Therefore, this result may be of inde-
pendent interest. Moreover, all of our analysis of the SImCLR algorithm should also hold for the
case where the data inputs are generated from Gaussian mixtures. Therefore, a side product of our
analysis is the effectiveness guarantee of using SimCLR to learn Gaussian mixtures.

Notation. | - |2 denotes the £2-norm. || - || denotes the Frobenius norm. [n] refers to the set
{1,2,...,n}. For two sequences {ay} and {b,}, denote a,, = O(b,,) if there exists some absolute
constant C' > 0 and N > 0 such that |a,| < C|b,]| holds for all n > N. Denote a,, = Q(b,) if
there exist some absolute constant C' > 0 and N > 0 such that |a,,| > C|b,| holds for all n > N.
Denote a,, = ©(b,,) if both a,, = O(b,,) and a,, = Q(by,) hold. O(+), Q(-), O(:) are used to omit
the logarithmic factors in these notations.

"Here the ©(-) hides logarithmic factors.
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2 RELATED WORK

Self-supervised Learning. Self-supervised learning has won great success in application and
has covered many important fields of machine learning, for example, natural language processing
(Mikolov et al.} 2013} Devlin et al., 2018), and computer vision (Chen et al., [2020). As one of the
important methods for vision tasks, contrastive learning began with learning the latent variable of
the data (Carreira-Perpinan & Hinton|2005)). |Cole et al.| (2022)) investigated the factors that improve
the performance of contrastive learning, but the analysis was still from an empirical aspect. From a
theoretical perspective, some works have also been done to understand contrastive learning. Wang
& Isolal (2020) identified alignment and uniformity as two important properties concerned with
contrastive loss, and proved that contrastive loss optimizes these properties asymptotically. Infor-
mation theory was also introduced to establish theoretical framework that explains why contrastive
learning works (Tsai et al.,|2020; Tian et al.| [2020a)). [Shwartz Ziv & LeCun|(2024) examined differ-
ent self-supervised learning methods from the information-theoretic aspect and proposed a unified
framework that includes them as information-theoretic learning problems. [Tian et al.| (2020b) pro-
posed a framework for the theoretical understanding of SimCLR self-supervised learning method
and demonstrated that the updates of SimCLR capture variations across data points. [HaoChen et al.
(2021) considered a spectral contrastive loss and performed spectral clustering on the population
augmentation graph, but the applicability of this spectral contrastive loss is limited. [Tan et al.|(2024)
extended the idea of |[HaoChen et al.| (2021) to general loss functions by showing the equivalence
between InfoNCE loss and spectral clustering. Furthermore, HaoChen et al.| (2021)) also extended
this to more general settings, including multi-modal scenarios. However, the aforementioned pa-
pers focused on the analysis of contrastive learning and do not analyze how contrastive learning
influences the performance of the following fine-tuning stage. [Bansal et al.| (2021)) presented a new
upper bound of the generalization gap of classifiers by performing self-supervised training to learn
representations, followed by fitting a simple classifier such as linear classifier to the labels.

Feature Learning Theory of Neural Networks. There are a series of works that provide theo-
retical foundations for feature learning theory of neural networks. [Frei et al.| (2022) considered the
benign overfitting phenomenon in two-layer neural networks with smoothed leaky ReL U activations
when both model and learning dynamics are nonlinear. |(Cao et al.|(2022) analyzed the benign overfit-
ting that appeared in the supervised learning of two-layer convolutional neural networks, and showed
arbitrary small training and test loss can be achieved under certain conditions on SNR, but the anal-
ysis was based on specified initialization distribution. Without requiring the smoothness of the acti-
vation function, Kou et al.|(2023b) focused on benign overfitting of two-layer ReLU convolutional
neural networks with label-flipping noise. They showed that, under mild conditions, the neural net-
works can achieve near-zero training loss and Bayes optimal test risk. [ Xu et al.|(2023)) demonstrated
that benign overfitting and grokking provably appeared in the feature learning of two-layer ReLU
neural networks trained by gradient descent on non-linearly separable data distribution. [Meng et al.
(2024) analyzed one category of XOR-type classification tasks with label-flipping noises, show-
ing two-layer ReLU convolutional neural networks can achieve near Bayes-optimal accuracy. [Kou
et al.|(2023a) investigated a semi-supervised learning method that combines pre-training with linear
probing for two-layer neural networks, and found the semi-supervised approach achieves nearly zero
test loss. However, how self-supervised learning improves the training of neural networks remains
largely unexplored.

3 PROBLEM SETTING

This section presents the problem setup in this paper. We first introduce the data model considered in
this paper, and then introduce the detailed setup for SimCLR pre-training and supervised fine-tuning
respectively.

3.1 A DATA MODEL FOR THE CASE STUDY

In this paper, we consider a simple binary classification task. We consider a toy data model that has
been studied in a series of recent works (Cao et al., [2022; Jelass1 & Li, [2022; [Kou et al., [2023b).
This paper is motivated by |Cao et al.|(2022), which analyzed the performance of direct supervised
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learning. To enable a direct comparison between SimCLR pre-training followed by fine-tuning and
direct supervised learning, this paper adopts the same toy data model as|Cao et al.| (2022).
Definition 3.1. Let u € R? be a fixed vector. Each data point (X,y) is given in the format of
X = [X(I)T, ){(2)—'—]—r € R??. Assume the data is generated from the following distribution D:

1. The label y is generated as a Rademacher random variable with y € {—1, 1}.
2. A noise vector € is generated from the Gaussian distribution N'(0, 07 - (I — i’ ||z ?)).

3. One of the two patches xV)  x2) generated and is assigned as x*) = v - p which represents the
signal patch, and the other patch is assigned as & which represents the noise patch.

As is commented in |Cao et al.|(2022)), the data distribution in Deﬁnition@] is motivated by image
data, where the data input consists of multiple patches, and only some of the patches are directly re-
lated to its corresponding label. Therefore, this data model is particularly suitable to study SimCLR,
which is originally proposed for vision tasks. The data input consists of several patches, among
which some are signal patches and the rest are noise patches. Following the notation given in |Cao

et al./(2022), we define the signal-to-noise ratio (SNR) as SNR = |||/ (c,v/d) since ||€]|2 = 0,v/d
when dimension d is large.

3.2 SELF-SUPERVISED PRE-TRAINING WITH SIMCLR

We consider using SimCLR (Chen et al.,|2020) to pre-train a simple linear CNN on unlabeled data.
The linear CNN F(W, x) with output of dimension 2m is defined as follows:

[F(W,x)], = (w,, xD) + (w,,x?), re[2m)],

where W = (wy, -, Wa,,) | € R¥™*4 w, € R 1 & [2m]. The linear CNN model defined
above is composed of a linear CNN layer with 2m convolution filters LinearConv(-) : R2¢ —
R?m>2 and a fixed linear projection head ProjHead(-) : R?"™*2 — R2™ defined as follows:

[LinearConv(W, x)],., := (w,,xP)), 7 € [2m], p € [2], and ProjHead(Z) := Z[11]"
Then it is clear that

F(W,x) = ProjHead|LinearConv(W, x)]. 3.1

Suppose that we are given an unlabeled dataset Suplabeled = {X] taining | ypre-trining) © o here
xPe trammg, i € [no] are unlabeled data independently generated from distribution D in Defini-
tion In SimCLR, we train the linear CNN model F(W, x) as follows: For each data point
bres "ammg i € [no], we apply data augmentation to obtain an augmented data point X" """ We

4 y
consider an ideal setting that XP™ """ is generated from P(x|y = y;). Then following Definition

| it holds that &2 — VT T Ghere one of X\, X{* is randomly assigned as

re-! trdlnlﬂ
P € and

y; - u while the other is assigned as &; ~ N(0, ol (I- pp’ - ||p)5?)). Based on xP

~npre-traini . . .. .
XPIETIRE i € [ng), we define the following similarity scores

simi — <F(W Xpre—training) F(W ipre—training)> simi o= <F(W X]_Jre—training) F(W XPII'e—training)>
forall 4,4" € [no] with i # 7',
The convolution filters w, € Rd r € [2m] in the SimCLR pre-training are initialized following

Gaussian distribution, namely W,» ~ N(0,00%T), r € [2m]. The loss function of the pre-training
stage is defined as

exp(sim; /T)
L = 1
Suntaverca (W Z 08 <exp (sim;/7) 4+ 32504, exp(sim; i /7'))

where 7 is a constant. 7 is the temperature parameter in SImCLR (Chen et al., [2020). In the pre-
training stage, gradient descent with learning rate 7 is used to minimize the loss function L(W).
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3.3 SUPERVISED FINE-TUNING

fine- lumng ), ., (Xgne—luning7 n)}

Suppose that the labeled training dataset is given as S = {(
where 7 is the number of labeled data, and each data point (x" X, , yi), € [n] is generated from
the distribution D in Definition The two-layer convolutional neural network model is considered
in the fine-tuning stage, namely f(W,x) = Fly1(W1,x) — F_1(W_1,x), where

tunmg

Fy( iZ (w0 x D)) 4 o (s xP))], j = 21, (32)

S

where m is the number of filters in F;1 and F_; respectively, o(z) = (max{0, z})? is the ReLU?
activation function with ¢ > 2.

SimCLR Pre-training Supervised Fine-tuning
B N

R [X“)T X(Z)T]T Input {(x’ﬂne—tunlngm)} )

T T T
! lnput  x=[x",x®] = ,
' el l l Labeled Data
Unlabeled Data
Convolution ~ [(w,.x?)] ” [(w; - X(P))]j ., Convolution

Data Augmentation

{ spre-training }
! et

Projection

[ lo( < w;,,x?>)];,,, Activation
Head

w,, x4+ x(z))]r

J s om 2

f= 2 S 2 Z 0((Wj_,-s x®)) Linear

e " =i = Layer

Figure 1: Illustration of the SImCLR pre-training and supervised fine-tuning stages.

In this paper, we consider the initialization W(?) of the CNN (3:2) given by the result of SimCLR

pre-training. For the 2m filters w( 5mCLR) ¢ [2m] obtained in the pre-training stage, we ran-

domly sample m filters out of 2m filters and assign them to the initialization of filters in F. 1, and
denote M C [2m)] the collection of these filters with |[M| = m. Correspondingly, the rest m fil-
ters wilSmOrR) e [2m] N M* is assigned to the initialization of filters in F_;. Therefore, the
initialization of the supervised fine-tuning is given as

{wilor € ml} = {wiTmes) e My, {wlhr € ) = {wTsmer),r e M7},

Clearly, the above procedure is equivalent to the practical implementations of SiImCLR, where after
pre-training, we essentially remove the projection head part of the model and attach another classifier
to perform supervised fine-tuning.

The training of this convolutional neural network is conducted by minimizing the empirical cross-
entry loss function, namely

Ze hne tumng)] ,

where S denotes the training dataset in the fine-tuning stage given by Definition and £(z)
log(1 + exp(—=z)). Based on Definition the corresponding true loss is defined as Lp(W) =

]E(x,y)ND E[y . f(W, X)}
In the fine-tuning stage, based on the gradient descent algorithm and the CNN structure defined in

(3.2), the filters of the CNN w;,,j € {—1,+1},7 € [m] is trained according to the following
gradient descent updating rules

W(»t+1) (t) —n- vw] 7LS(W(t ) (33)

1,7

The whole two-stage training procedure is deplcted in Figure|[T]
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4 MAIN RESULT

In this section, we present the main learning guarantee of the two-layer CNN given by SimCLR
pre-training and supervised fine-tuning. We first introduce several assumptions on the number of
unlabeled training samples n, the number of labeled data samples n, the dimension d, the number
of convolutional filters m, Gaussian initialization scale o, and the learning rate 7.

Condition 4.1. Suppose that the following conditions hold for the pre-training and fine-tuning stage,
1. The number of unlabeled training samples no satisfies no = Q(max{SNR ™2, 1}).
2. The number of labeled training samples n satisfies n = Q(l)

3. The dimension d is sufficiently large: d > S~2(nq_7—62 SNR™ @2 - max{ng*, SNR™2} + nd).
4. The number of convolutional filters m satisfies m = (log(1/9)).

5. Gaussian initialization scale o for SimCLR pre-training is sufficiently small:

o < O(min{1,d"'nT2SNR+ - ||u]; 2} - min{1, SNR ', SNR2}).

6. The learning rate satisfies that n = 5( min {(af}d)*l, (opVd)72, eell5}).

While Condition [4.T] gives a long list of conditions, we remark that most of these assumptions are
easy to satisfy. In fact, the first two conditions in Condition are the key conditions in this
paper. The condition on d is essentially assuming that the learning happens in a sufficiently over-
parameterized setting, which is common in a series of recent works (Chatterji & Long] [2020; |Cao
et al., [2021; 12022 |Jelass1 & L1, 2022; [Kou et al., 3023b). The condition on the number of convo-
lutional filters m is mild as we only require m = (1). Finally, the conditions on the initialization
scale o and the learning rate 7 essentially just assumes that the optimization is appropriately set up,
and can be achieved by simply implementing a small enough initialization scale and a small enough
learning rate.

The following Theorem 4.2] summarizes the main result of this paper.

Theorem 4.2. Under Condition forany € > 0, if ng - SNR? = S~2(1) then within TsimcLr =
Q=7 |\ul3 ) iterations of pre-training and T = O (n~ may =2 ||plly + n~ e m3||p)52)
iterations of fine-tuning, the obtained network in the fine-tuning stage satisfies that: there exists
some 0 <t <T, such that

1. The training loss converges to ¢, i.e., Ls(W®)) < e.
2. The trained CNN achieves a small test loss: Lp(W®) < 6 + exp(—Q(n2)).

Theorem [4.2] presents the convergence and generalization guarantees of the two-layer CNN
trained by SimCLR pre-training with supervised fine-tuning. According to Theorem train-
ing loss convergence and small generalization are guaranteed for the two-layer CNNs when ng =
Q(max{SNR™2 1} and n > Q(log(1/9)) together with some other conditions listed in Condi-

tion 4.1 Here we comment that the case where SNR = (1) is a very easy setting, as according to
Cao et al.[ (2022, Theorem 4.3), small test loss can be achieved even if there is only 5(1) training
data. Therefore, we see that Conditionessentially requires that ng - SNR? = ﬁ(l) andn = ﬁ(l)
To compare the results of SimCLR pre-training followed by supervised fine-tuning with direct su-
pervised learning, we cite the following theoretical results for direct supervised learning from |Cao
et al.[(2022).

Theorem 4.3 (Theorems 4.3 and 4.4 in (Cao et al.| (2022), bounds of direct supervised learn-
ing). Forany e > 0, let T = O(n~'m - noy "> - max{(c,v/d)~%, ||pll37} + n~ e Inm? -
max{(o,Vd) "2, ||p|l52}). Under Condition 4.2 in|Cao et al.{(2022), the following results hold:

1. Ifn - SNRY = Q(1), then with probability at least 1 — d—, there exists 0 < t < T such that:
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(a) The training loss converges to ¢, i.e., Lg (W(t)) <e
(b) The trained CNN achieves a small test loss: Lp(w®)) = 6¢ + exp(—n?).

2. Ifn='-SNR™? = Q(1), then with probability at least 1 —d ™", there exists 0 < t < T such that:

(a) The training loss converges to ¢, i.e., Lg (W(t)) <e
(b) The trained CNN has a constant order test loss: Lp(w®) = ©(1).

Theoremabove gives an upper bound on the test loss under the condition n-SNR? = ﬁ(l), while
also gives a lower bound on the test loss under the almost complementary condition n~! - SNR™7 =
Q(1). Note that we have the condition that the supervised sample size n = (1) in|Cao et al.[(2022,
Condition 4.2). Therefore, Theorem demonstrates that for direct supervised learning to achieve
small test loss, it is necessary to have a labeled sample size at least n = Q(max{SNR ™%, 1}). This
result also indicates that the learning task is relatively challenging when SNR < 1, as smaller SNR
requires more labeled training data. Notably, Theorem also shows that when n=! - SNR™? =
(NZ(l), direct supervised learning with n labeled data is guaranteed to result in constant level test loss.

In comparison, Theorem demonstrates that for SimCLR pre-training combined with su-
pervised fine-tuning, as long as the unlabeled sample size ng is sufficiently large (ng =
Q(max{SNR™2,1})), n = Q(1) labeled data suffice to lead to small test loss. As previously
mentioned, direct supervised learning requires that the number of labeled training data satisfies
n = Q(max{SNR™7,1}). Comparing these results, we can conclude that direct supervised learn-
ing requires more label complexity to achieve small test loss, especially in challenging tasks with
low signal-to-noise ratio. The clear difference between Theorem [4.2]and Theorem [4.3|demonstrates
the effectiveness of SimCLR pre-training.

Remark 4.4. To demonstrate the practical value of the theoretical results in this paper, experiments
on both synthetic and real-world datasets are provided in Appendix [A] Our theoretical results on
the advantage of SimCLR pre-training and the results of direct supervised learning in|Cao et al.
(2022) together indicate that when the signal-to-noise ratio is low, SimCLR pre-training followed by
supervised fine-tuning may require far less labeled data compared with direct supervised learning.
The experiments in this paper present typical cases where SimCLR pre-training followed by super-
vised fine-tuning achieves a significantly smaller test loss, while direct supervised learning achieves
a larger test loss under same label complexity.

5 PROOF SKETCH

In this section, we discuss the key proof steps of Theorem.2] Our analysis heavily focuses on the
pre-training of the linear CNN with SimCLR. Therefore, for the simplicity of the notation, we omit
the superscripts of the data used for pre-training: we denote by y1, ..., Y, the (unseen) labels of

the pre-training data, by &1, .. ., &, the noise patches in the data inputs, and denote by &1, . . ., &n,
the noise patches in the augmented data inputs. On the other hand, the noise patches in the labeled

. fine-tuni fine-tuni : . .
data inputs are denoted as &Y, ... En . We also introduce the following notations:

zi=yi - p+&, Zi=y-p+&, i¢€ng.

The above notation is motivated by the observation that the linear CNN we consider in the pre-
training stage is essentially a function of the summation of the two patches of the data input. Further
notice that z;, z;, i € [ng] defined above are essentially Gaussian mixture data, and hence our proof
is essentially based on an analysis of the performance of SimCLR in learning Gaussian mixtures.

A characterization of SimCLR pre-training by power method. Our proof for SimCLR is based
on a key observation that the SimCLR updates of each CNN filter is very similar to those of a power
method based on a matrix defined by the data. Specifically, we have the following lemma.

Lemma 5.1. For any M > 0, suppose that ng = Q(max{SNR~2,1}), and

o < O(min{l,d "M~ #2na2SNRa7 - |32} - min{1, SNR~!, SNR?}).



Under review as a conference paper at ICLR 2025

Let A = —I- S Zi,#(zii}—r + 7z — 22}, — zy2] ). Then for any TsimcLr satisfying
0
(14 (1= Esimorr) | Aflo] e = O(max{M72n~72SNR"72}),

with EsimcLR = 6(max{SNR 1n51/2 nal}) as specified in Lemma we have for t =
0,1,...TsimcLR, the iterates of SimCLR satisfy

wttD) = w® 4 (A +2O)wD),

where 20 E(TS‘i’CLR) € R4 are matrices whose columns and rows are in the subspaces
span{p, €1, ..., &gy €1,y - -+, Eny } and span{p’ & ... ,€n0,£1 b ,5;0} respectively, and
IE@l2 < g0 - [|All2,
forallt =0,...,TsimcLr, Where
no
_ ng - exp(snn /T ~ -
=0 = 7% Z ( D) — 1| (ziz) + 202 —2:2; — 7z ).
07 i21 irAi exp(snm /T) + D i exp(81m ./ T)

Lemma [5.1] gives an accurate characterization on how the CNN filters are updated during the Sim-
CLR pre-training. In particular, when the initialization scale o is small, Lemma [5.1] implies that

each convolutional filter is approximately updated according to the formula w(tﬂ) I+ A)wg),
which is essentially a power method in learning the leading eigenvector of the matrix (I+ A), which
is also the leading eigenvector of the matrix A.

Spectral analysis of the matrix A. According to Lemma[5.1] SimCLR may approximately align
the CNN filters along the leading direction of the matrix A, and the convergence rate depends on
the eigenvalue gap between the largest eigenvalue and the second largest eigenvalue. Motivated by
this, we give the following lemma on the spectral decomposition of A.

Lemma 5.2. Let A be the matrix defined in Lemma and let \;, v;, i € [d] be the eigenvalues
and eigenvectors of A respectively, where )\Z-, i = 1,...,d are in decreasing order. Suppose that

d > no, ng - SNR? = §~2(1) and Conditionhold Then there exists
Esimorr = O(max{SNR'ng /% ng'}) = o(1),
such that the following results hold:

* The first eigenvalue of A is significantly larger than the rest:

2 2
(1 — EsimcLRr) - 777HMH§ <A1 < (14 EsimcLr) - 777“#“%7 Ilr_lgg/\i < g || 2ll3EsimerLR.s

o The leading eigenvector of A aligns well with p: Denote by Pﬁ =T1—pp' /|| |2 the projection
matrix onto span{pu}*. Then it holds that

[(vi, ) > (1 = Edmorr) - el 1P, vill2 < EsimoLr-

Lemma gives a tight estimation on the eigenvalues and eigenvectors of the matrix A, with a
focus on the gap between the leading eigenvalue and the rest, and the relation between the leading
eigenvector and the signal vector p. According to Lemma [5.2] we can see that if the unlabeled
sample size ng is sufficiently large, the leading eigenvalue and leading eigenvector will both be
controlled by the signal p, indicating that SimCLR can help enhance signal learning.

Signal learning guarantee of SimCLR pre-training. Based on Lemmas[5.1]and[5.2] we can derive

the following key theorem on the signal learning guarantee of SimCLR pre-training.

Theorem 53. Let A be deﬁned in Lemma @] For any M > 0, suppose that no =
(max{SNR 21}, 09 < O(mm{no ng?SNR™2, M~ 77 .na2SNR72}), d > QM7= -

na=?SNR ™2 -max{ny*, SNR™?}). Then with

log[288Mq 2 -log(1/00) 77 - y/log(dn) - log(md)] — log[nﬁ SNR7 7]
IOg[ ( 581mCLR) ”A”}

TsimCLR =
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Tsim
(Tsimorn)

iterations, SimCLR gives CNN weights w.

n
wilsmelt) = wit oy /|3 Y pra - & IE /€T,
i=1

€ [2m)] that can be decomposed as

fine—t e tuni .
where wt is perpendicular to p and £ "8 | gline—tuning Arore0ver it holds that

o There exist disjoint index sets T+, T~ C [2m] with |ZT| = |Z~| = 2m/5 such that

min,ez+ 72/ log(2/y,) o M min,ez- (=7,)*%/log(=2/v,) M
MaXye(2m],icfn] |Pril7"2 ~ nSNR?’ MaxX,c(2m)ie[n] |0ri?> ~ nSNR?

o All WSTS“"CLR), r € [2m] are bounded:

1 SNR?/1-2 SNR%/4-2
<= < 2 e
m[gX] sl n’ m[gx [l 16m2/a—2n4’ [2%] i€n) [pral < 16m2/a—2n4"

In Theorem [5.3] the decomposition

n
W,'(ATSimCLR) — WT{_ + - H/H/"H% + Z Pri - €;me—tumng/”E?ne-tumngng
i=1
is inspired by the “signal-noise decomposition” proposed in |Cao et al.| (2022)), where the authors
have demonstrated that such a decomposition can be very helpful for the analysis of supervised fine-
tuning. Theorem [5.3|demonstrates that there exist at least O(m) filters whose “signal coefficients”
7y, are relatively large compared with the “noise coefficients” p,.; of all the 2m filters. This result
makes good preparation for our analysis of the downstream task. Notably, as we have discussed,
Theorem can also serve as a theoretical guarantee for the setting of SimCLR pre-training on
Gaussian mixture data, and hence we believe that the result of Theorem[5.3]and its proof may be of
independent interest.

Analysis of supervised fine-tuning. We can now analyze the supervised fine-tuning of the non-
linear CNN where the initial CNN weights are given by SimCLR pre-training. We remind the
readers that the nonlinear CNN model has second layer weights fixed as +1/m and —1/m, and
we define Fly1(W41,x), F_1(W_1,x) in (3.2) so that the CNN can be written as f(W,x) =
Fi (Wi, x) — F_ (W_y1,x). With filters w\"™"®) ¢ [2/n] obtained by SimCLR pre-
training, we randomly sample m filters of them and assign them to the initialization of filters in

F1, and we denote M C [2m)] the collection of these filters with | M| = m. In addition, the rest
m filters wﬁTS““CLR), r € [2m] N M€ are randomly assigned to the initialization of filters in F_;.
Based on this random assignment procedure, we directly have the following lemma.

Lemma 5.4. For any index sets ZV,Z~ C [2m] with |ZT| = |Z~| = 2m/5, with probability at
least 1 — 2= (™/5=1) there existr, € T+ andr_ € T, such thatr, € M and r_ € M.

Lemma [5.4]is a straightforward result on random sampling. Following this result, we can see that
with high probability, there exists a filter in ZT whose second layer parameter is assigned as +1 for
fine-tuning, and there also exists a filter in Z~ whose second layer parameter is assigned as —1 for
fine-tuning. With this result, we further give the following main theorem on the learning guarantees
in the supervised fine-tuning stage.

Theorem 5.5. Suppose that the supervised fine-tuning starts with initialization W@ and W@
where the convolution filters have decomposition

n
0 . fine— i fine— i
WO = wh gy /Il g - €T g /| glinetuning 2
=1

for j € {£1} and r € [m]. Moreover, suppose that the coefficients v; ,’s and p; ,;’s satisfy the
following properties:

* There exist ro,r_ € [m] such that

V2 loa2/vir,) Q( log(d) ) Vi 1082/ 1) _ Q( log(d) )

maxj rq |pj,r,1',|q TLSNR2 max; g |pj,r,z"q TLSNRz
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o All WSTS““CLR), r € [2m] are bounded:

_ 2/q—2 _ 2/q—2
max ||wi H2<l max |y, <O SNRTE 7 max |p;..i| <O SNRTE
Jr J,r = ’I’L’ g Pl —= mg/q_g ’ i 2,7l —= mQ/q_Q
Let v = min{yiir, v, b Forany e > 0, let T = O(n 'my 2 ulz? +

n~re ' mB || pl|5 %), then if n = 6(min{(agd)_1, (opV/d) 2, ||pll5 %)), with probability at least
1 —d~ 1, there exists 0 < t < T such that:

1. The training loss converges to ¢, i.e., Ls(W®)) < e.
2. The trained CNN achieves a small test loss: Lp(W®) < 6 + exp(—Q(n2)).

Theorem [5.5]starts with an assumption on the properties of the “signal-noise decompositions” of the
initial weights for fine-tuning. This analysis is inspired by |Cao et al.| (2022) where the signal-noise
decomposition is proposed. However, compared with|Cao et al.|(2022)) where the analysis focuses on

training starting from random Gaussian initialization, Theoremls in fact more general — W§- T)’s

are not necessarily randomly generated. In fact, by direct calculations, we can verify that if w§02 ’s

are all randomly generated from Gaussian distribution, then verifying the conditions in Theorem@]
will recover the condition that n - SNR? = (1) in|Cao et al.| (2022) which guarantees benign
overfitting. Therefore, Theorem [5.5]covers the result of benign overfitting in |Cao et al.| (2022).

Now it is clear that combining Theorem [5.3] Lemma [5.4]and Theorem [5.5] will immediately lead to
Theorem Therefore, our proof is finished.

6 CONCLUSION

In this paper, a case study on the benefits of SImCLR pre-training method for supervised fine-tuning
is investigated. Based on a toy image data model for binary classification problems, we theoretically
analyze how SimCLR pre-training based on unlabeled data benefits fine-tuning in training two-layer
over-parameterized CNNs. Under mild conditions on the amount of labeled and unlabeled data and
the signal-to-noise ratio (SNR), the training loss convergence and small test loss are guaranteed,
while direct supervised learning requires more label complexity to achieve small training and test
losses. Our work demonstrates the provable advantage of SImCLR pre-training in fine-tuning stage,
which reduces label complexity to achieve a small test loss.

This paper focuses on the benefits of the popular SimCLR pre-training method for fine-tuning train-
ing. Apart from the SimCLR method for vision tasks, other contrastive learning (or self-supervised
learning) methods could also be investigated. A more general question could be: How does the
pre-training of representations influence the performance of fine-tuning in the over-parameterized
models? Various fine-tuning training processes could also be analyzed, including single-task super-
vised learning or multi-task learning. Future works could explore the aforementioned directions.
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A EXPERIMENTS

This section presents the synthetic-data experiments and real-world data experiments to back up
theoretical results and demonstrate the practical value of our theory.

Synthetic-data experiments. The synthetic dataset is generated following the data model in Defi-
nition With the dimension d = 400, o, = 2, |||l = 10. The training of the two-layer CNN
model follows the two-stage (SimCLR pre-training followed by supervised fine-tuning) training pro-
cedure as depicted in Figure |1l Here, the number of filters is set as m = 40 with ReLU® activation
function. The number of unlabeled data in the SimCLR pre-training stage is ng = 250 and the
number of labeled data in the fine-tuning stage is n = 40. The test loss is calculated using 400 test
data points.

In parallel, we also conduct the training of the two-layer CNN model (3.2)) through direct-supervised
learning on n = 40 labeled data for comparison, and all the conditions of the labeled dataset are same
as its SimCLR pre-training counterpart. The results on synthetic data experiments are presented in

Figure[2]
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(a) Direct supervised learning (b) SimCLR pre-training with supervised fine-tuning

Figure 2: Synthetic-data experiments: Under same conditions on label complexity, SimCLR pre-
training combined with supervised fine-tuning (ng = 250, n = 40) achieves much smaller test loss
than direct supervised learning (n = 40).

Real-data experiments on MNIST dataset. Real-world data experiments on MNIST dataset (Le-
Cun et al., |1998) are also conducted. Following the data model in Definition @ a binary classifi-
cation problem is considered, where the signal u is originated from MNIST dataset with the size of
28 x 28. In the data model, the dimension is set as d = 28 - 28 = 784, and 0, = 200. Figure
presents the signals and dataset in the real-data experiments.

We train a two-layer CNN model with the number of filters m = 16, and the activation function is
ReLU?, and follows the two-stage training procedure of the CNN as depicted in the Figure|l| The
training losses and the test losses of SimCLR pre-training followed by supervised fine-tuning are
compared with its direct supervised learning counterpart. The comparison is made under the same
label complexity condition where the number of unlabeled data in the SImCLR pre-training stage is
no = 200 and the number of labeled data in the fine-tuning stage as well as in the direct supervised
learning counterpart is n = 40. The test losses are calculated using 400 test data points. The
results are presented in Figure[d] Figure d]essentially presents an extreme case where SimCLR pre-
training with supervised fine-tuning and direct supervised learning result in significantly different
performances on noisy MNIST images despite of the same label complexity.

In the following part, we conduct large-scale experiments on both synthetic-data and real-data
(MNIST) datasets. The basic data settings are the same as above experiments.

Large-scale synthetic-data experiments. The synthetic dataset is generated following the data
model in Deﬁnitionwith the dimension d = 400, o, = 4, ||t||2 = 10. The training of the two-
layer CNN model follows the two-stage (SimCLR pre-training followed by supervised fine-tuning)
training procedure as depicted in Figure Here, the number of filters is set as m = 40 with ReLU?
activation function. The number of unlabeled data in the SImCLR pre-training stage is ng = 100000
and the number of labeled data in the fine-tuning stage is n = 250. The test accuracy is calculated
using 400 test data points. In parallel, we also conduct the training of the two-layer CNN model (3:2))
through direct-supervised learning on n = 40 labeled data for comparison, and all the conditions of

13



Under review as a conference paper at ICLR 2025

(a) Signals originated from MNIST (b) Dataset

Figure 3: Signals and the dataset in real-data experiments. The signals are originated from MNIST
dataset. Following the data model in Definition [3.1] noise is added to the signals and obtain the
dataset used in the training.
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(a) Direct supervised learning (b) SimCLR pre-training with supervised fine-tuning

Figure 4: Real-data experiments: Under same conditions on label complexity (n = 40), SimCLR
pre-training combined with supervised fine-tuning (ng = 200, n = 40) achieves much smaller test
loss than direct supervised learning.

the labeled dataset are same as its SImCLR pre-training counterpart. The results on synthetic data
experiments are presented in Figure 5]
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Figure 5: Large-scale synthetic-data experiments: Under same conditions on label complexity, Sim-
CLR pre-training combined with supervised fine-tuning (ny = 100000, = 250) achieves much
higher test accuracy than direct supervised learning (n = 250).

Large-scale real-data experiments on MNIST dataset. Large-scale real-world data experiments
on MNIST dataset (LeCun et al., [1998) are also conducted. Following the data model in Definition
B} a binary classification problem is considered, where the signal p is originated from MNIST
dataset with the size of 28 x 28. In the data model, the dimension is set as d = 28 - 28 = 784, and
the scale of the noise o, = 2. All signals originated from MNSIT dataset are normalized to have
same norm || p||2 = 20. We train a two-layer CNN model with the number of filters m = 16, and the
activation function is ReLU?®, and follows the two-stage training procedure of the CNN as depicted
in the Figure [T} The training losses and the test accuracies of SimCLR pre-training followed by
supervised fine-tuning are compared with its direct supervised learning counterpart. The compari-
son is made under the same label complexity condition where the number of unlabeled data in the
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SimCLR pre-training stage is ng = 13800 and the number of labeled data in the fine-tuning stage as
well as in the direct supervised learning counterpart is n = 40. The test accuracy is calculated using
400 test data points. The results are presented in Figure[6] Figure[6]essentially presents an extreme
case where SIimCLR pre-training with supervised fine-tuning and direct supervised learning result in
significantly different performances on noisy MNIST images despite of the same label complexity.

°
By
o

°
@

°
=
Training Loss

Training Loss

o
o

1000

800 1000

°
o
®

Test Accuracy
°
&
&
Test Accuracy
o
o
&

[
©
2

200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch
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Figure 6: Large-scale real-data experiments: Under same conditions on label complexity (n = 40),
SimCLR pre-training combined with supervised fine-tuning (ng = 13800, n = 40) achieves much
higher test accuracy than direct supervised learning.

We also conduct several groups of real-data experiments of SImCLR pre-training and followed by
supervised fine-tuning on different values of signal-to-noise ratio (SNR), ng, n, and compare their
performance (test accuracies) on the supervised fine-tuning stage. These groups of experiments
are conducted to see how the test accuracies of the fine-tuning stage vary with different values of
no, SNR, n. The corresponding comparison of results for ng, SNR, n are presented in Figures [7] [§]

and Q] respectively.

* The unlabeled data size ng: Figure[7] presents the performance of experiments with different size
of unlabeled pre-training data ny. While all other conditions remain the same, experiments with

larger size of unlabeled pre-training data n( achieves a better test accuracy.
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Figure 7: Training performance comparison for different size of unlabeled pre-training data ng: the
test accuracies in the supervised fine-tuning stage for the experiments with different unlabeled data
size ng (ng = 500, 1000, 2000, 8000, 13800). All experiments are conducted with same labeled data

size n = 40 for supervised learning and same SNR.

* Signal-to-noise ratio (SNR): Figure[§|shows that under same labeled data and unlabeled data size,
for the experiments with smaller SNR, the training performance is worser. For experiment with
smaller SNR, it requires more (labeled or unlabeled) data to achieve a good test performance.

* The labeled sample size n: Figure 0] shows that, in the SImCLR pre-training followed by super-
vised fine-tuning, given a satisfactory number of unlabeled data ng, the condition on the size of
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Figure 8: Training performance comparison for different SNR: the test accuracies in the supervised
fine-tuning stage for the experiments with different SNR. All experiments are conducted with ng =
13800 unlabeled pre-training data and n = 40 labeled supervised learning data, and same scale of
signal ||pt]]2 = 20. Different noise scale o,, are selected and this leads to different SNR.

labeled data n to achieve a high test accuracy is mild. This is accordance with the condition and
the theoretical results presented in Condition d.T|and Theorem 2]

1.0+

[ —
0.8 - r-
=
2
£ 06
3
< 04
g ° — n=s
02 — n=10
1 — n=20
— n=40
0.07 T T T T T T
0 200 400 600 800 1000

Epoch

Figure 9: Training performance comparison for different size of labeled data n: the test accuracies
in the supervised fine-tuning stage for the experiments with different labeled data size n (n =
5,10,20,40). All experiments are conducted with ng = 13800 unlabeled data for pre-training and
same SNR (same signal scale ||p¢|l2 = 20 and noise o, = 4).

Summary of experiment results. The experiments above present typical cases where SimCLR
pre-training followed by supervised fine-tuning achieves a much smaller test loss, while direct su-
pervised learning achieves a larger test loss under the same label complexity. Both synthetic and
real-world experiments match our theoretical results and demonstrate that SimCLR pre-training
could relax the requirement of label complexity to achieve a small test loss.

In the following part, we analyze that whether the result that SimCLR pre-training advantages the
supervised fine-tuning theoretically proved in this paper on CNNs also holds for other models by
empirical experiments.

Real-data experiments on simple Vision Transformers (ViT). Real-data experiments based on
images of digit 0 and 1 in the MNIST dataset are conducted on simple Vision
Transformers. Following the data model in Definition[3.1] we consider the case where clean MNIST
images are treated as “signal patches” and are hidden among other “noise patches”. Therefore, the
dimension for signal and noise patches is set as d = 28 - 28 = 784 according to the size of MNIST
images, and we set the standard deviation of the Gaussian noises to be 0, = 5. All images from
MNIST dataset are normalized to have same norm || pt||2 = 20.

The training procedure involves first pre-training on unlabeled data to minimize the SimCLR loss,
and then the model initialized by SimCLR pre-training is fine-tuned on labeled data to minimize the
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cross-entropy loss. The model f(X) : R¥P — R™ is defined as follows:
f(X) = VX - Softmax ((KX) " (QX)) - 1,,

where the input X € R?*P, p is number of patches, the input is given as X = (x(V), ..., x() ¢
RA*P where x(1) € R¥*1 j = 1,...,p are images patches, and only one of the patches is a
normalized MNIST image, while the other patches are Gaussian noises (corresponding to the noise
patch in our data model in Definition . Softmax(-) refers to the column-wise Softmax function.
The parameter matrices V € R™*4, K, Q € R¥*?, vector 1, = (1,...,1)" € RP*! is a constant
vector of all ones. In the pre-training stage, f(X) and its augmented pair f(X) is trained under the
SimCLR loss, where X refers to the augmented data pair of X following the data augmentation in
Section 32

In the follow-up supervised fine-tuning stage, the model g(X) : R4*? — R is fine-tuned by the
cross-entropy loss £(z) = log(1 + exp(—=z)), where g(X) is derived based on the f(X) initialized
by the pre-training stage,

9(X) = a,, - o (f(X)), (A1)
where a,,, = (ay,...,a,) " € R™isa constant vector with entry a;,i € [m] random sampled from
{—1,1} with probability 1/2, o(-) is the ReLU? activation function with ¢ > 2. Here, we select
m = 40, k = 2, p = 2 in the model setting.

The training losses and the test accuracies of SimCLR pre-training followed by supervised fine-
tuning are compared with its direct supervised learning counterpart on simple ViTs defined in (A.T).
The comparison is made under the same number of labeled data and same other conditions, where
the number of unlabeled data in the SimCLR pre-training stage is no = 128000 and the number
of labeled data in the fine-tuning stage as well as in the direct supervised learning counterpart is
n = 64. The test accuracy is calculated using 400 test data points.

The results are presented in Figure [I0] Figure [T0]essentially presents an extreme case where with
the same labeled dataset, SImCLR pre-training followed by supervised fine-tuning achieves a sig-
nificantly better test performance than direct supervised learning on the simple ViT models. It
demonstrates that the phenomenon that SimCLR pre-training advantages the fine-tuning theoreti-
cally proved in this paper on two-layer CNNs can also be observed in empirical experiments on
other models such as Vision Transformers.
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Figure 10: Real-data experiments on simple ViTs: the training losses and test accuracies compar-
ison in the supervised learning stage for direct supervised learning and SimCLR pre-training with
supervised fine-tuning. Under same conditions on label complexity (n = 64), SimCLR pre-training
combined with supervised fine-tuning (ny = 128000, n = 64) achieves much higher test accuracy
than direct supervised learning on simple ViTs.

B PROOFS FOR SIMCLR PRE-TRAINING

B.1 PROOFS OF LEMMAS IN SECTION[3]

B.1.1 PROOF OF LEMMA[5.1]

In this section, the following Lemma [B-T]is introduced to prove Lemma 5.1}

17
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Lemma B.1. For any 6 > 0, with probability at least 1 — 6, a union bound for ||&|2 and ||&;]2,

i€ [nolis
do? — Cyo2\/dlog(dng /8) < ||&:]|5 < do? + Cao2y/ dlog(4ng/3)

~ ~ (12 .
do? — Cao27/ dlog( ) < ||& , S do? + Cao27/ dlog(4ng/0)

where Cy is an absolute constant that does not depend on other variables.

Based on the Lemma [B.1] the proof of Lemma[5.1]is presented as follows.

Proof of Lemma By direct calculation, we have

V. LSuaneea (W) = Z softmax; - Z exp(sim; i/ /7 — sim; /7) - (Vw,sim; i — Vi, sim;),
noT “ b '
#i

where
exp(sim;/7)
exp(sim; /7) + >, exp(simy i /7)

softmax; =

. ~T |~ T
Vw,sim; = (2;Z; +2;z; ) Wy,

: T T
Vw.sim; i = (2,2, + 2y2; ) - Wy.
Reorganize terms then gives
V. L, onaea (W E E softmax; - exp(sim; i+ /7 — sim; /T) - (Vyy,.8im; ;v — Vyy, sim;)

'rLT
0" = 14/

no .
m; ; ~ ~
— E E ( exp(Sl MI/T) - ) : (ZiZ; + zzvziT - ZiziT - Zz'Z;'r)Wr.
no ) o

exp(sim;/7) + >, ; exp(simy,i/7)

=1
Now define
70 ng - exp(sim; ;, /7
=0 1T 0 - exp( “/ ) 1| (zizy + 2002, — 2:2; 77, ).
nir (1) (b i i i
0T 43 iz \exp(simg” /T) + 37, exp(sim;, /T)

Then by gradient descent update rule, we have
wttD = w® 4 (A + 20w,

Moreover, by the definition of W and the fact that A, =®) are both symmetric matrices, we also
have

Wt — w® 4 W(t)(A + E(t)). (B.1)

By the definition of Tgi,cpr and the assumption that Eg;norr < 1 / 2, for t < TsimcLr We have

log(2/0¢) 12 \/log dn) - \/log(md) }

[1+ (1 — EsimcLr) - HAHﬂt < max { 288 M 72 -
ni2SNR7-2

This inequality further implies that

1400
1+ (1+09)- ||A||2]t < [1+ (1= Esimerr) - | All2] T=SimCLR |
2
< [14 (1 = Esimerr) - |All2] ™

log(2/00) 72 - /log(d ogmd) \°
< max d 28807 . 128(2/00)° '1\/ og(dn) Viog(m ) ol B2
na-2SNR7-2

18
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forallt =0,1,...,TsimcLr, Where the first inequality follows by the fact that 1 + a < (1 + b)“/ b
forall a > b > 0, and the second inequality follows by the assumption that Egimcrr < 1/4 and
(o) S 1/4

In the following, we utilize (B.2) to prove the upper bound |E®) ||y < o - ||A]|2 by induction. To
do so, we first check the bound at £ = 0. We have

ng - exp(simgol) /7T)

IE@5 < 2 max

T i exp(Slm /T) + D i XD s1mZ i /T)
2 ng -exp(51ml g /7-) _
S o wmax © L - (lzill2llzir 2 + (12 2]12:]]2)
exp(51m /T) + D i €Xp(sim; /)
:(0)
8 ng - exp(sim; ;; /7)
< =L (|pl3 + 207d) - max 5 “1, @3
T i exp(sim; /7)) + Dy exp(s1m /7')

where the last inequality follows by Lemma which implies that ||&]|2, [|&]|2 < 207d with
probability at least 1 — d~3. Moreover, by definition, we have

sim”| = (W Oz, WOZ)| < [[WOI2 - |lzi - Zil2 < 2(W O3 (||ul]3 + 202d),

for all i € [ng]. Since W(®) is a random matrix whose entries are independently generated from
N (0, 03), with probability at least 1 — d—3, we have

W3 < er -0 - (d+no) < 261 - 05d,
where c¢; is an absolute constant. Therefore, we have
jsim{”| < ¢z - o3d - (||} + 202d)
for all ¢ € [ng], where ¢ is an absolute constant. With exactly the same proof, we also have
. (0
Jsim{%)| < 2|WO3 - (||pel]3 + 202d) < e+ o3d- ([|p2]3 + 207)

for all 4,4’ € [n] with ¢ # i’, where c3 is an absolute constant. Now by the assumption that op <
O(r'/2.d="2 . min{||p||5 ", 0, 'd=1/?}), we have 1sim{"”), |51m§(?,| < 7/4. Since |exp(z) — 1| <
2|z| for all z < 1, we have
|eXp(81m /T) 1 < 2|s1m /T| <cy-opd- (||pl3+200d) <1/2, (B4)
|exp(simi7i,/7) 1 < 2|31m /T| < cs-opd- (||pl|3 +200d) <1/2 (B.3)

for all 4,7' € [n] with ¢ # i’, where ¢4, c5 are absolute constants. Therefore, for all i,i" € [n] with
1 # 1/, we have

no - exp(simg’oi), /T) ‘

exp(simgo)/T) + D i exp(simz(-?i),/r)

U - |zizg +zoz] — 22 — Ziz] ||

- no - [exp(simz(.?i),/r) —1] N no .

B exp(simgo)/T) + Zi,,# GXp(SimEg)//T) exp(31m( )/7') +>. i exp(s1ml 1,/7')

§ o - [exp(sim5y /7) — 1] [ esplsimi® /7) + 55,11 — explsim /7))
- exp(simz(-o) JT)+ i s exp(simgg)//T) eXp(SimEO)/T) + D i exp(simz(.?i),/r)

< |mo [exp(mm(o) /7) —1] 1- exp(simz(-o)/T) + D gl — eXp(Siml(.?i),/T)]

B no/2 no/2

< ¢ opd- (|pll3 + 20,d),
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where cg is an absolute constant, and the first inequality above follows the triangle inequality, the
third inequality applies and to the denominators, and the last inequality applies and
(B3) to the numerators. Plugging the bound above into (B.3) then gives

— cn
IEON, < = - o3d- (lull3 +207d)* < o0~ * - [|ull3

2
<00 (1= EsimoLr) - —” el < o0 - [|A]]2 (B.6)

where c7 is an absolute constant and the second mequahty follows by the assumption that oy <
O(d=" - ||pe))3 - min{||p]|5?, (o 2d)~?}), the third inequality is by the assumption that EsimcLr <

1/2, and the last inequality is by (1 — Esimcrr) - 2 - |uf3 < [|Al2 in Lemma Now let us
suppose that there exists {g < Tgimcrr — 1 such that for ¢t =0, ..., ¢, it holds that

IE®l2 < o0 - [|All2.
Then we have
A +EDly < (1+00) - [|A]2,
forallt = 0,...,%. Then by (B:I), we have
[WEFD |, < [WE 5 T+ A + B,
Wy (14 [[A ]2 + [EC)]2)
(1+ (1 +00) - |All2) - W,

IA AN

< (1+ (14 00) - [All2) "+ - [WO 5

1 2
L log(2/a0) 7 - (/1 ]
< max{288Mq2 108 (2/00)7= - /log(dn) - log(md) } - O(00Vd),

n2SNR72
(B.7)

where the last inequality follows by (B:2). The rest of the proof follows almost the same derivation
as the bound for || Z(?)||,. We have

(to+1)
_ . ng - exp(sim; 5, /7) -
Hﬂ(t“H)Hz < " max +1) = +1) Nzizy + 2oz — 2.2 —
A exp(sim ) /) 4+ Y, exp(sim'y Y /7)

(o+1)/ )

7,1
exp(sim{"™ /7) + 3, exp(sim{ 'S /7)

ng - exp(sim t0+1)/7')

7,3/

exp(s1m(t°+1)/7') + D i exp(81m( 0+1)/7') "
(B.8)

2n ng - exp(sim
— max
T i

IA

‘ “(lzill2llzi M2 + lzill2]Z:]]2)

8n 2 2
< 1. 20°d
— (lullz +20,d) - max

where the last inequality follows by Lemma which implies that ||&]|2, [|&]|2 < 2072d with
probability at least 1 — d~3. Moreover, by definition, we have

[sim{* V| = (W Dz, WD Z)| < W3 2,z - [Zi]]2 < 2 WD I3 - (u]3 +207d)
forall i € [ng]. By (B.7), we have

4
log(2 log(dn) - /1 d)
Hw(to+1)”g < max 288M‘11 Og( /UO \/Og TL \/Og m 2 . O(ggd)
na- 2SNR« 2

Therefore, we have

1 4
1 log(2 a2 log(dn) I d)
jsim{to )| §max{288Mq2. 08(2/00)* \/SOg n) - /log(m } - O(02d - (|2 + 202d))
na—zSNR2
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for all i € [ng]. With exactly the same proof, we also have

sim{@ )| < max { 2sgpre . 108200 \/IOg dn) - \/log(md)
na- 2SNR4 2

4
2} -O(ogd - (|3 + 207d))

for all 4,4/ € |[n] with ¢ # 4. Now by the assumption that oy = min{288M 77

nda— 2SNR‘I 2

(t0+1)| |51m§tf/+1)| < 7/4. Since |exp(z) — 1| < 2|z| forall z < 1, we have

10%(2/00)‘? 2 \/10g dn )-\/log(md) } . O(T1/2 S d-2 . mln{HNHQ ’ pld 1/2}) we have

|sim

lexp(sim!" " /7) — 1] < 2[sim{" Y /7|

4
log(2 log(dn) - \/log(md
< max | 2ssar7ts . [BR/00) T2 - Viowldn) - log(md) o L2y )2 4 252a))
nQ*Z’SNRr?
<1/2, (B.9)
and
|exp(sim{’s ™ /7) — 1] < 2[sim{'s ™V /7]
4
log(2 log(dn) - \/log(md
Smax{288Mq1 08(2/20) 72 - /log(dn) - y/log(m ),2} -O(ogd - (||p])3 + 207d))
an’-’SNR‘I*2
<1/2 (B.10)

for all 4,4’ € [n] with ¢ # i’. Therefore, for all 4,7’ € [n] with i # 4/, we have
ng - exp(51mZ Z,+1)/’T)

exp(sim(® D /1) + Y, exp(sim S fr)

< ng - [eXP(Slmz 3+ )/ ) —1] n ng B
B exp(s1m(t°Jr1 [T) + 2 i s exp(s1m fo+1) /7) exp(s1m(t°+1)/7') + D i exp(s1m( 0+1)/7')
_ ng [exp(snn 0+1)/T) 1] 1 —exp(mm-tOJrl [T)+ 2 im L —exp(si 4 / )]
= +

D7) + Tprgr GG /7)| | oS 77) 4 5 g5 )
_ |0 fexp(simiZ ™ /r) — 1|1 exp(simi® " /7) + 3511 — exp(simiy /7))
- n0/2 ’17,0/2

4
log(2 log(dn) - /1 d)
< max{zgqul 08(2/70)7% - Vlog(dn) - /log(m 2} 0(03d- (|ul3 +2024).
na- 2SNR<1 2

where the first inequality follows by triangle inequality, the third inequality applies (B.9) and (B:I0)

to the denominators, and the last inequality applies and (B.10) to the numerators. Plugging the
bound above into (B:8) then gives

4
log (2 Tog(dn) - \/ITog(md
|E<t0+1)||2<max{288Mqi 08(2/00) 72 \/Og n) - /log(md) } 1 0(02d - (|3 + 2020)%)
n=2 SNR 722 T
2n
<o~ |lplls < oo (1 - EsimeLr) - — el < oo - 1Az,

where the second inequality follows by the assumption that oy < min{288M =

10g(2/00)'1 2. \/log(dn -y/log(md)

nda— 2SNR‘Z 2

} -O(d~" -min{|p)|5*, (02d) =2} - ||p]13). the third inequality
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is by the assumption that Esimcrr < 1/2, and the last inequality is by (1 — EsimcoLRr) - 7” |lel3 <
|All2 in Lemma Therefore, by induction, we conclude that

IEV]l2 < o0 - [|A]]2

forallt =0,...,TsimcLr. This finishes the proof. O]

B.1.2 PROOF OF LEMMA[5.2]

In this section, the following Lemma [B-2]is introduced to prove Lemma[5.2}

Lemma B.2. Let A be the matrix defined in Lemma and define A
2L 3 — (0, vi)? up", A = A — Aq. Then it holds that

TLOT

1. —1 1 2 —1
A2 < (SNR )+O(SNR \/770) +O(SNR )
+ 6(SNR_2) - max { 10%1(:0/6) 10g7(i/5) } pn e Hz

Based on the Lemma[B:2] we give the following proof of Lemma|[5.2]

Proof of Lemma([5.2] Consider S = Ay = 2L [nd — (X i)? m™, ¥ = A, and denote

nOT
A > AL AL A AL > )\dtheelgenvaluesofmatrixE,E,andA =¥X-3
respectively. By Lemma [B.2] we have

_ ~ _ 1 ~ _ _ _o log(9/6)| n
A NR™! 1 NR!. — NR2.p71 .QNR2. /7 D 2
A2 < (S R™" -ng )+ O(SNR \/TTO)+O(S R™-ny ) +c3-SNR o T||u||2

Denote

) L BENR ) 4+ e - SNR2. 1080/0)

U=0(SNR™*-ng')+ O(SNR™*.
no no

then by assumption we have U = O(SNR™! - nal/z) and U < 1/2. Then we have
AL > [ Aollz = [[A]l2

2
2n 0
MT%<Z%>‘Wﬁ|MM
0 i=1

2n 210g25
z <1 771( / )> Nullz = 1Al
0
2log(2/5) U\ 21
> (1- 2820 T g ®.11)

where the second inequality is by |>"1°, y;| < 1/2ng log(2/ 4)in Lemma | and the last inequality
is by Lemma|[B.2] This proves the lower bound of \;. Similarly, for the upper bound, we have that

2n 7
A< [ Aollz + Az < 7||u||§ +[|Al2 =(24+U)- = (e (B.12)

A

where the second inequality is by A = 2L [n3 — (72, vi)?] || ll3

w2 21| p[|% and the upper
bound of || Al|5 in Lemma[B.2]
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By the variant of Davis-Kahan Theorem (Theorem 1 inYu et al.|(2015))), we have that
I3 — 3|2
Ao = M|
o 15 - S
Al
@) 1Al
T ER PAN
B 1
Hulz/llAfl2 -1
(i) [
< 5 770
- 1-U
where (i) is by A, = 0 based on the definition of 3, and (i) is by the lower bound of A; in (B-11),

and (iii) is by the upper bound of ||Al|; in Lemma[B.2] Since Vi = p by the definition of A,
denote i1 = (1/]|p]) e, it follows that

sinf(vy,vy) <

(B.13)

1-2U0
A= up
where without loss of generality, we assume (vq, ) > 0, and the second inequality is by (B.13).
Therefore,

(vi,t) = cosO(p,vi) > 1 —sin®O(p, vy) > (B.14)

) = v, i) = =g el (B.15)
Moreover, by definition, we also have
IPvill3 = [|vi — (vi, ) H||2

=1-2(vi, 1) + (v1, 1)

=1—(vi,p)?

o [ 1-2U r

- (1-0)?

_ U(U? —4U +2)
1-U)*

< 3207,
where the first inequality follows by (B:14), and the second inequality follows by the assumption
that 0 < U < 1/2. Therefore, we have

IPvil2 < 4V2- UL (B.16)
Finally, we prove the upper bound of max;>2 A;. Since we have
IA = Xivivy [l <A = Aollz + [[Ag — Avivy |2
= Allz + [MART = MAv] +AAv] — Aviv] + Aviv] = Aviv] [l
<[|Allz + 2X1||ﬂ —vill2 + A2
Lot 4 2032

4+/2U
<2U+\[)|| 12, (B.17)

U
where (i) is by |2 — vill3 = A]3 + [[vall3 — 2(vi, @) = 2(1 — (vi, ) < 2[1 — =] =

202/(1 — U)? based on (B.14) and A, = 3’77 g — (0 vi)?] [|mll3 < 22||p||3, and the bound
of | Al|2 in Lemma|[B.2]
Now, combining the conclusions in (B-11)), (B:12), (B-13), (B.16), and (B-17), we see that by set-

ting Esimerr = OU + ng ' log(2/6)) = O(max{SNR™! 71/2 ,ng ' }), all the conclusions in
Lemma[3.2]hold. O
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B.1.3 PROOF OF THEOREM[5.3]

In this section, the following Lemmas[B.3]and [B-4]are introduced to prove Theorem 5.3}

Lemma B.3. Let A be the matrix defined in Lemma and let \;, v;, i € [d] be the eigenvalues
and eigenvectors of A respectively. Suppose that d > Q(log(2mng/)), m = Q(log(1/8)). Then
with probability at least 1 — 0, it holds that

(w® vi)| < /21og(16m/6) - o

forall v € [2m] and all i € [d]. Moreover, there exist disjoint index sets 7,7~ C [2m] with
|ZF| = |Z~| = 2m/5 such that

(W v1) > 00/2 forallr €T, (W% vi) < —o0/2 forallr €T~

Lemma B.4. Let A be the matrix defined in Lemmal5.1) and let \;, v;, i € [d] be the eigenvalues and

eigenvectors of A respectively. Let E be any symmetric matrix with |Z||2 < o - |All2, and let X;,
V;, i € [d] be the eigenvalues and eigenvectors of A + = respectively. Suppose that Egimcrr < 1/4
and o9 < 1/4. Then the following results hold:

i — Xi| <oo-||A

2,1 € [n].

© [(vi,v1)] > 1—40d.

o [(vi,Vi)| < 4o, i > 2.

e Let PL =T1—viv], then |P{ vi]2 < 4oy.

Therefore, based on the Lemmas [B3] [B:4] [5.1] and [5.2] the proof of Theorem [5.3]is presented as
follows.

Proof of Theorem[5.3] Denote

Xcol = Span{”7£1a s 7£n0a€13 e agno}a Xrow = Spa‘n{lJ'T7€;rv e 751—’[0757 e 750}'

Moreover, let ey, ..., €a,,4+1 be a set of orthogonal bases in Xy, and let 1 = p/||pll2, Px =
2no+1 T plL _ \2no+1 T T
dim1 eie Py, = diml eie] —Vivy.

By Lemma[5.1] for t = 0, ..., TsimcLr. We have

Wit = wi + (A +E)w, with |ED 2 < 00 - [|A ]2,

T T

where the columns and rows of 2®) are in X.o and Xyow respectively. By definition, it is clear

that the columns and rows of A are also in X, and X}, respectively. Therefore, we see that the

rank of A + E® is at most 2ng + 1. Denote by A", .| /\SQOH and vi" . v the first

2no + 1 eigenvalues and eigenvectors of A + Z(*) respectively. Since Vgt) and —Vgt) are both the

first eigenvector of A 4+ =), without loss of generality, we can assume that (vgt), vy) > 0 for all
t>0.

By Lemma [B.3| there exist disjoint index sets ZT,Z~ C [2m] with |Z1| = |Z~| = 2m/5 such that
WO vi) >0¢/2 forallr e 2T, (w9 vy) < —0¢/2 forallr € ™. (B.18)

Note that ||Pi’V1W£O) ||l2 is essentially the Euclidean norm of a (2n()-dimensional Gaussian ran-

dom vector with independent entries from A(0,02). Therefore, by Bernstein’s inequality, with
probability at least 1 — d~2, we have

005 < [P, w3 < 4ngag
for all € [2m)]. Therefore, we have

go - v/ No S ||Pi7V1W7(WO)||2 S 20’0 4/ 1NQ- (B19)
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Similarly, with probability at least 1 — d~2, we also have

IPw |2 < dog - /. (B.20)

In the following, we use induction to prove the following results:

(vi,w) >0, rezt, (B.21)
(vi,wy > /oo [Py, w2, r e IT, (B.22)
||P)L()V1W£t)||2 > /ao - (vi,w®), e [2m]. (B.23)

We first check that (B:21)), (B:22) and (B:23) hold for ¢ = 0. We see that (B.21) directly follows by

(B-18). By (B.18), we have
(vi. W) > 00/2 > 2007 - /g > Vo0 - |[PE ., w2

for all 7 € ZT, where the second inequality follows by the assumption that g < 1/(16n), and the
third inequality follows by (B19). Similarly, we have

P23, Wl > 00 - /Mg 2 400" - /iig 2 V30 - [Paw 2 = /55 - (vi, wi”)

for all r € [2m], where the first inequality follows by (B:19), the second inequality follows by the
assumption that oy < 1/16, and the third inequality follows by (B.20). Thus, we have verified all
the induction hypotheses at ¢ = 0.

Now suppose that (B.2T)), (B:22)) and (B:23) hold for all t = 0,1, ..., ¢, where tg < TsimcLr — 1.
Then by Lemma[5.1] fort = 0, ..., TsimcLr, We have

Wl = w® 1 (A 4 2Oy,
Then fort =0,...,tpandr € ZT, we have

(Wit vi) = (Wi, vi) + v (A + ED)w
2ng+1
_ Z ADYT Oy OT 40

2ng+1
= (w® vi) + A0V VIV Tw 1+ S ATy Tw(®
1=2
2ng+1
:<w7(f),V1>+)\gt)v1Tvgt) (t)TP wt) 4+ Z )\(t)vTv )v(t)TP wt)
=2
= (wi,vi) £ AV VT PR, 4 viv]w

2ng+1
+ Z )\(t)vIv(t)v(t)T(P L Fvivy )w(t)

=(14+N) - (WD Vi) + I+ I+ I3+ I, (B.24)

where the fourth equality follows by the fact that vfo € X.o1, and

I, = )\( ) gt)vgt)TvlvlTW,(f) A - <W£t)’vl>’
I = )‘ Vi vlt)VY) Pi’,vlwgt)a
2no+1

I3 = Z /\(t)vTv(t)v(75 vlvlTw,(f),
2n0+1

I, = Z )\Et)VT ® (t) PX - 7(ﬂt)'

=2
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We give upper bounds of |11, |I2], |I3| and |I4|. By the induction hypothesis that vlTW,(f) >0, we
have

L > (1—00) A - (1—403)? - (w,vi) = A - (W) vy)
> (1—200) - A - (Wi, vi) = A - (wif,vy)
> —200A1 - <W,(«t)7V1>,
where the first inequality follows by Lemma|[B.4] Similarly, we also
L <(1400) M- (WO vi) = A - (W vi) <ophp - (Wl vy).
Therefore, we conclude that
11| < 200A1 - (W) vy). (B.25)

Let Py, = I—vyv] . Then for I3, by the property of project matrices, we have Py , = Py Py | .

and therefore
L] = AOvIv (PE Vi) TP |, wit)]
< (14 00)A - 400 - [P, w2
<8001 - [Py, Wl
< 8y/a0 - A (Wi, vy), (B.26)

where the first inequality follows by Lemma[B-4] and the third inequality follows by the induction
hypothesis. For I3, we have

2no+1
1< ST AL v v v w®
1=2

T

EsimcLR 2
< - | —2mCRR A - 1602 - (w®
= “ho <2(1 — ESimCLR) oo ! % - (W, v1)
< npoghy - (Wil vy), (B.27)

where in the second inequality we use Lemmas [5.2] and [B:4] and the last inequality follows by the
assumption that 0, EsimcLr < 1/64. Finally for I, we have

2no+1
L < | 20 A ) TPy Wl
1=2 2
2ng+1
<\ 2 N v v PR W
i=2
& im
<V/2np - (S IR 4 ao> A -dog - [Py, w0
2(1 — EsimcLr) ’
< Vg - oods - [Py, w2
< Voag - A (W vy, (B.28)
where the second inequality follows by the fact that vgt), 1=2,...,2n0+1 are mutually orthogonal

unit vectors, the third inequality follows by Lemmas[5.2]and[B-4] the fourth inequality follows by the
assumption that 0, EsimcLr < 1/64, and the fifth inequality follows by the induction hypothesis.

Now plugging (B-23)), (B:26)), (B-27) and (B.23) into (B:24)), we obtain
[1 —+ (]. — 2\/77,(]0'()))\1] . <W£t),V1> S <W£t+l),V1> S []. + (1 + 2\/TL00'(])>\1] . <W£t),V1> (B29)

forallt =0,...,toand r € ZT, where we use the assumption that oo < 1/(8n3) and o9 < 1/512.
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Moreover, fort = 0,...,ty and r € [2m], we also have

Py, Wi =Py, W + Py, (A +E)w

2no+1
_ Pi«,vlvvﬁ“ + /\g) .P)L(vagt)vgt)ngt) + P?lfm ( Z )\gt)vz(t)vl(t)T>W£t)
i=2
=Py, WO+ I+ I+ I; + Iy, (B.30)

where
Is = /\(t) ~P}( "V (t) 5) PX “W w®)
y

I —/\(t) P Vlvgt) Ty 1Vy w(t)

2no+1
= P( 3 Agﬂvgﬂvw)w,vlw,@x

i=2
2no+1
Iy =Py ( Z )\(t)v(t) uﬁ)v viw,
V1
i=2
For I5, we have
15| < (1+00) - 1607 - [Py o, w2
<32M0¢ - |Px .y, w2, (B.31)
where the first inequality follows by Lemma[B.4] For I5, we have
|Iﬁ‘ S (1 —|— 0'0)A1 . 40’0 . <W£t),V1>
< 8\ - (W), vy)
< 8Mivao - [[Pxy, w2, (B.32)

where the first inequality follows by Lemma[B.4] and the third inequality follows by the induction
hypothesis. For I7, we have

t
[I7] < max A7) [Py, wi |

EsimCLR N
S T a— - [P w®
B (2(1 — &SimCLR) too ) A [Py, Wil
2
< 3 Esmorn - A [Py, w2, (B.33)

where the second inequality follows by Lemmas[5.2]and [B.4} and the third inequality follows by the
assumption that Egipcrr < 1/16 and 0g < EsimeLr/16. For Is, we have

2no+1
sl< || D0 A vavi?) v (wl v
i=2 2
2no+1
<\ D0 AP v v (Wl v
=2
& im
2(1 — EsimoLR)
< /no - Mo - (wl (t) vi)
< /nooo - A1 - |[P% V1w§t>||2, (B.34)
where the second inequality follows by the fact that vgt), 1 =2,...,2n9+1 are mutually orthogonal

unit vectors, the third inequality follows by Lemmas|[5.2]and[B.4] the fourth inequality follows by the
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assumption that o, EsimcrLr < 1/64, and the fifth inequality follows by the induction hypothesis.

Now combining (B.30), (B31), (B-32), (B-33), and gives

5 5
(1 - 65SimCLR)\1> Pxv, w2 < [Py, W, < <1 + GESimCLRM) P2, w2

(B.35)
forallt = 0,...,to and r € [2m], where we use the assumption that oy < &3, g/ (64n0) and
00 < EsimcLr/16.

Now by (B:29) and (B-33)), we have
(Wit v o 1+ (1 —2y/mgo0)h <W£t°),V1> N <W£t°),V1> > o0,

IP4 Wi, ~ 1+ (5/6) - Esimorr M [P, Wi~ [P, w2

for all r € Z, where the second inequality follows by the assumption that og < £2, i/ (64n0).

This verifies the induction hypothesis att = to + 1. Moreover, by and (B.353)), we also
have

wi vy [P
1 1
P4, wi )y~ PL ., wio
[+ (1 + ao)M] - [Paw™ 2

T (1 - 5EsimcLrA1/6) - [[PY o, wi 15
o)”

Pywy
< 1+ (14 Esimerr)A] - IPrw )
P v, w2

X s V1

P ow®

< [1+ (14 EsimeLr) A1) LA

1P, w2

(0)
14+€gim
<1+ (1 = EsimcLr) M) TF Simoin . m
1Py, wi” 2
P xw, )||2

< 1+ (14 Esimerr) Ay |2 Toimorn . -2 20 5=
P V1WT Iz

for all » € [2m], where the second inequality follows by Lemma [B.4] the third inequality follows
by the assumption that oy < Esimcrr/64, and the fifth inequality follows by the fact that 1 + a <

(1+ b)“/b for all @ > b > 0. Now by the definition of Ts;,cLr, We know that

10g(2/00)q+2 \/log dn) - /log( md
n72SNR 72 '

[1+ (1 — EsimeLr) A1) S™CM® < max {288]\/[;"’ .

Therefore, we have

<W7(»t°+1),v1> < max 4 2880 77 - log(2/0¢)a—= \/log dn) \/log md) . ||PXW7(nO)||2
||PX V1W£ 0+1)||2 - na- 2SNR‘1 2 ||PX V1WT ||2
< max 288007 . log(2/0¢) 72 \/log dn) \/log(md)’2 4o - \/no
n2SNR 72 a0 /1
<oyt

for all » € [2m], where the second inequality follows by (B.19) and (B.20), and the last inequal-

ity follows by the assumption that og < 6(M “T7 opTe SNR#). This verifies the induction
hypothesis (B:23) at t = ¢ + 1.

Based on the discussion above, by induction, we conclude that (B:21)), (B:22), (B-23), (B:29), and
(B33) hold forall t = 0,...., TsimcrLr. In other words, we can conclude that:

(14 (1 —2ynoo0)M] - (wh vy) < (Wit vi) < [14 (1 + 2y/n000) M) - (W, vi) (B.36)

28



Under review as a conference paper at ICLR 2025

forallt =0,...,TgimcLr andr € ZT, and

5 5
(1= Zesmornn ) P, w0l < [P, il < (14 2esmernin ) - [P, w0 e
(B.37)

forallt = 0,...,TsimcLr and r € [2m]. Moreover, by Lemma and the fact that the columns
and rows of A, 2(*) are in Xeol and Xioy respectively, we also have

Prw( ) = 1+ A + EVPyw?
forallt =0,...,TsimcLr and all » € [2m]. Therefore, by Lemmas-and we have
IPaw! ]y < (1+ (1+00)A1) - [Paw |2 (B.38)
forallt =0,...,TsimcLr and all € [2m]. By (B:18) and (B-36)), we have
(WISt vi) > [1+ (1= 2y/ga) ] - (wl®), vy)
> [1+ (1 — 2y/ngag) 1] 5mCLr . g /2 (B.39)
for all » € Z. Moreover, by (B.19) and (B:37), we also have

5 TsimCLR
IP% . w(TsmeLr)||, < (1 + 6SSimCLR>\1) . ||Pj)7vlw£t)||2

5 TsimcLRr
< <1 + 6gSimCLR)\1) “200 - /1o (B.40)
for all » € [2m]. In addition, by (B:38), it holds that
[P yw{Tsmerr) |l < IPpw Dy < 4(1+ (14 0p) A1) Bmerr g - /g (B.41)

forallt =0,...,TsimcLr and all » € [2m], where the last inequality above is by (B.20).

Now denote it = p/|| |2, and P,J; =T— afn". Then forall » € ZT, we have

(wilkmern) ) = (wTsmers) P )
= (wl (TsimcLR) (PX v + V1V1T)N>
= (w (TsimcLRr) LI—Px)i) + <W§Ts;mcLR) PX .y i) + <W£TSimCLR.), vi) - (vy, @)
< (TSlmCLR) PL ﬁ> + <W£TSixIICLR)’V1> . <‘717 u>

> *”PX v1w£‘TSnnCLR ”2 + <W£T3imCLR)’V1> . (1 _ ESimCLR)7 (B.42)
where the first inequality follows by Lemma 5.2} Moreover, we also have
1+ (1—-2/npo TsimeLr . g /2 1 .
[ ( 000)A ] 0/ > 1+ (1 = EsimcLr) - /\1]Ts;mCLR

200+/M0 - (1 + 5EsimcLrA1/6)TsmeLr = 4, /ng

.
> L L assarats  1082/00) T - Viog(dn) - /log(md) |,
4v/no ni~zSNR 72
1
> -
_40’()@/7’110

> 2,
where the third inequality is by the o9 < O(M 72 - na-2SNR 72 ), and the last inequality is by
oo < 1/(64ng). Therefore, by (B.39) and (B.40), we have
Py wiTsmenn]; < fwfTmenn), vy
and hence by (B.42), we have
(wiFomern), ) = fTmcin), )]
> (wlTsmein), v /4
> [1 + (1 — 2\/77,00'0))\1]TS”“CLR oo - HIJ/HQ/S (B.43)
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for all » € Z%, where the last inequality follows by (B:39). In addition, since the update only

happens in the subspace X, which is spanned by the data, we have (I — Py)w (Tsimorr) _ =(I-

Py)w § ). Moreover, we have

HPJ_ Tsm,CLR)H _ ||(I Py + PX v+ V1V1 — i ) 7(ATSimCLR)||2
<Pl [Pk, 4] a7
<A =Pa)w V2 + [Py, w4 || (viv) — pja " yw(TEmern)|y,

(B.44)
where the last inequality follows by the fact that (I — P X)wfﬁo) is a centered spherical Gaussian
random vector with standard deviation bounded by oy, and by Gaussian tail bound, with probability
atleast 1 — d~2,

I(X—Pa)w |5 < 4oy - \/dlog(md), (B.45)
for all € [2m]. Moreover, we have
Ivav = i wiTsmerm) g < (ve = v w5y + | a(vy — @) T,
= (w{Tsmerr) vy ||vy — fil|s 4 |(vi — @) Tw{Tsmorr))|
< (wiTBmer) ) - vy = il + |(vi = ) vy - v wiTsmenn))|
+livi = )Py wiTmen)|
< (wiTEme) vy vy — Alls + (wiTSmem) v - |(vi = @) v
+ Vi = il - [Py, Wi
< (V2 Esimerr + Eqmerr) - (WEm) vy
+ V2 EsimeLr * [Py, wiTsmerm) |
< 2Esimerr - (wIsmerr) v\ 4+ ||P% - w(TsimoLr) ||,

< 2simorn - [PawiTmm| 4 [P, wilsmet)
(B.46)

Plugging (B-46) and (B-43) into (B.44) gives
|‘P‘J;W£Tsin1CLR)H2 < 40 - /dlog(md) + 2E5imCLR. - ||PXw£TssmCLR)|‘2 + 2||P)L(’VIW£Tsan)CLR)“2.

Therefore, we have that forr € Zt and v’ € [2m],

(TsimcLr) (TsimcLr)
2 T 7l>L> = i (T’M> ) T
”PIJL_WT/ SimCLR HQ dlog md + 2€SlmCLR ”PXW SimCLR H + 2||PX . W, SimCLR H2
. 1 win <W£Ts.nICLR),H> <W(TSImCLR)’ /J'> < (TSimCLR),/L>
-3 400 - dlog(ﬂld)7 2ESimCLR. - ||PXW(TS1mCLR)|| 2||PX - 7(ATSmeLR) ”2

By (B.39), we have

(i) ) [ (1= 2y e e
dlog(md) — 4+/dlog(md)
[1+ (1 = Esimerr) ] me - [plls - oy
dlog(md)
[1+ (1 — EsimcLr) A1) T5mcLr - SNR - 0y,
4+/log(md)
o, 1og(2/ffol)q%2 : Qlog(dn)7
na—2SNR7-2

>
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where the first inequality is by the assumption that oy < EsimcLr/(410), and the second inequality
is by the definition of Tgimcr.r, Which implies that

log(2/0g) a2 \/log dn) - \/log( md

[14 (1 = Esimernr) M) ™™CvR > 288M 77 -
na- zSNR« 2

By (B.41) and (B.43), we have

< (Ts,imcLR)7 U> N [1 + (1 — 2%))\1}7@“)0”{ o - HN”2/8
2simorn - [Paw "]y~ Ssmor - (1 (1+ o)) o0 o

_ [T+ (1= 2y/meao) ] e -]
64€simeLr - (1 4+ (14 o) Ap)Tsimerr - /ng

> ll el
B 64gSlmCLR . (1 + (1 + Uo)Al)TSixnCLR . \/TTO
> £l _
64EsimeLr - (1 + (1 — 581mCLR))\1)m TSimCLR | N

> (£l
~ 64Esimorr - (1 + (1 — EsimeLr ) A1 )2 simerr M’

where the second inequality follows by the assumption that o9 < 1/(4ng), the third inequality

follows by the fact that 1 + a < (1 + b)*/? for all @ > b > 0, and the fourth inequality follows by
the assumption that 0, EsimcLr < 1/4. Now by the definition of TsimcrLr, We know that

o 10g(2/00 \/log dn) - 1/log( md
ni2SNR72 .

[1+ (1 = EsimeLr) M| ™" < max {288Mq

Therefore, by the assumption that

vﬁ nq2SNR;z
gSlmCLR >~ 3

64288272 \fig - M72 -log(2/0qg)a- i -log(dn)? - log(md),
we have
T B e
2ESimCLR - HPXW(TS““CLR) |y~ 64&simcLr (1 + (1 — EsimeLr) A1) Simern/ng
SNR - oy, - Vd

 64EsimcLr(1 + (1 — EsimcLr) A1) Tsmerr | /ng

- g, . BRI - flog(dn)]
n2SNR7 2

Finally, by (B.39) and (B:40), we also have

(w5 ) [ (1= 2y/000) M [T

im Tsim
2P, wiEm Wy T8 g - (14 SEsimerrAr)
o [0+ (1 = Esimorr) M5 - ]l
o 8\/710
14 (1 = Esimerr) A1) TEmerr - SNR - 0,1/d
8o
%
> 72Mq%20p- log(Q/UOI)q 2 210g(dn)’
na—2SNR7-2
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where the second inequality follows by the assumption that oy < &3, crr/(6410), and the last
inequality follows by the choice of Tsimcr,r Which implies that

_1
[+ (1~ EsimeLr) ) Tomerr > 2880 72 - log(2/00) 7 ~1\/10g(dn) - Viog(md)
B ni2SNR7 2
/o - log(2/00) 72 - /log(dn)
nT2SNR77 - d

> 576 M 72

)

where the second inequality follows by the assumption that d > 4ny. Therefore, we conclude that
forr € ZT and 7’ € [2m], we have

(TsimcLr)

log(2/00) 7% - /log(dn)

e ’(g>. Y= 24Mﬁ‘7p T 3 ; (B.47)
(X — g™/ 1) w5 na-2SNRw=2
Now for any r’ € [2m], consider the following decomposition for Wf,,TSimCLR):
Tsim fine-tunin fine-tunin
W ) = s D e €575
i=1
where w; is perpendicular to g and €7 £h0N Then we directly have
— <W£TSimCLR),u> (B.48)

fine-tuning

i , % € [n]. Forany i € [n],
(TsimcLR) éﬁne—tuning>
r! 784

for all » € T+. Note that w'/*"°*) is independent of &

fine-tuning
%

considering the randomness of & , we see that (w is a Gaussian random

. . L Ts;
variable with mean zero and standard deviation o, - waA, SimOLR)

bound and union bound, with probability at least 1 — d~2, we have

[(wfsimern) glnetningy| < g5y (Fmer) |, Mlog (dn).

Now denote E = [El’ .. ,gn}, D = diag(”s?ne—luning”;Q’ Hggne—tuning“2—27 o ”S’frilne—tuningH;Q)’
pr' = [pr' 15+, prn) . Then we have

|l2- Therefore, by Gaussian tail

Tim T Tim T
[w et T = lw (Bt TN — e /|| pl|3)E

Tsim
<80y - [|(X— pua” /|| ll3) w5 |y - \/log(dn).
By definition, we have
(wilsmern) ey — D i (& &io)/NI&3,
i=1
and
EwiTSimCLR) _ ETEDpT/.

Moreover, we have

_ 1 o _
(ETE) ;] = i (T+0,%d - ETE-T))7'];|

p
1 - -2 3—1 T k

== I+) (I-0,%d" E'E)
p k=1 ij
3/(202d), ifi=j

< P .

{1/<2no,%d)7 ifi # 5, (549
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where the last inequality follows by the fact that (I — ¢;2d~! - ETE)" is an n x n matrix whose
entries are bounded by 5(d_1/ 2) according to Lemma Therefore, we have

P ]loe < [DHETE) ' Ew!/smer)||

— — TSim
<D Yoo - [(ETE) oo - [EwTsmerm))|
3 2 Tim
< Jopd- —= 80 10— /|3y w2 - \/log(dn)
UP
=240, (T — pp /|| pl|Z) w55 - /log(dn) (B.50)

for all v’ € [2m], where the third inequality follows by (B-49) and Lemma|C.8] Therefore, combin-
ing (B:47)), (B-48) and (B.50), we have

LIS ) ., M7= log(1/on) 72
ol = 20y [~ s [l Bw o logldm) ~ nesSNRe:

forall 7 € Zt and all v € [2m]. By (B:39), it is clear that v, > 20y for all r € ZT. This further
implies that

_1_ _1_
e/ 1og(2/7,) M
2 1 2
| ni-2SNR72
forall r € Z" and all ' € [2m]. With exactly the same proof, we can also show that

1
—r/log(=2/7)77 M7= log(l/oo)q 2
| i = pT2SNRiz

forallr € Z~ and all 7' € [2m).
Finally, for all » € [2m], by Lemma 5.1} we have
W) — w® 4 (A 4 20w
fort =0,...,TsimcLr- Therefore, we have
1w ll2 < [fwifsecrmly
< (L4 (1+00) - Ar)Smerr - w(@],
< (14 (1+09) - Ap)BEmerr 950 .V/d
< (14 (1= Esimorr) - A1) TFomein Hmrn g0 /g
< (14 (1= EsimeLr) - A1) 5 - 204 - Vd

where the fourth inequality follows by the assumption that o, EsimcLr < 1/4. Now by the defini-
tion of TsimcLr, We know that

[14+ (1 — Esimorr) M) 5=CLR < max {288Mq1 log(2/00) 2 \/log dn) - \/log(md) }

na2SNR7-2

Therefore, we have

IA
SRS

[wk|s < 200 - Vd- max{ 288M 77 -
na- 2SNRq 2

log(2/0¢)a—=2 \/log dn) - y/log(md) }

where we implement the assumption that oq < d~'/?n~' /4 and
d=/2p! nf SNR7z
5T6M T2 log(2/a0)7—2 - \/log(dn) \/log(md).
This finishes the proof. O

0'0<
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B.2 PROOFS OF LEMMAS IN APPENDIX [B.1.1]
B.2.1 PROOF oF LEMMA [B 1]

Proof of Lemma[B-1} Since &;,i € [no] i.i.d follows N'(0,02 - (T — pp™ - [[p]|52)), thus [[&]]5 is
sub-exponential random variable with

el < Tao?,

where C is an absolute constant. By Bernstein inequality, with the probability of at least 1—5/ (2n0)

we have that
C, po Cy po
—%a,%\/ dlog(4no/0) < ||&ll5 — do} < %oix/ dlog(4no/3),

where c is also an absolute constant, and it is equivalent to

do? — Cyo2\/dlog(4ng/d) < ||€:]13 < do? + Cao2y/dlog(4ng/d),

where C, is an absolute constant that does not depend on other variables. Similarly, we could obtain
that with the probability of at least 1 — §/(2ng),

do? — Cro2y/dlog(dng /) < ||&]I3 < do? + Cao2y/dlog(4no/5),

Apply a union bound for ||&; 12, ||€;]|2, i € [no] finishes the proof of this lemma. O

B.3 PROOFS OF LEMMAS IN APPENDIX[B.1.2|
B.3.1 PROOF oF LEMMA [B.2]

In this section, the following Lemma B.5] [B.6]and are introduced to prove Lemma [B.2]
Lemma B.5. Suppose that 8§ > 0, then with probability at least 1 — 5,

US| 2 ~
Ii;noyl - log(2/0)

Proof of Lemma[B.3] Since y;,i € [ng] independent and identically follow Bernoulli distribution,
then by Hoeffding inequality, with the probability of at least 1 — §, we have

A | 2 ~
Ignoyl - log(2/0)

Lemma B.6. For any 5 > 0, with probability at least 1 — 8, it holds that

no
dnoog — Clnoog dlog(2/6) < ZEi

i=1

no
dnoog - Clnooﬁ dlog(2/6) < Zyiéi

i=1

no
dnoaf) - Clnoai dlog(2/6) < Zyi&

i=1

where C1 is an absolute constant that does not depend on other variables.

2
< dnoaz + Clnooi dlog(2/9)
2

2
< dnoaf, + Clnoog dlog(2/9)
2

< dngo? + Cingo,, dlog(2/0)

2
2
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Proof of Lemma[B.6] Since &;,i € [ng] i.id follows N'(0,02 - (I — pp" - ||p]l5?)). therefore
St & ~ N(0,ngo2 - (T — pp’ ellz?))s thus |00, z||2 is sub-exponential random vari-

able with
no 2
|32
i=1 112
where C'; is an absolute constant. By Bernstein inequality, with the probability of at least 1 — 5 we

have
C}noa \/dlog(2/6) < Zg,

where ¢ is also an absolute constant, and it is equlvalent to

dnoa —Clnoa \/ dlog( 2/6 ZEZ <dnoa +C’1n00 \/ dlog( 2/6)

where C is an absolute constant, which does not depend on other variables. Notice that similar

112
results could be proved for ||, %&H; and HZZL:‘)I yi&; O
2

< 61012,710,

C
—dnoa <7noo’ dlog(2/0),

Lemma B.7. For any 5 > 0, with probability at least 1 — 8, it holds that

s&ﬁmw{dMW®ﬁmw®}

no

1 T
oD (&€ v &g

=1

no no

2
where Cs is an absolute constant.

Proof of Lemma|B.7} Within this proof, we denote function
1 &

- = T L€
M=) (&€ +&€D).

i=1
and

g(a) = a' Ma,
for all a € R, By Lemma 5.2 in |Vershynin| (2010), there exists a 1/4-net N covering the d-

dimensional unit sphere S?~! with [N[ < 9%. Then for any a € S?~1, there existsa € N/ C S?~!
such that ||a — al|; < 1/4.

Now for any fixed ag € N, with direct calculation we have

2 s -
g9(ag) = nio Z<307£i> (a0, &)
i=1
Since ||all2 = 1, (ap, &), (@, &;) are independent N(0,0,) random variables, i = 1,...,ng.

Therefore, by Lemma 5.14 in|Vershynin| (2010), (ag, &;) - (ao, §~'L> is sub-exponential with

(@0, &) - (@0, &i)llyy <10
where c; is an absolute constant. Then by Bernstein-type inequality (Proposition 5.16 in|[Vershynin
(2010)), with probability at least 1 — 9-4§, we have

< 20107 mw{ kgmwag%wW®}

no

l9(a0)| = ‘30 > (@0, &) - (80, &)

i=1

no no

< 2010127 - max {

dlog(9/3) dlog(9/3) }

no ’ )
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Since the above conclusion holds for arbitrary ag € A/, by union bound, with probability at least
1 — 4 we have

9(8)] < 2610 - max { log(94/3) 1og(9d/5)} < 900? + max { dlog(9/3) dlog(9/6~)}

1o ) o o 7 1o
for alla € NV. Now for any a € S?~!, there exists @ € A\ such that ||a — al| < 1/4, and hence

lg(a)| < lg(a)| + [g(a) — g(a)]
=|g9(@)| + |[a"™Ma — a" Ma|

dlog(9/0) dlog(9/8)
no ’ No

< 2610'12) - max { } +]a'Ma —a'Ma| + |a' Ma —a' Ma3|

dlog(9/8) dlog(9/9)

no ’ o

< 2ci0, -max{ } +]a'M(a—2a)| +|(a—a) Ma

By Cauchy-Schwarz inequality, we have

la"™M(a—a)| < VaT™M \/a—aTM (a—a)=+/g(a)-|la—alz-vg(a—a),
|(a—a)'Ma| <Vva™™M \/a—aTM (a—3a) =+/g@) - |la—als-vg(a—a).

Therefore, we further have

|g<a>|<2cm§~max{ LD dl"gg/é}w Jla -l Vola=3)

o n

+V9(@) - [la-alz-Vg(a—-a)

dlog(9/8) dlog(9/9)
no ’ o

1 1
} +7 -sup g(a) + — - sup g(a)
a a

2
< 2¢y0, - max { 1

= 201012) - max { dlog(9/5)7 dlog(9/9) } + L sup g(a)
no Nno 2 a

for all a € S?!. Taking a supremum then gives

dlog(9/5) dlog(9/9)

?
o no

1
sup |g(a)| < 2610’12) -max{ } + 3 -sup g(a).
a a

Therefore, we conclude that

dlog(9/3) dlog(9/3) }

<dcio? -
sgp|g(a)\_ 10, max{ v -~

This finishes the proof. O

Based on Lemmas and the following Lemma|[B.2]is proved.
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Proof of Lemma[B.2] The matrix A defined in Lemma [5.1] can be written and simplified in the fol-
lowing way.

Aff—g E zz/+zz/z — 2,Z; 72}2?)

i=14'#4

=— ﬁ ZZ iy — Dpp " + yi(p€y +E&op’) + o (€] +&ip")
1= 11’7&1
i€+ ERT T L EnT) +EE] € — EE — 6]

no no no

=— % EO: > 20yye — 1) | pu" + 2(203 y(d_ &) +2 Zyl (D &nn

i=1 4/ #1 i=1 i'=1 i'=1

no )

— o= DY (in€s +y€n”) — o+ 1) (in€] +yikin’)
i=1 i=1
DD (&l) + &g =D (no - 1)£iéT = (no— D&:E]
i=1 4'#£q i=1 =1

T ner { [ Z% —2n3 | pp’ +2( Zyz (Z Ei’)T+2(Zyi)(Z &)
nO - 1 Z yzgz (Z yié)u nO + 1 Zyzﬁz (Z yi&)HT
2(2 &-)(Z &) - 22515 Z no— 1)&& — i(no — 1&g }
=1 =1 i=1

i=1

Then by definition, we have

A=——"[A1—Ay—As+ Ay — As — Agl,

% [

where

A= Z(i yi)u(i& +2( Zy Zl& :
Ay = (ng — 1) Zyz& (2 vi€n'],
Az = (ng+1)] Zyz& (2 yikin'],
A= 2(2 &)(_Z; &),

22& 5

~T o
Ag = (ng—1) Zﬁiﬁi +(no — 1) Zﬁz‘f;-
i=1 i=1
Thus, ||A1||2 can be bounded as follows,

7o
ALl <4 wil - a2 -
1=1
<4v2ng - ||pll2 - O(opv/nod), (B.51)
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where the second inequality is by |>_%; vi| < 1/2ng log(2/6) in Lemma L and [|>01°, 1||2 <

dnoa + cingo, \/dlog(2/5) in Lemma Also, Ag, Az, Ay are handled similarly as Aj,
namely

[Azllz <2(ng — 1) - [[p]2 - 3

<2(ng — 1) - [[pf2 - (Jp\/ nOd)v (B.52)

where the second inequality is by HZZL:OI ylé}

2 =~
< dngo} + cingopy/dlog(2/6) in Lemma
2

[Asll2 <2(no +1) - ||pll2 -

Z vi&i

<2(no + 1) - [[pflz - (Up\/nOd)v (B.53)

where the second inequality is by [|>_1"°, y151||2 < dngo + c1nooy dlog(2/6) in Lemma

[A4ll2 =

Zs Ze

2

<20(02nod), (B.54)

where the second inequality is by ||, ZHQ < dngog + c1ngoy 2, /dlog(2/6) in Lemma

For A5, by Theorem 5.39 in|Vershynin| (2010), with probability at least 1 — g, we have that

[As|l2 =2 &

1 =\ 2 1 ~
<207 (\/&4— cay/no + NG : 10g(2/5)> < 6o, (d +cing + o 10g(2/5)) ,
(B.55)

where ¢4 is an absolute constant. The bound for || Ag||2 is already proved in Lemma|[B.7} Therefore,

by (B31), (B:32), (B:53), (B-34), (B-533), and Lemma | setd = & /6, with probability at least
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1 — 6, we have

1Al = [|£ - Z» < [||A1||z + 1 Azll2 + |Asllz + [[Adllz + [[As]l2 + [[As]l2]

—— | 4llell2v/2n0 - O(a,v/n0d) + 2(no — 1)z - O(0p/nod)

+2(no + 1)z - O(0pv/nod) + 20(02nod) + 6072 (d + cing + —— \F
C4q

no ’ o

dlog(9/8) dlog(9/9) H

2 2
+ €3N0, - Max {

<|4V2l|plly " - OlopVing ') + 23" - OfopVd——)

1
Vv 1o
1A 1 2 = _ 2 = _
+2([ L O(Jp‘/gi,%) + 2/l 2. O(U;deno )+ 1]l o O(Uﬁdno D)

log(9/9) 1og<9/6>}

dno no

+%ﬁwmu?mm{ 2wl

<|O(SNR™!-ng') + O(SNR™!- \/17) + O(SNR™2.ngt)
0

+C3-SNR_2-max{ log(9/9) log(9/5)}

d’fLO no

7_” ”2’

where SNR = ||p1]|2/(0,v/d), and 2||p]|3 is the lower bound of A1 proved in Lemma O

B.4 PROOFS OF LEMMAS IN APPENDIX [B.1.3]
B.4.1 PROOF OF LEMMA B3]

With a proof similar to Lemma B.3 in|Cao et al.[(2022), we have the following Lemma Although
the proof is almost the same as in|Cao et al.| (2022), since the results are presented in different forms,
for self-consistency, we still present the proof of this Lemma|[B.3]

Proof of Lemma|B.3] Since v is a unit vector foreach r € [2m], j <w£ ), v;) is a Gaussian random

variable with mean zero and variance Uo Therefore, by Gaussian tail bound and union bound, with
probability at least 1 — §/2,
(WO v;)| < /2log(16mng/d) - oo (B.56)

for all 7 € [2m] and j € [d]. This proves the first part of the result. For the second part of the

result, we note that P((wﬁo),vl) > 00/2) = Pz n0,1)(Z > 1/2) > 0.3 is an absolute constant.

Therefore, binary random variables ]l{(w,(-o), vi) > 00/2}, r € [2m] are independent Bernoulli(p)

random variables with constant 0.3 < p < 0.5. By Hoeffding’s inequality, with probability at least
1-0/4,

Z]l{ , V1) > 00/2} — 2mp| < v/2mlog(8/9).

Therefore, with probability at least 1 — §/4,

Z]l{ ) vi) > 00/2} > 2mp — \/2m1og(8/8) > 2m/5,
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where the last inequality holds by the assumption that m = ﬁ(l) The inequality above implies that
there exist distinct 71", ..., 75 - € [2m] such that (w9 v1) > oo /2forall r € {r], ... o5 )

With exactly the same proof, we also have that, with probability at least 1 — §/4, there exist distinct
TLoee s Tomys € [2m] such that <w7(~o),v1) < —og/2forallr € {r,... ,r;m/5}. It is also clear
that as long as the sets {r]", ..., r;rm/5} and {ry,..., T2_m/5} exist, they must be disjoint. Therefore,
applying a union bound finishes the proof. [

B.4.2 PROOF OF LEMMA [B 4]

Proof of Lemma[B.4} The first conclusion that |\; — Xi| < 00 - ||All2. i € [n] directly follows by
Weyl’s theorem and the assumption that = is symmetric and || 2|2 < 0¢ - [|A[|2-
For the second result, we have
< A —N(A + 352
A2 = A1

< 00 - A1

(1 — 0’0)/\1 - )\2

00 A1

= (1—0g)\ — _ EsimcLrR | )
0JA1 ™ 3(I—EsimoLr) 1
S 2007

where the first inequality follows by the variant of Davis-Kahan Theorem (Theorem 1 in|Yu et al.
(2015)), the second inequality follows by the first conclusion of is lemma (which has been proved
above) and the assumption that ||Z||» < o9 - A1, the third inequality follows by Lemma[5.2] and the
fourth inequality follows by the assumption that Egimcrr < 1/4 and o¢ < 1/4. Then we have

(v, %) = /1 = sin® 0%, v1) = /1 - 403 > 1 - 403,

This proves the second conclusion. For the last result, for ¢ = 2,. .., d, since v; is perpendicular to
v1, we have

sin 0(v1, v1)

(v, Vi)| = [(vi, X = ViV{ +v1V] V)]
= |(v1, I = v1v]{ )¥3)|
<X = vav{ )villa
= v/ ]. — <V1,61>2
<4/1-— (1 740(2])2
=/80% — 160}
< \/80(2)

400.

IN

To prove the last inequality, we have
1= viv)¥ullz = /91— F1.v1) vl
=/1-2(F1,v1)2 + (¥1,v1)?
=+/1—(v1,v1)?
0p.

<
S\/80’8
4

This finishes the proof. O
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C PROOFS FOR SUPERVISED FINE-TUNING

In this section, the training process of the fine-tuning stage is investigated. We first present the basic
setting and the decomposition of coefficients.

The initialization W (%) of the fine-tuning stage is derived by the pre-training stage, and will be
fine-tuned in the following stage based on the CNN model (3.2). It can be directly decomposed as

0
Wi = wh 4+ |y u+Z,oj éilly? - &, C.1)

where w3, is a component of W *( ) perpendicular with (w jr,u> =0, (w,,&) = 0,i € [n], and

we have max; , HWJTHQ <1/n by Theorem

In the fine-tuning stage, based on the gradient descent algorithm and the CNN structure defined in
(3.2), the updating rules of w; ., j € {—1,+1},r € [m] is given as

W(,f:"l) — W;i)“ —n- ijerS(W(t))
N _
= 20 )i - 3
i=1

where ¢; AQJ. Oy - FOW® x,)].
(t)

Jr?

There exist unique coefficient ; .

The convolution filters w ., r € [m], j € {+1, —1} can be decomposed into the following format.

) and p( ) - such that

Wi = wh Al e+ SN €% & >0, (C2)

If further decompose p§ 2 ; into p§t2 ;= pgtz ; ]l(pgt) > 0), plt)

Zjird " Eizﬂ(pgtzl SO) then the
(t)

decomposition of w . can be converted into

t t t _
Wi =wh 4 i A )l u+2p<,31~||si||2 sz+zp<t> &2 &, t>0

5,70
(C.3)

Based on the updating rules (3.3)) and decomposition (C.3)) of w%)a, the updating rules of coefficients

”yj(tr), pg 2 0 p(tll are as follows

Y P o) # 0, (C.4)
AW =) - L Zﬂ’“’ (v ) -l )
ﬁgt;*ﬁ—ﬁ;%—%-f;“)- o’ (W, &)) - €113 - Ly = ), (C6)
D = g0+ =L o (wll) €) - &3 - 1y = —). €)
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It follows that by substitute <w§t2, Vit L), (w](t?n, &;) in (C3)-(C7), we have,
7 o o) 0,

=4,

t+1 t t
T = = . ZE() (i - 75) - 3,

(t+1) (t) _ i . E/(t) . /(zn: (t) <€Z/7€$>) . ||€H2
Pari = Pari =y TR P gz S
/=1
S o0 () /(if(t) (s &) +Z I3 ) 112 - 1 (s = )
Piri = Pjri i (o Pjrit HS H grz H€ H2 ill2 Yi=17)s
I 1 2 i/
(t+1) _ (¥ noop@ —(¢t) (Eir a€2 (Eir, & ) s
B],Tl B],7z+nm Ei U(Z:lpj,r,l’ +Z ]71 H£ H2) H€1||2 ]l(ylf .7)'

(C.8)

The coefficients initialization (C.4) is determined by the pre-training stage, which is given in (C.I),
while the one-step updating rules for the coefficients are not influenced by the initialization.

Denote 7% = 1~ 'poly(e~*, | ll5 ', d " 0,2, n,m,d) the maximum admissible iterations.
Based on the result of pre-training stage in Theorem [5.3] it is easy to verify that the following

assumptions hold.
Assumption C.1 (Assumptions on the scale of initialization). Assume the following equations hold,

— dm log(T*) < —Cy < yj(.,or) < dmi log(T™)
—(0) *
0<p;,; < dme log(T™)
log(4n?/9)
d
SJorallr € [m], j € {£1} and all i € n], where Cy is constant such that 0 < Cy < Am log(T™).

Assumption C.2 (Assumptions on the initialization of ). There exists at least one index v, €

[m] such that ’y( ) > ~o, and there exists at least one index ro € [m] such that fy( ) , = 70
Furthermore, we require that

0> Bfﬁ > —64nme log(T™)

max{0, (—\")7} < 4m7 log(T") (C.9)
I

C.1 PROOF OF THEOREM [3.3]

In this section, in order to prove Theorem [5.5] the following Lemma [C.3}C.6] are introduced to
analyze the signal learning in the fine-tuning stage. Two stages of the signal learning as well as the
population loss are analyzed here.

C.1.1 FIRST STAGE OF SIGNAL LEARNING

Lemma C.3. Under the same conditions as Theorem[3.3] in particular if the SNR satisfies that
q,9—2
410g(2/0)87pg

SNR? > — (C.10)
Cinygd
where C; = O(1) is a positive constant, there exists time
_ 10g(2/70)8m
Crnavg w3
such that
rnax'y( ™) > 9 forj e {*1}. (C.11)
108231 < 2po, forall j € {£1},r € [m],i € [n],0 <t < T1. (C.12)

where pg = max; ,; | ©
Po = 3,758 Pj,m ’
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C.1.2 SECOND STAGE OF SIGNAL LEARNING

Based on the result of First Stage (Section [C.I.1)) in Lemma [C.3] at the beginning of the second
stage, we have the following properties,

* max, ’yj(-?) >2,je{£1l}
T
* mMax;; |P;r12| < 2po.

The learned feature %@ () > yj(tr) and therefore
max, ’yj(tz > 2. Now we choose W* as follows:

will not get worse, i.e., for t > T3, we have that Y

Wi, = wh + 2gmlog(2g/e) - j - ﬁ je{+1,-1}, r € [m)]. (C.13)
2

Based on the above definition of W*, we have the following Lemma[C.4]

Lemma C.4. Under the same conditions as Theorem we have that |[W (™) — W*||p <
O(m*?||pll3") + O(nmpo(opVd) ).
W) — W |5

Lemma C.5. Under the same conditions as Theorem letT =T + { e
O(mn~re || u|l52). Then we have max; r; |p§t21| < dpg forall Ty <t <T. Besides,

J=T1+

t
| W - W3 ‘
- - La(W®) < F
t—Tl—f—ng:T1 s )_(2q—1)17(t—T1—|—1)+2q—1

forall Ty <t < T, and we can find an iteration with training loss smaller than e within T iterations.

C.1.3 POPULATION LOSS

In this section, the bound of the test loss is presented. For a new data point (x,y) drawn from the
same distribution as training data generated from. Without loss of generality, we assume that the
data point has the following structure: the first patch is the signal patch and the second patch is the
noise patch, i.e., x = [y, &].

Lemma C.6. Let T the same as defined in Lemma[C.3]in Second Stage (Section[C.1.2). Under the
same conditions as Thearemfor any 0 < t < T with LS(W(t)) < %, it holds that Lp (W(t)) <

6- Ls(W®) + exp(—Q(n?)).

Then, based on the above lemmas, we provide a simplified version of the proof for Theorem[5.3]

Proof of Theorem For the first result in Theorem [5.3] based on the result of the pre-training
stage in Theorem we have that the conditions of Lemma [C.3| hold. The result of First Stage
signal learning in Lemma [C.3|hold. Then, we could define W* as (C.13), and by Lemma [C.4] we
have

W — W[5 < O(m®? | ll3 ) + O(nmpo(opVd) ™).

It follows that for any € > 0, choose T' = T} 4+ O(m3n~te |||l %), by Lemma we have that

T
1 (Th) _ %2
LS gwey < W Wl € < % .
T-T+1 % (2 Un(T —Ty+1) 2¢—1 241

Therefore, there exists some 17 < ¢t < T with LS(W(t)) < €. This completes the proof of the first
result. Then combine this with Lemma [C.6] the second result of Theorem [5.5]is given by

Lp(W®) <6- Le(W®) + exp(—Q(n?)).
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C.2  PROOF OF LEMMAS IN SECTION

C.2.1 PROOF OF LEMMA[CJ]

To prove Lemma|[C.3] we first introduce the following Lemma [C.7} [C-8] [C.9]and [C.10]
Lemma C.7. Suppose that 6 > 0 and n > Q(log(1/0)) Then with probability at least 1 — 6,

Hicln]:yi =13, i€ ln]:yi= -1} = n/4.

The following Lemma[C.8|provides an estimate of the norm of &; and a bound of their inner products
between each other.

Lemma C.8. Suppose that 6 > 0 and d = Q(log(4n/d)). Then with probability at least 1 — 6,
opd/2 < ||&l5 < 307d/2,
(&, &r)| < 207 - \/dlog(4n?/5),

foralli,i' € [n].
Lemma C.9. Under Condition.1} suppose (C16), (C-17) and (CI8) hold at iteration t. Then

0
(w §t27yzﬂ> < II;%_X{O _,y](r)}

(w(.t) -><32nm% log(4n?/6)

Gy St/ = d log(T*)7

forall v € [m] and j # y;. Since by Assumption max{ 7 } < Cy, we further have that
jor
Fi(W{,x:) = 0(1).

Lemma C.10. Under Condition .1} suppose (C16), (C.17) and (C.18) hold at iteration t. Then

(Wi i) = 231,
log(4n?/0)

¥ ~log(T™)

< ]r7£l> —pgtrz+32

forallr € [m], j = yandi € [n]. If max{’yj(-t,),,ﬁg-tii} = O(1), we further have that
e U P,
F(W.x;) = 0(1),

Based on the above Lemma|C.7} [C.8] [C.9]and [C.10} we could prove the Lemma [C.3| now.

Proof of Lemma Let

1
T = C.14
TR T 1
We first prove the second conclusion (C.I2).  Define ¥() = max;,; | =

man7r,i{ﬁ‘§-f2,’i, — Bgtil} We use induction to show that

T < 29 (C.15)
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forall 0 < t < T;". By definition, clearly we have U0 = p,. Now suppose that there exists some
T < T such that (C:13) holds for 0 < ¢ < T — 1. Then by (C.8) we have

m<t+l>gw(t)+max{” 00 ot [ S we . &l 5= g 8.1 -|ez-||2}
TeX \om Z gl Z MR ’

/=1 i'=1
<00 L1 (250w 188 g )
X (o \ 2 2 g ) el
:q,mmax{n SRS SRR
yRX? i H&l’H2
V/dlog(4n?/5) o
< gt 4 M L) .9202d
¥ 734/ K
<w® 4 Mgyt 202d
nm
< (t) nq (Spo) 20’2d
nm

where the second inequality is by |£ )| < 1, the third inequality is due to Lemma | the fourth in-
equality follows by the condition that d > 16n2 log(4n?/6) in Condltlon- and the last inequality

follows by the induction hypothesis (C-13). Taking a telescoping sum over £ = 0,1,...,7 — 1 then
gives

v <p® 4 7 (350)17" 2024
nm
nq q—1 2
< T+ . (8 -202d
< po+ i (8p0) o
S 2007

where the second inequality follows by T < T;" in our induction hypothesis. Therefore, by induc-
tion, we prove that vt < 2pg forall t < Tl+ .

To prove the first conclusion (C.1T)), without loss of generality, consider j = 1 first (similar ideas
for the proof of j = —1). Denote by T7 ; the last time for ¢ in [0, T;"] satisfying that max,. 7( ) <2
(poopd) = O(1) and max, 'yi ) < 2. Therefore, by
Lemmaand we know that F__; (W(tl, Xi), FH(WSr)p x;) = O(1) for all ¢ with y; = 1.
Thus, there exists a positive constant C; such that — ;(f) > (C for all ¢ with y; = 1.

Then for ¢t < T7 4, maxj7r,i{|pj,r’i

Since (CIT)) focuses on the max,. ’yﬁ)ﬂ, we only need to consider the training dynamic of max,. 'yi Z

which is positive at time ¢ = 0 by Assumption By (C:3), for positive *yitl and t < T3 ; we have

t+1 t n . t t
e >=v§,i—%-24“~o’ ) el
=1

177 t
> D DGR M7 F}

yi=1
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Denote A®) = max, vifl, Yo is defined in Assumption with max, 7@ > 70 = 0. Then we
have

Cin
ACHD 5 @) L/ "A®Y . 2
> 40 + SIS 51 (A0)

yi=1

2
> A® 4 Cingllpll3 (A(t))(l—l
am

v

2
{1 n Cingllpll3 (A(O))q—2:|A(t)
m

q—2 2
<1+ C1n97o ||N||2>A(t)7
4m

Y]

where the second inequality is by the lower bound on the number of positive data in Lemma |C.7

, the third inequality is due to the fact that A(*) is an increasing sequence, and the last inequality

follows by A(0) = max,(wg(’)r)7 1) > 7o. Therefore, the sequence A®) will exponentially grow and

we have that

q—2 2\t q—2 2 q—2 2
AD > A© 14 G llell3 > AO exp Cinayo “llmllz, > o exp Cinavo “llmllz, ’
4m 8m 8m

where the second inequality is due to the fact that 1 + z > exp(z/2) for z < 2 and our condition of
n < O(mqil'yo_(q_z) )5 %) in Condition and the last inequality follows by A(®) = max, 'yg)r).
()

Therefore, A®) = max, 71 Will reach 2 within

_ log(2/70)8m
Cingyd 2| pll3
iterations.

We can next verify the value of T and T} follow the following relationship

_ loa(2/n0)8m _ 1
= —2 = 4 — -2
Cingygllmll3 — Zhopd - 8971
where the inequality holds due to our SNR condition in (C.10). Therefore, by the definition of 77 1,
we have T} ; < Ty < T;" /2, where we use the non-decreasing property of ~. The proof for j = —1

is similar, and we can prove that max, 7(_7117’,?1) >2whileT; 1 <T1 < T1+ /2, which completes

the proof. O

=1T;"/2,

C.2.2 PROOF oF LEMMA[C4]

Before proving the Lemma|[C.4] we first show the following Proposition [C.11] which shows that the

coefficients ’yj(tz , ﬁﬁ)l, plo)

o will stay a reasonable scale during the training period 0 < ¢ < T™.

Proposition C.11. Under Condition which indicates that 16n W < 0.5, if Assumption
[Cd|holds, then for 0 < t < T*, we have that

— dm log(T™) < 73(',02 < 'yj(? < dmi log(T™), (C.16)
0 <\, < dm7 log(T*), (C.17)

2
02 40, > ~6dnm M

forallr € [m], j € {£1}and i € [n).

og(T*) > —4m log(T*), (C.18)

Then, based on Proposition and Lemma [C.3] we could prove the following Lemma|[C.4]
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Proof of Lemma We have

(Tl | (T1
’Y T rz B rz 3 2 —1
W — W[ < - . . log(1/e))| |
Z e Z el: "2 Tel * :

< O(ml|plI ™) + O(nmpo(ffp\/ﬁ)’l) +O0(m®?log(1/e))llpell !
< O(m®|ullz") + O(nmpo(o,Vd) ™),

where the first inequality is by our decomposition of W (%) and the definition of W*, the second
inequality is by Proposition [C.11]and Lemma|[C.3] O

C.2.3 PROOF OF LEMMA[C.3

In this section, Lemma is presented first, then Lemma [C.13] and [C.14] are proved before fi-
nally proving Lemma Based on Proposition[C.T1] the following Lemma|C.12]introduces some
important properties of the training loss function for 0 < ¢ < 7™,

Lemma C.12. Under Condition.1] for 0 < t < T*, the following result holds,

IVLs(WO)|I% < O(max{|ull3, opd}) Ls (W)

Lemma C.13. Under the same conditions as Theorem we have that y; (V f(W®) x;), W*) >
q?2%1og(2q/€) for alli € [n] and Ty <t < T*.

Proof of Lemma[C.13} Recall that f(W®) x;) = (1/m)>2; .3 [a(<w§f3ﬂ, yi- )+ o(( 52,5»)]
and the definition of W* in (C:13), we have

yi (VAW x;), W*) = Za Wi yiw)) (. w5, ZU ) €)) (i, w5,

— Z o' (W), yige))2gm log(2q/c) (C.19)

where the second equality holds because (u,jw;.) = 2gmlog(2q/e), (vi&i,jw;,) = 0
by (, jw3,) = 0, (yi&i, jw3,) = 0 in the definition of W* (C13).
Next we will give a bound for the inner-product term in (C.19). By LemmalC.10|and the initialization

and non-decreasing property of *yJ(tT) in Second Stage (Section|C.1.2), we have that for j = y;

max<w§-?,yiu> = max 'yj(tz > 2. (C.20)

Plug (C.20) into (C.1I9) can we obtain
Y (VAW x;), W) > ¢°271og(2q/€)

This completes the proof. O

Lemma C.14. Under the same conditions as Theorem[3.3] we have that
W — W[5 — WD — W[ > (2 — 1)nLs(WY) —

forallTy <t <T*.
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Proof of Lemma|C.14) Here we assume the neural network is ¢ homogeneous, namely
(VIW® x;,), W) = ¢f (W x,), thus we have

W — W[5 — [WHD — W3,
= 2(VLs(W"), W — W*) — *|VLs(WO) 3

2
= "Zﬁ’“’ FOW® x,) = y(VF(WD, x,), W] = 2| VLs(WD)||2,

Y

2
21y S (g FWY, x,) — 229 log(2q/6)] — IV Ls(WO)| %
n

=1

2q
n

v
E

ZM(?JZ‘f(W(t)sz‘)) — 0(q2%1og(2q/€))] — n*||VLs(W )13

[\
*|5

Il
-

q

Y

[ (i f (W i) — €/ (20)] = n*[[VLs (WD)

> (2q — 1)nLs(WH) — e,

where the first inequality is by Lemmal|C.13] the second and third inequality is due to the convexity of
the cross entropy function and the property of loss function, and the last inequality is by Lemma|C.12

and by 5 < O min |3, (03v/d)2}) in Condition 0
Based on the above lemmas, the proof of Lemma[C.3]is presented as follows.

Proof of Lemma By Lemma|C.14} for any ¢ € [T7, T, we have that for s < ¢
W — W3 — [WEHD — W3 > (2¢ - pLs (W) —

holds. Taking a summation, we obtain that

Z Le(W) ||W<T1> —~ WH||2 +ne(t — Ty + 1)

(C.21)
= (2¢—=1)n
forall 7y <t < T Dividing (¢t — 71 + 1) on both side of (C.21)) gives that
W T1) W* 2
Z L | | 4+
t—T1—|—1 S@e—Dni-Ti+1) " 24-1
Then we can take t = 1" where T" = T7 + LHW(T;)%H%J and have that
1 W) — W ||2 € 3e
—_— Ls W(‘S L < <
T— T1+1Z S G —m+n) T 521 <

where we use the fact that ¢ > 2 and the choice of 7T'. Since the mean is smaller than €, we can
conclude that there exist 7} < ¢ < T such that LS(W(”) <e.

Secondly, we will prove that max; , ; |p§t21\ < 4pg for all t € [T1,T]. Plugging T = Ty +
(Ty) _ * (12
LWJ into (C.21) gives that

T

oy 2[WID) w2 _ _ _
> ns(we) < = IEE Gt ul?) + O e,V ),
s=T1

(C.22)

where the inequality is due to [|[W(T) — W*||p < O(m3/2||ul|5) + O(nmpo(o,v/d)~?) in
Lemrna Define ¥(Y) = max; r |p§t21| We will use induction to prove WY < 4p, for all
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t € [Ty, T]. Att = Ty, by the properties at the beginning of Second Stage (Section|C.1.2), we have
(1) < 2p,. Now suppose that there exists T’ € [T, T) such that W*) < 4p, for allt e [Ty, T—1].
Then we prove it also holds for ¢ = T: For t € [T1,T — 1], by (C:8), we have

T+ < ¢ 4 max {77 VAR <2 PR AR (& ’£l>|> : ||Ei/||§}

gri | nm — 1€:-113

_\p<t>+max{’7.|e;<t>|-a/<m<t>+zzw {6 ”') e}

2
7,750 nm i H£ ||
. nq () 4na§ - y/dlog(4n?/6) . ot 9
<00+ = max|6] |2+ S v 202d
nm i o2d/2

<0+ M 0] (4w 0) T 202,
nm

where the second inequality is due to Lem 8l and the last inequality follows by the assumption

that d > 1024n? log(4n?/d) in Condition Takmg a telescoping sum over t = 11, ..., T — 1,
we have that

() T-1 N
() < g™ 4 % Z m?x|€;(s)|0(agd) - (2p0) 0!

s=T1
(i0) T-1
< v + 4q l91s 2d(2,00 ¢t Z maxf
s=T1
(i4) T—1
< W) 4opgm 14971294 2d(2p0) " Z Ls(W®)
s=T"

(iv) ~
< U+ O(qm?47712ISNR™2) - (2p0) !
< 2pg + O(gm?497129(2p0)172SNR™2) - 2

(v)
< 2po + po + po

= 4P07

where (i) is by out induction hypothesis that ¥(*) < 4p, for ¢ e [T17 — 1], Gi) is by || < £, (iii)
is by max; £ < 3.0 = nLg(W), (iv) is due to 37 LS(W(S)) < 7, Ls(WE)) =
O~ m3||ull32) + O~ n2m2py2(o,v/d)~2) in (C22), (V) is by the condition for SNR :

SNR? > Q(2qm?497124(2p,)172) = Q(2qm216q 1872y and py < O((%qnzm)_%) obtained
from Theorem@ This completes the induction. O

C.2.4 PROOF OoF LEMMA[C.6]

We first present the following Lemma , which shows the bound of ( W £l>
Lemma C.15. Under Condition suppose (C.16), (C.17) and (C.18) hold at iteration t. Then

1 [log(4n2/§ log(4n2/0 .
P9, — 32nmi %-log(T*) < (wi. &) < p\!)  +32nma % log(T*), j # i,
log(4n2 /6 log(4n?/§
A~ g2/ PED) our) < (wlt) € < 7, + 3ommit B oy, <y

forallr € [m], j € {£1} and i € [n).

We then prove the following two lemmas before proving Lemma [C.6]
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Lemma C.16. Under the same conditions as Theorem we have that max; , |< e £Z>\ <1/2
forall 0 <t < T, where T is defined in Lemma|[C.3]in Second Stage (Sectzonm

Proof of Lemma[C.16] We can get the upper bound of the inner products between the parameter and
the noise as follows:

() log(4n2/6 1 .
‘<w§f7)«7£2>| < |p§f7),,1| + 8n % . 4dma ]og(T )

(i7) log(4n2 /5

< 4po +8n log(4n>/9) 4dma log(T™)

(#i)

< 1/2

forall j € {1}, 7 € [m] and i € [n], where (i) is by Lemma|C.15} (ii) is by max;,,.; [p{. ;| < 4po

in Lemma and (iii) is due to the condition 8n/ W Am log(T*) < 1/41in Condition
and the result pp < 1/16 in Theorem

The following Lemma H provides the upper bound for max; , |<w§t2, &)|, where £ is from the
test population.
Lemma C.17. Under the same conditions as Theorem [3.3] with probability at least 1 — 4mT -

exp(—(n?)), we have that max; <W§t2, & <1/2forall0<t<T.

PVOOfOf(L)emma@ Define v~v(t) = w() J- yj(tr) “i‘” then we have (W; (t) 1€) = (w ]T,§>

Since W) = w5, + 30 1pJM 1€:ll57 - &, we have
2 A~ TPo
o < ||wi|l2 +4n = |will2 + O , (C.23)
950 < I+ Ampo— 7 = [l + O("%2)
where the inequality is due to the bound for p§ 2 ; and ||&;]|2.

By (C23), max; , ||wJ 7a||2 < max; . [|[wj, |2 + C2 "”” , where Cy, = O(1). Clearly (W <~§t27€> isa

Gaussian distribution with mean zero and standard dev1at10n smaller than max; , ||wﬂ, Il2 + 02 .
Therefore, the probability is bounded by

P(l<v7f§fl,£>| > 1/2) <2exp ( S 1 )

C 2
g Caren +2Ci}wo max;, |[w3, |2 + (max;, [wihl2)?]

1
<2ex —
>~ p( 8[0 n?po? +202p°+n ])
— a

<2exp ( — Q(nQ)),

where the second inequality is by the assumption max; , ||W]LT |l2 < 1/n, the third inequality is by
po < O(v/d/n?) in Theorem Applying a union bound over j, r, t completes the proof. O

Based on Lemmas[C.16 and [C.17} we now prove Lemma[C.6]
Proof of Lemma[C.6] Let event £ to be the event that Lemma holds. Then we can divide

Lp(W®) into two parts:

E[¢(yf(WD x))] = E[L(E)(yf (WD, x))] +E[L(E) (yf (WD, x))]. (C.24)

Il 12
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In the following analysis, we bound I; and I, respectively.

Bounding [;: Denote I; = {i|y; = j}, j = £1. Since we have

W) W x, WD 1
Ls(W) = — | 37 Ly d (WO xi0) + 3 Ly (W) | < 7,

el Vel

thus, 3¢, Oy fOW® x;)) < 1 j = £1. It follows that for j = =1, we have

where the last inequality is by Lemma Therefore, there must exist one (x;, y;) withy = y; € I,

such that

é(yif(W(t), xz)) < ﬁ Zi,e% é(yi/f(W(t), xi/)) < 1, which implies that y; f(W®) x;) > 0.
0

Therefore, we have that

exp(—yi f(WW, x;)) < 2log (1 + exp(—yi f(WP,x,))) = 20(yi f(W, x;)) < 2Lg(WH),
(C.25)

where (i) is by z < 2log(1 + z), for z < 1 and here we have exp(—y; f(W®) x;)) < 1. If event £
holds, we have that

AWO,%) = g (WO, < = S o (wih,€0) + — Y ol(w!!).€)

Jsr Jsr
1 1
< ;0(1/2) + E;a(uz)
<1, (C.26)

where the second inequality is by max;, [(w (*) &) < 1/2 in Lemma and

Wi

maxg,r |<W§t2, &) <1/2in Lemma Thus, we have that
Iy < E[1(E) exp(—y f(WO, %))
< e E[1(E) exp(~y: f (W, x;))]
< 2e-E[1(£)Ls(WD)],

where the first inequality is by the property of cross-entropy loss that £(z) < exp(—z) for all z,
the second inequality is by —yf(W®) x) < 1 — 5, f(W®,x;) in (C26), and the third inequality
is by exp(—y; f(W®), x;)) < 2Ls(W®) in (C:25). Dropping the event in the expectation gives
I <6Lg(WW),

Bounding I5: Next we bound the second term I5. We choose an arbitrary training data (x;/, y;/)
such that y;; = y. Then we have

Uy f(WO,x)) = log(1 + exp(—yFy (W), %)) + yF_ (WY, x)))
<log(1 + exp(F_y(W(_tz,v x)))
<14 F (W x)
St ol Y (w8
j=—y,r€lm] j=-y,r€lm]

<1+4ms log(T*)—F% Z a(( §t3,£>)

Jj=—y,r€[m]

< 1+ 4mi log(T*) + O((npooy ' d= %)) €], (C.27)
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where the first inequality is due to F,(W() x) > 0, the second inequality is by the property of
y
cross-entropy loss, i.e., log(1 +exp(z)) < 1+ z for all z > 0, the third inequality is by Lemma|C.9
and (C.9) in Assumption , e o Y imy reim] a((wﬁ,,yu)) < e yreim] 0'(—’}/(»?) <
0 0 1 . . L
1 2 je—yrem] a(—vj(-’r)) < max; {0, (— J(T))q} < 4ma log(T™*), and the last inequality is by
~ (1 t ~ (t ~ _ _1
(CZ3), we have (Wi, &) = (Wi &) < W2 [I€]l2 < O(npooy 'd=%)[|€]|2. Then we further
ave that

I < VE[L(E)] - \/E[f(yﬂwm,x)ﬂ

VE(E) - \/[1 +4m @ log(T*)]? + O(n*4py*ac, *1d=)E[[1€]3]

<
< exp[—Q(n?) + polylog(n)]
< exp(—ﬁ(nQ)),

where the first inequality is by Cauchy-Schwartz inequality, the second inequality is by (C.27), the
third inequality is by Lemma|C.17} the definition of &, and the result pp < 1/16 in Theorem

Plugging the bounds of I3, I into (C.24)) completes the proof. O

C.3 PROOF OF LEMMAS IN SECTION

In this section, we prove the lemmas used in the proof of Section [C.2] These lemmas are mainly

concerned with the properties of data and the basic properties of the coefficients y](.fﬁ, ﬁi’% , Bﬁ e

We first prove the following Lemmas|[C.7]and[C.8] which are related to the data distribution.

Proof of Lemma([C.7} Since y; follow Rademache distribution, then by Hoeffding’s inequality, with
probability at least 1 — §/2,

’Z]l{yz =1} - g‘ < /2nlog(4/4).
i=1
By our assumption n > Q(log(1/4)), it follows that
, = n n
Hie[n]:ys=1} = Z]l{yl =1} > 5 2nlog(4/0) > T

i=1

Same result could be obtained for |[{i € [n] : y; = —1}|. Apply a union bound finishes the proof of
this lemma. O

Proof of Lemma[C8] Since &;,4 € [n]i.i.d follows N'(0,02- (I—pp" -||p||3?)), the proof follows
exactly same proof as Lemma By Bernstein inequality, with the probability of at least 1 —
d/(2n), we have that

do? — Cozn/dlog(4/8) < |13 < dop + Cor/dlog(4n/6),

where C' is an absolute constant that does not depend on other variables. By assumption d =
Q(log(4n/4)), it follows that

opd/2 < ||&ll5 < 30pd/2

For the second result, by Bernstein inequality, for all ,4" € [n] with ¢ # ¢/, with the probability of
at least 1 — §/(2n?), we have that

(&, &) < 202 - \/dlog(4n2 /).

Apply a union bound for finishes the proof of this lemma. O

We then prove a series of lemmas that will be used in the proof of Proposition[C.11| by induction.
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Lemma C.18. Foranyt > 0, it holds that <W§-f) wy=j- 7](t2 forallr € [m], j € {£1}.

r?

Proof of Lemma[C.I8 For any t > 0, we have that

(Wi oy =j- vj(t3+zp] €32 - (€, p +Zg(t) €132 (Eir, )

3,7y’
/=1

t
=

where the equality is by our orthogonal assumption of £ and p. O

Proof of Lemma[C.I3] For j # y;, we have 7 =0and

)
wi'.€ ZPJM'”&’”z (& &)+ Y o) lIEnlly® - (€0 €0)
i’=1 i’=1
/log 4n2/5 ®) log( 4n log(4n?/0) (t
Z|]T1’ Z|pjrz/|+p]rz
) #1
log(4n2 /8
< p) 4+ 32nms % log(T™),

where the second inequality is by Lemma and the last inequality is by |ﬁ§f3nl,|, |£§t31,| <
4m log(T*) in (C:T7).

For y; = j, we have that p( ) =0and

J5Ts

Zpﬁ%nsyn;?-<ei/,si>+2p%/l\&'llz (€, &)

i’ =1 =1
@ [log( 4n log(4n?/6) () log( 4n log(4n?/6)
—p_]'ft+4 Z‘jri’ Z|7]rz/
/¢Z
log(4n?/é
where the first inequality is by Lemma and the second 1nequahty is by |pj M,| |BJ ”,| <
Ama log(T*) in (C.17). Similarly, we can show that ( Wi, Vg ) > — 32nma log(4n?/6)/d

log(T™) and <W§t3, &) > ﬁg 22 — 32nma V1og(4n?/6)/d - log T*). This completes the proof. [

Proof of Lemma[C9] For j # y;, by Lemmal|C.18] we have that
0, if v\ >0

(Wi i) =i g = 4l < ()] o (C.28)
— ;. otherwise

Also, we have

log(4n2/6 log(4n2/6
(wi), &) seﬁ.ﬁ%nm%\/%dog@*) < 32nm %m@*), (C.29)

where the first inequality is by Lemma and the second inequality is due to Bgtiz < 0. Thus, we
can get that

Fy(W %Z i) + 0wl €]

log(4n? 1
<221 max{ - 7](-t2,32nm% M . log(T*)}
Jr ’

= 0(1),
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where the first inequality is by (C:28), (C.29) and the last line is by Condition {.T] which implies
128nm 4 /W -log(T*) < 1and —73(.'?, < max{0, _,yj(_OT)} < Cpin Assumption O
: s ,

Proof of Lemma[C. 10} For j = y;, we have that
(Wi yim) =1, (C.30)

where the equality is by Lemma[C.I8] We also have that

1 [log(4n?/6
(w1 66) < 70+ Bommi [ PEULD) og(, 3

where the inequality is by Lemma If max{vj(-,tg, ﬁﬁz} = O(1), we have the following bound

1 & _
Ei (W3 xi) = — 3 Tlo (Wi 5 - i)+ o (w1 &)
r=1
log(4n? 1
<230 max {7© 50 3ot [108E/0) ey
G | B d
=0(1),

where the first inequality is by (C.30), (C.31), and the last line is by maxjmi{"yj(fr),ﬁg)i} =0(1)
and Conditionwhich implies 128nm |/ 28U/ 100 (%) < 1. O

Now, we prove the Proposition [C.T1] by induction.

Proof of Proposition[C.11} By Assumption [C.1] the results in Propositio hold at t = 0.

Suppose that there exists 7" < T such that the results in Proposition 1| hold for all time
0 <t <T —1, we aim to prove Proposition also hold fort = T.

1. Proof of (CI8) holds for ¢ = T, ie., B§'t7)~i > —64nma W -log(T™*) fort = T,
r€[ml],j€{£l}andi € [n]:

Notice that B(t) = 0, for j = y;. Therefore, we only need to consider the case that j # ;.

25T

When —64nm s/ EUE/0) 1og(T%) < pT1) < —32pm s\ [RBUZO) 1og(T), by
Lemmal|C.15(we have that
T_ = 1 1 4 2 5
(wit ™V, &) < pT0 4 32nm f % log(T™) < 0,
and thus by (C.7),
T — @1 L T T-0 0w T eV (s = — D€ (12
Bjm,i Bj,r,i + nm ez U(<WJ,7‘ 7£1>) ]l(yl j)||£1||2
_ (T-1)
Tl

1 [log(4n?
> —64nms M-bg(T*),

where the last inequality is by induction hypothesis. When —64nm%\/w .

log(T*) < —32nm W -log(T™) < Bﬁ;l) < 0, by Lemma [C.15| we have
that -

- _ log(4n2 /5 log(4n2/6
(wﬁ 1)7€¢> < g;.Tr_il) + 32nma % log(T™) < 32nms % ~log(T™),

(C.32)
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thus we have that

T— n T— T— .
o0 = AT T (T ) 1 = =)l

—7,7,7 —7,75

» flog(@n?e) oy 303 og(@2/3) | .
> _ 7./ 20\F T8 _ e D\ /Y9
> —32nm pi log(T™) I 32nm p -log(T™)
+ [loa(dn2/5) y do3d log(1n2/0)
> _32nmi | BT ey — L onmi | 280D oo (T
> —32nm y og(T™) P 32nm p) g(T™)
X 2
> —64nma 710g(4§ /9) -log(T™),

(T-1) > —land ||&2 < %Ugd, and (C.32) in the first inequality, the

second inequality is by 32nmi v/ W log(T*) < 1lin Condition , and the third
inequality is by = O (nm/ (qaﬁd)) in Condition

where we use /;

. The proof of upper bound of 7" i T ; in (C:I7) holds for t = T: We have

/(t) 1
671 = ) ®)
L+ exp{y; - [F1(Wip,xi) — Foi(W2p,xi)]}
<exp{—y; - [P (W], %) = FL. (WY, x)]}
< exp{—F,, (W) x;) + Co}

m

< epl-— S lo(wly )+ ol &0+ Co)). (€3

r’=1
where the second inequality is due to Lemmaholds, there exists constant 6‘0 such that
F»(W(.t) x;) < Co,j = —y;, and the third inequality is by the definition of F,,,. Moreover,

recall the update rule of 7( ) and ﬁg Zl in (C.6) and (C.7),

t+1
ry;’r ) = ',T nm ZE jr7yl >)||l‘l’||§7

_(t+1 _ n
P = pSfZ,r%-ﬁzm o' (w1}, &) - Ui = &3,
(t)

Assume there exists p; ;. ; > 2m log(T™) for some t € [0,T™], if this does not hold,
) < 2mi log(T*) < 4m log(T™) holds for all ¢ € [0,7*], which indicates (C:T7)

holds. Thus, denote t; . ; to be the last time ¢ < T™* that ﬁ§ 21 < omi log(T*). Then we
have that

(T —(tj,ri n tiri tiri .
AT =gl - ) ol () ) (s = ) 163

nm
Iy
Ui .
— Y LW w1 = g3 (C.34)
_nm
tj,T,i<t<T
1>
We first bound 17 as follows,
log(4n2 /6 a1
il <an~ (gl 4 32ty RO oy ) 2 ata

<q2in"'m~ n[4m%10g(T*)]q*102d
<m# log(T"),
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where the first inequality is by Lemmas [C.8] and [C.I3] the second inequality is by
32nm M log(T*) < 2m log(T*) and pyll < 2ma log(T*), the last in-
equality is by n < nm/{6q[4m3 log(T*)]? 202d} in Condition

We then give a bound for I5. For ¢;,; <t < T and y; = j, we can lower bound <w§t3, &)

as follows,
log(4n? /6 i}
(wii) &) = pyl); = 32nm ‘ﬁijll log(T™)
2
= Zm% log(T™) — 32nm M log(T*)

> mi log(T™),

where the first inequality is by Lemma the second inequality is by p(t) >

7,7y
o2m log(T*) due to the definition of ¢, ;, the last inequality is by 32nms W .
log(T™*) < ma log(7™). Similarly, for t;,; <t < T and y; = j, we can also upper bound
(w (®)

w; ., &) as follows,

) 2
(wil) &) <pY) .+ 8nmi M - 4log(T™)
1 1 2
< 4ma log(T™) + 32nma M log(T™)

1
< 8md log(T™),
where the first inequality is by Lemma [C.15] the second inequality is by induction hy-

pothes1s p( ) i < Ama log(T™), the last inequality is by 32nme \/ W log(T™) <
m log(T™*). Thus, plugging the upper and lower bounds of (wgtf,, &;) into I gives

L= Y O ((wl &) - Ly = G)lI€lI3

_nm
tj,/y‘yi<t<T
n (t) — A2
S Z m eXp( m (< ]T’£l>) ) (< jr7£l>) ( 7/_.])”51”2
tj‘rwq',<t<T
eéonT* (4m% log(T*))4 1 3
< _\FIRT 054 1)) . *\\q—log—1% 2
< exp( T )g(4dma log(T™))? "2 2de
1
. (4m log(T™))? 1 .
S 0.25T eXp(fw) -4dma log(T )

= 0.25T" exp(— log(T*)?) - 4m log(T*)

< m? log(T"),
where the first inequality is by (C33), the second inequality is by Lemma [C.§] and
upper and lower bound of (wj(-’ti,ﬁi) given above, the third inequality is by n =
O(nm/{650q2q+2[4m% log(T*)]9202d}) in Condition and the last inequality is due

to the fact that log(7*)? > log(T™). Plugging the bound of I, I; into (C.34) completes
—(t)

VRSN

the proof for p

3. Similarly, we can prove 'y( ) < 'y(t) < dms log(T™) in (C:16). By |7j(0r)| < dm log(T™)

in Assumption (C.1|and VJ( 2 is 1ncreas1ng, we have 7](0) < fy](? naturally holds. Therefore,

we only need to prove *yj(r) < Ama log(T™) holds for all 0 < ¢ < T™*: Assume there exists
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vj(tr) > 2m log(T™) for some t € [0,T™*], if this does not hold, 7](? < 2ma log(T™*) <
dma log(T™*) holds for all ¢ € [0, 7*] indicates (C.16) holds. Thus, denote #;. to be the
last time ¢ < T that fyj(t,), < oms log(T*) hold. Then we have that

7T

T T T T
= - o Zf’“ o (w7 i)

I

B Z nm Zg/(t Jr’yz ) - 3 (C.35)

; <t<T

We first bound ] as follows,
1 - 5.)\4 ! - 1 ya— 1 .
11 < =g (35) " a3 < gmn2m 0g(T) 1 3 < m log(T),

where the first inequality is by Lemma and | the second inequality is by 7]( ) <

2m log(T™), the last inequality is by n < m - 29~ 3/{q[4mq log(T*)]92||u||3} in Con-
dition 4.1]

We then bound I}, we have

= Y o () -l

ty i <t<T i=1
= Y Z|e’<”| Wi yin)) - Ly = )l|l3
tj.r,i<t<T

+Zw (Wi yim)) - U(ys # 5)| 13

= > Z O o (W, o)) s = Hlld (C36)

tj,r,7'<t<T =

where the third equality is by <w§.t3, Yilh) = 73(2 < 0in Lemma Fort;,; <t< T,

we upper bound (W'}, yips), j = y; (namely (wi), ;1)) as

1 %
( ﬁﬁ,yzm—y g vj()— §f2§4mqlog(T)

where the equality is by Lemma [C.10] the second inequality is by induction hypothesis

|'yj(t2| < 4ms log(T*). Fort, <t < T and y; = j, we can also lower bound (wﬁ, Yilb)

(namely (w.y, y;4)) as follows,
(W yim) = yi -5 -2 =4 > 2mi log(T7)

where the inequality by 'y(-t) > 2m log(T™) due to the definition of %VJT Thus, plugging

7T
the upper bound of (wj(tz, y; ) and the lower bound of <W§t7),7 y; ) when y; = j into |I5]
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(C30) gives

Bl= Y - Zw Ol o (W yam)) - Lys = ) - | wll3

tymi<t<T
wd) 2 () _ 2
< - = i Co) - yim)) - Ly =J) -
< Z — Zexp a wi L yim) + Co) - o' (Wi, yim) - L(ys = 5) - || mll3
tyri<t<T
ecﬂnT* Am log(T™))? 1 KN\ G—
< exp(—W)q<4mqlog<T D

(4m3 log(T )T\ | 4 o
T -dma log(T )

< 0.25T" exp ( — log(T™)?) - dme log(T™)
< m log(T*),

< 0.25T* exp ( —

where the first inequality is by (C.33), the second inequality is by the upper bound of

{ 52, y;p) and the lower bound of <wj(tl7 yip) (y; = j) given above, the third inequality

isbyn <O (m/{465°q[4m% log(T*)]92||p|3}) in Condition and the last inequality
is due to the fact that log(7*)? > log(T™*). Plugging the bound of I7, I} into (C33)

completes the proof for 'y](tg

Therefore, Proposition holds for ¢ = T', which completes the induction. O
Finally, the following Lemma[C.12] which is based on Proposition[C.11] is proved.

Proof of Lemma Firstly, we prove that
(i (WO,5)) - IV F (W %) [ = O(max{||u]|3, 0 d}). (C.37)

Without loss of generality, we suppose that y; = 1 and x; = [T, &;]. Then we have that

(Wi )+ o' (W) €€

IV (WO %) S

2

.
—Z )l ell2 + — Z (Wi eI

\ N

(¢—1)/q
gzq[m(vvﬂ,xi)} e | 4]z, 20, V)

(g—=1)/q
+ 2¢ {Fl(W(t)hxl)] max{Hquﬂop\/a}

](q—l)/q

< 2q{ [FH(Wﬁ,xi) + [1+4m log(T™)] <q‘”/q} max{|ge]2, 20, Vd},

where the first and second inequalities are by triangle inequality, the third inequality is
by Jensen’s inequality and Lemma [C.8]  The last inequality is by Lemma [C.9] i.e.,

(t) ® (0)
% Zj:—y re[m] 0(< R yl"’)) S L Zj:—y,re[m] 0( 7] r) S # Zj:—y,re[m] 10—( 7_], ) g
max; {0, (— *y”) < Ama log(T™), therefore, F_l(W(_t)l,xi) < 1 + 4malog(T*) by
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Lemma Denote A = FH(WSQ7 X; ), then we have A > 0. Thus,
— (g f (W, %)) - [V AW %) |17

2
< 0(A—1—4mi log(T")) - 4q2{A<q1>/q + [1 4 4m log(T*)] “’”/q} - max{|| ]2, 20,V/d}?
2
= —4*0(A—1—4dm3 1og(T*)){A<q—1>/q + [1 4 4m7 log(T*)] (‘”)/q} - max{ |3, 402d}
< { max —4¢%0 (2 — 1 — Ame log(T*)){z9=1/7 4 1+ dm log(T™*)] (q1)/q}2} -max{|| |3, 4agd}

%

—
=

O(max{]| |3, o7d}),

where (i) is by max,>o —4¢?¢'(z — 1 — Ama log(T)) (29~ V/9 + [1 + Ame log(T™)] (qfl)/q)z <
oo because ¢’ has an exponentially decaying tail. Now we can upper bound the gradient norm
|VLs(W®)|| as follows,

n 2
VLW < [ 2300 s (W) 97 W)

i=1

<[22 —0<max{|u||§,aﬁd})f'(yz-ﬂwuxxi))}

< O(max{|ul. o2d) - - "~ (i f (WO, 1)
i=1

< O(max{||p|3, o5d}) Ls (W),

where the first inequality is by triangle inequality, the second inequality is by (C37), the third
inequality is by Cauchy-Schwartz inequality and the last inequality is due to the property of the
cross entropy loss —¢' < £,
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