UNDERSTANDING THE BENEFITS OF SIMCLR PRE TRAINING IN TWO-LAYER CONVOLUTIONAL NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

Abstract

SimCLR is one of the most popular contrastive learning methods for vision tasks. It pre-trains deep neural networks based on a large amount of unlabeled data by teaching the model to distinguish between positive and negative pairs of augmented images. It is believed that SimCLR can pre-train a deep neural network to learn efficient representations that can lead to a better performance of future supervised fine-tuning. Despite its effectiveness, our theoretical understanding of the underlying mechanisms of SimCLR is still limited. In this paper, we theoretically introduce a case study of the SimCLR method. Specifically, we consider training a two-layer convolutional neural network (CNN) to learn a toy image data model. We show that, under certain conditions on the number of labeled data, SimCLR pre-training combined with supervised fine-tuning achieves almost optimal test loss. Notably, the label complexity for SimCLR pre-training is far less demanding compared to direct training on supervised data. Our analysis sheds light on the benefits of SimCLR in learning with fewer labels.

025 026 027

006

008 009 010

011

013

014

015

016

017

018

019

021

023

1 INTRODUCTION

028 029

In recent years, self-supervised learning has emerged as a promising machine learning paradigm, offering a way to learn meaningful representations from vast amounts of unlabeled data. Self-supervised learning is of vital importance because the success of supervised learning is dependent on the accessibility of a large number of carefully labeled data, while the high-quality labeled data is expensive and time-consuming to obtain. Self-supervised learning leverages a large amount of unlabeled data to pre-train the representations for the following supervised fine-tuning learning task without requiring more labeled data.

Major categories of self-supervised learning methods include contrastive learning (Oord et al., 2018; Chen et al., 2020; He et al., 2020) and generative self-supervised learning (Kingma & Welling, 2013; Goodfellow et al., 2014). Among the various self-supervised learning methods, SimCLR (Chen et al., 2020) algorithm has gained significant attention due to its simplicity and remarkable performance for vision tasks. SimCLR leverages the idea of contrastive learning, where representations are learned by maximizing agreement between differently augmented views of the same image while minimizing agreement between views of different images. Compared with purely supervised learning, this approach has demonstrated exceptional capabilities in capturing high-level semantic information and achieving state-of-the-art results on various downstream tasks.

While such a contrastive learning method has demonstrated great success from the empirical perspective, it remains relatively unclear how the pre-training scheme helps improve the performance of the fine-tuning. Some recent papers have been devoted to the theoretical understanding of contrastive learning (Saunshi et al., 2019; Tsai et al., 2020; Wen & Li, 2021). Saunshi et al. (2019) introduced a theoretical framework that contains latent classes and presented the generalization bound to demonstrate provable good performance and reduced sample complexity of downstream tasks, but this framework fails to explain the case of over-parameterization. Tsai et al. (2020) provided an information-theoretical framework based on mutual information to explain the good performance of self-supervised learning. However, the aforementioned papers focus on the setting where the hypothesis class has limited complexity, and cannot handle the setting where the number of model parameters is larger than the sample size, which is more common in modern deep learning, especially for vision tasks. Wen & Li (2021) considered the over-parameterized setting and analyzed the feature learning process of contrastive learning and the dependence of learned features on data augmentations. However, Wen & Li (2021) only analyzed a very specific type of learning task solved by a slightly non-standard optimization algorithm. Therefore, current theoretical understanding of contrastive learning is still quite limited.

In this paper, how SimCLR pre-training method makes improvements in the fine-tuning training of a two-layer convolutional neural network (CNN) is studied. The case we focus on is a binary classification problem on a toy image data model, which has been studied in a series of recent works (Cao et al., 2022; Jelassi & Li, 2022; Kou et al., 2023b). Under certain conditions related to the number of labeled and unlabeled data and the signal-to-noise ratio (SNR), we study SimCLR-based pre-training followed by supervised fine-tuning, and establish convergence as well as generalization guarantees of the obtained two-layer CNN.

O67 The contributions of this paper are summarized as follows.

069 • We consider using CNNs given by SimCLR pre-training and supervised fine-tuning to learn a certain type of signal-noise data studied in recent works. Under certain conditions on the amount 071 of unlabeled data and labeled data, we establish training loss convergence guarantees as well as generalization guarantees for two-layer CNNs trained by SimCLR pre-training and supervised fine-tuning. Specifically, our results demonstrate that, although the training losses in the pre-073 training and fine-tuning are both highly non-convex, the training of the CNN will successfully 074 minimize the training loss. Moreover, although we consider an over-parameterized setting where 075 the CNN overfits the training data, our results demonstrate that the CNN will achieve a small test 076 loss. 077

078 • The learning task we investigate is a standard toy data model that has been studied by many recent works (Cao et al., 2022; Jelassi & Li, 2022; Kou et al., 2023b). This enables an easy 079 comparison between the theoretical guarantees of learning with SimCLR pre-training and those without SimCLR pre-training. In particular, Cao et al. (2022) showed that, direct supervised 081 learning on the data model can achieve small test loss if and (almost) only if the condition n. $SNR^q = \tilde{\Omega}(1)^1$ holds, where SNR is a notion of the signal-to-noise ratio, n is the labeled sample 083 size, and q is a constant related to the activation function. In comparison, the label complexity for 084 SimCLR pre-training followed by supervised fine-tuning is far less demanding: our results show 085 that when the unlabeled sample size n_0 and labeled sample size n satisfy $n_0 \cdot \text{SNR}^2 = \widetilde{\Omega}(1)$, $n = \tilde{\Omega}(1)$, the obtained CNN can achieve small training and test losses. Clearly, our analysis 087 demonstrates the advantage of SimCLR in reducing label complexity in learning tasks with low signal-to-noise ratio. Our result serves as a concrete example where SimCLR-based pre-training is provably helpful. 090

091 • In our theoretical analysis, we introduce many novel analysis tools that enable the study of the 092 SimCLR algorithm. In particular, we establish a key result that, up to sufficiently many iterations, the SimCLR pre-training updates can be characterized by the power method based on a matrix 093 defined by the pre-training data and their augmentations. Notably, although our analysis focuses 094 on a very specific toy data model, we believe similar results on the connection between SimCLR 095 and power method should hold for more general settings. Therefore, this result may be of inde-096 pendent interest. Moreover, all of our analysis of the SimCLR algorithm should also hold for the 097 case where the data inputs are generated from Gaussian mixtures. Therefore, a side product of our 098 analysis is the effectiveness guarantee of using SimCLR to learn Gaussian mixtures. 099

Notation. $\|\cdot\|_2$ denotes the ℓ^2 -norm. $\|\cdot\|_F$ denotes the Frobenius norm. [n] refers to the set {1,2,...,n}. For two sequences $\{a_n\}$ and $\{b_n\}$, denote $a_n = O(b_n)$ if there exists some absolute constant C > 0 and N > 0 such that $|a_n| \le C|b_n|$ holds for all $n \ge N$. Denote $a_n = \Omega(b_n)$ if there exist some absolute constant C > 0 and N > 0 such that $|a_n| \le C|b_n|$ holds for all $n \ge N$. Denote $a_n = \Theta(b_n)$ if both $a_n = O(b_n)$ and $a_n = \Omega(b_n)$ hold. $\widetilde{O}(\cdot)$, $\widetilde{\Omega}(\cdot)$, $\widetilde{\Theta}(\cdot)$ are used to omit the logarithmic factors in these notations.

¹⁰⁷

¹Here the $\widetilde{\Omega}(\cdot)$ hides logarithmic factors.

108 2 RELATED WORK

109

110 Self-supervised Learning. Self-supervised learning has won great success in application and 111 has covered many important fields of machine learning, for example, natural language processing 112 (Mikolov et al., 2013; Devlin et al., 2018), and computer vision (Chen et al., 2020). As one of the 113 important methods for vision tasks, contrastive learning began with learning the latent variable of 114 the data (Carreira-Perpinan & Hinton, 2005). Cole et al. (2022) investigated the factors that improve 115 the performance of contrastive learning, but the analysis was still from an empirical aspect. From a 116 theoretical perspective, some works have also been done to understand contrastive learning. Wang & Isola (2020) identified alignment and uniformity as two important properties concerned with 117 contrastive loss, and proved that contrastive loss optimizes these properties asymptotically. Infor-118 mation theory was also introduced to establish theoretical framework that explains why contrastive 119 learning works (Tsai et al., 2020; Tian et al., 2020a). Shwartz Ziv & LeCun (2024) examined differ-120 ent self-supervised learning methods from the information-theoretic aspect and proposed a unified 121 framework that includes them as information-theoretic learning problems. Tian et al. (2020b) pro-122 posed a framework for the theoretical understanding of SimCLR self-supervised learning method 123 and demonstrated that the updates of SimCLR capture variations across data points. HaoChen et al. 124 (2021) considered a spectral contrastive loss and performed spectral clustering on the population 125 augmentation graph, but the applicability of this spectral contrastive loss is limited. Tan et al. (2024) 126 extended the idea of HaoChen et al. (2021) to general loss functions by showing the equivalence between InfoNCE loss and spectral clustering. Furthermore, HaoChen et al. (2021) also extended 127 this to more general settings, including multi-modal scenarios. However, the aforementioned pa-128 pers focused on the analysis of contrastive learning and do not analyze how contrastive learning 129 influences the performance of the following fine-tuning stage. Bansal et al. (2021) presented a new 130 upper bound of the generalization gap of classifiers by performing self-supervised training to learn 131 representations, followed by fitting a simple classifier such as linear classifier to the labels. 132

133

Feature Learning Theory of Neural Networks. There are a series of works that provide theo-134 retical foundations for feature learning theory of neural networks. Frei et al. (2022) considered the 135 benign overfitting phenomenon in two-layer neural networks with smoothed leaky ReLU activations 136 when both model and learning dynamics are nonlinear. Cao et al. (2022) analyzed the benign overfit-137 ting that appeared in the supervised learning of two-layer convolutional neural networks, and showed 138 arbitrary small training and test loss can be achieved under certain conditions on SNR, but the anal-139 ysis was based on specified initialization distribution. Without requiring the smoothness of the acti-140 vation function, Kou et al. (2023b) focused on benign overfitting of two-layer ReLU convolutional 141 neural networks with label-flipping noise. They showed that, under mild conditions, the neural net-142 works can achieve near-zero training loss and Bayes optimal test risk. Xu et al. (2023) demonstrated that benign overfitting and grokking provably appeared in the feature learning of two-layer ReLU 143 neural networks trained by gradient descent on non-linearly separable data distribution. Meng et al. 144 (2024) analyzed one category of XOR-type classification tasks with label-flipping noises, show-145 ing two-layer ReLU convolutional neural networks can achieve near Bayes-optimal accuracy. Kou 146 et al. (2023a) investigated a semi-supervised learning method that combines pre-training with linear 147 probing for two-layer neural networks, and found the semi-supervised approach achieves nearly zero 148 test loss. However, how self-supervised learning improves the training of neural networks remains 149 largely unexplored.

150 151 152

153

3 PROBLEM SETTING

This section presents the problem setup in this paper. We first introduce the data model considered in this paper, and then introduce the detailed setup for SimCLR pre-training and supervised fine-tuning respectively.

157 158

3.1 A DATA MODEL FOR THE CASE STUDY

159

In this paper, we consider a simple binary classification task. We consider a toy data model that has
 been studied in a series of recent works (Cao et al., 2022; Jelassi & Li, 2022; Kou et al., 2023b).
 This paper is motivated by Cao et al. (2022), which analyzed the performance of direct supervised

162 learning. To enable a direct comparison between SimCLR pre-training followed by fine-tuning and 163 direct supervised learning, this paper adopts the same toy data model as Cao et al. (2022). 164

Definition 3.1. Let $\mu \in \mathbb{R}^d$ be a fixed vector. Each data point (\mathbf{x}, y) is given in the format of 165 $\mathbf{x} = [\mathbf{x}^{(1)\top}, \mathbf{x}^{(2)\top}]^{\top} \in \mathbb{R}^{2d}$. Assume the data is generated from the following distribution \mathcal{D} : 166

1. The label y is generated as a Rademacher random variable with $y \in \{-1, 1\}$.

2. A noise vector $\boldsymbol{\xi}$ is generated from the Gaussian distribution $\mathcal{N}(\mathbf{0}, \sigma_p^2 \cdot (\mathbf{I} - \boldsymbol{\mu} \boldsymbol{\mu}^\top \cdot \|\boldsymbol{\mu}\|_2^{-2}))$.

3. One of the two patches $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}$ generated and is assigned as $\mathbf{x}^{(1)} = y \cdot \boldsymbol{\mu}$ which represents the signal patch, and the other patch is assigned as $\boldsymbol{\xi}$ which represents the noise patch.

173 As is commented in Cao et al. (2022), the data distribution in Definition 3.1 is motivated by image 174 data, where the data input consists of multiple patches, and only some of the patches are directly re-175 lated to its corresponding label. Therefore, this data model is particularly suitable to study SimCLR, 176 which is originally proposed for vision tasks. The data input consists of several patches, among 177 which some are signal patches and the rest are noise patches. Following the notation given in Cao 178 et al. (2022), we define the signal-to-noise ratio (SNR) as SNR = $\|\boldsymbol{\mu}\|/(\sigma_n\sqrt{d})$ since $\|\boldsymbol{\xi}\|_2 \approx \sigma_n\sqrt{d}$ 179 when dimension d is large.

3.2 Self-supervised pre-training with SimCLR

We consider using SimCLR (Chen et al., 2020) to pre-train a simple linear CNN on unlabeled data. The linear CNN $\mathbf{F}(\mathbf{W}, \mathbf{x})$ with output of dimension 2m is defined as follows:

$$[\mathbf{F}(\mathbf{W},\mathbf{x})]_r = \langle \mathbf{w}_r, \mathbf{x}^{(1)} \rangle + \langle \mathbf{w}_r, \mathbf{x}^{(2)} \rangle, \quad r \in [2m],$$

where $\mathbf{W} = (\mathbf{w}_1, \cdots, \mathbf{w}_{2m})^\top \in \mathbb{R}^{2m \times d}, \mathbf{w}_r \in \mathbb{R}^{d \times 1}, r \in [2m]$. The linear CNN model defined above is composed of a linear CNN layer with 2m convolution filters $\text{LinearConv}(\cdot) : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ 187 188 $\mathbb{R}^{2m \times 2}$ and a fixed linear projection head $\operatorname{ProjHead}(\cdot) : \mathbb{R}^{2m \times 2} \to \mathbb{R}^{2m}$ defined as follows: 189

[LinearConv(
$$\mathbf{W}, \mathbf{x}$$
)]_{r,p} := $\langle \mathbf{w}_r, \mathbf{x}^{(p)} \rangle$, $r \in [2m]$, $p \in [2]$, and ProjHead(\mathbf{Z}) := $\mathbf{Z}[1 \ 1]^\top$.

 $\mathbf{F}(\mathbf{W}, \mathbf{x}) = \operatorname{ProjHead}[\operatorname{LinearConv}(\mathbf{W}, \mathbf{x})].$

(3.1)

192 Then it is clear that

196

197

198

199

200

201

203 204 20

190 191

167

168

169 170

171

172

180 181

182

183

184 185 186

Suppose that we are given an unlabeled dataset $S_{\text{unlabeled}} = \{\mathbf{x}_1^{\text{pre-training}}, \dots, \mathbf{x}_{n_0}^{\text{pre-training}}\}$, where $\mathbf{x}_{i}^{\text{pre-training}}, i \in [n_0]$ are unlabeled data independently generated from distribution \mathcal{D} in Definition 3.1. In SimCLR, we train the linear CNN model F(W, x) as follows: For each data point $\mathbf{x}_{i}^{\text{pre-training}}$, $i \in [n_0]$, we apply data augmentation to obtain an augmented data point $\widetilde{\mathbf{x}}_{i}^{\text{pre-training}}$. We consider an ideal setting that $\widetilde{\mathbf{x}}_i^{\text{pre-training}}$ is generated from $\mathbb{P}(\mathbf{x}|y=y_i)$. Then following Definition 3.1, it holds that $\widetilde{\mathbf{x}}_{i}^{\text{pre-training}} = [\widetilde{\mathbf{x}}_{i}^{(1)\top}, \widetilde{\mathbf{x}}_{i}^{(2)\top}]^{\top}$, where one of $\widetilde{\mathbf{x}}_{i}^{(1)}, \widetilde{\mathbf{x}}_{i}^{(2)}$ is randomly assigned as

$$\begin{array}{l} \begin{array}{l} \text{202} \\ \text{203} \\ \text{204} \end{array} \quad \begin{array}{l} y_i \cdot \boldsymbol{\mu} \text{ while the other is assigned as } \widetilde{\boldsymbol{\xi}}_i \sim \mathcal{N}(\mathbf{0}, \sigma_p^2 \cdot (\mathbf{I} - \boldsymbol{\mu} \boldsymbol{\mu}^\top \cdot \|\boldsymbol{\mu}\|_2^{-2})). \end{array} \\ \begin{array}{l} \text{Based on } \mathbf{x}_i^{\text{pre-training}} \text{ and } \\ \widetilde{\mathbf{x}}_i^{\text{pre-training}}, i \in [n_0], \text{ we define the following similarity scores} \end{array}$$

$$\begin{array}{ll}
 & \text{sim}_{i} = \left\langle \mathbf{F}(\mathbf{W}, \mathbf{x}_{i}^{\text{pre-training}}), \mathbf{F}(\mathbf{W}, \widetilde{\mathbf{x}}_{i}^{\text{pre-training}}) \right\rangle, \quad \text{sim}_{i,i'} = \left\langle \mathbf{F}(\mathbf{W}, \mathbf{x}_{i}^{\text{pre-training}}), \mathbf{F}(\mathbf{W}, \mathbf{x}_{i'}^{\text{pre-training}}) \right\rangle, \\
& \text{for all } i, i' \in [n_{0}] \text{ with } i \neq i'.
\end{array}$$

The convolution filters $\mathbf{w}_r \in \mathbb{R}^d$, $r \in [2m]$ in the SimCLR pre-training are initialized following 208 209 Gaussian distribution, namely $\mathbf{w}_r^{(0)} \sim \mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I}), r \in [2m]$. The loss function of the pre-training 210 stage is defined as 911

$$L_{S_{\text{unlabeled}}}(\mathbf{W}) = -\frac{1}{n_0} \sum_{i=1}^{n_0} \log \left(\frac{\exp(\sin_i/\tau)}{\exp(\sin_i/\tau) + \sum_{i' \neq i} \exp(\sin_{i,i'}/\tau)} \right),$$

213 214

> where τ is a constant. τ is the temperature parameter in SimCLR (Chen et al., 2020). In the pre-215 training stage, gradient descent with learning rate η is used to minimize the loss function $L(\mathbf{W})$.

3.3 SUPERVISED FINE-TUNING

Suppose that the labeled training dataset is given as $S = \{(\mathbf{x}_1^{\text{fine-tuning}}, y_1), \dots, (\mathbf{x}_n^{\text{fine-tuning}}, y_n)\}$, where *n* is the number of labeled data, and each data point $(\mathbf{x}_i^{\text{fine-tuning}}, y_i), i \in [n]$ is generated from the distribution \mathcal{D} in Definition 3.1. The two-layer convolutional neural network model is considered in the fine-tuning stage, namely $f(\mathbf{W}, \mathbf{x}) = F_{+1}(\mathbf{W}_{+1}, \mathbf{x}) - F_{-1}(\mathbf{W}_{-1}, \mathbf{x})$, where

$$F_{j}(\mathbf{W}_{j}, \mathbf{x}) = \frac{1}{m} \sum_{r=1}^{m} \left[\sigma(\langle \mathbf{w}_{j,r}, \mathbf{x}^{(1)} \rangle) + \sigma(\langle \mathbf{w}_{j,r}, \mathbf{x}^{(2)} \rangle) \right], \quad j = \pm 1,$$
(3.2)

where m is the number of filters in F_{+1} and F_{-1} respectively, $\sigma(z) = (\max\{0, z\})^q$ is the ReLU^q activation function with q > 2.

Figure 1: Illustration of the SimCLR pre-training and supervised fine-tuning stages.

In this paper, we consider the initialization $\mathbf{W}^{(0)}$ of the CNN (3.2) given by the result of SimCLR pre-training. For the 2m filters $\mathbf{w}_r^{(T_{\text{SimCLR}})}$, $r \in [2m]$ obtained in the pre-training stage, we ran-domly sample m filters out of 2m filters and assign them to the initialization of filters in F_{+1} , and denote $\mathcal{M} \subseteq [2m]$ the collection of these filters with $|\mathcal{M}| = m$. Correspondingly, the rest m filters $\mathbf{w}_r^{(T_{\text{SimCLR}})}$, $r \in [2m] \cap \mathcal{M}^c$ is assigned to the initialization of filters in F_{-1} . Therefore, the initialization of the supervised fine-tuning is given as

$$\{\mathbf{w}_{1,r}^{(0)}, r \in [m]\} = \{\mathbf{w}_{r}^{(T_{\text{SimCLR}})}, r \in \mathcal{M}\}, \quad \{\mathbf{w}_{-1,r}^{(0)}, r \in [m]\} = \{\mathbf{w}_{r}^{(T_{\text{SimCLR}})}, r \in \mathcal{M}^{c}\}.$$

Clearly, the above procedure is equivalent to the practical implementations of SimCLR, where after pre-training, we essentially remove the projection head part of the model and attach another classifier to perform supervised fine-tuning.

The training of this convolutional neural network is conducted by minimizing the empirical crossentry loss function, namely

$$L_S(\boldsymbol{W}) = \frac{1}{n} \sum_{i=1}^{n} \ell[y_i \cdot f(\boldsymbol{W}, \mathbf{x}_i^{\text{fine-tuning}})],$$

where S denotes the training dataset in the fine-tuning stage given by Definition 3.1, and $\ell(z) =$ $\log(1 + \exp(-z))$. Based on Definition 3.1, the corresponding true loss is defined as $L_{\mathcal{D}}(\mathbf{W}) \coloneqq$ $\mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}}\,\ell[y\cdot f(\mathbf{W},\mathbf{x})].$

In the fine-tuning stage, based on the gradient descent algorithm and the CNN structure defined in (3.2), the filters of the CNN $\mathbf{w}_{i,r}, j \in \{-1, +1\}, r \in [m]$ is trained according to the following gradient descent updating rules

$$\mathbf{v}_{j,r}^{(t+1)} = \mathbf{w}_{j,r}^{(t)} - \eta \cdot \nabla_{\mathbf{w}_{j,r}} L_S(\boldsymbol{W}^{(t)}).$$
(3.3)

The whole two-stage training procedure is depicted in Figure 1.

²⁷⁰ 4 MAIN RESULT

272

273

274

275

276

277 278

279

280 281

282 283

284

289

307

308

323

In this section, we present the main learning guarantee of the two-layer CNN given by SimCLR pre-training and supervised fine-tuning. We first introduce several assumptions on the number of unlabeled training samples n_0 , the number of labeled data samples n, the dimension d, the number of convolutional filters m, Gaussian initialization scale σ_0 , and the learning rate η .

Condition 4.1. Suppose that the following conditions hold for the pre-training and fine-tuning stage,

1. The number of unlabeled training samples n_0 satisfies $n_0 = \widetilde{\Omega}(\max{\{SNR^{-2}, 1\}})$.

2. The number of labeled training samples n satisfies $n = \widetilde{\Omega}(1)$.

3. The dimension d is sufficiently large: $d \geq \widetilde{\Omega}(n^{\frac{-6}{q-2}} \operatorname{SNR}^{-\frac{6q}{q-2}} \cdot \max\{n_0^{-1}, \operatorname{SNR}^{-2}\} + n_0^4)$.

4. The number of convolutional filters m satisfies $m = \Omega(\log(1/\delta))$.

5. Gaussian initialization scale σ_0 for SimCLR pre-training is sufficiently small:

$$\sigma_0 \le \widetilde{O}\Big(\min\{1, d^{-1}n^{\frac{4}{q-2}} \operatorname{SNR}^{\frac{4q}{q-2}} \cdot \|\boldsymbol{\mu}\|_2^{-2}\} \cdot \min\{1, \operatorname{SNR}^{-1}, \operatorname{SNR}^{-2}\}\Big).$$

6. The learning rate satisfies that $\eta = \widetilde{O}\left(\min\left\{(\sigma_p^2 d)^{-1}, (\sigma_p \sqrt{d})^{-2}, \|\boldsymbol{\mu}\|_2^{-2}\right\}\right)$.

290 While Condition 4.1 gives a long list of conditions, we remark that most of these assumptions are 291 easy to satisfy. In fact, the first two conditions in Condition 4.1 are the key conditions in this 292 paper. The condition on d is essentially assuming that the learning happens in a sufficiently over-293 parameterized setting, which is common in a series of recent works (Chatterji & Long, 2020; Cao 294 et al., 2021; 2022; Jelassi & Li, 2022; Kou et al., 2023b). The condition on the number of convo-295 lutional filters m is mild as we only require $m = \hat{\Omega}(1)$. Finally, the conditions on the initialization 296 scale σ_0 and the learning rate η essentially just assumes that the optimization is appropriately set up, 297 and can be achieved by simply implementing a small enough initialization scale and a small enough 298 learning rate.

The following Theorem 4.2 summarizes the main result of this paper.

Theorem 4.2. Under Condition 4.1, for any $\epsilon > 0$, if $n_0 \cdot \text{SNR}^2 = \widetilde{\Omega}(1)$, then within $T_{\text{SimCLR}} = \widetilde{\Omega}(\eta^{-1}\tau \|\boldsymbol{\mu}\|_2^{-2})$ iterations of pre-training and $T = \widetilde{\Theta}(\eta^{-1}m\sigma_0^{-(q-2)}\|\boldsymbol{\mu}\|_2^{-2} + \eta^{-1}\epsilon^{-1}m^3\|\boldsymbol{\mu}\|_2^{-2})$ iterations of fine-tuning, the obtained network in the fine-tuning stage satisfies that: there exists some $0 \le t \le T$, such that

- 1. The training loss converges to ϵ , i.e., $L_S(\mathbf{W}^{(t)}) \leq \epsilon$.
 - 2. The trained CNN achieves a small test loss: $L_{\mathcal{D}}(\mathbf{W}^{(t)}) \leq 6\epsilon + \exp(-\widetilde{\Omega}(n^2))$.

Theorem 4.2 presents the convergence and generalization guarantees of the two-layer CNN trained by SimCLR pre-training with supervised fine-tuning. According to Theorem 4.2, training loss convergence and small generalization are guaranteed for the two-layer CNNs when $n_0 =$ $\widetilde{\Omega}(\max{\{SNR^{-2}, 1\}}$ and $n \ge \Omega(\log(1/\delta))$ together with some other conditions listed in Condition 4.1. Here we comment that the case where $SNR = \Omega(1)$ is a very easy setting, as according to Cao et al. (2022, Theorem 4.3), small test loss can be achieved even if there is only $\widetilde{\Omega}(1)$ training data. Therefore, we see that Condition 4.1 essentially requires that $n_0 \cdot SNR^2 = \widetilde{\Omega}(1)$ and $n = \widetilde{\Omega}(1)$.

To compare the results of SimCLR pre-training followed by supervised fine-tuning with direct supervised learning, we cite the following theoretical results for direct supervised learning from Cao et al. (2022).

Theorem 4.3 (Theorems 4.3 and 4.4 in Cao et al. (2022), bounds of direct supervised learning). For any $\epsilon > 0$, let $T = \widetilde{\Theta}(\eta^{-1}m \cdot n\sigma_0^{-(q-2)} \cdot \max\{(\sigma_p \sqrt{d})^{-q}, \|\boldsymbol{\mu}\|_2^{-q}\} + \eta^{-1}\epsilon^{-1}nm^3 \cdot \max\{(\sigma_p \sqrt{d})^{-2}, \|\boldsymbol{\mu}\|_2^{-2}\}\}$. Under Condition 4.2 in Cao et al. (2022), the following results hold:

1. If $n \cdot \text{SNR}^q = \widetilde{\Omega}(1)$, then with probability at least $1 - d^{-1}$, there exists $0 \le t \le T$ such that:

- (a) The training loss converges to ϵ , i.e., $L_S(\mathbf{w}^{(t)}) \leq \epsilon$.
- (b) The trained CNN achieves a small test loss: $L_{\mathcal{D}}(\mathbf{w}^{(t)}) = 6\epsilon + \exp(-n^2)$.

2. If $n^{-1} \cdot \text{SNR}^{-q} = \widetilde{\Omega}(1)$, then with probability at least $1 - d^{-1}$, there exists $0 \le t \le T$ such that:

- (a) The training loss converges to ϵ , i.e., $L_S(\mathbf{w}^{(t)}) \leq \epsilon$.
- (b) The trained CNN has a constant order test loss: $L_{\mathcal{D}}(\mathbf{w}^{(t)}) = \Theta(1)$.

332 Theorem 4.3 above gives an upper bound on the test loss under the condition $n \cdot \text{SNR}^q = \widetilde{\Omega}(1)$, while 333 also gives a lower bound on the test loss under the almost complementary condition $n^{-1} \cdot \text{SNR}^{-q} =$ 334 $\widetilde{\Omega}(1)$. Note that we have the condition that the supervised sample size $n = \widetilde{\Omega}(1)$ in Cao et al. (2022, 335 Condition 4.2). Therefore, Theorem 4.3 demonstrates that for direct supervised learning to achieve 336 small test loss, it is necessary to have a labeled sample size at least $n = \Omega(\max\{SNR^{-q}, 1\})$. This 337 result also indicates that the learning task is relatively challenging when $SNR \ll 1$, as smaller SNR338 requires more labeled training data. Notably, Theorem 4.3 also shows that when $n^{-1} \cdot \text{SNR}^{-q} =$ 339 $\Omega(1)$, direct supervised learning with n labeled data is guaranteed to result in constant level test loss. 340

In comparison, Theorem 4.2 demonstrates that for SimCLR pre-training combined with su-341 pervised fine-tuning, as long as the unlabeled sample size n_0 is sufficiently large (n_0 = 342 $\widetilde{\Omega}(\max\{\text{SNR}^{-2},1\})), n = \widetilde{\Omega}(1)$ labeled data suffice to lead to small test loss. As previously 343 mentioned, direct supervised learning requires that the number of labeled training data satisfies 344 $n = \Omega(\max\{\text{SNR}^{-q}, 1\})$. Comparing these results, we can conclude that direct supervised learn-345 ing requires more label complexity to achieve small test loss, especially in challenging tasks with 346 low signal-to-noise ratio. The clear difference between Theorem 4.2 and Theorem 4.3 demonstrates 347 the effectiveness of SimCLR pre-training. 348

Remark 4.4. To demonstrate the practical value of the theoretical results in this paper, experiments 349 on both synthetic and real-world datasets are provided in Appendix A. Our theoretical results on 350 the advantage of SimCLR pre-training and the results of direct supervised learning in Cao et al. 351 (2022) together indicate that when the signal-to-noise ratio is low, SimCLR pre-training followed by 352 supervised fine-tuning may require far less labeled data compared with direct supervised learning. 353 The experiments in this paper present typical cases where SimCLR pre-training followed by super-354 vised fine-tuning achieves a significantly smaller test loss, while direct supervised learning achieves 355 a larger test loss under same label complexity. 356

5 PROOF SKETCH

In this section, we discuss the key proof steps of Theorem 4.2. Our analysis heavily focuses on the pre-training of the linear CNN with SimCLR. Therefore, for the simplicity of the notation, we omit the superscripts of the data used for pre-training: we denote by y_1, \ldots, y_{n_0} the (unseen) labels of the pre-training data, by ξ_1, \ldots, ξ_{n_0} the noise patches in the data inputs, and denote by $\tilde{\xi}_1, \ldots, \tilde{\xi}_{n_0}$ the noise patches in the augmented data inputs. On the other hand, the noise patches in the labeled data inputs are denoted as $\xi_1^{\text{fine-tuning}}, \ldots, \xi_n^{\text{fine-tuning}}$. We also introduce the following notations:

357

358 359

324

325

326 327

328

330

$$\mathbf{z}_i = y_i \cdot \boldsymbol{\mu} + \boldsymbol{\xi}_i, \quad \widetilde{\mathbf{z}}_i = y_i \cdot \boldsymbol{\mu} + \boldsymbol{\xi}_i, \quad i \in [n_0]$$

The above notation is motivated by the observation that the linear CNN we consider in the pretraining stage is essentially a function of the summation of the two patches of the data input. Further notice that $\mathbf{z}_i, \tilde{\mathbf{z}}_i, i \in [n_0]$ defined above are essentially Gaussian mixture data, and hence our proof is essentially based on an analysis of the performance of SimCLR in learning Gaussian mixtures.

A characterization of SimCLR pre-training by power method. Our proof for SimCLR is based
 on a key observation that the SimCLR updates of each CNN filter is very similar to those of a power
 method based on a matrix defined by the data. Specifically, we have the following lemma.

375 376

Lemma 5.1. For any
$$M > 0$$
, suppose that $n_0 = \widetilde{\Omega}(\max{\{SNR^{-2}, 1\}})$, and

$$\sigma_0 \le \widetilde{O}\left(\min\{1, d^{-1}M^{-\frac{4}{q-2}}n^{\frac{4}{q-2}}\operatorname{SNR}^{\frac{4q}{q-2}} \cdot \|\boldsymbol{\mu}\|_2^{-2}\} \cdot \min\{1, \operatorname{SNR}^{-1}, \operatorname{SNR}^{-2}\}\right).$$

Let
$$\mathbf{A} = \frac{\eta}{n_0^2 \tau} \sum_{i=1}^{n_0} \sum_{i' \neq i} (\mathbf{z}_i \widetilde{\mathbf{z}}_i^\top + \widetilde{\mathbf{z}}_i \mathbf{z}_i^\top - \mathbf{z}_i \mathbf{z}_i^\top - \mathbf{z}_{i'} \mathbf{z}_i^\top)$$
. Then for any T_{SimCLR} satisfying

$$[1 + (1 - \mathcal{E}_{\text{SimCLR}}) \|\mathbf{A}\|_2]^{T_{\text{SimCLR}}} = \widetilde{O}(\max\{M^{\frac{1}{q-2}} n^{-\frac{1}{q-2}} \text{SNR}^{-\frac{q}{q-2}}\})$$

with $\mathcal{E}_{SimCLR} = \widetilde{O}(\max\{SNR^{-1}n_0^{-1/2}, n_0^{-1}\})$ as specified in Lemma 5.2, we have for $t = 0, 1, \ldots T_{SimCLR}$, the iterates of SimCLR satisfy

$$\mathbf{w}_r^{(t+1)} = \mathbf{w}_r^{(t)} + (\mathbf{A} + \mathbf{\Xi}^{(t)})\mathbf{w}_r^{(t)}$$

where $\Xi^{(0)}, \ldots, \Xi^{(T_{\text{SimCLR}})} \in \mathbb{R}^{d \times d}$ are matrices whose columns and rows are in the subspaces $\operatorname{span}\{\mu, \xi_1, \ldots, \xi_{n_0}, \widetilde{\xi}_1, \ldots, \widetilde{\xi}_{n_0}\}$ and $\operatorname{span}\{\mu^{\top}, \xi_1^{\top}, \ldots, \xi_{n_0}^{\top}, \widetilde{\xi}_1^{\top}, \ldots, \widetilde{\xi}_{n_0}^{\top}\}$ respectively, and

$$\|\mathbf{\Xi}^{(t)}\|_2 \le \sigma_0 \cdot \|\mathbf{A}\|_2,$$

for all $t = 0, \ldots, T_{\text{SimCLR}}$, where

$$\boldsymbol{\Xi}^{(t)} = -\frac{\eta}{n_0^2 \tau} \sum_{i=1}^{n_0} \sum_{i' \neq i} \left(\frac{n_0 \cdot \exp(\sin_{i,i'}^{(t)}/\tau)}{\exp(\sin_i^{(t)}/\tau) + \sum_{i'' \neq i} \exp(\sin_{i,i'}^{(t)}/\tau)} - 1 \right) (\mathbf{z}_i \mathbf{z}_{i'}^\top + \mathbf{z}_{i'} \mathbf{z}_i^\top - \mathbf{z}_i \widetilde{\mathbf{z}}_i^\top - \widetilde{\mathbf{z}}_i \mathbf{z}_i^\top)$$

Lemma 5.1 gives an accurate characterization on how the CNN filters are updated during the Sim-CLR pre-training. In particular, when the initialization scale σ_0 is small, Lemma 5.1 implies that each convolutional filter is approximately updated according to the formula $\mathbf{w}_r^{(t+1)} = (\mathbf{I} + \mathbf{A})\mathbf{w}_r^{(t)}$, which is essentially a power method in learning the leading eigenvector of the matrix $(\mathbf{I} + \mathbf{A})$, which is also the leading eigenvector of the matrix \mathbf{A} .

Spectral analysis of the matrix A. According to Lemma 5.1, SimCLR may approximately align the CNN filters along the leading direction of the matrix A, and the convergence rate depends on the eigenvalue gap between the largest eigenvalue and the second largest eigenvalue. Motivated by this, we give the following lemma on the spectral decomposition of A.

Lemma 5.2. Let **A** be the matrix defined in Lemma 5.1, and let λ_i , \mathbf{v}_i , $i \in [d]$ be the eigenvalues and eigenvectors of **A** respectively, where λ_i , i = 1, ..., d are in decreasing order. Suppose that $d \geq n_0$, $n_0 \cdot \text{SNR}^2 = \widetilde{\Omega}(1)$, and Condition 4.1 hold. Then there exists

$$\mathcal{E}_{\text{SimCLR}} = \widetilde{O}(\max\{\text{SNR}^{-1}n_0^{-1/2}, n_0^{-1}\}) = o(1),$$

such that the following results hold:

• The first eigenvalue of A is significantly larger than the rest:

$$(1 - \mathcal{E}_{\text{SimCLR}}) \cdot \frac{2\eta}{\tau} \|\boldsymbol{\mu}\|_2^2 \le \lambda_1 \le (1 + \mathcal{E}_{\text{SimCLR}}) \cdot \frac{2\eta}{\tau} \|\boldsymbol{\mu}\|_2^2, \quad \max_{i \ge 2} \lambda_i \le -\frac{\eta}{\tau} \cdot \|\boldsymbol{\mu}\|_2^2 \mathcal{E}_{\text{SimCLR}},$$

The leading eigenvector of A aligns well with μ: Denote by P[⊥]_μ = I − μμ[⊤]/||μ||²₂ the projection matrix onto span{μ}[⊥]. Then it holds that

$$|\langle \mathbf{v}_1, \boldsymbol{\mu} \rangle| \ge (1 - \mathcal{E}_{\text{SimCLR}}^2) \cdot \|\boldsymbol{\mu}\|_2, \qquad \|\mathbf{P}_{\boldsymbol{\mu}}^{\perp} \mathbf{v}_1\|_2 \le \mathcal{E}_{\text{SimCLR}}.$$

Lemma 5.2 gives a tight estimation on the eigenvalues and eigenvectors of the matrix **A**, with a focus on the gap between the leading eigenvalue and the rest, and the relation between the leading eigenvector and the signal vector μ . According to Lemma 5.2, we can see that if the unlabeled sample size n_0 is sufficiently large, the leading eigenvalue and leading eigenvector will both be controlled by the signal μ , indicating that SimCLR can help enhance signal learning.

424 Signal learning guarantee of SimCLR pre-training. Based on Lemmas 5.1 and 5.2, we can derive
 425 the following key theorem on the signal learning guarantee of SimCLR pre-training.

Theorem 5.3. Let A be defined in Lemma 5.1. For any M > 0, suppose that $n_0 = \widetilde{\Omega}(\max\{\mathrm{SNR}^{-2}, 1\}, \sigma_0 \le \widetilde{O}(\min\{n_0^{-3}, n_0^{-3}\mathrm{SNR}^{-2}, M^{-\frac{1}{q-2}} \cdot n^{\frac{1}{q-2}}\mathrm{SNR}^{\frac{q}{q-2}}\}), d \ge \widetilde{\Omega}(M^{\frac{6}{q-2}} \cdot n^{\frac{-6}{q-2}}\mathrm{SNR}^{-\frac{6q}{q-2}} \cdot \max\{n_0^{-1}, \mathrm{SNR}^{-2}\}).$ Then with

$$T_{\rm SimCLR} = \begin{bmatrix} \log[288M^{\frac{1}{q-2}} \cdot \log(1/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn) \cdot \log(md)}] - \log[n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}] \\ \log[1 + (1 - \mathcal{E}_{\rm SimCLR}) \cdot \|\mathbf{A}\|_2] \end{bmatrix}$$

380 381

382

383 384 385

386

387 388 389

407 408

409 410

415

iterations, SimCLR gives CNN weights $\mathbf{w}_r^{(T_{\text{SimCLR}})}$, $r \in [2m]$ that can be decomposed as

$$\mathbf{w}_{r}^{(T_{\text{SimCLR}})} = \mathbf{w}_{r}^{\perp} + \gamma_{r} \cdot \boldsymbol{\mu} / \|\boldsymbol{\mu}\|_{2}^{2} + \sum_{i=1}^{n} \rho_{r,i} \cdot \boldsymbol{\xi}_{i}^{\text{fine-tuning}} / \|\boldsymbol{\xi}_{i}^{\text{fine-tuning}}\|_{2}^{2}$$

where \mathbf{w}_r^{\perp} is perpendicular to μ and $\boldsymbol{\xi}_1^{\text{fine-tuning}}, \ldots, \boldsymbol{\xi}_n^{\text{fine-tuning}}$. Moreover, it holds that

• There exist disjoint index sets
$$\mathcal{I}^+, \mathcal{I}^- \subseteq [2m]$$
 with $|\mathcal{I}^+| = |\mathcal{I}^-| = 2m/5$ such that

$$\frac{\min_{r \in \mathcal{I}^+} \gamma_r^{q^{-2}} / \log(2/\gamma_r)}{\max_{r \in [2m], i \in [n]} |\rho_{r,i}|^{q^{-2}}} \ge \frac{M}{n \mathrm{SNR}^2}, \qquad \frac{\min_{r \in \mathcal{I}^-} (-\gamma_r)^{q^{-2}} / \log(-2/\gamma_r)}{\max_{r \in [2m], i \in [n]} |\rho_{r,i}|^{q^{-2}}} \ge \frac{M}{n \mathrm{SNR}^2}.$$

• All $\mathbf{w}_r^{(T_{\text{SimCLR}})}$, $r \in [2m]$ are bounded:

$$\max_{r \in [2m]} \|\mathbf{w}_{r}^{\perp}\|_{2} \leq \frac{1}{n}, \ \max_{r \in [2m]} |\gamma_{r}| \leq \frac{\mathrm{SNR}^{2/q-2}}{16m^{2/q-2}n_{0}}, \ \max_{r \in [2m], i \in [n]} |\rho_{r,i}| \leq \frac{\mathrm{SNR}^{2/q-2}}{16m^{2/q-2}n_{0}}.$$

In Theorem 5.3, the decomposition

$$\mathbf{w}_r^{(T_{\text{SimCLR}})} = \mathbf{w}_r^{\perp} + \gamma_r \cdot \boldsymbol{\mu} / \|\boldsymbol{\mu}\|_2^2 + \sum_{i=1}^n \rho_{r,i} \cdot \boldsymbol{\xi}_i^{\text{fine-tuning}} / \|\boldsymbol{\xi}_i^{\text{fine-tuning}}\|_2^2$$

is inspired by the "signal-noise decomposition" proposed in Cao et al. (2022), where the authors have demonstrated that such a decomposition can be very helpful for the analysis of supervised fine-tuning. Theorem 5.3 demonstrates that there exist at least O(m) filters whose "signal coefficients" γ_r are relatively large compared with the "noise coefficients" $\rho_{r,i}$ of all the 2m filters. This result makes good preparation for our analysis of the downstream task. Notably, as we have discussed, Theorem 5.3 can also serve as a theoretical guarantee for the setting of SimCLR pre-training on Gaussian mixture data, and hence we believe that the result of Theorem 5.3 and its proof may be of independent interest.

Analysis of supervised fine-tuning. We can now analyze the supervised fine-tuning of the non-linear CNN where the initial CNN weights are given by SimCLR pre-training. We remind the readers that the nonlinear CNN model has second layer weights fixed as +1/m and -1/m, and we define $F_{+1}(\mathbf{W}_{+1}, \mathbf{x})$, $F_{-1}(\mathbf{W}_{-1}, \mathbf{x})$ in (3.2) so that the CNN can be written as $f(\mathbf{W}, \mathbf{x}) =$ $F_{+1}(\mathbf{W}_{+1},\mathbf{x}) - F_{-1}(\mathbf{W}_{-1},\mathbf{x})$. With filters $\mathbf{w}_r^{(T_{\text{SimCLR}})}$, $r \in [2m]$ obtained by SimCLR pre-training, we randomly sample m filters of them and assign them to the initialization of filters in $F_{\pm 1}$, and we denote $\mathcal{M} \subseteq [2m]$ the collection of these filters with $|\mathcal{M}| = m$. In addition, the rest m filters $\mathbf{w}_r^{(T_{\text{SimCLR}})}$, $r \in [2m] \cap \mathcal{M}^c$ are randomly assigned to the initialization of filters in F_{-1} . Based on this random assignment procedure, we directly have the following lemma.

Lemma 5.4. For any index sets $\mathcal{I}^+, \mathcal{I}^- \subseteq [2m]$ with $|\mathcal{I}^+| = |\mathcal{I}^-| = 2m/5$, with probability at least $1 - 2^{-(2m/5-1)}$, there exist $r_+ \in \mathcal{I}^+$ and $r_- \in \mathcal{I}^-$, such that $r_+ \in \mathcal{M}$ and $r_- \in \mathcal{M}^c$.

Lemma 5.4 is a straightforward result on random sampling. Following this result, we can see that with high probability, there exists a filter in \mathcal{I}^+ whose second layer parameter is assigned as +1 for fine-tuning, and there also exists a filter in \mathcal{I}^- whose second layer parameter is assigned as -1 for fine-tuning. With this result, we further give the following main theorem on the learning guarantees in the supervised fine-tuning stage.

Theorem 5.5. Suppose that the supervised fine-tuning starts with initialization $\mathbf{W}^{(0)}_{\perp}$ and $\mathbf{W}^{(0)}_{\perp}$ where the convolution filters have decomposition

$$\mathbf{w}_{j,r}^{(0)} = \mathbf{w}_{j,r}^{\perp} + j \cdot \gamma_{j,r} \cdot \boldsymbol{\mu} / \|\boldsymbol{\mu}\|_2^2 + \sum_{i=1}^n \rho_{j,r,i} \cdot \boldsymbol{\xi}_i^{\text{fine-tuning}} / \|\boldsymbol{\xi}_i^{\text{fine-tuning}}\|_2^2$$

for $j \in \{\pm 1\}$ and $r \in [m]$. Moreover, suppose that the coefficients $\gamma_{j,r}$'s and $\rho_{j,r,i}$'s satisfy the following properties:

• There exist
$$r_+, r_- \in [m]$$
 such that

• There exist
$$r_+, r_- \in [m]$$
 such that

• There exist
$$r_+, r_- \in [m]$$
 such that

$$\frac{\gamma_{+1,r_+}^{q-2}/\log(2/\gamma_{+1,r_+})}{\max_{i \neq i} |\rho_{i \neq i}|^{q-2}} = \Omega\left(\frac{\log(d)}{n\mathrm{SNR}^2}\right), \quad \frac{\gamma_{-1,r_-}^{q-2}/\log(2/\gamma_{-1,r_-})}{\max_{i \neq i} |\rho_{i \neq i}|^{q-2}} = \Omega\left(\frac{\log(d)}{n\mathrm{SNR}^2}\right).$$

• All $\mathbf{w}_r^{(T_{\text{SimCLR}})}$, $r \in [2m]$ are bounded:

490 491

492 493

494 495

496 497

498

486

 $\max_{j,r} \|\mathbf{w}_{j,r}^{\perp}\|_{2} \leq \frac{1}{n}, \ \max_{j,r} |\gamma_{j,r}| \leq \widetilde{O}\left(\frac{\mathrm{SNR}^{2/q-2}}{m^{2/q-2}}\right), \ \max_{j,r,i} |\rho_{j,r,i}| \leq \widetilde{O}\left(\frac{\mathrm{SNR}^{2/q-2}}{m^{2/q-2}}\right).$

Let $\gamma_0 = \min\{\gamma_{+1,r_+}, \gamma_{-1,r_-}\}$. For any $\epsilon > 0$, let $T = \widetilde{\Theta}(\eta^{-1}m\gamma_0^{-(q-2)}\|\mu\|_2^{-2} + \eta^{-1}\epsilon^{-1}m^3\|\mu\|_2^{-2})$, then if $\eta = \widetilde{O}(\min\{(\sigma_p^2d)^{-1}, (\sigma_p\sqrt{d})^{-2}, \|\mu\|_2^{-2}\})$, with probability at least $1 - d^{-1}$, there exists $0 \le t \le T$ such that:

1. The training loss converges to ϵ , i.e., $L_S(\mathbf{W}^{(t)}) \leq \epsilon$.

2. The trained CNN achieves a small test loss: $L_{\mathcal{D}}(\mathbf{W}^{(t)}) \leq 6\epsilon + \exp(-\widetilde{\Omega}(n^2))$.

499 Theorem 5.5 starts with an assumption on the properties of the "signal-noise decompositions" of the 500 initial weights for fine-tuning. This analysis is inspired by Cao et al. (2022) where the signal-noise decomposition is proposed. However, compared with Cao et al. (2022) where the analysis focuses on 501 training starting from random Gaussian initialization, Theorem 5.5 is in fact more general – $\mathbf{w}_{ir}^{(0)}$'s 502 are not necessarily randomly generated. In fact, by direct calculations, we can verify that if $\mathbf{w}_{ir}^{(0)}$'s 504 are all randomly generated from Gaussian distribution, then verifying the conditions in Theorem 5.5 505 will recover the condition that $n \cdot \text{SNR}^q = \hat{\Omega}(1)$ in Cao et al. (2022) which guarantees benign 506 overfitting. Therefore, Theorem 5.5 covers the result of benign overfitting in Cao et al. (2022). 507

Now it is clear that combining Theorem 5.3, Lemma 5.4 and Theorem 5.5 will immediately lead to Theorem 4.2. Therefore, our proof is finished.

510

6 CONCLUSION

511 512

513 In this paper, a case study on the benefits of SimCLR pre-training method for supervised fine-tuning is investigated. Based on a toy image data model for binary classification problems, we theoretically 514 analyze how SimCLR pre-training based on unlabeled data benefits fine-tuning in training two-layer 515 over-parameterized CNNs. Under mild conditions on the amount of labeled and unlabeled data and 516 the signal-to-noise ratio (SNR), the training loss convergence and small test loss are guaranteed, 517 while direct supervised learning requires more label complexity to achieve small training and test 518 losses. Our work demonstrates the provable advantage of SimCLR pre-training in fine-tuning stage, 519 which reduces label complexity to achieve a small test loss. 520

This paper focuses on the benefits of the popular SimCLR pre-training method for fine-tuning training. Apart from the SimCLR method for vision tasks, other contrastive learning (or self-supervised learning) methods could also be investigated. A more general question could be: How does the
pre-training of representations influence the performance of fine-tuning in the over-parameterized models? Various fine-tuning training processes could also be analyzed, including single-task supervised learning or multi-task learning. Future works could explore the aforementioned directions.

527 528

References

- Yamini Bansal, Gal Kaplun, and Boaz Barak. For self-supervised learning, rationality implies gen eralization, provably. In *International Conference on Learning Representations*, 2021.
- Yuan Cao, Quanquan Gu, and Mikhail Belkin. Risk bounds for over-parameterized maximum mar gin classification on sub-gaussian mixtures. *Advances in Neural Information Processing Systems*,
 34, 2021.
- Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convolutional neural networks. *Advances in neural information processing systems*, 35:25237–25250, 2022.
- 539 Miguel A Carreira-Perpinan and Geoffrey Hinton. On contrastive divergence learning. In *International workshop on artificial intelligence and statistics*, pp. 33–40. PMLR, 2005.

- 540 Niladri S Chatterji and Philip M Long. Finite-sample analysis of interpolating linear classifiers in 541 the overparameterized regime. arXiv preprint arXiv:2004.12019, 2020. 542 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for 543 contrastive learning of visual representations. In International conference on machine learning, 544 pp. 1597–1607. PMLR, 2020. 546 Elijah Cole, Xuan Yang, Kimberly Wilber, Oisin Mac Aodha, and Serge Belongie. When does 547 contrastive visual representation learning work? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14755–14764, 2022. 548 549 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep 550 bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 551 552 Spencer Frei, Niladri S Chatterji, and Peter Bartlett. Benign overfitting without linearity: Neural network classifiers trained by gradient descent for noisy linear data. In Conference on Learning 553 *Theory*, pp. 2668–2703. PMLR, 2022. 554 555 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, 556 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014. 558 Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised 559 deep learning with spectral contrastive loss. Advances in Neural Information Processing Systems, 560 34:5000-5011, 2021. 561 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for 563 unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9729–9738, 2020. 564 565 Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in 566 deep learning. In International Conference on Machine Learning, pp. 9965–10040. PMLR, 2022. 567 568 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. 569 570 Yiwen Kou, Zixiang Chen, Yuan Cao, and Quanquan Gu. How does semi-supervised learning with 571 pseudo-labelers work? a case study. In International Conference on Learning Representations, 572 2023a. 573 Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting in two-layer relu 574 convolutional neural networks. In International Conference on Machine Learning, pp. 17615-575 17659. PMLR, 2023b. 576 577 Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied 578 to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 579 Xuran Meng, Difan Zou, and Yuan Cao. Benign overfitting in two-layer relu convolutional neural 580 networks for xor data. In International Conference on Machine Learning, 2024. 581 582 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-583 tations in vector space. arXiv preprint arXiv:1301.3781, 2013. 584 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-585 tive coding. arXiv preprint arXiv:1807.03748, 2018. 586 Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar. A theoretical analysis of contrastive unsupervised representation learning. In International Con-588 ference on Machine Learning, pp. 5628–5637. PMLR, 2019. 589 Ravid Shwartz Ziv and Yann LeCun. To compress or not to compress-self-supervised learning and information theory: A review. Entropy, 26(3), 2024. ISSN 1099-4300. 592 Zhiquan Tan, Yifan Zhang, Jingqin Yang, and Yang Yuan. Contrastive learning is spectral clustering
- ⁵⁹³ Zhiquan Tan, Yifan Zhang, Jingqin Yang, and Yang Yuan. Contrastive learning is spectral clustering on similarity graph. In *The Twelfth International Conference on Learning Representations*, 2024.

394	Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
595	makes for good views for contrastive learning? Advances in neural information processing sys-
596	<i>tems</i> , 33:6827–6839, 2020a.

- Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning with dual deep networks. *arXiv preprint arXiv:2010.00578*, 2020b.
- Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. De mystifying self-supervised learning: An information-theoretical framework. *arXiv preprint arXiv:2006.05576*, 2020.
 - Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. *arXiv preprint arXiv:1011.3027*, 2010.
- Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In *International conference on machine learning*, pp. 9929–9939. PMLR, 2020.
- Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised contrastive learning. In *International Conference on Machine Learning*, pp. 11112–11122. PMLR, 2021.
- Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking in
 relu networks for xor cluster data. *arXiv preprint arXiv:2310.02541*, 2023.
- Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for statisticians. *Biometrika*, 102(2):315–323, 2015.

648 A EXPERIMENTS

This section presents the synthetic-data experiments and real-world data experiments to back up
 theoretical results and demonstrate the practical value of our theory.

Synthetic-data experiments. The synthetic dataset is generated following the data model in Definition 3.1 with the dimension d = 400, $\sigma_p = 2$, $\|\boldsymbol{\mu}\|_2 = 10$. The training of the two-layer CNN model follows the two-stage (SimCLR pre-training followed by supervised fine-tuning) training procedure as depicted in Figure 1. Here, the number of filters is set as m = 40 with ReLU³ activation function. The number of unlabeled data in the SimCLR pre-training stage is $n_0 = 250$ and the number of labeled data in the fine-tuning stage is n = 40. The test loss is calculated using 400 test data points.

In parallel, we also conduct the training of the two-layer CNN model (3.2) through direct-supervised learning on n = 40 labeled data for comparison, and all the conditions of the labeled dataset are same as its SimCLR pre-training counterpart. The results on synthetic data experiments are presented in Figure 2.

Figure 2: Synthetic-data experiments: Under same conditions on label complexity, SimCLR pretraining combined with supervised fine-tuning ($n_0 = 250, n = 40$) achieves much smaller test loss than direct supervised learning (n = 40).

677

668

669

670 671

672

673

Real-data experiments on MNIST dataset. Real-world data experiments on MNIST dataset (Le-Cun et al., 1998) are also conducted. Following the data model in Definition 3.1, a binary classification problem is considered, where the signal μ is originated from MNIST dataset with the size of 28×28 . In the data model, the dimension is set as $d = 28 \cdot 28 = 784$, and $\sigma_p = 200$. Figure 3 presents the signals and dataset in the real-data experiments.

683 We train a two-layer CNN model with the number of filters m = 16, and the activation function is 684 $ReLU^3$, and follows the two-stage training procedure of the CNN as depicted in the Figure 1. The 685 training losses and the test losses of SimCLR pre-training followed by supervised fine-tuning are compared with its direct supervised learning counterpart. The comparison is made under the same 686 label complexity condition where the number of unlabeled data in the SimCLR pre-training stage is 687 $n_0 = 200$ and the number of labeled data in the fine-tuning stage as well as in the direct supervised 688 learning counterpart is n = 40. The test losses are calculated using 400 test data points. The 689 results are presented in Figure 4. Figure 4 essentially presents an extreme case where SimCLR pre-690 training with supervised fine-tuning and direct supervised learning result in significantly different 691 performances on noisy MNIST images despite of the same label complexity. 692

In the following part, we conduct large-scale experiments on both synthetic-data and real-data (MNIST) datasets. The basic data settings are the same as above experiments.

Large-scale synthetic-data experiments. The synthetic dataset is generated following the data model in Definition 3.1 with the dimension d = 400, $\sigma_p = 4$, $\|\boldsymbol{\mu}\|_2 = 10$. The training of the twolayer CNN model follows the two-stage (SimCLR pre-training followed by supervised fine-tuning) training procedure as depicted in Figure 1. Here, the number of filters is set as m = 40 with ReLU³ activation function. The number of unlabeled data in the SimCLR pre-training stage is $n_0 = 100000$ and the number of labeled data in the fine-tuning stage is n = 250. The test accuracy is calculated using 400 test data points. In parallel, we also conduct the training of the two-layer CNN model (3.2) through direct-supervised learning on n = 40 labeled data for comparison, and all the conditions of

on MNIST dataset (LeCun et al., 1998) are also conducted. Following the data model in Definition 749 3.1, a binary classification problem is considered, where the signal μ is originated from MNIST 750 dataset with the size of 28×28 . In the data model, the dimension is set as $d = 28 \cdot 28 = 784$, and 751 the scale of the noise $\sigma_p = 2$. All signals originated from MNSIT dataset are normalized to have same norm $\|\mu\|_2 = 20$. We train a two-layer CNN model with the number of filters m = 16, and the 752 activation function is ReLU³, and follows the two-stage training procedure of the CNN as depicted 753 in the Figure 1. The training losses and the test accuracies of SimCLR pre-training followed by 754 supervised fine-tuning are compared with its direct supervised learning counterpart. The compari-755 son is made under the same label complexity condition where the number of unlabeled data in the SimCLR pre-training stage is $n_0 = 13800$ and the number of labeled data in the fine-tuning stage as well as in the direct supervised learning counterpart is n = 40. The test accuracy is calculated using 400 test data points. The results are presented in Figure 6. Figure 6 essentially presents an extreme case where SimCLR pre-training with supervised fine-tuning and direct supervised learning result in significantly different performances on noisy MNIST images despite of the same label complexity.

Figure 6: Large-scale real-data experiments: Under same conditions on label complexity (n = 40), SimCLR pre-training combined with supervised fine-tuning $(n_0 = 13800, n = 40)$ achieves much higher test accuracy than direct supervised learning.

We also conduct several groups of real-data experiments of SimCLR pre-training and followed by supervised fine-tuning on different values of signal-to-noise ratio (SNR), n_0 , n, and compare their performance (test accuracies) on the supervised fine-tuning stage. These groups of experiments are conducted to see how the test accuracies of the fine-tuning stage vary with different values of n_0 , SNR, n. The corresponding comparison of results for n_0 , SNR, n are presented in Figures 7, 8 and 9 respectively.

• The unlabeled data size n_0 : Figure 7 presents the performance of experiments with different size of unlabeled pre-training data n_0 . While all other conditions remain the same, experiments with larger size of unlabeled pre-training data n_0 achieves a better test accuracy.

Figure 7: Training performance comparison for different size of unlabeled pre-training data n_0 : the test accuracies in the supervised fine-tuning stage for the experiments with different unlabeled data size n_0 ($n_0 = 500, 1000, 2000, 8000, 13800$). All experiments are conducted with same labeled data size n = 40 for supervised learning and same SNR.

- Signal-to-noise ratio (SNR): Figure 8 shows that under same labeled data and unlabeled data size, for the experiments with smaller SNR, the training performance is worser. For experiment with smaller SNR, it requires more (labeled or unlabeled) data to achieve a good test performance.
- The labeled sample size n: Figure 9 shows that, in the SimCLR pre-training followed by supervised fine-tuning, given a satisfactory number of unlabeled data n_0 , the condition on the size of

Figure 8: Training performance comparison for different SNR: the test accuracies in the supervised fine-tuning stage for the experiments with different SNR. All experiments are conducted with $n_0 =$ 13800 unlabeled pre-training data and n = 40 labeled supervised learning data, and same scale of signal $\|\boldsymbol{\mu}\|_2 = 20$. Different noise scale σ_p are selected and this leads to different SNR.

labeled data n to achieve a high test accuracy is mild. This is accordance with the condition and the theoretical results presented in Condition 4.1 and Theorem 4.2.

Figure 9: Training performance comparison for different size of labeled data n: the test accuracies in the supervised fine-tuning stage for the experiments with different labeled data size n (n =5, 10, 20, 40). All experiments are conducted with $n_0 = 13800$ unlabeled data for pre-training and same SNR (same signal scale $\|\boldsymbol{\mu}\|_2 = 20$ and noise $\sigma_p = 4$).

Summary of experiment results. The experiments above present typical cases where SimCLR pre-training followed by supervised fine-tuning achieves a much smaller test loss, while direct su-pervised learning achieves a larger test loss under the same label complexity. Both synthetic and real-world experiments match our theoretical results and demonstrate that SimCLR pre-training could relax the requirement of label complexity to achieve a small test loss.

In the following part, we analyze that whether the result that SimCLR pre-training advantages the supervised fine-tuning theoretically proved in this paper on CNNs also holds for other models by empirical experiments.

Real-data experiments on simple Vision Transformers (ViT). Real-data experiments based on images of digit 0 and 1 in the MNIST dataset (LeCun et al., 1998) are conducted on simple Vision Transformers. Following the data model in Definition 3.1, we consider the case where clean MNIST images are treated as "signal patches" and are hidden among other "noise patches". Therefore, the dimension for signal and noise patches is set as $d = 28 \cdot 28 = 784$ according to the size of MNIST images, and we set the standard deviation of the Gaussian noises to be $\sigma_p = 5$. All images from MNIST dataset are normalized to have same norm $\|\boldsymbol{\mu}\|_2 = 20$.

The training procedure involves first pre-training on unlabeled data to minimize the SimCLR loss, and then the model initialized by SimCLR pre-training is fine-tuned on labeled data to minimize the cross-entropy loss. The model $f(\mathbf{X}) : \mathbb{R}^{d \times p} \to \mathbb{R}^m$ is defined as follows:

$$f(\mathbf{X}) = \mathbf{V}\mathbf{X} \cdot \operatorname{Softmax}((\mathbf{K}\mathbf{X})^{\top}(\mathbf{Q}\mathbf{X})) \cdot \mathbf{1}_{p},$$

where the input $\mathbf{X} \in \mathbb{R}^{d \times p}$, p is number of patches, the input is given as $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(p)}) \in$ 867 $\mathbb{R}^{d \times p}$ where $\mathbf{x}^{(i)} \in \mathbb{R}^{d \times 1}$, $i = 1, \dots, p$ are images patches, and only one of the patches is a 868 normalized MNIST image, while the other patches are Gaussian noises (corresponding to the noise 869 patch in our data model in Definition 3.1). Softmax(\cdot) refers to the column-wise Softmax function. 870 The parameter matrices $\mathbf{V} \in \mathbb{R}^{m \times d}$, $\mathbf{K}, \mathbf{Q} \in \mathbb{R}^{k \times d}$, vector $\mathbf{1}_p = (1, \dots, 1)^\top \in \mathbb{R}^{p \times 1}$ is a constant 871 vector of all ones. In the pre-training stage, $f(\mathbf{X})$ and its augmented pair $f(\mathbf{X})$ is trained under the 872 SimCLR loss, where X refers to the augmented data pair of X following the data augmentation in 873 Section 3.2. 874

$$g(\mathbf{X}) = \mathbf{a}_m^\top \cdot \sigma(f(\mathbf{X})), \tag{A.1}$$

where $\mathbf{a}_m = (a_1, \dots, a_m)^\top \in \mathbb{R}^m$ is a constant vector with entry $a_i, i \in [m]$ random sampled from $\{-1, 1\}$ with probability $1/2, \sigma(\cdot)$ is the ReLU^q activation function with q > 2. Here, we select m = 40, k = 2, p = 2 in the model setting.

The training losses and the test accuracies of SimCLR pre-training followed by supervised finetuning are compared with its direct supervised learning counterpart on simple ViTs defined in (A.1). The comparison is made under the same number of labeled data and same other conditions, where the number of unlabeled data in the SimCLR pre-training stage is $n_0 = 128000$ and the number of labeled data in the fine-tuning stage as well as in the direct supervised learning counterpart is n = 64. The test accuracy is calculated using 400 test data points.

The results are presented in Figure 10. Figure 10 essentially presents an extreme case where with the same labeled dataset, SimCLR pre-training followed by supervised fine-tuning achieves a significantly better test performance than direct supervised learning on the simple ViT models. It demonstrates that the phenomenon that SimCLR pre-training advantages the fine-tuning theoretically proved in this paper on two-layer CNNs can also be observed in empirical experiments on other models such as Vision Transformers.

906

907

908

909

895

896

897

899

900

901

866

- Figure 10: Real-data experiments on simple ViTs: the training losses and test accuracies comparison in the supervised learning stage for direct supervised learning and SimCLR pre-training with supervised fine-tuning. Under same conditions on label complexity (n = 64), SimCLR pre-training combined with supervised fine-tuning ($n_0 = 128000, n = 64$) achieves much higher test accuracy than direct supervised learning on simple ViTs.
- 910 911 912

913

917

B PROOFS FOR SIMCLR PRE-TRAINING

- 914 B.1 PROOFS OF LEMMAS IN SECTION 5 915
- 916 B.1.1 PROOF OF LEMMA 5.1

In this section, the following Lemma B.1 is introduced to prove Lemma 5.1.

Lemma B.1. For any $\tilde{\delta} > 0$, with probability at least $1 - \tilde{\delta}$, a union bound for $\|\boldsymbol{\xi}_i\|_2^2$ and $\|\boldsymbol{\widetilde{\xi}}_i\|_2^2$. $i \in [n_0]$ is

$$d\sigma_p^2 - C_2 \sigma_p^2 \sqrt{d\log(4n_0/\widetilde{\delta})} \le \|\boldsymbol{\xi}_i\|_2^2 \le d\sigma_p^2 + C_2 \sigma_p^2 \sqrt{d\log(4n_0/\widetilde{\delta})} \le \|\boldsymbol{\xi}_i\|_2^2 \le \|\boldsymbol{\xi$$

$$d\sigma_p^2 - C_2 \sigma_p^2 \sqrt{d \log(4n_0/\widetilde{\delta})} \le \|\boldsymbol{\xi}_i\|_2^2 \le d\sigma_p^2 + C_2 \sigma_p^2 \sqrt{d \log(4n_0/\widetilde{\delta})}$$
$$d\sigma_p^2 - C_2 \sigma_p^2 \sqrt{d \log(4n_0/\widetilde{\delta})} \le \|\boldsymbol{\tilde{\xi}}_i\|_2^2 \le d\sigma_p^2 + C_2 \sigma_p^2 \sqrt{d \log(4n_0/\widetilde{\delta})}$$

where C_2 is an absolute constant that does not depend on other variables.

Based on the Lemma B.1, the proof of Lemma 5.1 is presented as follows.

Proof of Lemma 5.1. By direct calculation, we have

$$\nabla_{\mathbf{w}_r} L_{S_{\text{unlabeled}}}(\mathbf{W}) = \frac{1}{n_0 \tau} \sum_{i=1}^{n_0} \operatorname{softmax}_i \cdot \sum_{i' \neq i} \exp(\operatorname{sim}_{i,i'}/\tau - \operatorname{sim}_i/\tau) \cdot (\nabla_{\mathbf{w}_r} \operatorname{sim}_{i,i'} - \nabla_{\mathbf{w}_r} \operatorname{sim}_i),$$

where

$$\operatorname{softmax}_{i} = \frac{\exp(\operatorname{sim}_{i}/\tau)}{\exp(\operatorname{sim}_{i}/\tau) + \sum_{i' \neq i} \exp(\operatorname{sim}_{i,i'}/\tau)},$$
$$\nabla_{\mathbf{w}_{r}} \operatorname{sim}_{i} = (\mathbf{z}_{i} \widetilde{\mathbf{z}}_{i}^{\top} + \widetilde{\mathbf{z}}_{i} \mathbf{z}_{i}^{\top}) \cdot \mathbf{w}_{r},$$
$$\nabla_{\mathbf{w}_{r}} \operatorname{sim}_{i,i'} = (\mathbf{z}_{i} \mathbf{z}_{i'}^{\top} + \mathbf{z}_{i'} \mathbf{z}_{i}^{\top}) \cdot \mathbf{w}_{r}.$$

Reorganize terms then gives

$$\nabla_{\mathbf{w}_{r}} L_{S_{\text{unlabeled}}}(\mathbf{W}) = \frac{1}{n_{0}\tau} \sum_{i=1}^{n_{0}} \sum_{i'\neq i} \operatorname{softmax}_{i} \cdot \exp(\operatorname{sim}_{i,i'}/\tau - \operatorname{sim}_{i}/\tau) \cdot (\nabla_{\mathbf{w}_{r}} \operatorname{sim}_{i,i'} - \nabla_{\mathbf{w}_{r}} \operatorname{sim}_{i})$$
$$= \frac{1}{n_{0}\tau} \sum_{i=1}^{n_{0}} \sum_{i'\neq i} \left(\frac{\exp(\operatorname{sim}_{i,i'}/\tau)}{\exp(\operatorname{sim}_{i}/\tau) + \sum_{i''\neq i} \exp(\operatorname{sim}_{i,i'}/\tau)} \right) \cdot (\mathbf{z}_{i}\mathbf{z}_{i'}^{\top} + \mathbf{z}_{i'}\mathbf{z}_{i}^{\top} - \mathbf{z}_{i}\widetilde{\mathbf{z}}_{i}^{\top} - \widetilde{\mathbf{z}}_{i}\mathbf{z}_{i}^{\top}) \mathbf{w}_{r}$$

Now define

$$\boldsymbol{\Xi}^{(t)} = -\frac{\eta}{n_0^2 \tau} \cdot \sum_{i=1}^{n_0} \sum_{i' \neq i} \left(\frac{n_0 \cdot \exp(\operatorname{sim}_{i,i'}^{(t)} / \tau)}{\exp(\operatorname{sim}_{i}^{(t)} / \tau) + \sum_{i'' \neq i} \exp(\operatorname{sim}_{i,i'}^{(t)} / \tau)} - 1 \right) \cdot (\mathbf{z}_i \mathbf{z}_{i'}^\top + \mathbf{z}_{i'} \mathbf{z}_i^\top - \mathbf{z}_i \widetilde{\mathbf{z}}_i^\top - \widetilde{\mathbf{z}}_i \mathbf{z}_i^\top)$$

Then by gradient descent update rule, we have

$$\mathbf{w}_r^{(t+1)} = \mathbf{w}_r^{(t)} + (\mathbf{A} + \mathbf{\Xi}^{(t)})\mathbf{w}_r^{(t)}.$$

Moreover, by the definition of W and the fact that A, $\Xi^{(t)}$ are both symmetric matrices, we also have

$$\mathbf{W}^{(t+1)} = \mathbf{W}^{(t)} + \mathbf{W}^{(t)} (\mathbf{A} + \mathbf{\Xi}^{(t)}).$$
(B.1)

By the definition of T_{SimCLR} and the assumption that $\mathcal{E}_{\text{SimCLR}} \leq 1/2$, for $t \leq T_{\text{SimCLR}}$ we have

$$\left[1 + (1 - \mathcal{E}_{\text{SimCLR}}) \cdot \|\mathbf{A}\|_{2}\right]^{t} \le \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_{0})^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\}.$$

This inequality further implies that

$$\left[1 + (1 + \sigma_0) \cdot \|\mathbf{A}\|_2 \right]^t \leq \left[1 + (1 - \mathcal{E}_{\text{SimCLR}}) \cdot \|\mathbf{A}\|_2 \right]^{\frac{1 + \sigma_0}{1 - \mathcal{E}_{\text{SimCLR}}t}}$$

$$\leq \left[1 + (1 - \mathcal{E}_{\text{SimCLR}}) \cdot \|\mathbf{A}\|_2 \right]^{2t}$$

$$\leq \max \left\{ 288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}}, 2 \right\}^2$$
(B.2)

for all $t = 0, 1, \ldots, T_{\text{SimCLR}}$, where the first inequality follows by the fact that $1 + a \leq (1 + b)^{a/b}$ for all a > b > 0, and the second inequality follows by the assumption that $\mathcal{E}_{SimCLR} \leq 1/4$ and $\sigma_0 \le 1/4.$

In the following, we utilize (B.2) to prove the upper bound $\|\mathbf{\Xi}^{(t)}\|_2 \leq \sigma_0 \cdot \|\mathbf{A}\|_2$ by induction. To do so, we first check the bound at t = 0. We have

$$\|\mathbf{\Xi}^{(0)}\|_{2} \leq \frac{\eta}{\tau} \max_{i \neq i'} \left| \frac{n_{0} \cdot \exp(\operatorname{sim}_{i,i'}^{(0)} / \tau)}{\exp(\operatorname{sim}_{i}^{(0)} / \tau) + \sum_{i'' \neq i} \exp(\operatorname{sim}_{i,i'}^{(0)} / \tau)} - 1 \right| \cdot \|\mathbf{z}_{i} \mathbf{z}_{i'}^{\top} + \mathbf{z}_{i'} \mathbf{z}_{i}^{\top} - \mathbf{z}_{i} \mathbf{\widetilde{z}}_{i}^{\top} - \mathbf{\widetilde{z}}_{i} \mathbf{z}_{i}^{\top} \|_{2}$$

$$\leq \frac{2\eta}{\tau} \max_{i \neq i'} \left| \frac{n_0 \cdot \exp(\sin^{(0)}_{i,i'}/\tau)}{\exp(\sin^{(0)}_i/\tau) + \sum_{i'' \neq i} \exp(\sin^{(0)}_{i,i'}/\tau)} - 1 \right| \cdot \left(\|\mathbf{z}_i\|_2 \|\mathbf{z}_{i'}\|_2 + \|\mathbf{z}_i\|_2 \|\mathbf{\widetilde{z}}_i\|_2 \right)$$

$$\leq \frac{8\eta}{\tau} \cdot \left(\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d \right) \cdot \max_{i \neq i'} \left| \frac{n_0 \cdot \exp(\sin^{(0)}_{i,i'}/\tau)}{\exp(\sin^{(0)}_i/\tau) + \sum_{i'' \neq i} \exp(\sin^{(0)}_{i,i'}/\tau)} - 1 \right|,$$
(B.3)

 where the last inequality follows by Lemma B.1, which implies that $\|\boldsymbol{\xi}_i\|_2^2, \|\boldsymbol{\xi}_i\|_2^2 \leq 2\sigma_p^2 d$ with probability at least $1 - d^{-3}$. Moreover, by definition, we have

$$|\sin_{i}^{(0)}| = |\langle \mathbf{W}^{(0)}\mathbf{z}_{i}, \mathbf{W}^{(0)}\widetilde{\mathbf{z}_{i}}\rangle| \le ||\mathbf{W}^{(0)}||_{2}^{2} \cdot ||\mathbf{z}_{i}||_{2} \cdot ||\widetilde{\mathbf{z}}_{i}||_{2} \le 2||\mathbf{W}^{(0)}||_{2}^{2} \cdot (||\boldsymbol{\mu}||_{2}^{2} + 2\sigma_{p}^{2}d),$$

for all $i \in [n_0]$. Since $\mathbf{W}^{(0)}$ is a random matrix whose entries are independently generated from $\mathcal{N}(0, \sigma_0^2)$, with probability at least $1 - d^{-3}$, we have

 $\|\mathbf{W}^{(0)}\|_{2}^{2} \le c_{1} \cdot \sigma_{0}^{2} \cdot (d+n_{0}) \le 2c_{1} \cdot \sigma_{0}^{2}d,$

where c_1 is an absolute constant. Therefore, we have

$$\sin_i^{(0)} \le c_2 \cdot \sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d)$$

for all $i \in [n_0]$, where c_2 is an absolute constant. With exactly the same proof, we also have

$$|\sin_{i,i'}^{(0)}| \le 2\|\mathbf{W}^{(0)}\|_2^2 \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d) \le c_3 \cdot \sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d)$$

for all $i, i' \in [n]$ with $i \neq i'$, where c_3 is an absolute constant. Now by the assumption that $\sigma_0 \leq c_3$ $O(\tau^{1/2} \cdot d^{-1/2} \cdot \min\{\|\boldsymbol{\mu}\|_2^{-1}, \sigma_p^{-1} d^{-1/2}\})$, we have $|\dim_i^{(0)}|, |\lim_{i \neq j}^{(0)}| \le \tau/4$. Since $|\exp(z) - 1| \le \tau/4$. 2|z| for all z < 1, we have

$$|\exp(\sin_i^{(0)}/\tau) - 1| \le 2|\sin_i^{(0)}/\tau| \le c_4 \cdot \sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d) \le 1/2, \tag{B.4}$$

$$|\exp(\sin_{i,i'}^{(0)}/\tau) - 1| \le 2|\sin_{i,i'}^{(0)}/\tau| \le c_5 \cdot \sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d) \le 1/2$$
(B.5)

for all $i, i' \in [n]$ with $i \neq i'$, where c_4, c_5 are absolute constants. Therefore, for all $i, i' \in [n]$ with $i \neq i'$, we have

$$\begin{vmatrix} n_{0} \cdot \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ \end{vmatrix} - 1 \end{vmatrix}$$

$$\le \begin{vmatrix} n_{0} \cdot [\exp(\sin \frac{n_{0}}{i,i'}/\tau) - 1] \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ \end{vmatrix} + \begin{vmatrix} n_{0} \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ \end{vmatrix} + \begin{vmatrix} 1 - \exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ exp(\sin \frac{n_{0}}{i}/\tau) + \sum_{i''\neq i} \exp(\sin \frac{n_{0}}{i,i'}/\tau) \\ \end{vmatrix} \\ \le \begin{vmatrix} n_{0} \cdot [\exp(\sin \frac{n_{0}}{i,i'}/\tau) - 1] \\ n_{0}/2 \end{vmatrix} + \begin{vmatrix} 1 - \exp(\sin \frac{n_{0}}{i,i'}/\tau) + \sum_{i''\neq i} [1 - \exp(\sin \frac{n_{0}}{i,i'}/\tau)] \\ n_{0}/2 \end{vmatrix} \\ \le c_{6} \cdot \sigma_{0}^{2}d \cdot (||\boldsymbol{\mu}||_{2}^{2} + 2\sigma_{p}^{2}d), \end{aligned}$$

where c_6 is an absolute constant, and the first inequality above follows the triangle inequality, the third inequality applies (B.4) and (B.5) to the denominators, and the last inequality applies (B.4) and (B.5) to the numerators. Plugging the bound above into (B.3) then gives

 $\|\mathbf{\Xi}^{(0)}\|_{2} \leq \frac{c_{7}\eta}{1} \cdot \sigma_{0}^{2}d \cdot (\|\boldsymbol{\mu}\|_{2}^{2} + 2\sigma_{n}^{2}d)^{2} \leq \sigma_{0} \cdot \frac{\eta}{1} \cdot \|\boldsymbol{\mu}\|_{2}^{2}$

$$\leq \sigma_0 \cdot (1 - \mathcal{E}_{\text{SimCLR}}) \cdot \frac{2\eta}{\tau} \cdot \|\boldsymbol{\mu}\|_2^2 \leq \sigma_0 \cdot \|\mathbf{A}\|_2, \tag{B.6}$$

where c_7 is an absolute constant, and the second inequality follows by the assumption that $\sigma_0 \leq$ $O(d^{-1} \cdot \|\boldsymbol{\mu}\|_2^2 \cdot \min\{\|\boldsymbol{\mu}\|_2^{-4}, (\sigma_p^2 d)^{-2}\})$, the third inequality is by the assumption that $\mathcal{E}_{\text{SimCLR}} \leq O(d^{-1} \cdot \|\boldsymbol{\mu}\|_2^2 \cdot \min\{\|\boldsymbol{\mu}\|_2^{-4}, (\sigma_p^2 d)^{-2}\})$ 1/2, and the last inequality is by $(1 - \mathcal{E}_{\text{SimCLR}}) \cdot \frac{2\eta}{\tau} \cdot \|\boldsymbol{\mu}\|_2^2 \leq \|\mathbf{A}\|_2$ in Lemma 5.2. Now let us suppose that there exists $t_0 \leq T_{\text{SimCLR}} - 1$ such that for $t = 0, \dots, t_0$, it holds that

$$\|\mathbf{\Xi}^{(t)}\|_2 \leq \sigma_0 \cdot \|\mathbf{A}\|_2.$$

Then we have

$$\|\mathbf{A} + \mathbf{\Xi}^{(t)}\|_2 \le (1 + \sigma_0) \cdot \|\mathbf{A}\|_2$$

for all $t = 0, \ldots, t_0$. Then by (B.1), we have

 $\|\mathbf{W}^{(t_0+1)}\|_2 \le \|\mathbf{W}^{(t_0)}\|_2 \cdot \|\mathbf{I} + \mathbf{A} + \mathbf{\Xi}^{(t_0)}\|_2$

 $\leq \|\mathbf{W}^{(t_0)}\|_2 \cdot (1 + \|\mathbf{A}\|_2 + \|\mathbf{\Xi}^{(t_0)}\|_2)$

 $\leq (1 + (1 + \sigma_0) \cdot \|\mathbf{A}\|_2) \cdot \|\mathbf{W}^{(t_0)}\|_2$ $\leq \cdots$ $\leq (1 + (1 + \sigma_0) \cdot \|\mathbf{A}\|_2)^{t_0 + 1} \cdot \|\mathbf{W}^{(0)}\|_2$ $\leq \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}}\operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\}^2 \cdot O(\sigma_0\sqrt{d}),$ (B.7)

where the last inequality follows by (B.2). The rest of the proof follows almost the same derivation as the bound for $\|\mathbf{\Xi}^{(0)}\|_2$. We have

$$\begin{aligned} \|\mathbf{\Xi}^{(t_{0}+1)}\|_{2} &\leq \frac{\eta}{\tau} \max_{i \neq i'} \left| \frac{n_{0} \cdot \exp(\sin^{(t_{0}+1)}_{i,i'}/\tau)}{\exp(\sin^{(t_{0}+1)}_{i,i'}/\tau)} - 1 \right| \cdot \|\mathbf{z}_{i}\mathbf{z}_{i'}^{\top} + \mathbf{z}_{i'}\mathbf{z}_{i}^{\top} - \mathbf{z}_{i}\tilde{\mathbf{z}}_{i}^{\top} - \tilde{\mathbf{z}}_{i}\mathbf{z}_{i}^{\top} \|_{2} \\ \|\mathbf{z}_{i}^{(t_{0}+1)}\|_{2} &\leq \frac{2\eta}{\tau} \max_{i \neq i'} \left| \frac{n_{0} \cdot \exp(\sin^{(t_{0}+1)}_{i,i'}/\tau)}{\exp(\sin^{(t_{0}+1)}_{i,i'}/\tau)} - 1 \right| \cdot (\|\mathbf{z}_{i}\|_{2}\|\mathbf{z}_{i'}\|_{2} + \|\mathbf{z}_{i}\|_{2}\|\tilde{\mathbf{z}}_{i}\|_{2} \\ \|\mathbf{z}_{i}^{(t_{0}+1)}\|_{2} &\leq \frac{2\eta}{\tau} \max_{i \neq i'} \left| \frac{n_{0} \cdot \exp(\sin^{(t_{0}+1)}_{i,i'}/\tau)}{\exp(\sin^{(t_{0}+1)}_{i,i'}/\tau)} - 1 \right| \cdot (\|\mathbf{z}_{i}\|_{2}\|\mathbf{z}_{i'}\|_{2} + \|\mathbf{z}_{i}\|_{2}\|\tilde{\mathbf{z}}_{i}\|_{2} \\ \|\mathbf{z}_{i}\|_{2} \\$$

$$\leq \frac{8\eta}{\tau} \cdot (\|\boldsymbol{\mu}\|_{2}^{2} + 2\sigma_{p}^{2}d) \cdot \max_{i \neq i'} \left| \frac{n_{0} \cdot \exp(\sin_{i,i'}^{(t_{0}+1)}/\tau)}{\exp(\sin_{i}^{(t_{0}+1)}/\tau) + \sum_{i'' \neq i} \exp(\sin_{i,i'}^{(t_{0}+1)}/\tau)} - 1 \right|, \tag{B.8}$$

where the last inequality follows by Lemma B.1, which implies that $\|\boldsymbol{\xi}_i\|_2^2, \|\boldsymbol{\widetilde{\xi}}_i\|_2^2 \leq 2\sigma_p^2 d$ with probability at least $1 - d^{-3}$. Moreover, by definition, we have

$$|\sin_{i}^{(t_{0}+1)}| = |\langle \mathbf{W}^{(t_{0}+1)}\mathbf{z}_{i}, \mathbf{W}^{(t_{0}+1)}\mathbf{\tilde{z}}_{i}\rangle| \le \|\mathbf{W}^{(t_{0}+1)}\|_{2}^{2} \cdot \|\mathbf{z}_{i}\|_{2} \le 2\|\mathbf{W}^{(t_{0}+1)}\|_{2}^{2} \cdot (\|\boldsymbol{\mu}\|_{2}^{2} + 2\sigma_{p}^{2}d)$$

for all $i \in [n_{0}]$. By (B.7), we have

for all
$$i \in [n_0]$$
. By (B.7), we

$$\|\mathbf{W}^{(t_0+1)}\|_2^2 \le \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\}^4 \cdot O(\sigma_0^2 d)$$

Therefore, we have

$$|\sin_{i}^{(t_{0}+1)}| \leq \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_{0})^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}}\operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\}^{4} \cdot O(\sigma_{0}^{2}d \cdot (\|\boldsymbol{\mu}\|_{2}^{2} + 2\sigma_{p}^{2}d))$$

for all $i \in [n_0]$. With exactly the same proof, we also have $|\sin_{i,i'}^{(t_0+1)}| \le \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\}^4 \cdot O(\sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d))$ for all $i, i' \in [n]$ with $i \neq i'$. Now by the assumption that $\sigma_0 = \min \left\{ 288M^{\frac{1}{q-2}} \right\}$ $\frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}}, 2 \bigg\}^{-2} \cdot O(\tau^{1/2} \cdot d^{-1/2} \cdot \min\{\|\boldsymbol{\mu}\|_2^{-1}, \sigma_p^{-1} d^{-1/2}\}), \text{ we have }$ $|\sin_{i}^{(t_{0}+1)}|, |\sin_{i,i'}^{(t_{0}+1)}| \le \tau/4.$ Since $|\exp(z) - 1| \le 2|z|$ for all $z \le 1$, we have $|\exp(\sin_{i}^{(t_{0}+1)}/\tau) - 1| \le 2|\sin_{i}^{(t_{0}+1)}/\tau|$ $\leq \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \mathrm{SNR}^{\frac{q}{q-2}}}, 2\right\}^4 \cdot O(\sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d))$ $\leq 1/2,$ (B.9) and $|\exp(\sin_{i\,i'}^{(t_0+1)}/\tau) - 1| \le 2|\sin_{i\,i'}^{(t_0+1)}/\tau|$ $\leq \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\}^4 \cdot O(\sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d))$ < 1/2(B.10) for all $i, i' \in [n]$ with $i \neq i'$. Therefore, for all $i, i' \in [n]$ with $i \neq i'$, we have $\left|\frac{n_0 \cdot \exp(\sin_{i,i'}^{(t_0+1)}/\tau)}{\exp(\sin_{i}^{(t_0+1)}/\tau) + \sum_{i'' \neq i} \exp(\sin_{i,i'}^{(t_0+1)}/\tau)} - 1\right|$ $\leq \left| \frac{n_0 \cdot [\exp(\sin_{i,i'}^{(t_0+1)}/\tau) - 1]}{\exp(\sin_{i}^{(t_0+1)}/\tau) + \sum_{i''\neq i} \exp(\sin_{i,i'}^{(t_0+1)}/\tau)} \right| + \left| \frac{n_0}{\exp(\sin_i^{(t_0+1)}/\tau) + \sum_{i''\neq i} \exp(\sin_{i,i'}^{(t_0+1)}/\tau)} - 1 \right|$ $\leq \left| \frac{n_0 \cdot [\exp(\sin_{i,i'}^{(t_0+1)}/\tau) - 1]}{\exp(\sin_{i,i'}^{(t_0+1)}/\tau) + \sum_{i''\neq i} \exp(\sin_{i,i'}^{(t_0+1)}/\tau)} \right| + \left| \frac{1 - \exp(\sin_i^{(t_0+1)}/\tau) + \sum_{i''\neq i} [1 - \exp(\sin_{i,i'}^{(0)}/\tau)]}{\exp(\sin_i^{(t_0+1)}/\tau) + \sum_{i''\neq i} \exp(\sin_{i,i'}^{(t_0+1)}/\tau)} \right|$ $\leq \left| \frac{n_0 \cdot [\exp(\sin_{i,i'}^{(t_0+1)}/\tau) - 1]}{n_0/2} \right| + \left| \frac{1 - \exp(\sin_i^{(t_0+1)}/\tau) + \sum_{i'' \neq i} [1 - \exp(\sin_{i,i'}^{(t_0+1)}/\tau)]}{n_0/2} \right|$ $\leq \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}}\operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\}^4 \cdot O(\sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d)),$ where the first inequality follows by triangle inequality, the third inequality applies (B.9) and (B.10) to the denominators, and the last inequality applies (B.9) and (B.10) to the numerators. Plugging the bound above into (B.8) then gives $\|\mathbf{\Xi}^{(t_0+1)}\|_2 \le \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\}^4 \cdot \frac{\eta}{\tau} \cdot O\left(\sigma_0^2 d \cdot (\|\boldsymbol{\mu}\|_2^2 + 2\sigma_p^2 d)^2\right)$

$$\leq \sigma_0 \cdot \frac{\eta}{\tau} \cdot \|\boldsymbol{\mu}\|_2^2 \leq \sigma_0 \cdot (1 - \mathcal{E}_{\text{SimCLR}}) \cdot \frac{2\eta}{\tau} \cdot \|\boldsymbol{\mu}\|_2^2 \leq \sigma_0 \cdot \|\mathbf{A}\|_2,$$

where the second inequality follows by the assumption that $\sigma_0 \leq \min \left\{ 288M^{\frac{1}{q-2}} \cdot 128M^{\frac{1}{q-2}} \right\}$

1132
1133
$$\frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}}}, 2 \right\}^{-4} \cdot O(d^{-1} \cdot \min\{\|\boldsymbol{\mu}\|_2^{-4}, (\sigma_p^2 d)^{-2}\} \cdot \|\boldsymbol{\mu}\|_2^2), \text{ the third inequality}$$

is by the assumption that $\mathcal{E}_{\text{SimCLR}} \leq 1/2$, and the last inequality is by $(1 - \mathcal{E}_{\text{SimCLR}}) \cdot \frac{2\eta}{\tau} \cdot \|\boldsymbol{\mu}\|_2^2 \leq \|\mathbf{A}\|_2$ in Lemma 5.2. Therefore, by induction, we conclude that

$$\|\mathbf{\Xi}^{(t)}\|_2 \le \sigma_0 \cdot \|\mathbf{A}\|_2$$

1137 1138

1140

1147 1148

1139 for all $t = 0, \ldots, T_{\text{SimCLR}}$. This finishes the proof.

¹¹⁴¹ B.1.2 PROOF OF LEMMA 5.2

In this section, the following Lemma B.2 is introduced to prove Lemma 5.2.

1144 1145 1146 Lemma B.2. Let A be the matrix defined in Lemma 5.1, and define $A_0 = \frac{2\eta}{n_0^2 \tau} \left[n_0^2 - (\sum_{i=1}^{n_0} y_i)^2 \right] \mu \mu^\top, \Delta = \mathbf{A} - \mathbf{A}_0$. Then it holds that

$$\|\boldsymbol{\Delta}\|_{2} \leq \left[\widetilde{O}(\mathrm{SNR}^{-1} \cdot n_{0}^{-1}) + \widetilde{O}(\mathrm{SNR}^{-1} \cdot \frac{1}{\sqrt{n_{0}}}) + \widetilde{O}(\mathrm{SNR}^{-2} \cdot n_{0}^{-1})\right]$$

$$+ \widetilde{O}(\mathrm{SNR}^{-2}) \cdot \max\left\{\sqrt{\frac{\log(9/\widetilde{\delta})}{dn_0}}, \frac{\log(9/\widetilde{\delta})}{n_0}\right\} \right] \frac{\eta}{\tau} \|\boldsymbol{\mu}\|_2^2.$$

¹¹⁵⁴ Based on the Lemma B.2, we give the following proof of Lemma 5.2.

1155 1156

1165 1166 1167

1184 1185

1157 Proof of Lemma 5.2. Consider $\widehat{\Sigma} = \mathbf{A}_0 = \frac{2\eta}{n_0^2 \tau} \left[n_0^2 - (\sum_{i=1}^{n_0} y_i)^2 \right] \boldsymbol{\mu} \boldsymbol{\mu}^\top$, $\boldsymbol{\Sigma} = \mathbf{A}$, and denote 1158 $\lambda_1 \geq \cdots \geq \lambda_d, \, \widehat{\lambda}_1 \geq \cdots \geq \widehat{\lambda}_d, \, \widetilde{\lambda}_1 \geq \cdots \geq \widetilde{\lambda}_d$ the eigenvalues of matrix $\boldsymbol{\Sigma}, \, \widehat{\boldsymbol{\Sigma}}, \, \text{and } \boldsymbol{\Delta} = \boldsymbol{\Sigma} - \widehat{\boldsymbol{\Sigma}}$ 1160 respectively. By Lemma B.2, we have

$$\begin{aligned} & \underset{1162}{\overset{1161}{1162}} & \|\mathbf{\Delta}\|_{2} \leq \left[\widetilde{O}(\mathrm{SNR}^{-1} \cdot n_{0}^{-1}) + \widetilde{O}(\mathrm{SNR}^{-1} \cdot \frac{1}{\sqrt{n_{0}}}) + \widetilde{O}(\mathrm{SNR}^{-2} \cdot n_{0}^{-1}) + c_{3} \cdot \mathrm{SNR}^{-2} \cdot \frac{\log(9/\delta)}{n_{0}} \right] \cdot \frac{\eta}{\tau} \|\boldsymbol{\mu}\|_{2}^{2}. \end{aligned}$$

1164 Denote

$$U = \widetilde{O}(\operatorname{SNR}^{-1} \cdot n_0^{-1}) + \widetilde{O}(\operatorname{SNR}^{-1} \cdot \frac{1}{\sqrt{n_0}}) + \widetilde{O}(\operatorname{SNR}^{-2} \cdot n_0^{-1}) + c_3 \cdot \operatorname{SNR}^{-2} \cdot \frac{\log(9/\delta)}{n_0},$$

then by assumption we have $U = \widetilde{O}(\text{SNR}^{-1} \cdot n_0^{-1/2})$ and $U \le 1/2$. Then we have

$$\begin{aligned} & 1170 \\ & 1171 \\ & 1172 \\ & 1173 \\ & 1174 \\ & 1175 \\ & 1176 \\ & 1176 \\ & 1177 \\ & 1178 \\ & 1179 \\ & 1180 \end{aligned} \qquad \lambda_1 \geq \|A_0\|_2 - \|\Delta\|_2 \\ & = \frac{2\eta}{n_0^2 \tau} \left[n_0^2 - \left(\sum_{i=1}^{n_0} y_i\right)^2 \right] \cdot \|\mu\|_2^2 - \|\Delta\|_2 \\ & \geq \frac{2\eta}{\tau} \cdot \left(1 - \frac{2\log(2/\widetilde{\delta})}{n_0} \right) \cdot \|\mu\|_2^2 - \|\Delta\|_2 \\ & \geq \left(1 - \frac{2\log(2/\widetilde{\delta})}{n_0} - \frac{U}{2} \right) \cdot \frac{2\eta}{\tau} \|\mu\|_2^2, \end{aligned}$$
 (B.11)

where the second inequality is by $|\sum_{i=1}^{n_0} y_i| \le \sqrt{2n_0 \log(2/\tilde{\delta})}$ in Lemma B.5, and the last inequality is by Lemma B.2. This proves the lower bound of λ_1 . Similarly, for the upper bound, we have that

$$\lambda_1 \le \|A_0\|_2 + \|\mathbf{\Delta}\|_2 \le \frac{2\eta}{\tau} \|\boldsymbol{\mu}\|_2^2 + \|\mathbf{\Delta}\|_2 = (2+U) \cdot \frac{\eta}{\tau} \cdot \|\boldsymbol{\mu}\|_2^2, \tag{B.12}$$

where the second inequality is by $\hat{\lambda}_1 = \frac{2\eta}{n_0^2 \tau} \left[n_0^2 - (\sum_{i=1}^{n_0} y_i)^2 \right] \|\boldsymbol{\mu}\|_2^2 \le \frac{2\eta}{\tau} \|\boldsymbol{\mu}\|_2^2$ and the upper bound of $\|\boldsymbol{\Delta}\|_2$ in Lemma B.2.

By the variant of Davis-Kahan Theorem (Theorem 1 in Yu et al. (2015)), we have that

$$\begin{aligned}
& \sin \theta(\widehat{\mathbf{v}}_{1}, \mathbf{v}_{1}) \leq \frac{\|\Sigma - \widehat{\Sigma}\|_{2}}{|\widehat{\lambda}_{2} - \lambda_{1}|} \\
& 1191 \\
& 1192 \\
& (i) \quad \frac{\|\Sigma - \widehat{\Sigma}\|_{2}}{|\lambda_{1}|} \\
& 1193 \\
& 1194 \\
& 1195 \\
& (ii) \quad \frac{\|\Delta\|_{2}}{\frac{\eta}{\tau} \|\boldsymbol{\mu}\|_{2}^{2} - \|\Delta\|_{2}} \\
& 1196 \\
& 1196 \\
& 1197 \\
& 1198 \\
& 1198 \\
& 1199 \\
& 1200 \\
& (iii) \quad U \\
& (iii) \quad U \\
& 1 - U,
\end{aligned}$$
(B.13)

where (i) is by $\hat{\lambda}_2 = 0$ based on the definition of $\hat{\Sigma}$, and (ii) is by the lower bound of λ_1 in (B.11), and (iii) is by the upper bound of $\|\Delta\|_2$ in Lemma B.2. Since $\hat{\mathbf{v}}_1 = \boldsymbol{\mu}$ by the definition of \mathbf{A}_0 , denote $\bar{\boldsymbol{\mu}} = (1/\|\boldsymbol{\mu}\|)\boldsymbol{\mu}$, it follows that

$$\langle \mathbf{v}_1, \bar{\boldsymbol{\mu}} \rangle = \cos \theta(\boldsymbol{\mu}, \mathbf{v}_1) \ge 1 - \sin^2 \theta(\boldsymbol{\mu}, \mathbf{v}_1) \ge \frac{1 - 2U}{(1 - U)^2},$$
 (B.14)

where without loss of generality, we assume $\langle \mathbf{v}_1, \bar{\boldsymbol{\mu}} \rangle > 0$, and the second inequality is by (B.13). Therefore,

$$\langle \mathbf{v}_1, \boldsymbol{\mu} \rangle = \|\boldsymbol{\mu}\|_2 \langle \mathbf{v}_1, \bar{\boldsymbol{\mu}} \rangle \ge \frac{1 - 2U}{(1 - U)^2} \|\boldsymbol{\mu}\|_2.$$
(B.15)

1211 Moreover, by definition, we also have

1205 1206

1209

1210

1233

1234

1212	$\ \mathbf{P}_{m{\mu}}^{\perp}\mathbf{v}_{1}\ _{2}^{2}=ig\ \mathbf{v}_{1}-\langle\mathbf{v}_{1},ar{m{\mu}} angle\cdotar{m{\mu}}ig\ _{2}^{2}$
1213	$\mu^{-1/2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
1214	$= 1 - 2\langle \mathbf{v}_1, \boldsymbol{\mu} angle^2 + \langle \mathbf{v}_1, \boldsymbol{\mu} angle^2$
1215	$=1-\langle {f v}_1,ar{m \mu} angle^2$
1216	$\begin{bmatrix} 1-2U \end{bmatrix}^2$
1217	$\leq 1 - \left \frac{1 - 20}{(1 - U)^2} \right $
1218	$\lfloor (1-U)^2 \rfloor$
1219	$-\frac{U^2(U^2-4U+2)}{2}$
1220	$(1-U)^4$
1221	$\leq 32U^2,$
1222	where the first inequality follows by (B.14), and the second inequality follows by the assume

where the first inequality follows by (B.14), and the second inequality follows by the assumption that $0 \le U \le 1/2$. Therefore, we have

$$\|\mathbf{P}_{\boldsymbol{\mu}}^{\perp}\mathbf{v}_{1}\|_{2} \leq 4\sqrt{2} \cdot U. \tag{B.16}$$

1225 Finally, we prove the upper bound of $\max_{i \ge 2} \lambda_i$. Since we have

1227
$$\|\mathbf{A} - \lambda_{1}\mathbf{v}_{1}\mathbf{v}_{1}^{\top}\|_{2} \leq \|\mathbf{A} - \mathbf{A}_{0}\|_{2} + \|\mathbf{A}_{0} - \lambda_{1}\mathbf{v}_{1}\mathbf{v}_{1}^{\top}\|_{2}$$
1228
1229
1230
$$= \|\mathbf{\Delta}\|_{2} + \|\widehat{\lambda}_{1}\bar{\boldsymbol{\mu}}\bar{\boldsymbol{\mu}}^{\top} - \widehat{\lambda}_{1}\bar{\boldsymbol{\mu}}\mathbf{v}_{1}^{\top} + \widehat{\lambda}_{1}\bar{\boldsymbol{\nu}}\mathbf{v}_{1}^{\top} - \widehat{\lambda}_{1}\mathbf{v}_{1}\mathbf{v}_{1}^{\top} + \widehat{\lambda}_{1}\mathbf{v}_{1}\mathbf{v}_{1}^{\top} - \lambda_{1}\mathbf{v}_{1}\mathbf{v}_{1}^{\top}\|_{2}$$
1230
$$\leq \|\mathbf{\Delta}\|_{2} + 2\widehat{\lambda}_{1}\|\bar{\boldsymbol{\mu}} - \mathbf{v}_{1}\|_{2} + \|\mathbf{\Delta}\|_{2}$$
1231
1232
$$\stackrel{(i)}{\leq} 2U\frac{\eta}{\tau}\|\boldsymbol{\mu}\|_{2}^{2} + \frac{4\eta}{\tau}\|\boldsymbol{\mu}\|_{2}^{2}\frac{\sqrt{2}U}{1-U}$$

 $= \left(2U + \frac{4\sqrt{2}U}{1-U}\right)\frac{\eta}{\tau} \|\boldsymbol{\mu}\|_{2}^{2}, \tag{B.17}$

1235 (1 - 0)

Now, combining the conclusions in (B.11), (B.12), (B.15), (B.16), and (B.17), we see that by setting $\mathcal{E}_{\text{SimCLR}} = \Theta(U + n_0^{-1} \log(2/\tilde{\delta})) = \widetilde{O}(\max\{\text{SNR}^{-1}n_0^{-1/2}, n_0^{-1}\})$, all the conclusions in Lemma 5.2 hold.

1242 B.1.3 PROOF OF THEOREM 5.3

1244 In this section, the following Lemmas B.3 and B.4 are introduced to prove Theorem 5.3.

1245 Lemma B.3. Let A be the matrix defined in Lemma 5.1, and let λ_i , \mathbf{v}_i , $i \in [d]$ be the eigenvalues 1246 and eigenvectors of A respectively. Suppose that $d \ge \Omega(\log(2mn_0/\delta))$, $m = \Omega(\log(1/\delta))$. Then 1247 with probability at least $1 - \delta$, it holds that

$$\langle \mathbf{w}_r^{(0)}, \mathbf{v}_i \rangle | \le \sqrt{2 \log(16m/\delta)} \cdot \sigma_0$$

for all $r \in [2m]$ and all $i \in [d]$. Moreover, there exist disjoint index sets $\mathcal{I}^+, \mathcal{I}^- \subseteq [2m]$ with $|\mathcal{I}^+| = |\mathcal{I}^-| = 2m/5$ such that

$$\langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \ge \sigma_0/2 \text{ for all } r \in \mathcal{I}^+, \qquad \langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \le -\sigma_0/2 \text{ for all } r \in \mathcal{I}^-.$$

•
$$|\lambda_i - \widetilde{\lambda}_i| \le \sigma_0 \cdot \|\mathbf{A}\|_2, i \in [n].$$

1261 •
$$|\langle \mathbf{v}_1, \widetilde{\mathbf{v}}_1 \rangle| \ge 1 - 4\sigma_0^2$$

• $|\langle \mathbf{v}_1, \widetilde{\mathbf{v}}_i \rangle| \le 4\sigma_0, i \ge 2.$

• Let
$$\mathbf{P}_{\mathbf{v}_1}^{\perp} = \mathbf{I} - \mathbf{v}_1 \mathbf{v}_1^{\top}$$
, then $\|\mathbf{P}_{\mathbf{v}_1}^{\perp} \widetilde{\mathbf{v}}_1\|_2 \leq 4\sigma_0$.

Therefore, based on the Lemmas B.3, B.4, 5.1, and 5.2, the proof of Theorem 5.3 is presented as follows.

1269 Proof of Theorem 5.3. Denote

$$\mathcal{X}_{\mathrm{col}} = \mathrm{span}\{\boldsymbol{\mu}, \boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{n_0}, \widetilde{\boldsymbol{\xi}}_1, \dots, \widetilde{\boldsymbol{\xi}}_{n_0}\}, \qquad \mathcal{X}_{\mathrm{row}} = \mathrm{span}\{\boldsymbol{\mu}^{\top}, \boldsymbol{\xi}_1^{\top}, \dots, \boldsymbol{\xi}_{n_0}^{\top}, \widetilde{\boldsymbol{\xi}}_1^{\top}, \dots, \widetilde{\boldsymbol{\xi}}_{n_0}^{\top}\}.$$

1272 Moreover, let $\mathbf{e}_1, \dots, \mathbf{e}_{2n_0+1}$ be a set of orthogonal bases in \mathcal{X}_{col} , and let $\bar{\boldsymbol{\mu}} = \boldsymbol{\mu}/\|\boldsymbol{\mu}\|_2$, $\mathbf{P}_{\mathcal{X}} = \sum_{i=1}^{2n_0+1} \mathbf{e}_i \mathbf{e}_i^{\top}$, $\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} = \sum_{i=1}^{2n_0+1} \mathbf{e}_i \mathbf{e}_i^{\top} - \mathbf{v}_1 \mathbf{v}_1^{\top}$.

By Lemma 5.1, for $t = 0, \dots, T_{\text{SimCLR}}$, we have

$$\mathbf{w}_{r}^{(t+1)} = \mathbf{w}_{r}^{(t)} + (\mathbf{A} + \mathbf{\Xi}^{(t)})\mathbf{w}_{r}^{(t)}, \text{ with } \|\mathbf{\Xi}^{(t)}\|_{2} \le \sigma_{0} \cdot \|\mathbf{A}\|_{2},$$

where the columns and rows of $\Xi^{(t)}$ are in \mathcal{X}_{col} and \mathcal{X}_{row} respectively. By definition, it is clear that the columns and rows of \mathbf{A} are also in \mathcal{X}_{col} and \mathcal{X}_{row} respectively. Therefore, we see that the rank of $\mathbf{A} + \Xi^{(t)}$ is at most $2n_0 + 1$. Denote by $\lambda_1^{(t)}, \ldots, \lambda_{2n_0+1}^{(t)}$ and $\mathbf{v}_1^{(t)}, \ldots, \mathbf{v}_1^{(2n_0+1)}$ the first $2n_0 + 1$ eigenvalues and eigenvectors of $\mathbf{A} + \Xi^{(t)}$ respectively. Since $\mathbf{v}_1^{(t)}$ and $-\mathbf{v}_1^{(t)}$ are both the first eigenvector of $\mathbf{A} + \Xi^{(t)}$, without loss of generality, we can assume that $\langle \mathbf{v}_1^{(t)}, \mathbf{v}_1 \rangle \ge 0$ for all $t \ge 0$.

By Lemma B.3, there exist disjoint index sets $\mathcal{I}^+, \mathcal{I}^- \subseteq [2m]$ with $|\mathcal{I}^+| = |\mathcal{I}^-| = 2m/5$ such that

$$\langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \ge \sigma_0/2 \text{ for all } r \in \mathcal{I}^+, \qquad \langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \le -\sigma_0/2 \text{ for all } r \in \mathcal{I}^-.$$
 (B.18)

Note that $\|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(0)}\|_2$ is essentially the Euclidean norm of a $(2n_0)$ -dimensional Gaussian random vector with independent entries from $\mathcal{N}(0, \sigma_0^2)$. Therefore, by Bernstein's inequality, with probability at least $1 - d^{-2}$, we have

$$n_0 \sigma_0^2 \le \|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} \mathbf{w}_r^{(0)}\|_2^2 \le 4n_0 \sigma_0^2$$

for all $r \in [2m]$. Therefore, we have

$$\sigma_0 \cdot \sqrt{n_0} \le \|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} \mathbf{w}_r^{(0)}\|_2 \le 2\sigma_0 \cdot \sqrt{n_0}.$$
(B.19)

Similarly, with probability at least $1 - d^{-2}$, we also have

$$\|\mathbf{P}_{\mathcal{X}}^{\top}\mathbf{w}_{r}^{(0)}\|_{2} \le 4\sigma_{0} \cdot \sqrt{n_{0}}.$$
(B.20)

(B.24)

In the following, we use induction to prove the following results:

$$\langle \mathbf{v}_1, \mathbf{w}_r^{(t)} \rangle \ge 0, \ r \in \mathcal{I}^+,$$
 (B.21)

$$\langle \mathbf{v}_1, \mathbf{w}_r^{(t)} \rangle \ge \sqrt{\sigma_0} \cdot \| \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)} \|_2, \ r \in \mathcal{I}^+,$$
(B.22)

$$\|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp}\mathbf{w}_{r}^{(t)}\|_{2} \geq \sqrt{\sigma_{0}} \cdot \langle \mathbf{v}_{1},\mathbf{w}_{r}^{(t)} \rangle, \ r \in [2m].$$
(B.23)

We first check that (B.21), (B.22) and (B.23) hold for t = 0. We see that (B.21) directly follows by (B.18). By (B.18), we have

$$\langle \mathbf{v}_1, \mathbf{w}_r^{(0)} \rangle \geq \sigma_0/2 \geq 2\sigma_0^{3/2} \cdot \sqrt{n_0} \geq \sqrt{\sigma_0} \cdot \|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(0)}\|_2$$

for all $r \in \mathcal{I}^+$, where the second inequality follows by the assumption that $\sigma_0 \leq 1/(16n_0)$, and the third inequality follows by (B.19). Similarly, we have

$$\|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(0)}\|_2 \ge \sigma_0 \cdot \sqrt{n_0} \ge 4\sigma_0^{3/2} \cdot \sqrt{n_0} \ge \sqrt{\sigma_0} \cdot \|\mathbf{P}_{\mathcal{X}}\mathbf{w}_r^{(0)}\|_2 \ge \sqrt{\sigma_0} \cdot \langle \mathbf{v}_1,\mathbf{w}_r^{(0)} \rangle$$

for all $r \in [2m]$, where the first inequality follows by (B.19), the second inequality follows by the assumption that $\sigma_0 \leq 1/16$, and the third inequality follows by (B.20). Thus, we have verified all the induction hypotheses at t = 0.

Now suppose that (B.21), (B.22) and (B.23) hold for all $t = 0, 1, ..., t_0$, where $t_0 \le T_{\text{SimCLR}} - 1$. Then by Lemma 5.1, for $t = 0, \ldots, T_{SimCLR}$, we have

$$\mathbf{w}_r^{(t+1)} = \mathbf{w}_r^{(t)} + (\mathbf{A} + \mathbf{\Xi}^{(t)})\mathbf{w}_r^{(t)}.$$

Then for $t = 0, \ldots, t_0$ and $r \in \mathcal{I}^+$, we have

$$\begin{split} \langle \mathbf{w}_r^{(t+1)}, \mathbf{v}_1 \rangle &= \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle + \mathbf{v}_1^\top (\mathbf{A} + \mathbf{\Xi}^{(t)}) \mathbf{w}_r^{(t)} \\ &= \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle + \sum_{i=1}^{2n_0+1} \lambda_i^{(t)} \mathbf{v}_1^\top \mathbf{v}_i^{(t)} \mathbf{v}_i^{(t)\top} \mathbf{w}_r^{(t)} \end{split}$$

1328
1329
1330
$$= \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle + \lambda_1^{(t)} \mathbf{v}_1^\top \mathbf{v}_1^{(t)} \mathbf{v}_1^{(t)\top} \mathbf{w}_r^{(t)} + \sum_{i=2}^{2n_0+1} \lambda_i^{(t)} \mathbf{v}_1^\top \mathbf{v}_i^{(t)} \mathbf{v}_i^{(t)\top} \mathbf{w}_r^{(t)}$$

$$= \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle + \lambda_1^{(t)} \mathbf{v}_1^\top \mathbf{v}_1^{(t)} \mathbf{v}_1^{(t)\top} \mathbf{P}_{\mathcal{X}} \mathbf{w}_r^{(t)} + \sum_{i=2}^{2n_0+1} \lambda_i^{(t)} \mathbf{v}_1^\top \mathbf{v}_i^{(t)} \mathbf{v}_i^{(t)\top} \mathbf{P}_{\mathcal{X}} \mathbf{w}_r^{(t)}$$

1333
1334
$$=\langle \mathbf{w}_r^{(t)}, \mathbf{v}_1
angle$$
 +

 $= \langle \mathbf{w}_{r}^{(t)}, \mathbf{v}_{1} \rangle + \lambda_{1}^{(t)} \mathbf{v}_{1}^{\top} \mathbf{v}_{1}^{(t)} \mathbf{v}_{1}^{(t)^{\top}} (\mathbf{P}_{\mathcal{X}, \mathbf{v}_{1}}^{\perp} + \mathbf{v}_{1} \mathbf{v}_{1}^{\top}) \mathbf{w}_{r}^{(t)} \\ + \sum_{i=2}^{2n_{0}+1} \lambda_{i}^{(t)} \mathbf{v}_{1}^{\top} \mathbf{v}_{i}^{(t)} \mathbf{v}_{i}^{(t)^{\top}} (\mathbf{P}_{\mathcal{X}, \mathbf{v}_{1}}^{\perp} + \mathbf{v}_{1} \mathbf{v}_{1}^{\top}) \mathbf{w}_{r}^{(t)}$

where the fourth equality follows by the fact that $\mathbf{v}_i^{t_0} \in \mathcal{X}_{col}$, and

 $= (1+\lambda_1) \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle + I_1 + I_2 + I_3 + I_4,$

1342
1343

$$I_1 = \lambda_1^{(t)} \mathbf{v}_1^\top \mathbf{v}_1^{(t)} \mathbf{v}_1^{(t)\top} \mathbf{v}_1 \mathbf{v}_1^\top \mathbf{w}_r^{(t)} - \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle,$$
1343

$$I_2 = \lambda_1^{(t)} \mathbf{v}_1^\top \mathbf{v}_1^{(t)} \mathbf{v}_1^{(t)\top} \mathbf{P}_{\mathbf{x},\mathbf{v}}^\perp \mathbf{w}_r^{(t)},$$

1344
$$I_2 = \lambda_1^{(t)} \mathbf{v}_1^\top \mathbf{v}_1^{(t)} \mathbf{v}_1^{(t)}^\top \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^\perp \mathbf{w}_r^{(t)}$$

1345
1346
$$I_3 = \sum_{i=2}^{2n_0+1} \lambda_i^{(t)} \mathbf{v}_1^\top \mathbf{v}_i^{(t)} \mathbf{v}_i^{(t)\top} \mathbf{v}_1 \mathbf{v}_1^\top \mathbf{w}_r^{(t)},$$
1347

1348
$$\sum_{t=1}^{2n_0+1} (t) = (t)$$

1348
1349
$$I_4 = \sum_{i=2}^{2n_0+1} \lambda_i^{(t)} \mathbf{v}_1^\top \mathbf{v}_i^{(t)} \mathbf{v}_i^{(t)\top} \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^\perp \mathbf{w}_r^{(t)}.$$

1350 We give upper bounds of $|I_1|$, $|I_2|$, $|I_3|$ and $|I_4|$. By the induction hypothesis that $\mathbf{v}_1^{\top} \mathbf{w}_r^{(t)} \ge 0$, we 1351 have 1352

- $I_1 \ge (1 \sigma_0) \cdot \lambda_1 \cdot (1 4\sigma_0^2)^2 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$
- $> (1 2\sigma_0) \cdot \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$ 1354

1353

1355

1359 1360

1362

1363

$$\geq (1 \quad 200) \cdot \sqrt{1} \cdot \langle \mathbf{w}_r, \mathbf{v}_1 \rangle$$

 $\geq -2\sigma_0\lambda_1\cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle,$ 1356

1357 where the first inequality follows by Lemma B.4. Similarly, we also 1358

$$I_1 \le (1 + \sigma_0) \cdot \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle - \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle \le \sigma_0 \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle.$$

Therefore, we conclude that 1361

> $|I_1| < 2\sigma_0 \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle.$ (B.25)

> > (B.27)

Let $\mathbf{P}_{\mathbf{v}_1}^{\perp} = \mathbf{I} - \mathbf{v}_1 \mathbf{v}_1^{\top}$. Then for I_2 , by the property of project matrices, we have $\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} = \mathbf{P}_{\mathbf{v}_1}^{\perp} \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}$, 1364 1365 and therefore

$$|I_{2}| = |\lambda_{1}^{(t)} \mathbf{v}_{1}^{\top} \mathbf{v}_{1}^{(t)} (\mathbf{P}_{\mathbf{v}_{1}}^{\perp} \mathbf{v}_{1}^{(t)})^{\top} \mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t)}|$$

$$\leq (1 + \sigma_{0})\lambda_{1} \cdot 4\sigma_{0} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t)}\|_{2}$$

$$\leq 8\sigma_{0}\lambda_{1} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t)}\|_{2}$$

$$\leq 8\sigma_{0}\lambda_{1} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t)}\|_{2}$$

$$\leq 8\sqrt{\sigma_{0}} \cdot \lambda_{1} \cdot \langle \mathbf{w}_{r}^{(t)}, \mathbf{v}_{1} \rangle, \qquad (B.26)$$

$$|\mathbf{I}_{2}| = |\lambda_{1}^{(t)} \mathbf{v}_{1}^{\top} \mathbf{v}_{1}^{(t)} \mathbf{v}_{1}^{\top} \mathbf{v}_{1}^{(t)} \mathbf{v}_{1}^{(t)}|_{2}$$

where the first inequality follows by Lemma B.4, and the third inequality follows by the induction 1373 hypothesis. For I_3 , we have 1374

1375
1376
1377
1378

$$|I_3| \le \sum_{i=2}^{2n_0+1} |\lambda_i^{(t)}| \cdot |\mathbf{v}_1^\top \mathbf{v}_i^{(t)}|^2 \cdot \mathbf{v}_1^\top \mathbf{w}_r^{(t)}$$

$$\leq 2n_0 \cdot \left(\frac{\mathcal{E}_{\text{SimCLR}}}{2(1 - \mathcal{E}_{\text{SimCLR}})} + \sigma_0\right) \cdot \lambda_1 \cdot 16\sigma_0^2 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$

$$\leq 2n_0 \cdot \left(\frac{\mathcal{E}_{\text{SimCLR}}}{2(1 - \mathcal{E}_{\text{SimCLR}})} + \sigma_0\right) \cdot \lambda_1 \cdot 16\sigma_0^2 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$

$$\leq n_0 \sigma_0^2 \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$

1382 where in the second inequality we use Lemmas 5.2 and B.4, and the last inequality follows by the assumption that $\sigma_0, \mathcal{E}_{\text{SimCLR}} \leq 1/64$. Finally for I_4 , we have 1384

 \rangle ,

$$|I_4| \le \left\| \sum_{i=2}^{2n_0+1} \lambda_i^{(t)} \cdot \langle \mathbf{v}_1, \mathbf{v}_i^{(t)} \rangle \cdot \mathbf{v}_i^{(t)\top} \right\|_2 \cdot \|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)}\|_2$$

 $\leq \sqrt{\sum_{i=2}^{2n_0+1} \lambda_i^{(t)2} \cdot \langle \mathbf{v}_1, \mathbf{v}_i^{(t)} \rangle^2 \cdot \|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)}\|_2}$

1387 1388

138

139

1396

1381

1385 1386

$$\leq \sqrt{}$$

$$\begin{array}{l} \textbf{1393}\\ \textbf{1394} \qquad \qquad \leq \sqrt{n_0} \cdot \sigma_0 \boldsymbol{\lambda} \end{array}$$

$$\leq \sqrt{2n_0} \cdot \left(\frac{\mathcal{E}_{\text{SimCLR}}}{2(1 - \mathcal{E}_{\text{SimCLR}})} + \sigma_0 \right) \cdot \lambda_1 \cdot 4\sigma_0 \cdot \|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)}\|_2$$

$$\leq \sqrt{n_0} \cdot \sigma_0 \lambda_1 \cdot \|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)}\|_2$$

$$\leq \sqrt{n_0 \sigma_0} \cdot \lambda_1 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle, \qquad (B.28)$$

1395
$$\leq \sqrt{n_0}$$

where the second inequality follows by the fact that $\mathbf{v}_i^{(t)}$, $i = 2, \dots, 2n_0 + 1$ are mutually orthogonal 1397 unit vectors, the third inequality follows by Lemmas 5.2 and B.4, the fourth inequality follows by the 1398 assumption that $\sigma_0, \mathcal{E}_{\text{SimCLR}} \leq 1/64$, and the fifth inequality follows by the induction hypothesis. 1399

1402
$$[1 + (1 - 2\sqrt{n_0\sigma_0})\lambda_1] \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle \le \langle \mathbf{w}_r^{(t+1)}, \mathbf{v}_1 \rangle \le [1 + (1 + 2\sqrt{n_0\sigma_0})\lambda_1] \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$
 (B.29)

for all $t = 0, \ldots, t_0$ and $r \in \mathcal{I}^+$, where we use the assumption that $\sigma_0 \leq 1/(8n_0^2)$ and $\sigma_0 \leq 1/512$.

1404 Moreover, for $t = 0, \ldots, t_0$ and $r \in [2m]$, we also have 1405 $\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(t+1)} = \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(t)} + \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}(\mathbf{A} + \mathbf{\Xi}^{(t)})\mathbf{w}_r^{(t)}$ 1406 1407 $= \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)} + \lambda_1^{(t)} \cdot \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} \mathbf{v}_1^{(t)} \mathbf{v}_1^{(t)\top} \mathbf{w}_r^{(t)} + \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} \left(\sum_{i=2}^{2n_0+1} \lambda_i^{(t)} \mathbf{v}_i^{(t)} \mathbf{v}_i^{(t)\top} \right) \mathbf{w}_r^{(t)}$ 1408 1409 1410 $= \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)} + I_5 + I_6 + I_7 + I_8,$ (B.30) 1411 where 1412 1413 $I_5 = \lambda_1^{(t)} \cdot \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{v}_1^{(t)} \mathbf{v}_1^{(t) \top} \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)}$ 1414 $I_6 = \lambda_1^{(t)} \cdot \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{v}_1^{(t)} \mathbf{v}_1^{(t)\top} \mathbf{v}_1 \mathbf{v}_1^{\top} \mathbf{w}_r^{(t)},$ 1415 1416 $I_7 = \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} \left(\sum_{i=1}^{2n_0+1} \lambda_i^{(t)} \mathbf{v}_i^{(t)} \mathbf{v}_i^{(t)\top} \right) \mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)},$ 1417 1418 1419 $I_8 = \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \left(\sum_{i=2}^{2n_0+1} \lambda_i^{(t)} \mathbf{v}_i^{(t)} \mathbf{v}_i^{(t)\top} \right) \mathbf{v}_1 \mathbf{v}_1^{\top} \mathbf{w}_r^{(t)}.$ 1420 1421 1422 For I_5 , we have 1423 $|I_5| \leq (1+\sigma_0)\lambda_1 \cdot 16\sigma_0^2 \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(t)}\|_2$ 1424 1425 $\leq 32\lambda_1\sigma_0^2 \cdot \|\mathbf{P}_{\mathcal{X}\mathbf{v}}^{\perp}\mathbf{w}_r^{(t)}\|_2,$ (B.31) 1426

1427 where the first inequality follows by Lemma B.4. For I_6 , we have

1428

1449 1450

1429
1429
1430
1430
1431
1432

$$|I_6| \le (1 + \sigma_0)\lambda_1 \cdot 4\sigma_0 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$

$$\le 8\lambda_1 \sigma_0 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$

$$\le 8\lambda_1 \sqrt{\sigma_0} \cdot \|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)}\|_2, \quad (B.32)$$

where the first inequality follows by Lemma B.4, and the third inequality follows by the induction hypothesis. For I_7 , we have

where the second inequality follows by Lemmas 5.2 and B.4, and the third inequality follows by the assumption that $\mathcal{E}_{\text{SimCLR}} \leq 1/16$ and $\sigma_0 \leq \mathcal{E}_{\text{SimCLR}}/16$. For I_8 , we have

1445
1446
1447
1448
$$|I_8| \le \left\| \sum_{i=2}^{2n_0+1} \lambda_i^{(t)} \cdot \langle \mathbf{v}_1, \mathbf{v}_i^{(t)} \rangle \cdot \mathbf{v}_i^{(t)} \right\|_2 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$

$$\leq \sqrt{\sum_{i=2}^{2n_0+1} \lambda_i^{(t)2} \cdot \langle \mathbf{v}_1, \mathbf{v}_i^{(t)}
angle^2 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1
angle}$$

$$\leq \sqrt{2n_0} \cdot \left(\frac{\mathcal{E}_{\text{SimCLR}}}{2(1 - \mathcal{E}_{\text{SimCLR}})} + \sigma_0\right) \cdot \lambda_1 \cdot 4\sigma_0 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$

$$\leq \sqrt{n_0} \cdot \lambda_1 \sigma_0 \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$

1455
$$\leq \sqrt{n_0 \sigma_0} \cdot \lambda_1 \cdot \| \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)} \|_2, \tag{B.34}$$

where the second inequality follows by the fact that $\mathbf{v}_i^{(t)}$, $i = 2, ..., 2n_0 + 1$ are mutually orthogonal unit vectors, the third inequality follows by Lemmas 5.2 and B.4, the fourth inequality follows by the 1458 assumption that $\sigma_0, \mathcal{E}_{SimCLR} \leq 1/64$, and the fifth inequality follows by the induction hypothesis. 1459 Now combining (B.30), (B.31), (B.32), (B.33), and (B.34) gives 1460

$$\begin{array}{l} \mathbf{1461} \\ \mathbf{1461} \\ \mathbf{1462} \\ \mathbf{1462} \\ \mathbf{1463} \end{array} \left(1 - \frac{5}{6} \mathcal{E}_{\mathrm{SimCLR}} \lambda_1 \right) \cdot \| \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)} \|_2 \leq \| \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t+1)} \|_2 \leq \left(1 + \frac{5}{6} \mathcal{E}_{\mathrm{SimCLR}} \lambda_1 \right) \cdot \| \mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t)} \|_2 \\ (B.35) \\ \end{array}$$

1464 for all $t = 0, \ldots, t_0$ and $r \in [2m]$, where we use the assumption that $\sigma_0 \leq \mathcal{E}_{SimCLR}^2/(64n_0)$ and $\sigma_0 \leq \mathcal{E}_{\text{SimCLR}}/16.$ 1465

1466 Now by (B.29) and (B.35), we have 1467

1468 1469

14

$$\frac{\langle \mathbf{w}_r^{(t_0+1)}, \mathbf{v}_1 \rangle}{\|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t_0+1)}\|_2} \geq \frac{1 + (1 - 2\sqrt{n_0\sigma_0})\lambda_1}{1 + (5/6) \cdot \mathcal{E}_{\text{SimCLR}} \cdot \lambda_1} \cdot \frac{\langle \mathbf{w}_r^{(t_0)}, \mathbf{v}_1 \rangle}{\|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t_0)}\|_2} \geq \frac{\langle \mathbf{w}_r^{(t_0)}, \mathbf{v}_1 \rangle}{\|\mathbf{P}_{\mathcal{X}, \mathbf{v}_1}^{\perp} \mathbf{w}_r^{(t_0)}\|_2} \geq \sigma_0,$$

1470 for all $r \in \mathcal{I}^+$, where the second inequality follows by the assumption that $\sigma_0 \leq \mathcal{E}_{\text{SimCLR}}^2/(64n_0)$. 1471 This verifies the induction hypothesis (B.22) at $t = t_0 + 1$. Moreover, by (B.29) and (B.35), we also 1472 have 1473

$$\frac{\langle \mathbf{w}_{r}^{(t_{0}+1)}, \mathbf{v}_{1} \rangle}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t_{0}+1)}\|_{2}} \leq \frac{\|\mathbf{P}_{\lambda} \mathbf{w}_{r}^{(t_{0}+1)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t_{0}+1)}\|_{2}} \leq \frac{[1 + (1 + \sigma_{0})\lambda_{1}] \cdot \|\mathbf{P}_{\lambda} \mathbf{w}_{r}^{(t_{0})}\|_{2}}{(1 - 5\mathcal{E}_{\mathrm{SimCLR}}\lambda_{1}/6) \cdot \|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t_{0})}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}] \cdot \frac{\|\mathbf{P}_{\lambda} \mathbf{w}_{r}^{(t_{0})}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t_{0})}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}] \cdot \frac{\|\mathbf{P}_{\lambda} \mathbf{w}_{r}^{(t_{0})}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(t_{0})}\|_{2}} \\ \leq [1 + (1 - \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{t_{0}} \cdot \frac{\|\mathbf{P}_{\lambda} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 - \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{\frac{1 + \mathcal{E}_{\mathrm{SimCLR}} \cdot t_{0}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 - \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}} \mathbf{w}_{r}^{(0)}\|_{2}} \\ \leq [1 + (1 + \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{2T_{\mathrm{SimCLR}}} \cdot \frac{\|\mathbf{P}_{\lambda,\mathbf{v}_{1} \mathbf{w}_{r}^{(0)}\|_{2}}{\|\mathbf{P}_{\lambda,\mathbf{v}_{1}$$

for all $r \in [2m]$, where the second inequality follows by Lemma B.4, the third inequality follows 1491 1492 by the assumption that $\sigma_0 \leq \mathcal{E}_{\text{SimCLR}}/64$, and the fifth inequality follows by the fact that $1 + a \leq c_0$ 1493 $(1+b)^{a/b}$ for all a > b > 0. Now by the definition of T_{SimCLR} , we know that 1494

1494
1495
$$[1 + (1 - \mathcal{E}_{\text{SimCLR}})\lambda_1]^{T_{\text{SimCLR}}} \le \max\left\{ 288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \text{SNR}^{\frac{q}{q-2}}}, 2 \right\}.$$
1497 Therefore we have

Therefore, we have

for all $r \in [2m]$, where the second inequality follows by (B.19) and (B.20), and the last inequal-1506 ity follows by the assumption that $\sigma_0 \leq \widetilde{O}(M^{-\frac{1}{q-2}} \cdot n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}})$. This verifies the induction 1507 hypothesis (B.23) at $t = t_0 + 1$. 1508

1509 Based on the discussion above, by induction, we conclude that (B.21), (B.22), (B.23), (B.29), and 1510 (B.35) hold for all $t = 0, \ldots, T_{SimCLR}$. In other words, we can conclude that: 1511

$$[1 + (1 - 2\sqrt{n_0\sigma_0})\lambda_1] \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle \le \langle \mathbf{w}_r^{(t+1)}, \mathbf{v}_1 \rangle \le [1 + (1 + 2\sqrt{n_0\sigma_0})\lambda_1] \cdot \langle \mathbf{w}_r^{(t)}, \mathbf{v}_1 \rangle$$
(B.36)

for all
$$t = 0, \dots, T_{\text{SimCLR}}$$
 and $r \in \mathcal{I}^+$, and
(1 - $\frac{5}{6}\mathcal{E}_{\text{SimCLR}}\lambda_1$) $\cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(t)}\|_2 \le \|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(t+1)}\|_2 \le \left(1 + \frac{5}{6}\mathcal{E}_{\text{SimCLR}}\lambda_1\right) \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(t)}\|_2$
(B.37)

for all $t = 0, \ldots, T_{\text{SimCLR}}$ and $r \in [2m]$. Moreover, by Lemma 5.1 and the fact that the columns and rows of $\mathbf{A}, \boldsymbol{\Xi}^{(t)}$ are in \mathcal{X}_{col} and \mathcal{X}_{row} respectively, we also have

$$\mathbf{P}_{\mathcal{X}}\mathbf{w}_{r}^{(t+1)} = [\mathbf{I} + \mathbf{A} + \mathbf{\Xi}^{(t)}]\mathbf{P}_{\mathcal{X}}\mathbf{w}_{r}^{(t)}$$

for all $t = 0, ..., T_{\text{SimCLR}}$ and all $r \in [2m]$. Therefore, by Lemmas 5.2 and B.4, we have

$$\|\mathbf{P}_{\mathcal{X}}\mathbf{w}_{r}^{(t+1)}\|_{2} \leq (1 + (1 + \sigma_{0})\lambda_{1}) \cdot \|\mathbf{P}_{\mathcal{X}}\mathbf{w}_{r}^{(t)}\|_{2}$$
(B.38)

for all $t = 0, \ldots, T_{\text{SimCLR}}$ and all $r \in [2m]$. By (B.18) and (B.36), we have

$$\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{v}_{1} \rangle \geq [1 + (1 - 2\sqrt{n_{0}\sigma_{0}})\lambda_{1}]^{T_{\text{SimCLR}}} \cdot \langle \mathbf{w}_{r}^{(0)}, \mathbf{v}_{1} \rangle$$

$$\geq [1 + (1 - 2\sqrt{n_{0}\sigma_{0}})\lambda_{1}]^{T_{\text{SimCLR}}} \cdot \sigma_{0}/2$$
(B.39)

for all $r \in \mathcal{I}^+$. Moreover, by (B.19) and (B.37), we also have

$$\begin{aligned} \|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} &\leq \left(1 + \frac{5}{6}\mathcal{E}_{\mathrm{SimCLR}}\lambda_{1}\right)^{T_{\mathrm{SimCLR}}} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp}\mathbf{w}_{r}^{(t)}\|_{2} \\ &\leq \left(1 + \frac{5}{6}\mathcal{E}_{\mathrm{SimCLR}}\lambda_{1}\right)^{T_{\mathrm{SimCLR}}} \cdot 2\sigma_{0} \cdot \sqrt{n_{0}} \end{aligned} \tag{B.40}$$

for all $r \in [2m]$. In addition, by (B.38), it holds that

$$\|\mathbf{P}_{\mathcal{X}}\mathbf{w}_{r}^{(T_{\text{SimCLR}})}\|_{2} \leq \|\mathbf{P}_{\mathcal{X}}\mathbf{w}_{r}^{(0)}\|_{2} \leq 4(1+(1+\sigma_{0})\lambda_{1})^{T_{\text{SimCLR}}} \cdot \sigma_{0} \cdot \sqrt{n_{0}}$$
(B.41)

for all $t = 0, ..., T_{\text{SimCLR}}$ and all $r \in [2m]$, where the last inequality above is by (B.20).

Now denote $\bar{\mu} = \mu / \|\mu\|_2$, and $\mathbf{P}_{\mu}^{\perp} = \mathbf{I} - \bar{\mu} \bar{\mu}^{\top}$. Then for all $r \in \mathcal{I}^+$, we have

1540
$$\langle \mathbf{w}_r^{(T_{\mathrm{SimCLR}})}, \bar{\mu}
angle = \langle \mathbf{w}_r^{(T_{\mathrm{SimCLR}})}, \mathbf{P}_{\mathcal{X}} \bar{\mu}
angle$$

1541
$$-\langle \mathbf{w}^{(T_{\text{SimCLR}})} | \mathbf{P}^{\perp}_{\pm} + \rangle$$

$$= \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, (\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} + \mathbf{v}_{1}\mathbf{v}_{1}^{\top})\bar{\boldsymbol{\mu}} \rangle$$

$$= \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, (\mathbf{I} - \mathbf{P}_{\mathcal{X}})\bar{\boldsymbol{\mu}} \rangle + \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp}\bar{\boldsymbol{\mu}} \rangle + \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot \langle \mathbf{v}_{1}, \bar{\boldsymbol{\mu}} \rangle$$

$$= \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, (\mathbf{I} - \mathbf{P}_{\mathcal{X}})\bar{\boldsymbol{\mu}} \rangle + \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp}\bar{\boldsymbol{\mu}} \rangle + \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot \langle \mathbf{v}_{1}, \bar{\boldsymbol{\mu}} \rangle$$

$$= \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{P}_{\perp}^{\perp}, \bar{\boldsymbol{\mu}} \rangle + \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot \langle \mathbf{v}_{1}, \bar{\boldsymbol{\mu}} \rangle$$

$$= \langle \mathbf{w}_{r} \qquad (\mathbf{v}_{1}, \mathbf{u}_{\mathcal{X}, \mathbf{v}_{1}} \boldsymbol{\mu}) + \langle \mathbf{w}_{r} \qquad (\mathbf{v}_{1}, \mathbf{v}_{1}) + \langle \mathbf{v}_{1}, \boldsymbol{\mu} \rangle$$

$$\geq - \| \mathbf{P}_{\mathcal{X}, \mathbf{v}_{1}}^{\perp} \mathbf{w}_{r}^{(T_{\text{SimCLR}})} \|_{2} + \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot (1 - \mathcal{E}_{\text{SimCLR}}),$$

$$(B.42)$$

where the first inequality follows by Lemma 5.2. Moreover, we also have

$$\begin{array}{ll}
\begin{array}{ll}
\end{array} & \\
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\end{array} & \\
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\end{array} & \\
\end{array} & \\
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\begin{array}{ll}
\end{array} & \\
\bigg \\ \begin{array} & \\
\bigg & \\
\bigg \\ \\
\bigg & \\
\bigg \\ \begin{array} & \\
\bigg \\ \\
\bigg \\ \begin{array} & \\
\bigg \\ \begin{array} & \\
\bigg \\ \\ \\
\bigg \\$$

where the third inequality is by the $\sigma_0 \leq \widetilde{O}(M^{-\frac{1}{q-2}} \cdot n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{q}{q-2}})$, and the last inequality is by $\sigma_0 \leq 1/(64n_0)$. Therefore, by (B.39) and (B.40), we have

$$\|\mathbf{P}_{\mathcal{X},\mathbf{v}_1}^{\perp}\mathbf{w}_r^{(T_{\text{SimCLR}})}\|_2 \leq \langle \mathbf{w}_r^{(T_{\text{SimCLR}})},\mathbf{v}_1\rangle/4,$$

and hence by (B.42), we have

1562
1563

$$\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle = \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \bar{\boldsymbol{\mu}} \rangle \cdot \|\boldsymbol{\mu}\|_{2}$$
1564
1565

$$\geq \langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot \|\boldsymbol{\mu}\|_{2}/4$$

$$\geq [1 + (1 - 2\sqrt{n_{0}\sigma_{0}})\lambda_{1}]^{T_{\text{SimCLR}}} \cdot \sigma_{0} \cdot \|\boldsymbol{\mu}\|_{2}/8, \quad (B.43)$$

for all $r \in \mathcal{I}^+$, where the last inequality follows by (B.39). In addition, since the update only happens in the subspace \mathcal{X}_{col} which is spanned by the data, we have $(\mathbf{I} - \mathbf{P}_{\mathcal{X}})\mathbf{w}_r^{(T_{SimCLR})} = (\mathbf{I} - \mathbf{P}_{\mathcal{X}})\mathbf{w}_r^{(0)}$. Moreover, we have

where the last inequality follows by the fact that $(\mathbf{I} - \mathbf{P}_{\mathcal{X}})\mathbf{w}_r^{(0)}$ is a centered spherical Gaussian random vector with standard deviation bounded by σ_0 , and by Gaussian tail bound, with probability at least $1 - d^{-2}$,

$$\|(\mathbf{I} - \mathbf{P}_{\mathcal{X}})\mathbf{w}_{r}^{(0)}\|_{3} \le 4\sigma_{0} \cdot \sqrt{d\log(md)},\tag{B.45}$$

1581 for all
$$r \in [2m]$$
. Moreover, we have

1575

1579

1580

1500

$$\begin{aligned} \|(\mathbf{v}_{1}\mathbf{v}_{1}^{\top}-\bar{\mu}\bar{\mu}^{\top})\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} \leq \|(\mathbf{v}_{1}-\bar{\mu})\mathbf{v}_{1}^{\top}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} + \|\bar{\mu}(\mathbf{v}_{1}-\bar{\mu})^{\top}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} \\ &= \langle \mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot \|\mathbf{v}_{1}-\bar{\mu}\|_{2} + |(\mathbf{v}_{1}-\bar{\mu})^{\top}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}| \\ &\leq \langle \mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot \|\mathbf{v}_{1}-\bar{\mu}\|_{2} + |(\mathbf{v}_{1}-\bar{\mu})^{\top}\mathbf{v}_{1}\cdot\mathbf{v}_{1}^{\top}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}| \\ &+ |(\mathbf{v}_{1}-\bar{\mu})^{\top}\mathbf{P}_{\mathcal{X},\mathbf{v}1}^{\perp}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}| \\ &\leq \langle \mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot \|\mathbf{v}_{1}-\bar{\mu}\|_{2} + \langle \mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}, \mathbf{v}_{1} \rangle \cdot |(\mathbf{v}_{1}-\bar{\mu})^{\top}\mathbf{v}_{1}| \\ &+ \|\mathbf{v}_{1}-\bar{\mu}\|_{2} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}1}^{\perp}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} \\ &\leq \langle \sqrt{2} \cdot \mathcal{E}_{\mathrm{SimCLR}}, \mathbf{v}_{1} \rangle \cdot \|\mathbf{v}_{1}-\bar{\mu}\|_{2} \\ &+ \sqrt{2} \cdot \mathcal{E}_{\mathrm{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{v}1}^{\top}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} \\ &\leq 2\mathcal{E}_{\mathrm{SimCLR}} \cdot \langle \mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}, \mathbf{v}_{1} \rangle + \|\mathbf{P}_{\mathcal{X},\mathbf{v}1}^{\perp}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} \\ &\leq 2\mathcal{E}_{\mathrm{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{w}1}^{T_{\mathrm{SimCLR}}}\|_{2} + \|\mathbf{P}_{\mathcal{X},\mathbf{v}1}^{T_{\mathrm{SimCLR}}}\|_{2} \\ &\leq 2\mathcal{E}_{\mathrm{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{w}1}^{(T_{\mathrm{SimCLR}})}\|_{2} + \|\mathbf{P}_{\mathcal{X},\mathbf{v}1}^{\top}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} \\ &\leq 2\mathcal{E}_{\mathrm{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{w}1}^{(T_{\mathrm{SimCLR}})}\|_{2} + \|\mathbf{P}_{\mathcal{X},\mathbf{w}1}^{\top}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} \\ &\leq 2\mathcal{E}_{\mathrm{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{w}1}^{(T_{\mathrm{SimCLR}})}\|_{2} + \|\mathbf{P}_{\mathcal{X},\mathbf{w}1}^{\top}\mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}\|_{2} \\ &\leq 2\mathcal{E}_{\mathrm{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X},\mathbf{w}1}^{\top}\mathbf{w}_{r}^{(T$$

1598 Plugging (B.46) and (B.45) into (B.44) gives

1599
1600
$$\|\mathbf{P}_{\boldsymbol{\mu}}^{\perp}\mathbf{w}_{r}^{(T_{\text{SimCLR}})}\|_{2} \leq 4\sigma_{0} \cdot \sqrt{d\log(md)} + 2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X}}\mathbf{w}_{r}^{(T_{\text{SimCLR}})}\|_{2} + 2\|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp}\mathbf{w}_{r}^{(T_{\text{SimCLR}})}\|_{2}.$$
1601 Therefore, we have that for $r \in \mathcal{I}^{+}$ and $r' \in [2m]$,

$$\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{\|\mathbf{P}_{\boldsymbol{\mu}}^{\perp} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}} \geq \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)} + 2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X}} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2} + 2\|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}} \\ \geq \frac{1}{3} \cdot \min\left\{\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X}} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}\right\} \\ = \frac{1}{3} \cdot \min\left\{\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X}} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}\right\} \\ = \frac{1}{3} \cdot \min\left\{\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X}} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\|\mathbf{P}_{\mathcal{X},\mathbf{v}_{1}}^{\perp} \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}\right\} \\ = \frac{1}{3} \cdot \min\left\{\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{w}_{r'}^{T_{\text{SimCLR}}}\|_{2}}\right\} \\ = \frac{1}{3} \cdot \min\left\{\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}\right\} \\ = \frac{1}{3} \cdot \min\left\{\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}\right\} \\ = \frac{1}{3} \cdot \min\left\{\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}\right\} \\ = \frac{1}{3} \cdot \min\left\{\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}}), \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}}, \frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}}), \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\text{SimCLR}} \cdot \|\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}}\right\}}\right\}$$

By (B.39), we have

$$\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{4\sigma_{0} \cdot \sqrt{d \log(md)}} \geq \frac{[1 + (1 - 2\sqrt{n_{0}\sigma_{0}})\lambda_{1}]^{T_{\text{SimCLR}}} \cdot \|\boldsymbol{\mu}\|_{2}}{4\sqrt{d \log(md)}}$$
$$\geq \frac{[1 + (1 - \mathcal{E}_{\text{SimCLR}})\lambda_{1}]^{T_{\text{SimCLR}}} \cdot \|\boldsymbol{\mu}\|_{2} \cdot \sigma_{p}}{[1 + (1 - \mathcal{E}_{\text{SimCLR}})\lambda_{1}]^{T_{\text{SimCLR}}} \cdot \|\boldsymbol{\mu}\|_{2} \cdot \sigma_{p}}$$

$$\geq \frac{1}{4\sigma_p\sqrt{d\log(md)}}$$

1615
1616
$$= \frac{[1 + (1 - \mathcal{E}_{SimCLR})\lambda_1]^{T_{SimCLR}} \cdot SNR \cdot \sigma_p}{[1 + (1 - \mathcal{E}_{SimCLR})\lambda_1]^{T_{SimCLR}} \cdot SNR \cdot \sigma_p}$$

1617
$$4\sqrt{\log(md)}$$

1618
1619
$$\geq 72C^{\frac{1}{q-2}}\sigma_p \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)}}{n^{\frac{1}{q-2}} \mathrm{SNR}^{\frac{2}{q-2}}},$$

where the first inequality is by the assumption that $\sigma_0 \leq \mathcal{E}_{\text{SimCLR}}/(4n_0)$, and the second inequality is by the definition of T_{SimCLR} , which implies that

 $[1 + (1 - \mathcal{E}_{\text{SimCLR}})\lambda_1]^{T_{\text{SimCLR}}} \ge 288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \text{SNR}^{\frac{q}{q-2}}}.$

By (B.41) and (B.43), we have

1641 where the second inequality follows by the assumption that $\sigma_0 \leq 1/(4n_0)$, the third inequality 1642 follows by the fact that $1 + a \leq (1 + b)^{a/b}$ for all a > b > 0, and the fourth inequality follows by 1643 the assumption that $\sigma_0, \mathcal{E}_{\text{SimCLR}} \leq 1/4$. Now by the definition of T_{SimCLR} , we know that

$$\begin{bmatrix} 1644 \\ 1645 \\ 1646 \\ 1647 \end{bmatrix} \left[1 + (1 - \mathcal{E}_{\text{SimCLR}})\lambda_1 \right]^{T_{\text{SimCLR}}} \le \max\left\{ 288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \text{SNR}^{\frac{q}{q-2}}}, 2 \right\}$$

1648 Therefore, by the assumption that

$$\mathcal{E}_{\text{SimCLR}} \le \frac{\sqrt{d} \cdot n^{\frac{3}{q-2}} \text{SNR}^{\frac{3q}{q-2}}}{64 \cdot 288^2 \cdot 72 \cdot \sqrt{n_0} \cdot M^{\frac{3}{q-2}} \cdot \log(2/\sigma_0)^{\frac{3}{q-2}} \cdot \log(dn)^{\frac{3}{2}} \cdot \log(md)}$$

1653 we have

$$\begin{split} \frac{\langle \mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}, \boldsymbol{\mu} \rangle}{2\mathcal{E}_{\mathrm{SimCLR}} \cdot \|\mathbf{P}_{\mathcal{X}} \mathbf{w}_{r'}^{(T_{\mathrm{SimCLR}})}\|_{2}} &\geq \frac{\|\boldsymbol{\mu}\|_{2}}{64\mathcal{E}_{\mathrm{SimCLR}}(1 + (1 - \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1})^{2T_{\mathrm{SimCLR}}}\sqrt{n_{0}}}\\ &= \frac{\mathrm{SNR} \cdot \sigma_{p} \cdot \sqrt{d}}{64\mathcal{E}_{\mathrm{SimCLR}}(1 + (1 - \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1})^{2T_{\mathrm{SimCLR}}}\sqrt{n_{0}}}\\ &\geq 72M^{\frac{1}{q-2}}\sigma_{p} \cdot \frac{\log(2/\sigma_{0})^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)}}{n^{\frac{1}{q-2}}\mathrm{SNR}^{\frac{2}{q-2}}}. \end{split}$$

1663 Finally, by (B.39) and (B.40), we also have

$$\frac{\langle \mathbf{w}_{r}^{(T_{\mathrm{SimCLR}})}, \boldsymbol{\mu} \rangle}{2 \| \mathbf{P}_{\mathcal{X}, \mathbf{v}_{1}}^{\perp} \mathbf{w}_{r'}^{(T_{\mathrm{SimCLR}})} \|_{2}} \geq \frac{[1 + (1 - 2\sqrt{n_{0}\sigma_{0}})\lambda_{1}]^{T_{\mathrm{SimCLR}}} \cdot \|\boldsymbol{\mu}\|_{2}}{8\sqrt{n_{0}} \cdot \left(1 + \frac{5}{6}\mathcal{E}_{\mathrm{SimCLR}}\lambda_{1}\right)^{T_{\mathrm{SimCLR}}}} \\ > \frac{[1 + (1 - \mathcal{E}_{\mathrm{SimCLR}})\lambda_{1}]^{T_{\mathrm{SimCLR}}} \cdot \|\boldsymbol{\mu}\|_{2}}{8\sqrt{n_{0}} \cdot \left(1 - \mathcal{E}_{\mathrm{SimCLR}}\lambda_{1}\right)^{T_{\mathrm{SimCLR}}} \cdot \|\boldsymbol{\mu}\|_{2}}$$

$$\geq \frac{1-1}{8\sqrt{n_0}}$$

1669
1670
$$= \frac{[1 + (1 - \mathcal{E}_{SimCLR})\lambda_1]^{T_{SimCLR}} \cdot SNR \cdot \sigma_p \sqrt{d}}{\sqrt{d}}$$

1671
$$8\sqrt{n_0}$$

1672 $\log (2/z)^{\frac{1}{2}}$

1672
1673
$$\geq 72M^{\frac{1}{q-2}}\sigma_p \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{2}{q-2}}},$$

where the second inequality follows by the assumption that $\sigma_0 \leq \mathcal{E}_{SimCLR}^2/(64n_0)$, and the last inequality follows by the choice of T_{SimCLR} which implies that

$$[1 + (1 - \mathcal{E}_{\text{SimCLR}})\lambda_1]^{T_{\text{SimCLR}}} \ge 288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}} \text{SNR}^{\frac{q}{q-2}}} \ge 576M^{\frac{1}{q-2}} \cdot \frac{\sqrt{n_0} \cdot \log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)}}{n^{\frac{1}{q-2}} \text{SNR}^{\frac{q}{q-2}} \cdot \sqrt{d}},$$

where the second inequality follows by the assumption that $d \ge 4n_0$. Therefore, we conclude that for $r \in \mathcal{I}^+$ and $r' \in [2m]$, we have

$$\frac{\langle \mathbf{w}_{r}^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{\|(\mathbf{I} - \boldsymbol{\mu}\boldsymbol{\mu}^{\top} / \|\boldsymbol{\mu}\|_{2}^{2}) \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2}} \ge 24M^{\frac{1}{q-2}} \sigma_{p} \cdot \frac{\log(2/\sigma_{0})^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)}}{n^{\frac{1}{q-2}} \text{SNR}^{\frac{2}{q-2}}}, \tag{B.47}$$

Now for any $r' \in [2m]$, consider the following decomposition for $\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}$:

$$\mathbf{w}_{r'}^{(T_{\text{SimCLR}})} = \mathbf{w}_{r'}^{\perp} + \gamma_{r'} \cdot \boldsymbol{\mu} / \|\boldsymbol{\mu}\|_2^2 + \sum_{i=1}^n \rho_{r',i} \cdot \boldsymbol{\xi}_i^{\text{fine-tuning}} / \|\boldsymbol{\xi}_i^{\text{fine-tuning}}\|_2^2,$$

where $\mathbf{w}_{r'}^{\perp}$ is perpendicular to $\boldsymbol{\mu}$ and $\boldsymbol{\xi}_1^{\text{fine-tuning}}, \ldots, \boldsymbol{\xi}_n^{\text{fine-tuning}}$. Then we directly have

$$\gamma_r = \langle \mathbf{w}_r^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle \tag{B.48}$$

for all $r \in \mathcal{I}^+$. Note that $\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}$ is independent of $\boldsymbol{\xi}_i^{\text{fine-tuning}}$, $i \in [n]$. For any $i \in [n]$, considering the randomness of $\boldsymbol{\xi}_i^{\text{fine-tuning}}$, we see that $\langle \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}, \boldsymbol{\xi}_i^{\text{fine-tuning}} \rangle$ is a Gaussian random variable with mean zero and standard deviation $\sigma_p \cdot \|\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_2$. Therefore, by Gaussian tail bound and union bound, with probability at least $1 - d^{-2}$, we have

$$|\langle \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}, \boldsymbol{\xi}_{i}^{\text{fine-tuning}} \rangle| \leq 8\sigma_{p} \cdot \|\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2} \cdot \sqrt{\log(dn)}$$

Now denote $\mathbf{E} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_n], \ \mathbf{D} = \text{diag}(\|\boldsymbol{\xi}_1^{\text{fine-tuning}}\|_2^{-2}, \|\boldsymbol{\xi}_2^{\text{fine-tuning}}\|_2^{-2}, \dots, \|\boldsymbol{\xi}_n^{\text{fine-tuning}}\|_2^{-2}),$ $\boldsymbol{\rho}_{r'} = [\rho_{r',1}, \dots, \rho_{r',n}]^{\top}$. Then we have

$$\begin{split} \|\mathbf{w}_{r'}^{(T_{\text{SimCLR}})\top}\mathbf{E}\|_{\infty} &= \|\mathbf{w}_{r'}^{(T_{\text{SimCLR}})\top}(\mathbf{I} - \boldsymbol{\mu}\boldsymbol{\mu}^{\top} / \|\boldsymbol{\mu}\|_{2}^{2})\mathbf{E}\|_{\infty} \\ &\leq 8\sigma_{p} \cdot \|(\mathbf{I} - \boldsymbol{\mu}\boldsymbol{\mu}^{\top} / \|\boldsymbol{\mu}\|_{2}^{2})\mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_{2} \cdot \sqrt{\log(dn)}. \end{split}$$

By definition, we have

$$\langle \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}, \boldsymbol{\xi}_{i_0} \rangle = \sum_{i=1}^n \rho_{r',i} \cdot \langle \boldsymbol{\xi}_i, \boldsymbol{\xi}_{i_0} \rangle / \| \boldsymbol{\xi}_i \|_2^2$$

and

$$\mathbf{E}\mathbf{w}_{r'}^{(T_{\mathrm{SimCLR}})} = \mathbf{E}^{\top}\mathbf{E}\mathbf{D}\boldsymbol{\rho}_{r'}.$$

Moreover, we have

$$\left| \left[(\mathbf{E}^{\top} \mathbf{E})^{-1} \right]_{ij} \right| = \frac{1}{\sigma_p^2 d} \cdot \left| \left[(\mathbf{I} + \sigma_p^{-2} d^{-1} \cdot \mathbf{E}^{\top} \mathbf{E} - \mathbf{I}) \right]_{ij} \right|$$

1723
1724
$$= \frac{1}{\sigma_p^2 d} \cdot \left| \left[\mathbf{I} + \sum_{k=1}^{\infty} (\mathbf{I} - \sigma_p^{-2} d^{-1}) \right] \right|$$

$$= \frac{1}{\sigma_p^2 d} \cdot \left\| \left[\mathbf{I} + \sum_{k=1}^{\infty} (\mathbf{I} - \sigma_p^{-2} d^{-1} \cdot \mathbf{E}^\top \mathbf{E})^k \right]_{ij}$$

$$= \frac{1}{\sigma_p^2 d} \cdot \left\| \left[\mathbf{I} + \sum_{k=1}^{\infty} (\mathbf{I} - \sigma_p^{-2} d^{-1} \cdot \mathbf{E}^\top \mathbf{E})^k \right]_{ij}$$

$$= \frac{1}{\sigma_p^2 d} \cdot \left\| \left[\mathbf{I} + \sum_{k=1}^{\infty} (\mathbf{I} - \sigma_p^{-2} d^{-1} \cdot \mathbf{E}^\top \mathbf{E})^k \right]_{ij}$$

1727
$$\leq \begin{cases} 3/(2\sigma_p d), & \text{if } i = j, \\ 1/(2n\sigma_p^2 d), & \text{if } i \neq j, \end{cases}$$
(B.49)

where the last inequality follows by the fact that $(\mathbf{I} - \sigma_p^{-2} d^{-1} \cdot \mathbf{E}^\top \mathbf{E})^k$ is an $n \times n$ matrix whose entries are bounded by $\widetilde{O}(d^{-1/2})$ according to Lemma C.8. Therefore, we have

$$\| oldsymbol{
ho}_{r'} \|_\infty \leq \| \mathbf{D}^{-1} (\mathbf{E}^ op \mathbf{E})^{-1} \mathbf{E} \mathbf{w}_{r'}^{(T_{ ext{SimCLR}})} \|_\infty$$

1732
1733
$$\leq \|\mathbf{D}^{-1}\|_{\infty} \cdot \|(\mathbf{E}^{\mathsf{T}}\mathbf{E})^{-1}\|_{\infty} \cdot \|\mathbf{E}\mathbf{w}_{r'}^{(T_{\mathrm{SimCLR}})}\|_{\infty}$$

1734
$$= \frac{3}{2} \frac{2}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac$$

1734
1735
$$\leq \frac{3}{2}\sigma_p^2 d \cdot \frac{2}{\sigma_p^2 d} \cdot 8\sigma_p \cdot \|(\mathbf{I} - \boldsymbol{\mu}\boldsymbol{\mu}^\top / \|\boldsymbol{\mu}\|_2^2) \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_2 \cdot \sqrt{\log(dn)}$$

1736
1737
$$= 24\sigma_p \cdot \| (\mathbf{I} - \boldsymbol{\mu} \boldsymbol{\mu}^\top / \| \boldsymbol{\mu} \|_2^2) \mathbf{w}_{r'}^{(T_{\text{SimCLR}})} \|_2 \cdot \sqrt{\log(dn)}$$
(B.50)

for all $r' \in [2m]$, where the third inequality follows by (B.49) and Lemma C.8. Therefore, combin-ing (B.47), (B.48) and (B.50), we have

$$\frac{\gamma_r}{|\rho_{r',i}|} \ge \frac{\langle \mathbf{w}_r^{(T_{\text{SimCLR}})}, \boldsymbol{\mu} \rangle}{24\sigma_p \cdot \|(\mathbf{I} - \boldsymbol{\mu}\boldsymbol{\mu}^\top / \|\boldsymbol{\mu}\|_2^2) \mathbf{w}_{r'}^{(T_{\text{SimCLR}})}\|_2 \cdot \sqrt{\log(dn)}} \ge \frac{M^{\frac{1}{q-2}} \log(1/\sigma_0)^{\frac{1}{q-2}}}{n^{\frac{1}{q-2}} \text{SNR}^{\frac{2}{q-2}}}$$

for all $r \in \mathcal{I}^+$ and all $r' \in [2m]$. By (B.39), it is clear that $\gamma_r \geq 2\sigma_0$ for all $r \in \mathcal{I}^+$. This further implies that

1746
1747
1748
$$\frac{\gamma_r / \log(2/\gamma_r)^{\frac{1}{q-2}}}{|\rho_{r',i}|} \ge \frac{M^{\frac{1}{q-2}}}{n^{\frac{1}{q-2}} \operatorname{SNR}^{\frac{2}{q-2}}}$$

for all $r \in \mathcal{I}^+$ and all $r' \in [2m]$. With exactly the same proof, we can also show that

$$\frac{-\gamma_r/\log(-2/\gamma_r)^{\frac{1}{q-2}}}{|\rho_{r',i}|} \ge \frac{M^{\frac{1}{q-2}}\log(1/\sigma_0)^{\frac{1}{q-2}}}{n^{\frac{1}{q-2}}\operatorname{SNR}^{\frac{2}{q-2}}}$$

for all $r \in \mathcal{I}^-$ and all $r' \in [2m]$.

Finally, for all $r \in [2m]$, by Lemma 5.1, we have

$$\mathbf{w}_r^{(t+1)} = \mathbf{w}_r^{(t)} + (\mathbf{A} + \mathbf{\Xi}^{(t)})\mathbf{w}_r^{(t)}$$

for $t = 0, \ldots, T_{\text{SimCLR}}$. Therefore, we have

 $\|\mathbf{w}_r^{\perp}\|_2 \le \|\mathbf{w}_r^{(T_{\text{SimCLR}})}\|_2$

$$\leq (1 + (1 + \sigma_0) \cdot \lambda_1)^{T_{\text{SimCLR}}} \cdot \|\mathbf{w}_r^{(0)}\|_2 \leq (1 + (1 + \sigma_0) \cdot \lambda_1)^{T_{\text{SimCLR}}} \cdot 2\sigma_0 \cdot \sqrt{d}$$

1764
$$\leq (1 + (1 - \mathcal{E}_{\text{SimCLR}}) \cdot \lambda_1)^{\frac{1+\sigma_0}{1-\mathcal{E}_{\text{SimCLR}}}T_{\text{SimCLR}}} \cdot 2\sigma_0 \cdot \sqrt{d}$$

1765
1766
$$\leq (1 + (1 - \mathcal{E}_{\text{SimCLR}}) \cdot \lambda_1)^{2T_{\text{SimCLR}}} \cdot 2\sigma_0 \cdot \sqrt{d}$$

where the fourth inequality follows by the assumption that $\sigma_0, \mathcal{E}_{SimCLR} \leq 1/4$. Now by the defini-tion of T_{SimCLR} , we know that

1769
1770
$$[1 + (1 - \mathcal{E}_{SimCLR})\lambda_1]^{T_{SimCLR}} \le \max\left\{ 288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}}SNR^{\frac{q}{q-2}}}, 2 \right\}.$$
1772 Therefore, we have

Therefore, we have

$$\|\mathbf{w}_{r}^{\perp}\|_{2} \leq 2\sigma_{0} \cdot \sqrt{d} \cdot \max\left\{288M^{\frac{1}{q-2}} \cdot \frac{\log(2/\sigma_{0})^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}{n^{\frac{1}{q-2}}\operatorname{SNR}^{\frac{q}{q-2}}}, 2\right\} \leq \frac{1}{n},$$

where we implement the assumption that $\sigma_0 \leq d^{-1/2} n^{-1}/4$ and

$$\sigma_0 \le \frac{d^{-1/2} n^{-1} \cdot n^{\frac{1}{q-2}} \mathrm{SNR}^{\frac{q}{q-2}}}{576M^{\frac{1}{q-2}} \log(2/\sigma_0)^{\frac{1}{q-2}} \cdot \sqrt{\log(dn)} \cdot \sqrt{\log(md)}}$$

This finishes the proof.

1782B.2PROOFS OF LEMMAS IN APPENDIX B.1.11783

1784 B.2.1 PROOF OF LEMMA B.1

1786 Proof of Lemma B.1. Since $\boldsymbol{\xi}_i, i \in [n_0]$ i.i.d follows $\mathcal{N}(\mathbf{0}, \sigma_p^2 \cdot (\mathbf{I} - \boldsymbol{\mu}\boldsymbol{\mu}^\top \cdot \|\boldsymbol{\mu}\|_2^{-2}))$, thus $\|\boldsymbol{\xi}_i\|_2^2$ is 1787 sub-exponential random variable with

$$\left\| \left\| \boldsymbol{\xi}_{i} \right\|_{2}^{2} \right\|_{\psi_{1}} \leq \overline{C}_{2} \sigma_{p}^{2}$$

where \overline{C}_2 is an absolute constant. By Bernstein inequality, with the probability of at least $1 - \tilde{\delta}/(2n_0)$ we have that

$$-\frac{\overline{C}_2}{\sqrt{c}}\sigma_p^2\sqrt{d\log(4n_0/\widetilde{\delta})} \le \|\boldsymbol{\xi}_i\|_2^2 - d\sigma_p^2 \le \frac{\overline{C}_2}{\sqrt{c}}\sigma_p^2\sqrt{d\log(4n_0/\widetilde{\delta})},$$

1795 where c is also an absolute constant, and it is equivalent to

$$d\sigma_p^2 - C_2 \sigma_p^2 \sqrt{d \log(4n_0/\widetilde{\delta})} \le \|\boldsymbol{\xi}_i\|_2^2 \le d\sigma_p^2 + C_2 \sigma_p^2 \sqrt{d \log(4n_0/\widetilde{\delta})},$$

where C_2 is an absolute constant that does not depend on other variables. Similarly, we could obtain that with the probability of at least $1 - \tilde{\delta}/(2n_0)$,

$$d\sigma_p^2 - C_2 \sigma_p^2 \sqrt{d\log(4n_0/\widetilde{\delta})} \le \|\widetilde{\boldsymbol{\xi}}_i\|_2^2 \le d\sigma_p^2 + C_2 \sigma_p^2 \sqrt{d\log(4n_0/\widetilde{\delta})}$$

Apply a union bound for $\|\boldsymbol{\xi}_i\|_2^2$, $\|\boldsymbol{\widetilde{\xi}}_i\|_2^2$, $i \in [n_0]$ finishes the proof of this lemma.

1807 B.3 PROOFS OF LEMMAS IN APPENDIX B.1.2

¹⁸⁰⁸ B.3.1 PROOF OF LEMMA B.2

1810 In this section, the following Lemma B.5, B.6 and B.7 are introduced to prove Lemma B.2.

1811 Lemma B.5. Suppose that $\tilde{\delta} > 0$, then with probability at least $1 - \tilde{\delta}$, 1812

$$\left|\sum_{i=1}^{n_0} \frac{1}{n_0} y_i\right| \le \sqrt{\frac{2}{n_0} \log(2/\widetilde{\delta})}$$

1817 Proof of Lemma B.5. Since $y_i, i \in [n_0]$ independent and identically follow Bernoulli distribution, 1818 then by Hoeffding inequality, with the probability of at least $1 - \tilde{\delta}$, we have

$$|\sum_{i=1}^{n_0} \frac{1}{n_0} y_i| \le \sqrt{\frac{2}{n_0} \log(2/\widetilde{\delta})}$$

Lemma B.6. For any
$$\tilde{\delta} > 0$$
, with probability at least $1 - \tilde{\delta}$, it holds that

$$dn_0\sigma_p^2 - C_1n_0\sigma_p^2\sqrt{d\log(2/\widetilde{\delta})} \le \left\|\sum_{i=1}^{n_0}\boldsymbol{\xi}_i\right\|_2^2 \le dn_0\sigma_p^2 + C_1n_0\sigma_p^2\sqrt{d\log(2/\widetilde{\delta})}$$

$$dn_0\sigma_p^2 - C_1n_0\sigma_p^2\sqrt{d\log(2/\tilde{\delta})} \le \left\|\sum_{i=1}^{n_0} y_i \boldsymbol{\xi}_i\right\|_2^2 \le dn_0\sigma_p^2 + C_1n_0\sigma_p^2\sqrt{d\log(2/\tilde{\delta})}$$

$$dn_0\sigma_p^2 - C_1n_0\sigma_p^2\sqrt{d\log(2/\widetilde{\delta})} \le \left\|\sum_{i=1}^{n_0} y_i\widetilde{\boldsymbol{\xi}}_i\right\|_2^2 \le dn_0\sigma_p^2 + C_1n_0\sigma_p^2\sqrt{d\log(2/\widetilde{\delta})}$$

where C_1 is an absolute constant that does not depend on other variables.

1836 Proof of Lemma B.6. Since $\boldsymbol{\xi}_i, i \in [n_0]$ i.i.d follows $\mathcal{N}(\mathbf{0}, \sigma_p^2 \cdot (\mathbf{I} - \boldsymbol{\mu}\boldsymbol{\mu}^\top \cdot \|\boldsymbol{\mu}\|_2^{-2}))$, therefore 1837 $\sum_{i=1}^{n_0} \boldsymbol{\xi}_i \sim \mathcal{N}(\mathbf{0}, n_0 \sigma_p^2 \cdot (\mathbf{I} - \boldsymbol{\mu}\boldsymbol{\mu}^\top \cdot \|\boldsymbol{\mu}\|_2^{-2}))$, thus $\|\sum_{i=1}^{n_0} \boldsymbol{\xi}_i\|_2^2$ is sub-exponential random variable with

$$\left\| \left\| \sum_{i=1}^{n_0} \boldsymbol{\xi}_i \right\|_2^2 \right\|_{\psi_1} \le \overline{C}_1 \sigma_p^2 n_0$$

where \overline{C}_1 is an absolute constant. By Bernstein inequality, with the probability of at least $1 - \tilde{\delta}$ we have

$$-\frac{\overline{C}_1}{\sqrt{c}}n_0\sigma_p^2\sqrt{d\log(2/\widetilde{\delta})} \le \left\|\sum_{i=1}^{n_0}\boldsymbol{\xi}_i\right\|_2^2 - dn_0\sigma_p^2 \le \frac{\overline{C}_1}{\sqrt{c}}n_0\sigma_p^2\sqrt{d\log(2/\widetilde{\delta})},$$

where c is also an absolute constant, and it is equivalent to

$$dn_0\sigma_p^2 - C_1n_0\sigma_p^2\sqrt{d\log(2/\widetilde{\delta})} \le \left\|\sum_{i=1}^{n_0}\boldsymbol{\xi}_i\right\|_2^2 \le dn_0\sigma_p^2 + C_1n_0\sigma_p^2\sqrt{d\log(2/\widetilde{\delta})},$$

where C_1 is an absolute constant, which does not depend on other variables. Notice that similar results could be proved for $\|\sum_{i=1}^{n_0} y_i \xi_i\|_2^2$ and $\|\sum_{i=1}^{n_0} y_i \widetilde{\xi}_i\|_2^2$.

Lemma B.7. For any $\tilde{\delta} > 0$, with probability at least $1 - \tilde{\delta}$, it holds that

$$\left\|\frac{1}{n_0}\sum_{i=1}^{n_0} (\boldsymbol{\xi}_i \widetilde{\boldsymbol{\xi}}_i^\top + \widetilde{\boldsymbol{\xi}}_i \boldsymbol{\xi}_i^\top)\right\|_2 \le C_3 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\widetilde{\delta})}{n_0}}, \frac{d\log(9/\widetilde{\delta})}{n_0}\right\},$$

1861 where C_3 is an absolute constant.

1863 *Proof of Lemma B.7.* Within this proof, we denote function

$$\mathbf{M} = \frac{1}{n_0} \sum_{i=1}^{n_0} (\boldsymbol{\xi}_i \widetilde{\boldsymbol{\xi}}_i^\top + \widetilde{\boldsymbol{\xi}}_i \boldsymbol{\xi}_i^\top),$$

1867 and

1840 1841 1842

1845 1846 1847

1850 1851 1852

1858 1859 1860

1862

1864 1865 1866

1868 1869

1875 1876 1877

$$g(\mathbf{a}) = \mathbf{a}^\top \mathbf{M} \mathbf{a},$$

for all $\mathbf{a} \in \mathbb{R}^d$. By Lemma 5.2 in Vershynin (2010), there exists a 1/4-net \mathcal{N} covering the *d*dimensional unit sphere \mathbb{S}^{d-1} with $|\mathcal{N}| \leq 9^d$. Then for any $\mathbf{a} \in \mathbb{S}^{d-1}$, there exists $\hat{\mathbf{a}} \in \mathcal{N} \subseteq \mathbb{S}^{d-1}$ such that $\|\hat{\mathbf{a}} - \mathbf{a}\|_2 \leq 1/4$.

Now for any fixed $\widehat{\mathbf{a}}_0 \in \mathcal{N}$, with direct calculation we have

$$g(\widehat{\mathbf{a}}_0) = \frac{2}{n_0} \sum_{i=1}^{n_0} \langle \widehat{\mathbf{a}}_0, \boldsymbol{\xi}_i \rangle \cdot \langle \widehat{\mathbf{a}}_0, \widetilde{\boldsymbol{\xi}}_i \rangle$$

1878 Since $\|\widehat{\mathbf{a}}\|_2 = 1$, $\langle \widehat{\mathbf{a}}_0, \xi_i \rangle$, $\langle \widehat{\mathbf{a}}_0, \widetilde{\xi}_i \rangle$ are independent $\mathcal{N}(0, \sigma_p)$ random variables, $i = 1, \ldots, n_0$. 1879 Therefore, by Lemma 5.14 in Vershynin (2010), $\langle \widehat{\mathbf{a}}_0, \xi_i \rangle \cdot \langle \widehat{\mathbf{a}}_0, \widetilde{\xi}_i \rangle$ is sub-exponential with

1880 1881 $\|\langle \widehat{\mathbf{a}}_0, \boldsymbol{\xi}_i \rangle \cdot \langle \widehat{\mathbf{a}}_0, \widetilde{\boldsymbol{\xi}}_i \rangle \|_{\psi_1} \le c_1 \cdot \sigma_p^2,$

where c_1 is an absolute constant. Then by Bernstein-type inequality (Proposition 5.16 in Vershynin (2010)), with probability at least $1 - 9^{-d} \tilde{\delta}$, we have

$$|g(\widehat{\mathbf{a}}_{0})| = \left|\frac{2}{n_{0}}\sum_{i=1}^{n_{0}} \langle \widehat{\mathbf{a}}_{0}, \boldsymbol{\xi}_{i} \rangle \cdot \langle \widehat{\mathbf{a}}_{0}, \widetilde{\boldsymbol{\xi}}_{i} \rangle \right| \leq 2c_{1}\sigma_{p}^{2} \cdot \max\left\{\sqrt{\frac{\log(9^{d}/\delta)}{n_{0}}}, \frac{\log(9^{d}/\delta)}{n_{0}}\right\}$$

1888
1889
$$\leq 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\delta)}{n_0}}, \frac{d\log(9/\delta)}{n_0}\right\}.$$

Since the above conclusion holds for arbitrary $\widehat{\mathbf{a}}_0 \in \mathcal{N}$, by union bound, with probability at least $1 - \tilde{\delta}$ we have

$$|g(\widehat{\mathbf{a}})| \le 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{\log(9^d/\widetilde{\delta})}{n_0}}, \frac{\log(9^d/\widetilde{\delta})}{n_0}\right\} \le 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\widetilde{\delta})}{n_0}}, \frac{d\log(9/\widetilde{\delta})}{n_0}\right\}$$

for all $\widehat{\mathbf{a}} \in \mathcal{N}$. Now for any $\mathbf{a} \in \mathbb{S}^{d-1}$, there exists $\widehat{\mathbf{a}} \in \mathcal{N}$ such that $\|\widehat{\mathbf{a}} - \mathbf{a}\|_2 \le 1/4$, and hence

$$\leq 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\widetilde{\delta})}{n_0}}, \frac{d\log(9/\widetilde{\delta})}{n_0}\right\} + |\mathbf{a}^\top \mathbf{M} \mathbf{a} - \mathbf{a}^\top \mathbf{M} \widehat{\mathbf{a}}| + |\mathbf{a}^\top \mathbf{M} \widehat{\mathbf{a}} - \widehat{\mathbf{a}}^\top \mathbf{M} \widehat{\mathbf{a}} \\ \leq 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\widetilde{\delta})}{n_0}}, \frac{d\log(9/\widetilde{\delta})}{n_0}\right\} + |\mathbf{a}^\top \mathbf{M} (\mathbf{a} - \widehat{\mathbf{a}})| + |(\mathbf{a} - \widehat{\mathbf{a}})^\top \mathbf{M} \widehat{\mathbf{a}}|$$

By Cauchy-Schwarz inequality, we have

$$\begin{aligned} |\mathbf{a}^{\top}\mathbf{M}(\mathbf{a}-\widehat{\mathbf{a}})| &\leq \sqrt{\mathbf{a}^{\top}\mathbf{M}\mathbf{a}} \cdot \sqrt{(\mathbf{a}-\widehat{\mathbf{a}})^{\top}\mathbf{M}(\mathbf{a}-\widehat{\mathbf{a}})} = \sqrt{g(\mathbf{a})} \cdot \|\mathbf{a}-\widehat{\mathbf{a}}\|_{2} \cdot \sqrt{g(\mathbf{a}-\widehat{\mathbf{a}})} \\ |(\mathbf{a}-\widehat{\mathbf{a}})^{\top}\mathbf{M}\widehat{\mathbf{a}}| &\leq \sqrt{\widehat{\mathbf{a}}^{\top}\mathbf{M}\widehat{\mathbf{a}}} \cdot \sqrt{(\mathbf{a}-\widehat{\mathbf{a}})^{\top}\mathbf{M}(\mathbf{a}-\widehat{\mathbf{a}})} = \sqrt{g(\widehat{\mathbf{a}})} \cdot \|\mathbf{a}-\widehat{\mathbf{a}}\|_{2} \cdot \sqrt{g(\mathbf{a}-\widehat{\mathbf{a}})} \end{aligned}$$

Therefore, we further have

$$|g(\mathbf{a})| \le 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\widetilde{\delta})}{n_0}}, \frac{d\log(9/\widetilde{\delta})}{n_0}\right\} + \sqrt{g(\mathbf{a})} \cdot \|\mathbf{a} - \widehat{\mathbf{a}}\|_2 \cdot \sqrt{g(\mathbf{a} - \widehat{\mathbf{a}})} + \sqrt{g(\widehat{\mathbf{a}})} \cdot \|\mathbf{a} - \widehat{\mathbf{a}}\|_2 \cdot \sqrt{g(\mathbf{a} - \widehat{\mathbf{a}})}$$

- . .

$$+\sqrt{g(\mathbf{\hat{a}})} \cdot \|\mathbf{a} - \mathbf{\hat{a}}\|_2 \cdot \sqrt{g(\mathbf{a} - \mathbf{\hat{a}})}$$

$$\leq 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\delta)}{n_0}}, \frac{d\log(9/\delta)}{n_0}\right\} + \frac{1}{4} \cdot \sup_{\mathbf{a}} g(\mathbf{a}) + \frac{1}{4} \cdot \sup_{\mathbf{a}} g(\mathbf{a})$$
$$= 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\delta)}{n_0}}, \frac{d\log(9/\delta)}{n_0}\right\} + \frac{1}{2} \cdot \sup_{\mathbf{a}} g(\mathbf{a})$$

$$= 2c_1\sigma_p^2 \cdot \mathbf{m}$$

 for all $\mathbf{a} \in \mathbb{S}^{d-1}$. Taking a supremum then gives

$$\sup_{\mathbf{a}} |g(\mathbf{a})| \le 2c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\widetilde{\delta})}{n_0}}, \frac{d\log(9/\widetilde{\delta})}{n_0}\right\} + \frac{1}{2} \cdot \sup_{\mathbf{a}} g(\mathbf{a}).$$

Therefore, we conclude that

$$\sup_{\mathbf{a}} |g(\mathbf{a})| \le 4c_1 \sigma_p^2 \cdot \max\left\{\sqrt{\frac{d\log(9/\widetilde{\delta})}{n_0}}, \frac{d\log(9/\widetilde{\delta})}{n_0}\right\}.$$

This finishes the proof.

Based on Lemmas B.5, B.6 and B.7, the following Lemma B.2 is proved.

Proof of Lemma B.2. The matrix A defined in Lemma 5.1 can be written and simplified in the following way.

 $= -\frac{\eta}{n_0^2 \tau} \sum_{i=1}^{n_0} \sum_{i' \neq i} \left[2(y_i y_{i'} - 1) \boldsymbol{\mu} \boldsymbol{\mu}^\top + y_i (\boldsymbol{\mu} \boldsymbol{\xi}_{i'}^\top + \boldsymbol{\xi}_{i'} \boldsymbol{\mu}^\top) + y_{i'} (\boldsymbol{\mu} \boldsymbol{\xi}_i^\top + \boldsymbol{\xi}_i \boldsymbol{\mu}^\top) \right]$

$$-y_{i}(\boldsymbol{\mu}\widetilde{\boldsymbol{\xi}_{i}}^{\top}+\widetilde{\boldsymbol{\xi}_{i}}\boldsymbol{\mu}^{\top}+\boldsymbol{\mu}\boldsymbol{\xi}_{i}^{\top}+\boldsymbol{\xi}_{i}\boldsymbol{\mu}^{\top})+\boldsymbol{\xi}_{i}\boldsymbol{\xi}_{i'}^{\top}+\boldsymbol{\xi}_{i'}\boldsymbol{\xi}_{i}^{\top}-\boldsymbol{\xi}_{i}\widetilde{\boldsymbol{\xi}_{i}}^{\top}-\widetilde{\boldsymbol{\xi}_{i}}\boldsymbol{\xi}_{i}^{\top}]$$
$$=-\frac{\eta}{2}\int \left[\sum_{i=1}^{n_{0}}\sum_{j=1}^{2}(y_{ij}y_{ij}-1)\right]\boldsymbol{\mu}\boldsymbol{\mu}^{\top}+2(\sum_{j=1}^{n_{0}}y_{ij})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}\boldsymbol{\xi}_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1}^{n_{0}}y_{jj})^{\top}+2(\sum_{j=1}^{n_{0}}y_{jj})\boldsymbol{\mu}(\sum_{j=1$$

 $\mathbf{A} = -\frac{\eta}{n_0^2 \tau} \sum_{i=1}^{n_0} \sum_{i' \neq i} (\mathbf{z}_i \mathbf{z}_{i'}^\top + \mathbf{z}_{i'} \mathbf{z}_i^\top - \mathbf{z}_i \widetilde{\mathbf{z}}_i^\top - \widetilde{\mathbf{z}}_i \mathbf{z}_i^\top)$

$$= -\frac{\eta}{n_0^2 \tau} \left\{ \left[\sum_{i=1}^{n_0} \sum_{i' \neq i} 2(y_i y_{i'} - 1) \right] \boldsymbol{\mu} \boldsymbol{\mu}^\top + 2(\sum_{i=1}^{n_0} y_i) \boldsymbol{\mu} (\sum_{i'=1}^{n_0} \boldsymbol{\xi}_{i'})^\top + 2(\sum_{i=1}^{n_0} y_i) (\sum_{i'=1}^{n_0} \boldsymbol{\xi}_{i'}) \boldsymbol{\mu}^\top - (n_0 - 1) \sum_{i=1}^{n_0} (y_i \boldsymbol{\mu} \boldsymbol{\xi}_i^\top + y_i \boldsymbol{\xi}_i \boldsymbol{\mu}^\top) - (n_0 + 1) \sum_{i=1}^{n_0} (y_i \boldsymbol{\mu} \boldsymbol{\xi}_i^\top + y_i \boldsymbol{\xi}_i \boldsymbol{\mu}^\top) \right\}$$

$$-(n_0-1)\sum_{i=1}(y_i\boldsymbol{\mu}\boldsymbol{\xi}_i^{\top}+y_i\boldsymbol{\xi}_i\boldsymbol{\mu}^{\top})-(n_0+1)\sum_{i=1}(y_i\boldsymbol{\mu}\boldsymbol{\xi}_i^{\top}+y_i\boldsymbol{\xi}_i\boldsymbol{\mu}^{\top})$$

$$+\sum_{i=1}^{n_{0}}\sum_{i'\neq i}(\boldsymbol{\xi}_{i}\boldsymbol{\xi}_{i'}^{\top} + \boldsymbol{\xi}_{i'}\boldsymbol{\xi}_{i}^{\top}) - \sum_{i=1}^{n_{0}}(n_{0} - 1)\boldsymbol{\xi}_{i}\boldsymbol{\widetilde{\xi}}_{i}^{\top} - \sum_{i=1}^{n_{0}}(n_{0} - 1)\boldsymbol{\widetilde{\xi}}_{i}\boldsymbol{\xi}_{i}^{\top} \bigg\}$$
$$= -\frac{\eta}{n_{0}^{2}\tau} \left\{ \left[2(\sum_{i=1}^{n_{0}}y_{i})^{2} - 2n_{0}^{2} \right] \boldsymbol{\mu}\boldsymbol{\mu}^{\top} + 2(\sum_{i=1}^{n_{0}}y_{i})\boldsymbol{\mu}(\sum_{i'=1}^{n_{0}}\boldsymbol{\xi}_{i'})^{\top} + 2(\sum_{i=1}^{n_{0}}y_{i})(\sum_{i'=1}^{n_{0}}\boldsymbol{\xi}_{i'})\boldsymbol{\mu}^{\top} - (n_{0} - 1)[\boldsymbol{\mu}(\sum_{i=1}^{n_{0}}y_{i}\boldsymbol{\widetilde{\xi}}_{i})^{\top} + (\sum_{i=1}^{n_{0}}y_{i}\boldsymbol{\widetilde{\xi}}_{i})\boldsymbol{\mu}^{\top}] - (n_{0} + 1)[\boldsymbol{\mu}(\sum_{i=1}^{n_{0}}y_{i}\boldsymbol{\xi}_{i})^{\top} + (\sum_{i=1}^{n_{0}}y_{i}\boldsymbol{\xi}_{i})\boldsymbol{\mu}^{\top}] \right\}$$

Then by definition, we have

$$oldsymbol{\Delta} = -rac{\eta}{n_0^2 au} [oldsymbol{\Delta}_1 - oldsymbol{\Delta}_2 - oldsymbol{\Delta}_3 + oldsymbol{\Delta}_4 - oldsymbol{\Delta}_5 - oldsymbol{\Delta}_6],$$

 $+2(\sum_{i=1}^{n_0}\boldsymbol{\xi}_i)(\sum_{i=1}^{n_0}\boldsymbol{\xi}_i)^{\top}-2\sum_{i=1}^{n_0}\boldsymbol{\xi}_i\boldsymbol{\xi}_i^{\top}-\sum_{i=1}^{n_0}(n_0-1)\boldsymbol{\xi}_i\boldsymbol{\widetilde{\xi}}_i^{\top}-\sum_{i=1}^{n_0}(n_0-1)\boldsymbol{\widetilde{\xi}}_i\boldsymbol{\xi}_i^{\top}\right\}.$

1975 where

$$\Delta_{1} = 2(\sum_{i=1}^{n_{0}} y_{i})\mu(\sum_{i'=1}^{n_{0}} \xi_{i'})^{\top} + 2(\sum_{i=1}^{n_{0}} y_{i})(\sum_{i'=1}^{n_{0}} \xi_{i'})\mu^{\top},$$

$$\Delta_{1} = 2(\sum_{i=1}^{n_{0}} y_{i})\mu(\sum_{i'=1}^{n_{0}} \xi_{i'})^{\top} + 2(\sum_{i=1}^{n_{0}} y_{i})(\sum_{i'=1}^{n_{0}} \xi_{i'})\mu^{\top},$$

$$\Delta_{2} = (n_{0} - 1)[\mu(\sum_{i=1}^{n_{0}} y_{i}\xi_{i})^{\top} + (\sum_{i=1}^{n_{0}} y_{i}\xi_{i})\mu^{\top}],$$

$$\Delta_{3} = (n_{0} + 1)[\mu(\sum_{i=1}^{n_{0}} y_{i}\xi_{i})^{\top} + (\sum_{i=1}^{n_{0}} y_{i}\xi_{i})\mu^{\top}],$$

$$\Delta_{4} = 2(\sum_{i=1}^{n_{0}} \xi_{i})(\sum_{i=1}^{n_{0}} \xi_{i})^{\top},$$

$$\Delta_{5} = 2\sum_{i=1}^{n_{0}} \xi_{i}\xi_{i}^{\top} + (n_{0} - 1)\sum_{i=1}^{n_{0}} \xi_{i}\xi_{i}^{\top}.$$

$$\Delta_{6} = (n_{0} - 1)\sum_{i=1}^{n_{0}} \xi_{i}\xi_{i}^{\top} + (n_{0} - 1)\sum_{i=1}^{n_{0}} \xi_{i}\xi_{i}^{\top}.$$
Thus $\|\Delta_{1}\|_{2}$ can be bounded as follows

Thus, $\|\Delta_1\|_2$ can be bounded as follows,

1994
1995
1996
1997
$$\|\boldsymbol{\Delta}_{1}\|_{2} \leq 4 \left| \sum_{i=1}^{n_{0}} y_{i} \right| \cdot \|\boldsymbol{\mu}\|_{2} \cdot \left\| \sum_{i'=1}^{n_{0}} \boldsymbol{\xi}_{i'} \right\|_{2}$$

$$\leq 4\sqrt{2n_{0}} \cdot \|\boldsymbol{\mu}\|_{2} \cdot \widetilde{O}(\sigma_{p}\sqrt{n_{0}d}), \quad (B.51)$$

where the second inequality is by $|\sum_{i=1}^{n_0} y_i| \le \sqrt{2n_0 \log(2/\tilde{\delta})}$ in Lemma B.5, and $||\sum_{i=1}^{n_0} \xi_i||_2^2 \le dn_0 \sigma_p^2 + c_1 n_0 \sigma_p^2 \sqrt{d \log(2/\tilde{\delta})}$ in Lemma B.6. Also, $\Delta_2, \Delta_3, \Delta_4$ are handled similarly as Δ_1 , namely

$$\|\boldsymbol{\Delta}_{2}\|_{2} \leq 2(n_{0}-1) \cdot \|\boldsymbol{\mu}\|_{2} \cdot \left\|\sum_{i=1}^{n_{0}} y_{i} \widetilde{\boldsymbol{\xi}}_{i}\right\|_{2}$$
$$\leq 2(n_{0}-1) \cdot \|\boldsymbol{\mu}\|_{2} \cdot \widetilde{O}(\sigma_{p} \sqrt{n_{0} d}), \qquad (B.52)$$

where the second inequality is by $\left\|\sum_{i=1}^{n_0} y_i \widetilde{\xi}_i\right\|_2^2 \le dn_0 \sigma_p^2 + c_1 n_0 \sigma_p^2 \sqrt{d \log(2/\widetilde{\delta})}$ in Lemma B.6.

 $\|\boldsymbol{\Delta}_{3}\|_{2} \leq 2(n_{0}+1) \cdot \|\boldsymbol{\mu}\|_{2} \cdot \left\|\sum_{i=1}^{n_{0}} y_{i}\boldsymbol{\xi}_{i}\right\|_{2}$ $\leq 2(n_{0}+1) \cdot \|\boldsymbol{\mu}\|_{2} \cdot \widetilde{O}(\sigma_{p}\sqrt{n_{0}d}), \tag{B.53}$

where the second inequality is by $\left\|\sum_{i=1}^{n_0} y_i \boldsymbol{\xi}_i\right\|_2^2 \leq dn_0 \sigma_p^2 + c_1 n_0 \sigma_p^2 \sqrt{d \log(2/\tilde{\delta})}$ in Lemma B.6.

$$\|\boldsymbol{\Delta}_{4}\|_{2} = \left\| 2(\sum_{i=1}^{n_{0}} \boldsymbol{\xi}_{i})(\sum_{i=1}^{n_{0}} \boldsymbol{\xi}_{i})^{\top} \right\|_{2}$$
$$\leq 2 \cdot \left\| \sum_{i=1}^{n_{0}} \boldsymbol{\xi}_{i} \right\|_{2}^{2}$$
$$\leq 2\widetilde{O}(\sigma_{p}^{2}n_{0}d), \qquad (B.54)$$

where the second inequality is by $\|\sum_{i=1}^{n_0} \boldsymbol{\xi}_i\|_2^2 \leq dn_0 \sigma_p^2 + c_1 n_0 \sigma_p^2 \sqrt{d \log(2/\widetilde{\delta})}$ in Lemma B.6. For $\boldsymbol{\Delta}_5$, by Theorem 5.39 in Vershynin (2010), with probability at least $1 - \widetilde{\delta}$, we have that

$$\begin{split} \| \mathbf{\Delta}_{5} \|_{2} &= 2 \left\| \sum_{i=1}^{n_{0}} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}^{\top} \right\|_{2} \\ &\leq 2\sigma_{p}^{2} \left(\sqrt{d} + c_{4} \sqrt{n_{0}} + \frac{1}{\sqrt{c_{4}}} \cdot \sqrt{\log(2/\widetilde{\delta})} \right)^{2} \leq 6\sigma_{p}^{2} \left(d + c_{4}^{2} n_{0} + \frac{1}{c_{4}} \cdot \log(2/\widetilde{\delta}) \right), \end{split}$$
(B.55)

where c_4 is an absolute constant. The bound for $\|\Delta_6\|_2$ is already proved in Lemma B.7. Therefore, by (B.51), (B.52), (B.53), (B.54), (B.55), and Lemma B.7, set $\tilde{\delta} = \delta/6$, with probability at least

$$\begin{aligned} 1 - \delta, \text{ we have} \\ \| \Delta \|_{2} &= \| \Sigma - \widehat{\Sigma} \|_{2} \leq \frac{\eta}{n_{0}^{2} \tau} \left[\| \Delta_{1} \|_{2} + \| \Delta_{2} \|_{2} + \| \Delta_{3} \|_{2} + \| \Delta_{4} \|_{2} + \| \Delta_{5} \|_{2} + \| \Delta_{6} \|_{2} \right] \\ \leq \frac{\eta}{n_{0}^{2} \tau} \left[4 \| \mu \|_{2} \sqrt{2n_{0}} \cdot \widetilde{O}(\sigma_{p} \sqrt{n_{0} d}) + 2(n_{0} - 1) \| \mu \|_{2} \cdot \widetilde{O}(\sigma_{p} \sqrt{n_{0} d}) \right] \\ \leq \frac{\eta}{n_{0}^{2} \tau} \left[4 \| \mu \|_{2} \sqrt{2n_{0}} \cdot \widetilde{O}(\sigma_{p} \sqrt{n_{0} d}) + 2(n_{0} - 1) \| \mu \|_{2} \cdot \widetilde{O}(\sigma_{p} \sqrt{n_{0} d}) \right] \\ + 2(n_{0} + 1) \| \mu \|_{2} \cdot \widetilde{O}(\sigma_{p} \sqrt{n_{0} d}) + 2\widetilde{O}(\sigma_{p}^{2} n_{0} d) + 6\sigma_{p}^{2} \left(d + c_{4}^{2} n_{0} + \frac{1}{\sqrt{c_{4}^{2}}} \cdot \log(2/\widetilde{\delta}) \right) \\ + c_{3} n_{0}^{2} \sigma_{p}^{2} \cdot \max \left\{ \sqrt{\frac{d \log(9/\widetilde{\delta})}{n_{0}}}, \frac{d \log(9/\widetilde{\delta})}{n_{0}} \right\} \right] \\ \leq \left[4\sqrt{2} \| \mu \|_{2}^{-1} \cdot \widetilde{O}(\sigma_{p} \sqrt{dn_{0}^{-1}}) + 2 \| \mu \|_{2}^{-1} \cdot \widetilde{O}(\sigma_{p} \sqrt{dn} \frac{1}{\sqrt{n_{0}}}) \right] \\ + 2 \| \mu \|_{2}^{-1} \cdot \widetilde{O}(\sigma_{p} \sqrt{dn_{0}^{-1}}) + 2 \| \mu \|_{2}^{-2} \cdot \widetilde{O}(\sigma_{p}^{2} dn_{0}^{-1}) + \| \mu \|_{2}^{-2} \cdot \widetilde{O}(\sigma_{p}^{2} dn_{0}^{-1}) \right] \\ + c_{3} \sigma_{p}^{2} d \| \mu \|_{2}^{-2} \cdot \max \left\{ \sqrt{\frac{\log(9/\widetilde{\delta})}{dn_{0}}}, \frac{\log(9/\widetilde{\delta})}{n_{0}} \right\} \right] \frac{\eta}{\tau} \| \mu \|_{2}^{2}, \\ \leq \left[\widetilde{O}(\mathrm{SNR}^{-1} \cdot n_{0}^{-1}) + \widetilde{O}(\mathrm{SNR}^{-1} \cdot \frac{1}{\sqrt{n_{0}}}) + \widetilde{O}(\mathrm{SNR}^{-2} \cdot n_{0}^{-1}) \right] \\ + c_{3} \cdot \mathrm{SNR}^{-2} \cdot \max \left\{ \sqrt{\frac{\log(9/\widetilde{\delta})}{dn_{0}}}, \frac{\log(9/\widetilde{\delta})}{n_{0}} \right\} \right] \frac{\eta}{\tau} \| \mu \|_{2}^{2}, \\ \text{where SNB} = \| \mu \|_{2} / (\sigma_{e} \sqrt{d}) \text{ and } \frac{\eta}{2} \| \mu \|_{2}^{2} \text{ is the lower bound of } \widehat{\lambda} \text{, proved in Lemma 5.2} \right]$$

2080

2082

2092

 $\|\boldsymbol{\mu}\|_{2}/(\sigma_{p}\sqrt{a})$, and $\frac{\pi}{\tau}\|\boldsymbol{\mu}\|_{2}^{2}$ is the lower bound of λ_{1} proved in Lemma 5.2. where SNR

2081 B.4 PROOFS OF LEMMAS IN APPENDIX B.1.3

B.4.1 PROOF OF LEMMA B.3 2083

2084 With a proof similar to Lemma B.3 in Cao et al. (2022), we have the following Lemma B.3. Although 2085 the proof is almost the same as in Cao et al. (2022), since the results are presented in different forms, 2086 for self-consistency, we still present the proof of this Lemma B.3. 2087

2088 *Proof of Lemma B.3.* Since v is a unit vector, for each $r \in [2m]$, $j \cdot \langle \mathbf{w}_r^{(0)}, \mathbf{v}_j \rangle$ is a Gaussian random 2089 variable with mean zero and variance σ_0^2 . Therefore, by Gaussian tail bound and union bound, with 2090 probability at least $1 - \delta/2$, 2091

$$|\langle \mathbf{w}_r^{(0)}, \mathbf{v}_j \rangle| \le \sqrt{2\log(16mn_0/\delta)} \cdot \sigma_0 \tag{B.56}$$

2093 for all $r \in [2m]$ and $j \in [d]$. This proves the first part of the result. For the second part of the 2094 result, we note that $\mathbb{P}(\langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \geq \sigma_0/2) = \mathbb{P}_{Z \sim \mathcal{N}(0,1)}(Z \geq 1/2) \geq 0.3$ is an absolute constant. 2095 Therefore, binary random variables $\mathbb{1}\{\langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \geq \sigma_0/2\}, r \in [2m]$ are independent Bernoulli(p)2096 random variables with constant $0.3 \le p \le 0.5$. By Hoeffding's inequality, with probability at least 2097 $1 - \delta/4$, 2098

2099
2100
2101
$$\left| \sum_{r=1}^{2m} \mathbb{1}\{ \langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \ge \sigma_0/2 \} - 2mp \right| \le \sqrt{2m \log(8/\delta)}.$$

2102 Therefore, with probability at least $1 - \delta/4$, 2103

2104
2105
$$\sum_{r=1}^{2m} \mathbb{1}\{\langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \ge \sigma_0/2\} \ge 2mp - \sqrt{2m \log(8/\delta)} \ge 2m/5,$$

where the last inequality holds by the assumption that $m = \widetilde{\Omega}(1)$. The inequality above implies that there exist distinct $r_1^+, \ldots, r_{2m/5}^+ \in [2m]$ such that $\langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \ge \sigma_0/2$ for all $r \in \{r_1^+, \ldots, r_{2m/5}^+\}$.

2109 With exactly the same proof, we also have that, with probability at least $1 - \delta/4$, there exist distinct 2110 $r_1^-, \ldots, r_{2m/5}^- \in [2m]$ such that $\langle \mathbf{w}_r^{(0)}, \mathbf{v}_1 \rangle \leq -\sigma_0/2$ for all $r \in \{r_1^-, \ldots, r_{2m/5}^-\}$. It is also clear 2111 that as long as the sets $\{r_1^+, \ldots, r_{2m/5}^+\}$ and $\{r_1^-, \ldots, r_{2m/5}^-\}$ exist, they must be disjoint. Therefore, 2113 applying a union bound finishes the proof.

 2114
 B.4.2
 PROOF OF LEMMA B.4

2116 Proof of Lemma B.4. The first conclusion that $|\lambda_i - \widetilde{\lambda}_i| \le \sigma_0 \cdot ||\mathbf{A}||_2$, $i \in [n]$ directly follows by 2117 Weyl's theorem and the assumption that Ξ is symmetric and $||\mathbf{\Xi}||_2 \le \sigma_0 \cdot ||\mathbf{A}||_2$.

For the second result, we have

2132 2133

2149

2159

2120
2121
2121
2122
2122
2123
2124
2125
2126

$$\sin \theta(\widetilde{\mathbf{v}}_{1}, \mathbf{v}_{1}) \leq \frac{\|\mathbf{A} - (\mathbf{A} + \mathbf{\Xi})\|_{2}}{|\widetilde{\lambda}_{2} - \lambda_{1}|}$$

$$\leq \frac{\sigma_{0} \cdot \lambda_{1}}{(1 - \sigma_{0})\lambda_{1} - \lambda_{2}}$$

$$\leq \frac{\sigma_{0} \cdot \lambda_{1}}{(1 - \sigma_{0})\lambda_{1} - \frac{\mathcal{E}_{\text{SimCLR}}}{2(1 - \mathcal{E}_{\text{SimCLR}})} \cdot \lambda_{1}}$$

$$\leq 2\sigma_{0}.$$

where the first inequality follows by the variant of Davis-Kahan Theorem (Theorem 1 in Yu et al. (2015)), the second inequality follows by the first conclusion of is lemma (which has been proved above) and the assumption that $\|\mathbf{\Xi}\|_2 \leq \sigma_0 \cdot \lambda_1$, the third inequality follows by Lemma 5.2, and the fourth inequality follows by the assumption that $\mathcal{E}_{\text{SimCLR}} \leq 1/4$ and $\sigma_0 \leq 1/4$. Then we have

$$|\langle \mathbf{v}_1, \widetilde{\mathbf{v}}_1 \rangle| = \sqrt{1 - \sin^2 \theta(\widetilde{\mathbf{v}}_1, \mathbf{v}_1)} \ge \sqrt{1 - 4\sigma_0^2} \ge 1 - 4\sigma_0^2$$

This proves the second conclusion. For the last result, for i = 2, ..., d, since $\tilde{\mathbf{v}}_i$ is perpendicular to $\tilde{\mathbf{v}}_1$, we have

2136
2137
2138
2139
2140
2142
2143
2143

$$|\langle \mathbf{v}_1, \widetilde{\mathbf{v}}_i \rangle| = |\langle \mathbf{v}_1, (\mathbf{I} - \widetilde{\mathbf{v}}_1 \widetilde{\mathbf{v}}_1^\top + \widetilde{\mathbf{v}}_1 \widetilde{\mathbf{v}}_1^\top) \widetilde{\mathbf{v}}_i \rangle|$$

$$= |\langle \mathbf{v}_1, (\mathbf{I} - \widetilde{\mathbf{v}}_1 \widetilde{\mathbf{v}}_1^\top) \widetilde{\mathbf{v}}_i \rangle|$$

$$\leq ||(\mathbf{I} - \widetilde{\mathbf{v}}_1 \widetilde{\mathbf{v}}_1^\top) \mathbf{v}_1||_2$$

$$= \sqrt{1 - \langle \mathbf{v}_1, \widetilde{\mathbf{v}}_1 \rangle^2}$$

$$\leq \sqrt{1 - (1 - 4\sigma_0^2)^2}$$

$$2144 = \sqrt{8\sigma_0^2 - 16\sigma_0^2}$$

2145 2146 $\leq \sqrt{8\sigma_0^2}$ 2147

$$\leq 4\sigma_0.$$

To prove the last inequality, we have

2150
2150
2151
2152
2152
2153
2154
2155
2156
2157
2158
2150

$$\|(\mathbf{I} - \mathbf{v}_1 \mathbf{v}_1^\top) \widetilde{\mathbf{v}}_1\|_2 = \sqrt{\|\widetilde{\mathbf{v}}_1 \cdot \mathbf{v}_1 \rangle \cdot \mathbf{v}_1\|_2^2}$$

$$= \sqrt{1 - 2\langle \widetilde{\mathbf{v}}_1, \mathbf{v}_1 \rangle^2 + \langle \widetilde{\mathbf{v}}_1, \mathbf{v}_1 \rangle^2}$$

$$= \sqrt{1 - \langle \widetilde{\mathbf{v}}_1, \mathbf{v}_1 \rangle^2}$$

$$\leq \sqrt{1 - (1 - 4\sigma_0^2)^2}$$

$$\leq \sqrt{8\sigma_0^2}$$

$$\leq 4\sigma_0.$$

This finishes the proof.

2160 C PROOFS FOR SUPERVISED FINE-TUNING 2161

In this section, the training process of the fine-tuning stage is investigated. We first present the basic setting and the decomposition of coefficients.

The initialization $\mathbf{W}^{(0)}$ of the fine-tuning stage is derived by the pre-training stage, and will be fine-tuned in the following stage based on the CNN model (3.2). It can be directly decomposed as

$$\overline{\mathbf{w}}_{jr}^{(0)} = \mathbf{w}_{jr}^{\perp} + j \cdot \gamma_{jr}^{(0)} \cdot \|\boldsymbol{\mu}\|_{2}^{-2} \cdot \boldsymbol{\mu} + \sum_{i=1}^{n} \rho_{jri}^{(0)} \cdot \|\boldsymbol{\xi}_{i}\|_{2}^{-2} \cdot \boldsymbol{\xi}_{i},$$
(C.1)

where \mathbf{w}_{jr}^{\perp} is a component of $\overline{\mathbf{w}}_{jr}^{(0)}$ perpendicular with $\langle \mathbf{w}_{jr}^{\perp}, \boldsymbol{\mu} \rangle = 0$, $\langle \mathbf{w}_{jr}^{\perp}, \boldsymbol{\xi}_i \rangle = 0, i \in [n]$, and we have $\max_{j,r} \|\mathbf{w}_{jr}^{\perp}\|_2 \le 1/n$ by Theorem 5.3.

In the fine-tuning stage, based on the gradient descent algorithm and the CNN structure defined in (3.2), the updating rules of $\mathbf{w}_{j,r}, j \in \{-1, +1\}, r \in [m]$ is given as

$$\mathbf{w}_{j,r}^{(t+1)} = \mathbf{w}_{j,r}^{(t)} - \eta \cdot \nabla_{\mathbf{w}_{j,r}} L_S(\mathbf{W}^{(t)})$$

= $\mathbf{w}_{j,r}^{(t)} - \frac{\eta}{nm} \sum_{i=1}^n \ell_i^{\prime(t)} \cdot \sigma^\prime(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) \cdot jy_i \boldsymbol{\xi}_i - \frac{\eta}{nm} \sum_{i=1}^n \ell_i^{\prime(t)} \cdot \sigma^\prime(\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle) \cdot j\boldsymbol{\mu},$

2184 where $\ell_i^{\prime(t)} = \ell'[y_i \cdot f(\mathbf{W}^{(t)}, \mathbf{x}_i)].$

2186 The convolution filters $\mathbf{w}_{j,r}^{(t)}$, $r \in [m]$, $j \in \{+1, -1\}$ can be decomposed into the following format. **2187** There exist unique coefficient $\gamma_{j,r}^{(t)}$ and $\rho_{j,r,i}^{(t)}$ such that

$$\mathbf{w}_{j,r}^{(t)} = \mathbf{w}_{jr}^{\perp} + j \cdot \gamma_{j,r}^{(t)} \cdot \|\boldsymbol{\mu}\|_{2}^{-2} \cdot \boldsymbol{\mu} + \sum_{i=1}^{n} \rho_{j,r,i}^{(t)} \cdot \|\boldsymbol{\xi}_{i}\|_{2}^{-2} \cdot \boldsymbol{\xi}_{i}, \ t \ge 0.$$
(C.2)

2193 If further decompose $\rho_{j,r,i}^{(t)}$ into $\overline{\rho}_{j,r,i}^{(t)} := \rho_{j,r,i}^{(t)} \mathbb{1}(\rho_{j,r,i}^{(t)} \ge 0), \ \underline{\rho}_{j,r,i}^{(t)} := \rho_{j,r,i}^{(t)} \mathbb{1}(\rho_{j,r,i}^{(t)} \le 0)$, then the decomposition of $\mathbf{w}_{j,r}^{(t)}$ can be converted into

$$\mathbf{w}_{j,r}^{(t)} = \mathbf{w}_{jr}^{\perp} + j \cdot \gamma_{j,r}^{(t)} \cdot \|\boldsymbol{\mu}\|_{2}^{-2} \cdot \boldsymbol{\mu} + \sum_{i=1}^{n} \overline{\rho}_{j,r,i}^{(t)} \cdot \|\boldsymbol{\xi}_{i}\|_{2}^{-2} \cdot \boldsymbol{\xi}_{i} + \sum_{i=1}^{n} \underline{\rho}_{j,r,i}^{(t)} \cdot \|\boldsymbol{\xi}_{i}\|_{2}^{-2} \cdot \boldsymbol{\xi}_{i}, \ t \ge 0.$$
(C.3)

Based on the updating rules (3.3) and decomposition (C.3) of $\mathbf{w}_{j,r}^{(t)}$, the updating rules of coefficients $\gamma_{j,r}^{(t)}, \overline{\rho}_{j,r,i}^{(t)}, \underline{\rho}_{j,r,i}^{(t)}$ are as follows

$$\gamma_{j,r}^{(0)}, \bar{\rho}_{j,r,i}^{(0)}, \underline{\rho}_{j,r,i}^{(0)} \neq 0,$$
(C.4)

$$\gamma_{j,r}^{(t+1)} = \gamma_{j,r}^{(t)} - \frac{\eta}{nm} \cdot \sum_{i=1} \ell_i^{\prime(t)} \cdot \sigma^\prime(\langle \mathbf{w}_{j,r}^{(t)}, y_i \cdot \boldsymbol{\mu} \rangle) \cdot \|\boldsymbol{\mu}\|_2^2,$$
(C.5)

2211
2212
$$\overline{\rho}_{j,r,i}^{(t+1)} = \overline{\rho}_{j,r,i}^{(t)} - \frac{\eta}{nm} \cdot \ell_i^{\prime(t)} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) \cdot \|\boldsymbol{\xi}_i\|_2^2 \cdot \mathbb{1}(y_i = j), \quad (C.6)$$

2213
$$\underline{\rho}_{j,r,i}^{(t+1)} = \underline{\rho}_{j,r,i}^{(t)} + \frac{\eta}{nm} \cdot \ell_i^{\prime(t)} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) \cdot \|\boldsymbol{\xi}_i\|_2^2 \cdot \mathbb{1}(y_i = -j).$$
(C.7)

 $\gamma_{j,r}^{(0)}, \overline{\rho}_{j,r,i}^{(0)}, \underline{\rho}_{j,r,i}^{(0)} \neq 0,$

$$\begin{split} \gamma_{j,r}^{(t+1)} &= \gamma_{j,r}^{(t)} - \frac{\eta}{nm} \cdot \sum_{i=1}^{l} \ell_i^{\prime(t)} \cdot \sigma^{\prime}(jy_i \cdot \gamma_{j,r}^{(t)}) \cdot \|\boldsymbol{\mu}\|_2^2, \\ \rho_{j,r,i}^{(t+1)} &= \rho_{j,r,i}^{(t)} - \frac{\eta}{nm} \cdot \ell_i^{\prime(t)} \cdot \sigma^{\prime}(\sum_{i'=1}^n \rho_{j,r,i'}^{(t)} \frac{\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle}{\|\boldsymbol{\xi}_{i'}\|_2^2}) \cdot \|\boldsymbol{\xi}_{i}\|_2^2, \\ \overline{\rho}_{j,r,i}^{(t+1)} &= \overline{\rho}_{j,r,i}^{(t)} - \frac{\eta}{nm} \cdot \ell_i^{\prime(t)} \cdot \sigma^{\prime}(\sum_{i'=1}^n \overline{\rho}_{j,r,i'}^{(t)} \frac{\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle}{\|\boldsymbol{\xi}_{i'}\|_2^2} + \sum_{i'=1}^n \underline{\rho}_{j,r,i'}^{(t)} \frac{\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle}{\|\boldsymbol{\xi}_{i'}\|_2^2}) \cdot \|\boldsymbol{\xi}_{i}\|_2^2 \cdot \mathbb{1}(y_i = j), \\ \underline{\rho}_{j,r,i}^{(t+1)} &= \underline{\rho}_{j,r,i}^{(t)} + \frac{\eta}{nm} \cdot \ell_i^{\prime(t)} \cdot \sigma^{\prime}(\sum_{i'=1}^n \overline{\rho}_{j,r,i'}^{(t)} \frac{\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle}{\|\boldsymbol{\xi}_{i'}\|_2^2} + \sum_{i'=1}^n \underline{\rho}_{j,r,i'}^{(t)} \frac{\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle}{\|\boldsymbol{\xi}_{i'}\|_2^2}) \cdot \|\boldsymbol{\xi}_{i}\|_2^2 \cdot \mathbb{1}(y_i = -j). \end{split}$$
(C.8)

It follows that by substitute $\langle \mathbf{w}_{j,r}^{(t)}, y_i \cdot \boldsymbol{\mu} \rangle$, $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle$ in (C.5)-(C.7), we have,

The coefficients initialization (C.4) is determined by the pre-training stage, which is given in (C.1), while the one-step updating rules for the coefficients are not influenced by the initialization.

2232 Denote $T^* = \eta^{-1} \text{poly}(\epsilon^{-1}, \|\boldsymbol{\mu}\|_2^{-1}, d^{-1}\sigma_p^{-2}, n, m, d)$ the maximum admissible iterations.

Based on the result of pre-training stage in Theorem 5.3, it is easy to verify that the following assumptions hold.

Assumption C.1 (Assumptions on the scale of initialization). Assume the following equations hold,

$$-4m^{\frac{1}{q}}\log(T^*) \le -C_0 \le \gamma_{j,r}^{(0)} \le 4m^{\frac{1}{q}}\log(T^*)$$
$$0 \le \overline{\rho}_{j,r,i}^{(0)} \le 4m^{\frac{1}{q}}\log(T^*)$$
$$0 \ge \underline{\rho}_{j,r,i}^{(0)} \ge -64nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*)$$

for all $r \in [m]$, $j \in \{\pm 1\}$ and all $i \in [n]$, where C_0 is constant such that $0 \le C_0 \le 4m^{\frac{1}{q}} \log(T^*)$. Assumption C.2 (Assumptions on the initialization of γ). There exists at least one index $r_1 \in [m]$ such that $\gamma_{1,r_1}^{(0)} \ge \gamma_0$, and there exists at least one index $r_2 \in [m]$ such that $\gamma_{-1,r_2}^{(0)} \ge \gamma_0$. Furthermore, we require that

$$\max_{j,r} \{0, (-\gamma_{j,r}^{(0)})^q\} \ll 4m^{\frac{1}{q}} \log(T^*)$$
(C.9)

2249 C.1 PROOF OF THEOREM 5.5

In this section, in order to prove Theorem 5.5, the following Lemma C.3-C.6 are introduced to analyze the signal learning in the fine-tuning stage. Two stages of the signal learning as well as the population loss are analyzed here.

2255 C.1.1 FIRST STAGE OF SIGNAL LEARNING

Lemma C.3. Under the same conditions as Theorem 5.5, in particular if the SNR satisfies that

$$\operatorname{SNR}^2 \ge \frac{4\log(2/\gamma_0)8^q \rho_0^{q-2}}{C_1 n \gamma_0^{q-2}}$$
 (C.10)

2260 where $C_1 = O(1)$ is a positive constant, there exists time

$$T_1 = \frac{\log(2/\gamma_0)8m}{C_1 \eta q \gamma_0^{q-2} \|\boldsymbol{\mu}\|_2^2}$$

2263 such that 2264

$$\max_{r} \gamma_{j,r}^{(T_1)} \ge 2, \text{ for } j \in \{\pm 1\}.$$
(C.11)

2266
$$|\rho_{j,r,i}^{(t)}| \le 2\rho_0, \text{ for all } j \in \{\pm 1\}, r \in [m], i \in [n], 0 \le t \le T_1.$$
 (C.12)

where $\rho_0 = \max_{j,r,i} |\rho_{j,r,i}^{(0)}|$, γ_0 is as defined in Assumption C.3.

2268 C.1.2 SECOND STAGE OF SIGNAL LEARNING

Based on the result of First Stage (Section C.1.1) in Lemma C.3, at the beginning of the second stage, we have the following properties,

2272 2273

2274

2275

2279 2280 2281

2290 2291

2293

2294

2305

• $\max_r \gamma_{j,r}^{(T_1)} \ge 2, \ j \in \{\pm 1\}.$

• $\max_{j,r,i} |\rho_{j,r,i}^{(T_1)}| \le 2\rho_0.$

The learned feature $\gamma_{j,r}^{(t)}$ will not get worse, i.e., for $t \ge T_1$, we have that $\gamma_{j,r}^{(t+1)} \ge \gamma_{j,r}^{(t)}$, and therefore max_r $\gamma_{j,r}^{(t)} \ge 2$. Now we choose \mathbf{W}^* as follows:

$$\mathbf{w}_{j,r}^* = \mathbf{w}_{jr}^{\perp} + 2qm\log(2q/\epsilon) \cdot j \cdot \frac{\mu}{\|\boldsymbol{\mu}\|_2^2}, \ j \in \{+1, -1\}, \ r \in [m].$$
(C.13)

Based on the above definition of \mathbf{W}^* , we have the following Lemma C.4.

Lemma C.4. Under the same conditions as Theorem 5.5, we have that $\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F \leq \widetilde{O}(m^{3/2}\|\boldsymbol{\mu}\|_2^{-1}) + O(nm\rho_0(\sigma_p\sqrt{d})^{-1}).$

Lemma C.5. Under the same conditions as Theorem 5.5, let $T = T_1 + \left\lfloor \frac{\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2}{2\eta\epsilon} \right\rfloor = T_1 + \widetilde{O}(m^3\eta^{-1}\epsilon^{-1}\|\boldsymbol{\mu}\|_2^{-2})$. Then we have $\max_{j,r,i} |\rho_{j,r,i}^{(t)}| \le 4\rho_0$ for all $T_1 \le t \le T$. Besides,

$$\frac{1}{t - T_1 + 1} \sum_{s = T_1}^{t} L_S(\mathbf{W}^{(s)}) \le \frac{\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2}{(2q - 1)\eta(t - T_1 + 1)} + \frac{\epsilon}{2q - 1}$$

for all $T_1 \leq t \leq T$, and we can find an iteration with training loss smaller than ϵ within T iterations.

2295 C.1.3 POPULATION LOSS

In this section, the bound of the test loss is presented. For a new data point (x, y) drawn from the same distribution as training data generated from. Without loss of generality, we assume that the data point has the following structure: the first patch is the signal patch and the second patch is the noise patch, i.e., $x = [y\mu, \xi]$.

Lemma C.6. Let T the same as defined in Lemma C.5 in Second Stage (Section C.1.2). Under the same conditions as Theorem 5.5, for any $0 \le t \le T$ with $L_S(\mathbf{W}^{(t)}) \le \frac{1}{4}$, it holds that $L_{\mathcal{D}}(\mathbf{W}^{(t)}) \le 6 \cdot L_S(\mathbf{W}^{(t)}) + \exp(-\tilde{\Omega}(n^2))$.

Then, based on the above lemmas, we provide a simplified version of the proof for Theorem 5.5.

Proof of Theorem 5.5. For the first result in Theorem 5.5, based on the result of the pre-training stage in Theorem 5.3, we have that the conditions of Lemma C.3 hold. The result of First Stage signal learning in Lemma C.3 hold. Then, we could define W^* as (C.13), and by Lemma C.4, we have

$$\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F \le \widetilde{O}(m^{3/2} \|\boldsymbol{\mu}\|_2^{-1}) + O(nm\rho_0(\sigma_p\sqrt{d})^{-1}).$$

2312 It follows that for any $\epsilon > 0$, choose $T = T_1 + \widetilde{O}(m^3 \eta^{-1} \epsilon^{-1} \|\boldsymbol{\mu}\|_2^{-2})$, by Lemma C.5, we have that

$$\frac{1}{T - T_1 + 1} \sum_{s=T_1}^T L_S(\mathbf{W}^{(s)}) \le \frac{\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2}{(2q - 1)\eta(T - T_1 + 1)} + \frac{\epsilon}{2q - 1} \le \frac{3\epsilon}{2q - 1} < \epsilon$$

2315 2316 2317

2314

2311

Therefore, there exists some $T_1 \le t \le T$ with $L_S(\mathbf{W}^{(t)}) \le \epsilon$. This completes the proof of the first result. Then combine this with Lemma C.6, the second result of Theorem 5.5 is given by

2320
$$L_{\mathcal{D}}(\mathbf{W}^{(t)}) \le 6 \cdot L_S(\mathbf{W}^{(t)}) + \exp(-\tilde{\Omega}(n^2)).$$
2321

C.2 PROOF OF LEMMAS IN SECTION C.1

C.2.1 PROOF OF LEMMA C.3

To prove Lemma C.3, we first introduce the following Lemma C.7, C.8, C.9 and C.10.

Lemma C.7. Suppose that $\delta > 0$ and $n \ge \Omega(\log(1/\delta))$ Then with probability at least $1 - \delta$,

 $|\{i \in [n] : y_i = 1\}|, |\{i \in [n] : y_i = -1\}| \ge n/4.$

The following Lemma C.8 provides an estimate of the norm of ξ_i and a bound of their inner products between each other.

Lemma C.8. Suppose that $\delta > 0$ and $d = \Omega(\log(4n/\delta))$. Then with probability at least $1 - \delta$,

$$\begin{split} \sigma_p^2 d/2 &\leq \|\boldsymbol{\xi}_i\|_2^2 \leq 3\sigma_p^2 d/2, \\ |\langle \boldsymbol{\xi}_i, \boldsymbol{\xi}_{i'} \rangle| \leq 2\sigma_p^2 \cdot \sqrt{d \log(4n^2/\delta)}, \end{split}$$

for all $i, i' \in [n]$.

Lemma C.9. Under Condition 4.1, suppose (C.16), (C.17) and (C.18) hold at iteration t. Then

2344
2344
2345
2346
2347

$$\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle \leq \max_{j,r} \{0, -\gamma_{j,r}^{(0)}\},$$

 $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle \leq 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*),$

(t)

for all $r \in [m]$ and $j \neq y_i$. Since by Assumption C.1, $\max_{j,r} \{-\gamma_{j,r}^{(0)}\} \leq C_0$, we further have that $F_j(\mathbf{W}_i^{(t)}, \mathbf{x}_i) = O(1).$

Lemma C.10. Under Condition 4.1, suppose (C.16), (C.17) and (C.18) hold at iteration t. Then

(+)

$$\langle \mathbf{w}_{j,r}^{(c)}, y_i \boldsymbol{\mu} \rangle = \gamma_{j,r}^{(c)}, \\ \langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle \leq \overline{\rho}_{j,r,i}^{(t)} + 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*)$$

for all $r \in [m]$, j = y and $i \in [n]$. If $\max_{j,r,i} \{\gamma_{j,r}^{(t)}, \overline{\rho}_{j,r,i}^{(t)}\} = O(1)$, we further have that $F_j(\mathbf{W}_j^{(t)}, \mathbf{x}_i) = O(1).$

Based on the above Lemma C.7, C.8, C.9 and C.10, we could prove the Lemma C.3 now.

Proof of Lemma C.3. Let

$$T_1^+ = \frac{1}{\frac{2\eta q}{nm}\sigma_p^2 d \cdot 8^{q-1}\rho_0^{q-2}}.$$
 (C.14)

Define $\Psi^{(t)} = \max_{j,r,i} |\rho_{j,r,i}^{(t)}| =$ We first prove the second conclusion (C.12). $\max_{j,r,i} \{\overline{\rho}_{j,r,i}^{(t)}, -\underline{\rho}_{j,r,i}^{(t)}\}$. We use induction to show that

$$\Psi^{(t)} \le 2\rho_0 \tag{C.15}$$

=

for all $0 \le t \le T_1^+$. By definition, clearly we have $\Psi^{(0)} = \rho_0$. Now suppose that there exists some $\widetilde{T} \le T_1^+$ such that (C.15) holds for $0 < t \le \widetilde{T} - 1$. Then by (C.8) we have

$$\Psi^{(t+1)} \le \Psi^{(t)} + \max_{j,r,i} \left\{ \frac{\eta}{nm} \cdot |\ell_i^{\prime(t)}| \cdot \sigma^{\prime} \left(\sum_{i'=1}^n \Psi^{(t)} \cdot \frac{|\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_i \rangle|}{\|\boldsymbol{\xi}_{i'}\|_2^2} + \sum_{i'=1}^n \Psi^{(t)} \cdot \frac{|\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_i \rangle|}{\|\boldsymbol{\xi}_{i'}\|_2^2} \right) \cdot \|\boldsymbol{\xi}_i\|_2^2 \right\}$$

$$\leq \Psi^{(t)} + \max_{j,r,i} \left\{ \frac{\eta}{nm} \cdot \sigma' \left(2 \cdot \sum_{i'=1}^{n} \Psi^{(t)} \cdot \frac{|\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle|}{\|\boldsymbol{\xi}_{i'}\|_{2}^{2}} \right) \cdot \|\boldsymbol{\xi}_{i}\|_{2}^{2} \right\}$$

$$= \Psi^{(t)} + \max_{j,r,i} \left\{ \frac{\eta}{nm} \cdot \sigma' \left(2\Psi^{(t)} + 2 \cdot \sum_{i' \neq i}^{n} \Psi^{(t)} \cdot \frac{|\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_i \rangle|}{\|\boldsymbol{\xi}_{i'}\|_2^2} \right) \cdot \|\boldsymbol{\xi}_i\|_2^2 \right\}$$

$$\leq \Psi^{(t)} + \frac{\eta q}{nm} \cdot \left[\left(2 + \frac{4n\sigma_p^2 \cdot \sqrt{d\log(4n^2/\delta)}}{\sigma_p^2 d/2} \right) \cdot \Psi^{(t)} \right]^{q-1} \cdot 2\sigma_p^2 d$$

$$\leq \Psi^{(t)} + \frac{\eta q}{nm} \cdot \left(4\Psi^{(t)} \right)^{q-1} \cdot 2\sigma_p^2 d$$

$$\leq \Psi^{(t)} + \frac{\eta q}{nm} \cdot \left(8\rho_0 \right)^{q-1} \cdot 2\sigma_p^2 d,$$

where the second inequality is by $|\ell_i'^{(t)}| \le 1$, the third inequality is due to Lemma C.8, the fourth inequality follows by the condition that $d \ge 16n^2 \log(4n^2/\delta)$ in Condition 4.1, and the last inequality follows by the induction hypothesis (C.15). Taking a telescoping sum over $t = 0, 1, \ldots, \tilde{T} - 1$ then gives

$$\Psi^{(\widetilde{T})} \leq \Psi^{(0)} + \widetilde{T} \frac{\eta q}{nm} \cdot (8\rho_0)^{q-1} \cdot 2\sigma_p^2 d$$

$$\leq \rho_0 + T_1^+ \frac{\eta q}{nm} \cdot (8\rho_0)^{q-1} \cdot 2\sigma_p^2 d$$

$$\leq 2\rho_0,$$

where the second inequality follows by $\widetilde{T} \leq T_1^+$ in our induction hypothesis. Therefore, by induction, we prove that $\Psi^{(t)} \leq 2\rho_0$ for all $t \leq T_1^+$.

To prove the first conclusion (C.11), without loss of generality, consider j = 1 first (similar ideas for the proof of j = -1). Denote by $T_{1,1}$ the last time for t in $[0, T_1^+]$ satisfying that $\max_r \gamma_{1,r}^{(t)} \leq 2$. Then for $t \leq T_{1,1}$, $\max_{j,r,i}\{|\rho_{j,r,i}^{(t)}|\} = O(\rho_0 \sigma_p^2 d) = O(1)$ and $\max_r \gamma_{1,r}^{(t)} \leq 2$. Therefore, by Lemma C.9 and C.10, we know that $F_{-1}(\mathbf{W}_{-1}^{(t)}, \mathbf{x}_i), F_{+1}(\mathbf{W}_{+1}^{(t)}, \mathbf{x}_i) = O(1)$ for all i with $y_i = 1$. Thus, there exists a positive constant C_1 such that $-\ell_i^{\prime(t)} \geq C_1$ for all i with $y_i = 1$.

Since (C.11) focuses on the max_r $\gamma_{1,r}^{(t)}$, we only need to consider the training dynamic of max_r $\gamma_{1,r}^{(t)}$, which is positive at time t = 0 by Assumption C.2. By (C.8), for positive $\gamma_{1,r}^{(t)}$ and $t \le T_{1,1}$ we have

2425
2426
2427
$$\gamma_{1,r}^{(t+1)} = \gamma_{1,r}^{(t)} - \frac{\eta}{nm} \cdot \sum_{i=1}^{n} \ell_i^{\prime(t)} \cdot \sigma^\prime(y_i \cdot \gamma_{1,r}^{(t)}) \cdot \|\boldsymbol{\mu}\|_2^2$$

2429
$$\geq \gamma_{1,r}^{(t)} + \frac{C_1 \eta}{nm} \cdot \sum_{y_i=1} \sigma'(\gamma_{1,r}^{(t)}) \cdot \|\boldsymbol{\mu}\|_2^2.$$

Denote $A^{(t)} = \max_r \gamma_{1,r}^{(t)}$, γ_0 is defined in Assumption C.2 with $\max_r \gamma_{1,r}^{(0)} \ge \gamma_0 \ge 0$. Then we have

2433
2434
2435
$$A^{(t+1)} \ge A^{(t)} + \frac{C_1 \eta}{nm} \cdot \sum_{y_i=1} \sigma'(A^{(t)}) \cdot \|\boldsymbol{\mu}\|_2^2$$

2435
2436
$$\geq A^{(t)} + \frac{C_1 \eta q \|\boldsymbol{\mu}\|_2^2}{4} (A^{(t)})^{q-1}$$

$$\int_{1}^{4m} C_1 \eta q \|\boldsymbol{\mu}\|_{2(\boldsymbol{\Lambda}(0))}^2 q^{-2} \int_{\boldsymbol{\Lambda}(t)}^{4m} dt$$

2438
2439
2440
$$\geq \left[1 + \frac{C_1 \eta q \|\boldsymbol{\mu}\|_2^2}{4m} (A^{(0)})^{q-2}\right] A^{(1)}$$
2440
$$\left(-\frac{C_1 \eta q \gamma_0^{q-2} \|\boldsymbol{\mu}\|_2^2}{4m} (A^{(0)})^{q-2}\right) A^{(1)}$$

2440
2441
2442
$$\geq \left(1 + \frac{C_1 \eta q \gamma_0^{q-2} \|\boldsymbol{\mu}\|_2^2}{4m}\right) A^{(t)},$$

where the second inequality is by the lower bound on the number of positive data in Lemma C.7 , the third inequality is due to the fact that $A^{(t)}$ is an increasing sequence, and the last inequality follows by $A^{(0)} = \max_r \langle \mathbf{w}_{1,r}^{(0)}, \boldsymbol{\mu} \rangle \geq \gamma_0$. Therefore, the sequence $A^{(t)}$ will exponentially grow and we have that

2447
2448
$$A^{(t)} \ge A^{(0)} \left(1 + \frac{C_1 \eta q \gamma_0^{q-2} \|\boldsymbol{\mu}\|_2^2}{4m} \right)^t \ge A^{(0)} \exp\left(\frac{C_1 \eta q \gamma_0^{q-2} \|\boldsymbol{\mu}\|_2^2}{8m} t\right) \ge \gamma_0 \exp\left(\frac{C_1 \eta q \gamma_0^{q-2} \|\boldsymbol{\mu}\|_2^2}{8m} t\right),$$

where the second inequality is due to the fact that $1 + z \ge \exp(z/2)$ for $z \le 2$ and our condition of $\eta \leq O(mq^{-1}\gamma_0^{-(q-2)} \|\boldsymbol{\mu}\|_2^{-2})$ in Condition 4.1, and the last inequality follows by $A^{(0)} = \max_r \gamma_{1,r}^{(0)}$. Therefore, $A^{(t)} = \max_{r} \gamma_{1,r}^{(t)}$ will reach 2 within

$$T_1 = \frac{\log(2/\gamma_0)8m}{C_1 \eta q \gamma_0^{q-2} \|\boldsymbol{\mu}\|_2^2}$$

iterations.

We can next verify the value of T_1 and T_1^+ follow the following relationship

$$T_1 = \frac{\log(2/\gamma_0)8m}{C_1\eta q \gamma_0^{q-2} \|\boldsymbol{\mu}\|_2^2} \le \frac{1}{\frac{4\eta q}{nm} \sigma_p^2 d \cdot 8^{q-1} \rho_0^{q-2}} = T_1^+/2,$$

where the inequality holds due to our SNR condition in (C.10). Therefore, by the definition of $T_{1,1}$, we have $T_{1,1} \leq T_1 \leq T_1^+/2$, where we use the non-decreasing property of γ . The proof for j = -1is similar, and we can prove that $\max_r \gamma_{-1,r}^{(T_1,-1)} \ge 2$ while $T_{1,-1} \le T_1 \le T_1^+/2$, which completes the proof.

C.2.2 PROOF OF LEMMA C.4

Before proving the Lemma C.4, we first show the following Proposition C.11, which shows that the coefficients $\gamma_{j,r,i}^{(t)}, \overline{\rho}_{j,r,i}^{(t)}, \underline{\rho}_{j,r,i}^{(t)}$ will stay a reasonable scale during the training period $0 < t < T^*$.

Proposition C.11. Under Condition 4.1, which indicates that $16n\sqrt{\frac{\log(4n^2/\delta)}{d}} \le 0.5$, if Assumption *C.1* holds, then for $0 \le t \le T^*$, we have that

$$-4m^{\frac{1}{q}}\log(T^*) \le \gamma_{j,r}^{(0)} \le \gamma_{j,r}^{(t)} \le 4m^{\frac{1}{q}}\log(T^*),$$
(C.16)

$$0 \le \bar{\rho}_{j,r,i}^{(t)} \le 4m^{\frac{1}{q}} \log(T^*), \tag{C.17}$$

$$0 \ge \underline{\rho}_{i,r,i}^{(t)} \ge -64nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \ge -4m^{\frac{1}{q}} \log(T^*), \tag{C.18}$$

for all
$$r \in [m]$$
, $j \in \{\pm 1\}$ and $i \in [n]$.

Then, based on Proposition C.11 and Lemma C.3, we could prove the following Lemma C.4.

Proof of Lemma C.4. We have

where the first inequality is by our decomposition of $\mathbf{W}^{(T_1)}$ and the definition of \mathbf{W}^* , the second inequality is by Proposition C.11 and Lemma C.3.

 $< \widetilde{O}(m^{3/2} \| \boldsymbol{\mu} \|_2^{-1}) + O(nm\rho_0(\sigma_n\sqrt{d})^{-1}),$

 $\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F \le \sum_{i,r} \frac{|\gamma_{j,r}^{(T_1)}|}{\|\boldsymbol{\mu}\|_2} + \sum_{i,r,i} \frac{|\overline{\rho}_{j,r,i}^{(T_1)}|}{\|\boldsymbol{\xi}_i\|_2} + \sum_{i,r,i} \frac{|\underline{\rho}_{j,r,i}^{(T_1)}|}{\|\boldsymbol{\xi}_i\|_2} + O(m^{3/2}\log(1/\epsilon))\|\boldsymbol{\mu}\|_2^{-1}$

 $\leq O(m \|\boldsymbol{\mu}\|^{-1}) + O(nm\rho_0(\sigma_n\sqrt{d})^{-1}) + O(m^{3/2}\log(1/\epsilon)) \|\boldsymbol{\mu}\|_2^{-1}$

2497 C.2.3 PROOF OF LEMMA C.5

In this section, Lemma C.12 is presented first, then Lemma C.13 and C.14 are proved before finally proving Lemma C.5. Based on Proposition C.11, the following Lemma C.12 introduces some important properties of the training loss function for $0 \le t \le T^*$.

Lemma C.12. Under Condition 4.1, for $0 \le t \le T^*$, the following result holds, 2503

$$\|\nabla L_S(\mathbf{W}^{(t)})\|_F^2 \le O(\max\{\|\boldsymbol{\mu}\|_2^2, \sigma_p^2 d\}) L_S(\mathbf{W}^{(t)}).$$

Lemma C.13. Under the same conditions as Theorem 5.5, we have that $y_i \langle \nabla f(\mathbf{W}^{(t)}, \mathbf{x}_i), \mathbf{W}^* \rangle \ge q^2 2^q \log(2q/\epsilon)$ for all $i \in [n]$ and $T_1 \le t \le T^*$.

> *Proof of Lemma C.13.* Recall that $f(\mathbf{W}^{(t)}, \mathbf{x}_i) = (1/m) \sum_{j,r} j \cdot \left[\sigma(\langle \mathbf{w}_{j,r}^{(t)}, y_i \cdot \boldsymbol{\mu} \rangle) + \sigma(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) \right]$ and the definition of \mathbf{W}^* in (C.13), we have

2513
2514
$$y_{i} \langle \nabla f(\mathbf{W}^{(t)}, \mathbf{x}_{i}), \mathbf{W}^{*} \rangle = \frac{1}{m} \sum_{j,r} \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i} \boldsymbol{\mu} \rangle) \langle \boldsymbol{\mu}, j \mathbf{w}_{j,r}^{*} \rangle + \frac{1}{m} \sum_{j,r} \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_{i} \rangle) \langle y_{i} \boldsymbol{\xi}_{i}, j \mathbf{w}_{j,r}^{*} \rangle$$
2515
2516
$$= \frac{1}{m} \sum_{j,r} \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i} \boldsymbol{\mu} \rangle) 2qm \log(2q/\epsilon)$$
(C.19)
2518

where the second equality holds because $\langle \boldsymbol{\mu}, j \mathbf{w}_{j,r}^* \rangle = 2qm \log(2q/\epsilon), \langle y_i \boldsymbol{\xi}_i, j \mathbf{w}_{j,r}^* \rangle = 0$ by $\langle \boldsymbol{\mu}, j \mathbf{w}_{jr}^{\perp} \rangle = 0, \langle y_i \boldsymbol{\xi}_i, j \mathbf{w}_{jr}^{\perp} \rangle = 0$ in the definition of \mathbf{W}^* (C.13).

Next we will give a bound for the inner-product term in (C.19). By Lemma C.10 and the initialization and non-decreasing property of $\gamma_{j,r}^{(t)}$ in Second Stage (Section C.1.2), we have that for $j = y_i$

$$\max_{r} \langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle = \max_{r} \gamma_{j,r}^{(t)} \ge 2.$$
(C.20)

Plug (C.20) into (C.19) can we obtain

 $y_i \langle \nabla f(\mathbf{W}^{(t)}, \mathbf{x}_i), \mathbf{W}^* \rangle \ge q^2 2^q \log(2q/\epsilon)$

This completes the proof.

2534 Lemma C.14. Under the same conditions as Theorem 5.5, we have that

$$\|\mathbf{W}^{(t)} - \mathbf{W}^*\|_F^2 - \|\mathbf{W}^{(t+1)} - \mathbf{W}^*\|_F^2 \ge (2q-1)\eta L_S(\mathbf{W}^{(t)}) - \eta\epsilon$$

for all $T_1 \leq t \leq T^*$.

 $\|\mathbf{W}^{(t)} - \mathbf{W}^*\|_{E}^2 - \|\mathbf{W}^{(t+1)} - \mathbf{W}^*\|_{E}^2$

Proof of Lemma C.14. Here we assume the neural network is q homogeneous, namely $\langle \nabla f(\mathbf{W}^{(t)}, \mathbf{x}_i), \mathbf{W}^{(t)} \rangle = qf(\mathbf{W}^{(t)}, \mathbf{x}_i)$, thus we have

 $= 2\eta \langle \nabla L_S(\mathbf{W}^{(t)}), \mathbf{W}^{(t)} - \mathbf{W}^* \rangle - \eta^2 \| \nabla L_S(\mathbf{W}^{(t)}) \|_F^2$ $=\frac{2\eta}{n}\sum_{i=1}^{n}\ell_{i}^{\prime(t)}[qy_{i}f(\mathbf{W}^{(t)},\mathbf{x}_{i})-y_{i}\langle\nabla f(\mathbf{W}^{(t)},\mathbf{x}_{i}),\mathbf{W}^{*}\rangle]-\eta^{2}\|\nabla L_{S}(\mathbf{W}^{(t)})\|_{F}^{2}$ $\geq \frac{2\eta}{n} \sum_{i=1}^{n} \ell_i^{\prime(t)} [qy_i f(\mathbf{W}^{(t)}, \mathbf{x}_i) - q^2 2^q \log(2q/\epsilon)] - \eta^2 \|\nabla L_S(\mathbf{W}^{(t)})\|_F^2$ $\geq \frac{2q\eta}{n} \sum_{i=1}^{n} \left[\ell \left(y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i) \right) - \ell (q 2^q \log(2q/\epsilon)) \right] - \eta^2 \| \nabla L_S(\mathbf{W}^{(t)}) \|_F^2$ $\geq \frac{2q\eta}{n} \sum_{i=1}^{n} \left[\ell \left(y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i) \right) - \epsilon / (2q) \right] - \eta^2 \| \nabla L_S(\mathbf{W}^{(t)}) \|_F^2$ $\geq (2q-1)\eta L_S(\mathbf{W}^{(t)}) - \eta\epsilon,$

where the first inequality is by Lemma C.13, the second and third inequality is due to the convexity of the cross entropy function and the property of loss function, and the last inequality is by Lemma C.12 and by $\eta \leq O\left(\min\{\|\mu\|_{2}^{-2}, (\sigma_{p}^{2}\sqrt{d})^{-2}\}\right)$ in Condition 4.1.

Based on the above lemmas, the proof of Lemma C.5 is presented as follows.

Proof of Lemma C.5. By Lemma C.14, for any $t \in [T_1, T]$, we have that for $s \leq t$

$$\|\mathbf{W}^{(s)} - \mathbf{W}^*\|_F^2 - \|\mathbf{W}^{(s+1)} - \mathbf{W}^*\|_F^2 \ge (2q-1)\eta L_S(\mathbf{W}^{(s)}) - \eta\epsilon$$

holds. Taking a summation, we obtain that

$$\sum_{s=T_1}^t L_S(\mathbf{W}^{(s)}) \le \frac{\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2 + \eta\epsilon(t - T_1 + 1)}{(2q - 1)\eta}$$
(C.21)

for all $T_1 \leq t \leq T$. Dividing $(t - T_1 + 1)$ on both side of (C.21) gives that

$$\frac{1}{t - T_1 + 1} \sum_{s = T_1}^t L_S(\mathbf{W}^{(s)}) \le \frac{\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2}{(2q - 1)\eta(t - T_1 + 1)} + \frac{\epsilon}{2q - 1}.$$

Then we can take t = T where $T = T_1 + \left| \frac{\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2}{2\eta\epsilon} \right|$ and have that

$$\frac{1}{T - T_1 + 1} \sum_{s=T_1}^T L_S(\mathbf{W}^{(s)}) \le \frac{\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2}{(2q - 1)\eta(T - T_1 + 1)} + \frac{\epsilon}{2q - 1} \le \frac{3\epsilon}{2q - 1} < \epsilon,$$

where we use the fact that q > 2 and the choice of T. Since the mean is smaller than ϵ , we can conclude that there exist $T_1 \leq t \leq T$ such that $L_S(\mathbf{W}^{(t)}) < \epsilon$.

Secondly, we will prove that $\max_{j,r,i} |\rho_{j,r,i}^{(t)}| \le 4\rho_0$ for all $t \in [T_1,T]$. Plugging $T = T_1 + T_1$ $\left|\frac{\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2}{2\eta\epsilon}\right|$ into (C.21) gives that

$$\sum_{s=T_1}^T L_S(\mathbf{W}^{(s)}) \le \frac{2\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F^2}{(2q-1)\eta} = \widetilde{O}(\eta^{-1}m^3\|\boldsymbol{\mu}\|_2^{-2}) + O(\eta^{-1}n^2m^2\rho_0^{-2}(\sigma_p\sqrt{d})^{-2}),$$
(C.22)

where the inequality is due to $\|\mathbf{W}^{(T_1)} - \mathbf{W}^*\|_F \leq \widetilde{O}(m^{3/2}\|\boldsymbol{\mu}\|_2^{-1}) + O(nm\rho_0(\sigma_p\sqrt{d})^{-1})$ in Lemma C.4. Define $\Psi^{(t)} = \max_{j,r,i} |\rho_{j,r,i}^{(t)}|$. We will use induction to prove $\Psi^{(t)} \le 4\rho_0$ for all $t \in [T_1, T]$. At $t = T_1$, by the properties at the beginning of Second Stage (Section C.1.2), we have $\Psi^{(T_1)} \leq 2\rho_0$. Now suppose that there exists $\widetilde{T} \in [T_1, T]$ such that $\Psi^{(t)} \leq 4\rho_0$ for all $t \in [T_1, \widetilde{T} - 1]$. Then we prove it also holds for $t = \tilde{T}$: For $t \in [T_1, \tilde{T} - 1]$, by (C.8), we have

$$\Psi^{(t+1)} \le \Psi^{(t)} + \max_{j,r,i} \left\{ \frac{\eta}{nm} \cdot |\ell_i'^{(t)}| \cdot \sigma' \left(2\sum_{i'=1}^n \Psi^{(t)} \cdot \frac{|\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_i \rangle|}{\|\boldsymbol{\xi}_{i'}\|_2^2} \right) \cdot \|\boldsymbol{\xi}_{i'}\|_2^2 \right\}$$

$$= \Psi^{(t)} + \max_{j,r,i} \left\{ \frac{\eta}{nm} \cdot |\ell_i^{\prime(t)}| \cdot \sigma^{\prime} \left(2\Psi^{(t)} + 2\sum_{i' \neq i}^n \Psi^{(t)} \cdot \frac{|\langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle|}{\|\boldsymbol{\xi}_{i'}\|_2^2} \right) \cdot \|\boldsymbol{\xi}_{i'}\|_2^2 \right\}$$

$$\leq \Psi^{(t)} + \frac{\eta q}{nm} \cdot \max_i |\ell_i^{\prime(t)}| \cdot \left[\left(2 + \frac{4n\sigma_p^2 \cdot \sqrt{d\log(4n^2/\delta)}}{\sigma_p^2 d/2} \right) \cdot \Psi^{(t)} \right]^{q-1} \cdot 2\sigma_p^2 d$$

$$\leq \Psi^{(t)} + \frac{\eta q}{nm} \cdot \max_i |\ell_i^{\prime(t)}| \cdot \left(4 \cdot \Psi^{(t)} \right)^{q-1} \cdot 2\sigma_p^2 d,$$

where the second inequality is due to Lemma C.8, and the last inequality follows by the assumption that $d \ge 1024n^2 \log(4n^2/\delta)$ in Condition 4.1. Taking a telescoping sum over $t = T_1, \ldots, T-1$, we have that

$$\Psi^{(T)} \stackrel{(i)}{\leq} \Psi^{(T_1)} + \frac{\eta q}{nm} \sum_{s=T_1}^{\widetilde{T}-1} \max_i |\ell_i'^{(s)}| \widetilde{O}(\sigma_p^2 d) \cdot (2\rho_0)^{q-1}$$

$$\stackrel{(ii)}{\leq} \Psi^{(T_1)} + \frac{\eta q}{nm} 4^{q-1} 2^q \sigma_p^2 d(2\rho_0)^{q-1} \sum_{s=T_1}^{\widetilde{T}-1} \max_i \ell_i^{(s)}$$

$$\stackrel{(iii)}{\leq} \Psi^{(T_1)} + \eta q m^{-1} 4^{q-1} 2^q \sigma_p^2 d(2\rho_0)^{q-1} \sum_{s=T_1}^{\tilde{T}-1} L_S(\mathbf{W}^{(s)})$$

$$\stackrel{(iv)}{\leq} \Psi^{(T_1)} + \widetilde{O}(qm^2 4^{q-1} 2^q \text{SNR}^{-2}) \cdot (2\rho_0)^{q-1}$$

2622
2623
$$\leq 2\rho_0 + \widetilde{O}(qm^24^{q-1}2^q(2\rho_0)^{q-2}\text{SNR}^{-2}) \cdot 2\rho_0$$

$$\stackrel{(v)}{\leq} 2\rho_0 + \rho_0 + \rho_0 \\ = 4\rho_0,$$

where (i) is by out induction hypothesis that $\Psi^{(t)} \leq 4\rho_0$ for $t \in [T_1, \tilde{T} - 1]$, (ii) is by $|\ell'| \leq \ell$, (iii) is by $\max_i \ell_i^{(s)} \le \sum_i \ell_i^{(s)} = nL_S(\mathbf{W}^{(s)})$, (iv) is due to $\sum_{s=T_1}^{\tilde{T}-1} L_S(\mathbf{W}^{(s)}) \le \sum_{s=T_1}^T L_S(\mathbf{W}^{(s)}) = 1$ $\widetilde{O}(\eta^{-1}m^3 \|\boldsymbol{\mu}\|_2^{-2}) + O(\eta^{-1}n^2m^2\rho_0^{-2}(\sigma_p\sqrt{d})^{-2})$ in (C.22), (v) is by the condition for SNR : $\text{SNR}^2 \geq \widetilde{\Omega}(2qm^2 4^{q-1}2^q (2\rho_0)^{q-2}) = \widetilde{\widetilde{\Omega}}(2qm^2 16^{q-1}\rho_0^{q-2}) \text{ and } \rho_0 \leq O((\frac{1}{8}qn^2m)^{-\frac{1}{q}}) \text{ obtained}$ from Theorem 5.3. This completes the induction.

C.2.4 PROOF OF LEMMA C.6

We first present the following Lemma C.15, which shows the bound of $\langle \mathbf{w}_{i,r}^{(t)}, \boldsymbol{\xi}_i \rangle$.

Lemma C.15. Under Condition 4.1, suppose (C.16), (C.17) and (C.18) hold at iteration t. Then

We then prove the following two lemmas before proving Lemma C.6.

Lemma C.16. Under the same conditions as Theorem 5.5, we have that $\max_{j,r} |\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle| \le 1/2$ for all $0 \le t \le T$, where T is defined in Lemma C.5 in Second Stage (Section C.1.2).

Proof of Lemma C.16. We can get the upper bound of the inner products between the parameter and the noise as follows:

$$\begin{aligned} |\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle| &\stackrel{(i)}{\leq} |\rho_{j,r,i}^{(t)}| + 8n\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot 4m^{\frac{1}{q}}\log(T^*) \\ &\stackrel{(ii)}{\leq} 4\rho_0 + 8n\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot 4m^{\frac{1}{q}}\log(T^*) \\ &\stackrel{(iii)}{\leq} 1/2 \end{aligned}$$

for all $j \in \{\pm 1\}$, $r \in [m]$ and $i \in [n]$, where (i) is by Lemma C.15, (ii) is by $\max_{j,r,i} |\rho_{j,r,i}^{(t)}| \le 4\rho_0$ in Lemma C.5, and (iii) is due to the condition $8n\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot 4m^{\frac{1}{q}}\log(T^*) \le 1/4$ in Condition 4.1 and the result $\rho_0 \leq 1/16$ in Theorem 5.3.

The following Lemma C.17 provides the upper bound for $\max_{j,r} |\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle|$, where $\boldsymbol{\xi}$ is from the test population.

Lemma C.17. Under the same conditions as Theorem 5.5, with probability at least 1 - 4mT. $\exp(-\Omega(n^2))$, we have that $\max_{j,r} |\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle| \leq 1/2$ for all $0 \leq t \leq T$.

Proof of Lemma C.17. Define $\widetilde{\mathbf{w}}_{j,r}^{(t)} = \mathbf{w}_{j,r}^{(t)} - j \cdot \gamma_{j,r}^{(t)} \cdot \frac{\mu}{\|\boldsymbol{\mu}\|_2^2}$, then we have $\langle \widetilde{\mathbf{w}}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle = \langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle$. Since $\widetilde{\mathbf{w}}_{j,r}^{(t)} = \mathbf{w}_{jr}^{\perp} + \sum_{i=1}^{n} \rho_{j,r,i}^{(t)} \cdot \|\boldsymbol{\xi}_i\|_2^{-2} \cdot \boldsymbol{\xi}_i$, we have

$$\|\widetilde{\mathbf{w}}_{j,r}^{(t)}\|_{2} \leq \|\mathbf{w}_{jr}^{\perp}\|_{2} + 4n\rho_{0}\frac{2}{\sigma_{p}\sqrt{d}} = \|\mathbf{w}_{jr}^{\perp}\|_{2} + \widetilde{O}(\frac{n\rho_{0}}{\sigma_{p}\sqrt{d}}),$$
(C.23)

where the inequality is due to the bound for $\rho_{i,r,i}^{(t)}$ and $\|\boldsymbol{\xi}_i\|_2$.

By (C.23), $\max_{j,r} \|\widetilde{\mathbf{w}}_{j,r}^{(t)}\|_2 \le \max_{j,r} \|\mathbf{w}_{jr}^{\perp}\|_2 + \widetilde{C}_2 \frac{n\rho_0}{\sigma_p\sqrt{d}}$, where $\widetilde{C}_2 = \widetilde{O}(1)$. Clearly $\langle \widetilde{\mathbf{w}}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle$ is a Gaussian distribution with mean zero and standard deviation smaller than $\max_{j,r} \|\mathbf{w}_{jr}^{\perp}\|_2 + C_2 \frac{n\rho_0}{\sqrt{d}}$. Therefore, the probability is bounded by

$$\mathbb{P}\left(|\langle \widetilde{\mathbf{w}}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle| \ge 1/2\right) \le 2 \exp\left(-\frac{1}{8\left[\frac{\tilde{C}_{2}^{2}n^{2}\rho_{0}^{2}}{d} + 2\frac{\tilde{C}_{2}n\rho_{0}}{\sqrt{d}}\max_{j,r}\|\mathbf{w}_{jr}^{\perp}\|_{2} + (\max_{j,r}\|\mathbf{w}_{jr}^{\perp}\|_{2})^{2}\right]}\right)$$
$$\le 2 \exp\left(-\frac{1}{8\left[\frac{\tilde{C}_{2}^{2}n^{2}\rho_{0}^{2}}{d} + 2\frac{\tilde{C}_{2}\rho_{0}}{\sqrt{d}} + n^{-2}\right]}\right)$$
$$\le 2 \exp\left(-\Omega(n^{2})\right),$$

where the second inequality is by the assumption $\max_{j,r} \|\mathbf{w}_{jr}^{\perp}\|_2 \leq 1/n$, the third inequality is by $\rho_0 \leq O(\sqrt{d}/n^2)$ in Theorem 5.3. Applying a union bound over j, r, t completes the proof.

Based on Lemmas C.16 and C.17, we now prove Lemma C.6.

Proof of Lemma C.6. Let event \mathcal{E} to be the event that Lemma C.17 holds. Then we can divide $L_{\mathcal{D}}(\mathbf{W}^{(t)})$ into two parts:

 $\mathbb{E}\left[\ell\left(yf(\mathbf{W}^{(t)},\mathbf{x})\right)\right] = \underbrace{\mathbb{E}\left[\mathbbm{1}(\mathcal{E})\ell\left(yf(\mathbf{W}^{(t)},\mathbf{x})\right)\right]}_{I_1} + \underbrace{\mathbb{E}\left[\mathbbm{1}(\mathcal{E}^c)\ell\left(yf(\mathbf{W}^{(t)},\mathbf{x})\right)\right]}_{I_2}.$ (C.24)

In the following analysis, we bound I_1 and I_2 respectively.

Bounding I_1 : Denote $I_j = \{i | y_i = j\}, j = \pm 1$. Since we have

$$L_{S}(\mathbf{W}^{(t)}) = \frac{1}{n} \left[\sum_{i' \in I_{+}} \ell \left(y_{i'} f(\mathbf{W}^{(t)}, \mathbf{x}_{i'}) \right) + \sum_{i' \in I_{-}} \ell \left(y_{i'} f(\mathbf{W}^{(t)}, \mathbf{x}_{i'}) \right) \right] \le \frac{1}{4},$$

2707 thus, $\sum_{i' \in I_i} \ell(y_{i'} f(\mathbf{W}^{(t)}, \mathbf{x}_{i'})) \leq \frac{1}{4}, j = \pm 1$. It follows that for $j = \pm 1$, we have

$$\frac{1}{|I_j|} \sum_{i' \in I_j} \ell(y_{i'} f(\mathbf{W}^{(t)}, \mathbf{x}_{i'})) \le \frac{n}{|I_j|} \frac{1}{4} \le 1$$

2711 where the last inequality is by Lemma C.7. Therefore, there must exist one (\mathbf{x}_i, y_i) with $y = y_i \in I_{j_0}$ 2713 such that 2714 $\ell(y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)) \leq \frac{1}{|I_{j_0}|} \sum_{i' \in I_{j_0}} \ell(y_{i'} f(\mathbf{W}^{(t)}, \mathbf{x}_{i'})) \leq 1$, which implies that $y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i) \geq 0$. 2714 Therefore, we have that

$$\exp(-y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)) \stackrel{(i)}{\leq} 2\log\left(1 + \exp(-y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i))\right) = 2\ell\left(y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)\right) \leq 2L_S(\mathbf{W}^{(t)}),$$
(C.25)

where (i) is by $z \le 2\log(1+z)$, for $z \le 1$ and here we have $\exp(-y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)) \le 1$. If event \mathcal{E} holds, we have that

$$|yf(\mathbf{W}^{(t)}, \mathbf{x}) - y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)| \leq \frac{1}{m} \sum_{j,r} \sigma(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) + \frac{1}{m} \sum_{j,r} \sigma(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle)$$
$$\leq \frac{1}{m} \sum_{j,r} \sigma(1/2) + \frac{1}{m} \sum_{j,r} \sigma(1/2)$$
$$\leq 1, \qquad (C.26)$$

where the second inequality is by $\max_{j,r} |\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle| \leq 1/2$ in Lemma C.17 and $\max_{j,r} |\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle| \leq 1/2$ in Lemma C.16. Thus, we have that

$$I_{1} \leq \mathbb{E}[\mathbb{1}(\mathcal{E}) \exp(-yf(\mathbf{W}^{(t)}, \mathbf{x}))]$$

$$\leq e \cdot \mathbb{E}[\mathbb{1}(\mathcal{E}) \exp(-y_{i}f(\mathbf{W}^{(t)}, \mathbf{x}_{i}))]$$

$$\leq 2e \cdot \mathbb{E}[\mathbb{1}(\mathcal{E})L_{S}(\mathbf{W}^{(t)})],$$

where the first inequality is by the property of cross-entropy loss that $\ell(z) \leq \exp(-z)$ for all z, the second inequality is by $-yf(\mathbf{W}^{(t)}, \mathbf{x}) \leq 1 - y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)$ in (C.26), and the third inequality is by $\exp(-y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)) \leq 2L_S(\mathbf{W}^{(t)})$ in (C.25). Dropping the event in the expectation gives $I_1 \leq 6L_S(\mathbf{W}^{(t)})$.

Bounding I_2 : Next we bound the second term I_2 . We choose an arbitrary training data $(\mathbf{x}_{i'}, y_{i'})$ such that $y_{i'} = y$. Then we have

$$\ell(yf(\mathbf{W}^{(t)}, \mathbf{x})) = \log(1 + \exp(-yF_{+}(\mathbf{W}^{(t)}_{+}, \mathbf{x})) + yF_{-}(\mathbf{W}^{(t)}_{-}, \mathbf{x})))$$

$$\leq \log(1 + \exp(F_{-y}(\mathbf{W}^{(t)}_{-y}, \mathbf{x})))$$

$$\leq 1 + F_{-y}(\mathbf{W}^{(t)}_{-y}, \mathbf{x})$$

$$= 1 + \frac{1}{m} \sum_{j=-y,r\in[m]} \sigma(\langle \mathbf{w}^{(t)}_{j,r}, y\mu \rangle) + \frac{1}{m} \sum_{j=-y,r\in[m]} \sigma(\langle \mathbf{w}^{(t)}_{j,r}, \boldsymbol{\xi} \rangle)$$

$$\leq 1 + 4m^{\frac{1}{q}} \log(T^{*}) + \frac{1}{m} \sum_{j=-y,r\in[m]} \sigma(\langle \mathbf{w}^{(t)}_{j,r}, \boldsymbol{\xi} \rangle)$$

$$\leq 1 + 4m^{\frac{1}{q}} \log(T^{*}) + \widetilde{O}((n\rho_{0}\sigma_{p}^{-1}d^{-\frac{1}{2}})^{q})) \|\boldsymbol{\xi}\|_{2}^{q}, \qquad (C.27)$$

where the first inequality is due to $F_y(\mathbf{W}^{(t)}, \mathbf{x}) \ge 0$, the second inequality is by the property of cross-entropy loss, i.e., $\log(1 + \exp(z)) \le 1 + z$ for all $z \ge 0$, the third inequality is by Lemma C.9 and (C.9) in Assumption C.2, i.e., $\frac{1}{m} \sum_{j=-y,r\in[m]} \sigma(\langle \mathbf{w}_{j,r}^{(t)}, y \boldsymbol{\mu} \rangle) \le \frac{1}{m} \sum_{j=-y,r\in[m]} \sigma(-\gamma_{j,r}^{(t)}) \le \frac{1}{m} \sum_{j=-y,r\in[m]} \sigma(-\gamma_{j,r}^{(t)}) \le \max_{j,r} \{0, (-\gamma_{j,r}^{(0)})^q\} \ll 4m^{\frac{1}{q}} \log(T^*)$, and the last inequality is by (C.23), we have $\langle \widetilde{\mathbf{w}}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle = \langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi} \rangle \le \|\widetilde{\mathbf{w}}_{j,r}^{(t)}\|_2 \cdot \|\boldsymbol{\xi}\|_2 \le \widetilde{O}(n\rho_0\sigma_p^{-1}d^{-\frac{1}{2}})\|\boldsymbol{\xi}\|_2$. Then we further have that

$$I_{2} \leq \sqrt{\mathbb{E}[\mathbb{1}(\mathcal{E}^{c})]} \cdot \sqrt{\mathbb{E}\left[\ell\left(yf(\mathbf{W}^{(t)}, \mathbf{x})\right)^{2}\right]}$$

$$\leq \sqrt{\mathbb{P}(\mathcal{E}^{c})} \cdot \sqrt{[1 + 4m^{\frac{1}{q}}\log(T^{*})]^{2} + \widetilde{O}(n^{2q}\rho_{0}^{-2q}\sigma_{p}^{-2q}d^{-q})\mathbb{E}[\|\boldsymbol{\xi}\|_{2}^{2q}]}$$

$$\leq \exp[-\widetilde{\Omega}(n^{2}) + \operatorname{polylog}(n)]$$

$$\leq \exp(-\widetilde{\Omega}(n^{2})),$$

where the first inequality is by Cauchy-Schwartz inequality, the second inequality is by (C.27), the third inequality is by Lemma C.17, the definition of $\boldsymbol{\xi}$, and the result $\rho_0 \leq 1/16$ in Theorem 5.3.

Plugging the bounds of I_1 , I_2 into (C.24) completes the proof.

2773 C.3 PROOF OF LEMMAS IN SECTION C.2

2771

2772

2774

2782 2783 2784

2786 2787 2788

2792

2793

2794

2795 2796 2797

2798

2799

2801

2802

2803 2804 2805

2807

In this section, we prove the lemmas used in the proof of Section C.2. These lemmas are mainly concerned with the properties of data and the basic properties of the coefficients $\gamma_{j,r,i}^{(t)}, \overline{\rho}_{j,r,i}^{(t)}, \underline{\rho}_{j,r,i}^{(t)}$.

We first prove the following Lemmas C.7 and C.8, which are related to the data distribution.

2779 2780 Proof of Lemma C.7. Since y_i follow Rademache distribution, then by Hoeffding's inequality, with probability at least $1 - \delta/2$,

$$\left|\sum_{i=1}^{n} \mathbb{1}\{y_i = 1\} - \frac{n}{2}\right| \le \sqrt{2n\log(4/\delta)}.$$

2785 By our assumption $n \ge \Omega(\log(1/\delta))$, it follows that

$$|\{i \in [n] : y_i = 1\}| = \sum_{i=1}^n \mathbb{1}\{y_i = 1\} \ge \frac{n}{2} - \sqrt{2n\log(4/\delta)} \ge \frac{n}{4}.$$

Same result could be obtained for $|\{i \in [n] : y_i = -1\}|$. Apply a union bound finishes the proof of this lemma.

Proof of Lemma C.8. Since $\boldsymbol{\xi}_i, i \in [n]$ i.i.d follows $\mathcal{N}(\mathbf{0}, \sigma_p^2 \cdot (\mathbf{I} - \boldsymbol{\mu} \boldsymbol{\mu}^\top \cdot ||\boldsymbol{\mu}||_2^{-2}))$, the proof follows exactly same proof as Lemma B.1. By Bernstein inequality, with the probability of at least $1 - \delta/(2n)$, we have that

$$d\sigma_p^2 - C\sigma_p^2 \sqrt{d\log(4/\delta)} \le \|\boldsymbol{\xi}_i\|_2^2 \le d\sigma_p^2 + C\sigma_p^2 \sqrt{d\log(4n/\delta)},$$

where C is an absolute constant that does not depend on other variables. By assumption $d = \Omega(\log(4n/\delta))$, it follows that

$$\sigma_p^2 d/2 \le \|\boldsymbol{\xi}_i\|_2^2 \le 3\sigma_p^2 d/2$$

For the second result, by Bernstein inequality, for all $i, i' \in [n]$ with $i \neq i'$, with the probability of at least $1 - \delta/(2n^2)$, we have that

$$|\langle \boldsymbol{\xi}_i, \boldsymbol{\xi}_{i'} \rangle| \le 2\sigma_p^2 \cdot \sqrt{d\log(4n^2/\delta)}.$$

Apply a union bound for finishes the proof of this lemma.

We then prove a series of lemmas that will be used in the proof of Proposition C.11 by induction.

Lemma C.18. For any $t \ge 0$, it holds that $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\mu} \rangle = j \cdot \gamma_{j,r}^{(t)}$ for all $r \in [m], j \in \{\pm 1\}$. *Proof of Lemma C.18.* For any $t \ge 0$, we have that $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\mu} \rangle = j \cdot \gamma_{j,r}^{(t)} + \sum_{i'=1}^{n} \overline{\rho}_{j,r,i'}^{(t)} \| \boldsymbol{\xi}_{i'} \|_{2}^{-2} \cdot \langle \boldsymbol{\xi}_{i'}, \boldsymbol{\mu} \rangle + \sum_{i'=1}^{n} \underline{\rho}_{j,r,i'}^{(t)} \| \boldsymbol{\xi}_{i'} \|_{2}^{-2} \cdot \langle \boldsymbol{\xi}_{i'}, \boldsymbol{\mu} \rangle$ $= j \cdot \gamma_{j,r}^{(t)},$ where the equality is by our orthogonal assumption of $\boldsymbol{\xi}$ and $\boldsymbol{\mu}$. *Proof of Lemma C.15.* For $j \neq y_i$, we have $\overline{\rho}_{i,r,i}^{(t)} = 0$ and $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_{i} \rangle = \sum_{i'=1}^{n} \overline{\rho}_{j,r,i'}^{(t)} \| \boldsymbol{\xi}_{i'} \|_{2}^{-2} \cdot \langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle + \sum_{i'=1}^{n} \underline{\rho}_{j,r,i'}^{(t)} \| \boldsymbol{\xi}_{i'} \|_{2}^{-2} \cdot \langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle$ $\leq 4\sqrt{\frac{\log(4n^2/\delta)}{d}} \sum_{i',i'} |\overline{\rho}_{j,r,i'}^{(t)}| + 4\sqrt{\frac{\log(4n^2/\delta)}{d}} \sum_{i',i'} |\underline{\rho}_{j,r,i'}^{(t)}| + \underline{\rho}_{j,r,i'}^{(t)}|$ $\leq \underline{\rho}_{j,r,i}^{(t)} + 32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*),$ where the second inequality is by Lemma C.8 and the last inequality is by $|\overline{\rho}_{j,r,i'}^{(t)}|, |\underline{\rho}_{j,r,i'}^{(t)}| \leq 1$ $4m^{\frac{1}{q}}\log(T^*)$ in (C.17). For $y_i = j$, we have that $\underline{\rho}_{i,r,i}^{(t)} = 0$ and

$$\begin{split} \langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_{i} \rangle &= \sum_{i'=1}^{n} \overline{\rho}_{j,r,i'}^{(t)} \| \boldsymbol{\xi}_{i'} \|_{2}^{-2} \cdot \langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle + \sum_{i'=1}^{n} \underline{\rho}_{j,r,i'}^{(t)} \| \boldsymbol{\xi}_{i'} \|_{2}^{-2} \cdot \langle \boldsymbol{\xi}_{i'}, \boldsymbol{\xi}_{i} \rangle \\ &\leq \overline{\rho}_{j,r,i}^{(t)} + 4\sqrt{\frac{\log(4n^{2}/\delta)}{d}} \sum_{i' \neq i} |\overline{\rho}_{j,r,i'}^{(t)}| + 4\sqrt{\frac{\log(4n^{2}/\delta)}{d}} \sum_{i' \neq i} |\underline{\rho}_{j,r,i'}^{(t)}| \\ &\leq \overline{\rho}_{j,r,i}^{(t)} + 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^{2}/\delta)}{d}} \log(T^{*}), \end{split}$$

where the first inequality is by Lemma C.7 and the second inequality is by $|\overline{\rho}_{i,r,i'}^{(t)}|, |\rho_{i,r,i'}^{(t)}| \leq 1$ $4m^{\frac{1}{q}}\log(T^*)$ in (C.17). Similarly, we can show that $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle \geq \underline{\rho}_{j,r,i}^{(t)} - 32nm^{\frac{1}{q}}\sqrt{\log(4n^2/\delta)/d}$. $\log(T^*)$ and $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle \geq \overline{\rho}_{j,r,i}^{(t)} - 32nm^{\frac{1}{q}}\sqrt{\log(4n^2/\delta)/d} \cdot \log(T^*)$. This completes the proof. \Box

Proof of Lemma C.9. For $j \neq y_i$, by Lemma C.18, we have that

$$\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle = y_i \cdot j \cdot \gamma_{j,r}^{(t)} = -\gamma_{j,r}^{(t)} \le \begin{cases} 0, \text{ if } \gamma_{j,r}^{(t)} \ge 0\\ -\gamma_{j,r}^{(0)}, \text{ otherwise} \end{cases}.$$
(C.28)

Also, we have

$$\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle \leq \underline{\rho}_{j,r,i}^{(t)} + 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \leq 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*),$$
(C.29)

where the first inequality is by Lemma C.15 and the second inequality is due to $\underline{\rho}_{i,r,i}^{(t)} \leq 0$. Thus, we can get that

$$F_{j}(\mathbf{W}_{j}^{(t)}, \mathbf{x}_{i}) = \frac{1}{m} \sum_{r=1} [\sigma(\langle \mathbf{w}_{j,r}^{(t)}, -j \cdot \boldsymbol{\mu} \rangle) + \sigma(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_{i} \rangle)]$$

2859
2860
2861
$$\leq 2 \cdot 2^{q} \max_{j,r} \left\{ -\gamma_{j,r}^{(t)}, 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^{2}/\delta)}{d}} \cdot \log(T^{*}) \right\}^{q}$$
2861
$$= O(1),$$

m

where the first inequality is by (C.28), (C.29) and the last line is by Condition 4.1 which implies 128*nm*^{$\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \le 1$ and $-\gamma_{j,r}^{(t)} \le \max_{j,r} \{0, -\gamma_{j,r}^{(0)}\} \le C_0$ in Assumption C.1.</sup>

Proof of Lemma C.10. For $j = y_i$, we have that

$$\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle = \gamma_{j,r}^{(t)}, \tag{C.30}$$

where the equality is by Lemma C.18. We also have that

$$\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle \le \overline{\rho}_{j,r,i}^{(t)} + 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*), \tag{C.31}$$

where the inequality is by Lemma C.15. If $\max\{\gamma_{j,r}^{(t)}, \overline{\rho}_{j,r,i}^{(t)}\} = O(1)$, we have the following bound

$$F_{j}(\mathbf{W}_{j}^{(t)}, \mathbf{x}_{i}) = \frac{1}{m} \sum_{r=1}^{m} [\sigma(\langle \mathbf{w}_{j,r}^{(t)}, j \cdot \boldsymbol{\mu}) + \sigma(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_{i} \rangle)] \\ \leq 2 \cdot 3^{q} \max_{j,r,i} \left\{ \gamma_{j,r}^{(t)}, \overline{\rho}_{j,r,i}^{(t)}, 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^{2}/\delta)}{d}} \cdot \log(T^{*}) \right\}^{q} \\ = O(1),$$

where the first inequality is by (C.30), (C.31), and the last line is by $\max_{j,r,i} \{\gamma_{j,r}^{(t)}, \overline{\rho}_{j,r,i}^{(t)}\} = O(1)$ and Condition 4.1 which implies $128nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \le 1$.

2886 Now, we prove the Proposition C.11 by induction.

Proof of Proposition C.11. By Assumption C.1, the results in Proposition C.11 hold at t = 0. **Suppose that there exists** $\tilde{T} \leq T^*$ such that the results in Proposition C.11 hold for all time $0 \leq t \leq \tilde{T} - 1$, we aim to prove Proposition C.11 also hold for $t = \tilde{T}$.

1. Proof of (C.18) holds for
$$t = \widetilde{T}$$
, i.e., $\underline{\rho}_{j,r,i}^{(t)} \ge -64nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*)$ for $t = \widetilde{T}$, $r \in [m], j \in \{\pm 1\}$ and $i \in [n]$:

Notice that $\underline{\rho}_{j,r,i}^{(t)} = 0$, for $j = y_i$. Therefore, we only need to consider the case that $j \neq y_i$. When $-64nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \leq \underline{\rho}_{j,r,i}^{(\widetilde{T}-1)} \leq -32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*)$, by Lemma C.15 we have that

$$\langle \mathbf{w}_{j,r}^{(\widetilde{T}-1)}, \boldsymbol{\xi}_i \rangle \leq \underline{\rho}_{j,r,i}^{(\widetilde{T}-1)} + 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \leq 0,$$

and thus by (C.7),

$$\underline{\rho}_{j,r,i}^{(\tilde{T})} = \underline{\rho}_{j,r,i}^{(\tilde{T}-1)} + \frac{\eta}{nm} \cdot \ell_{i}^{\prime(\tilde{T}-1)} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(\tilde{T}-1)}, \boldsymbol{\xi}_{i} \rangle) \cdot \mathbb{1}(y_{i} = -j) \|\boldsymbol{\xi}_{i}\|_{2}^{2} \\
= \underline{\rho}_{j,r,i}^{(\tilde{T}-1)} \\
\geq -64nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^{2}/\delta)}{d}} \cdot \log(T^{*}),$$

where the last inequality is by induction hypothesis. When $-64nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}}$. $\log(T^*) \leq -32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \leq \underline{\rho}_{j,r,i}^{(\tilde{T}-1)} \leq 0$, by Lemma C.15 we have that

$$\langle \mathbf{w}_{j,r}^{(\widetilde{T}-1)}, \boldsymbol{\xi}_i \rangle \leq \underline{\rho}_{j,r,i}^{(\widetilde{T}-1)} + 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \leq 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*)$$
(C.32)

2916 thus we have that 2917 $\underline{\rho}_{j,r,i}^{(\widetilde{T})} = \underline{\rho}_{j,r,i}^{(\widetilde{T}-1)} + \frac{\eta}{nm} \cdot \ell_i^{\prime(\widetilde{T}-1)} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(T-1)}, \boldsymbol{\xi}_i \rangle) \cdot \mathbb{1}(y_i = -j) \|\boldsymbol{\xi}_i\|_2^2$ 2918 2919 $\geq -32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) - \frac{\eta}{nm}\frac{3\sigma_p^2 d}{2}\sigma' \left(32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*)\right)$ 2920 2921 2922 $\geq -32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^{2}/\delta)}{d}} \cdot \log(T^{*}) - \frac{\eta}{nm}\frac{3\sigma_{p}^{2}d}{2}q\left(32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^{2}/\delta)}{d}} \cdot \log(T^{*})\right)$ 2923 2924 $\geq -64nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{4}} \cdot \log(T^*),$ 2925 2926 where we use $\ell_i'^{(\widetilde{T}-1)} \ge -1$ and $\|\boldsymbol{\xi}_i\|_2 \le \frac{3}{2}\sigma_p^2 d$, and (C.32) in the first inequality, the second inequality is by $32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \le 1$ in Condition 4.1 , and the third 2930 inequality is by $\eta = O(nm/(q\sigma_n^2 d))$ in Condition 4.1. 2931 2932 2. The proof of upper bound of $\overline{\rho}_{j,r,i}^{(t)}$ in (C.17) holds for $t = \widetilde{T}$: We have 2933 $|\ell_i^{\prime(t)}| = \frac{1}{1 + \exp\{y_i \cdot [F_{+1}(\mathbf{W}_{+1}^{(t)}, \mathbf{x}_i) - F_{-1}(\mathbf{W}_{-1}^{(t)}, \mathbf{x}_i)]\}}$ 2935 $\leq \exp\{-y_i \cdot [F_{+1}(\mathbf{W}_{+1}^{(t)}, \mathbf{x}_i) - F_{-1}(\mathbf{W}_{-1}^{(t)}, \mathbf{x}_i)]\}$ 2937 $\leq \exp\{-F_{u_i}(\mathbf{W}_{u_i}^{(t)}, \mathbf{x}_i) + \widetilde{C}_0\}$ 2938 2939 $\leq \exp\{-\frac{1}{m}\sum_{i=1}^{m} [\sigma(\langle \mathbf{w}_{y_i,r'}^{(t)}, y_i \cdot \boldsymbol{\mu}) + \sigma(\langle \mathbf{w}_{y_i,r'}^{(t)}, \boldsymbol{\xi}_i \rangle)] + \widetilde{C}_0)\}.$ 2940 (C.33) 2941 2942 where the second inequality is due to Lemma C.9 holds, there exists constant \tilde{C}_0 such that 2943 $F_j(\mathbf{W}_i^{(t)}, \mathbf{x}_i) \leq \widetilde{C}_0, j = -y_i$, and the third inequality is by the definition of F_{y_i} . Moreover, 2944 recall the update rule of $\gamma_{i,r}^{(t)}$ and $\overline{\rho}_{i,r,i}^{(t)}$ in (C.6) and (C.7), $\gamma_{j,r}^{(t+1)} = \gamma_{j,r}^{(t)} - \frac{\eta}{nm} \cdot \sum_{i=1}^{n} \ell_i^{\prime(t)} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(t)}, y_i \cdot \boldsymbol{\mu} \rangle) \|\boldsymbol{\mu}\|_2^2,$ 2947 2948 $\overline{\rho}_{j,r,i}^{(t+1)} = \overline{\rho}_{j,r,i}^{(t)} - \frac{\eta}{nm} \cdot \ell_i^{\prime(t)} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) \cdot \mathbb{1}(y_i = j) \|\boldsymbol{\xi}_i\|_2^2.$ Assume there exists $\overline{\rho}_{j,r,i}^{(t)} > 2m^{\frac{1}{q}} \log(T^*)$ for some $t \in [0,T^*]$, if this does not hold, $\overline{\rho}_{i,r,i}^{(t)} \leq 2m^{\frac{1}{q}}\log(T^*) \leq 4m^{\frac{1}{q}}\log(T^*)$ holds for all $t \in [0,T^*]$, which indicates (C.17) holds. Thus, denote $t_{j,r,i}$ to be the last time $t < T^*$ that $\overline{\rho}_{j,r,i}^{(t)} \leq 2m^{\frac{1}{q}} \log(T^*)$. Then we 2954

have that $-\underbrace{\sum_{\substack{t_{j,r,i} < t < \widetilde{T}}} \frac{\eta}{nm} \cdot \ell_i^{\prime(t)} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) \cdot \mathbb{1}(y_i = j) \|\boldsymbol{\xi}_i\|_2^2}_{r}.$ (C.34)

We first bound I_1 as follows,

2955

2956

2957 2958 2959

2960 2961

2964 2965

$$|I_1| \leq qn^{-1}m^{-1}\eta \left(\overline{\rho}_{j,r,i}^{(t_{j,r,i})} + 32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*)\right)^{q-1} \frac{3}{2}\sigma_p^2 d$$

$$\leq q2^q n^{-1}m^{-1}\eta [4m^{\frac{1}{q}}\log(T^*)]^{q-1}\sigma_p^2 d$$

$$< m^{\frac{1}{q}}\log(T^*),$$

where the first inequality is by Lemmas C.8 and C.15, the second inequality is by $32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \leq 2m^{\frac{1}{q}}\log(T^*)$ and $\overline{\rho}_{j,r,i}^{(t)} \leq 2m^{\frac{1}{q}}\log(T^*)$, the last inequality is by $\eta \leq nm/\{6q[4m^{\frac{1}{q}}\log(T^*)]^{q-2}\sigma_p^2d\}$ in Condition 4.1.

We then give a bound for I_2 . For $t_{j,r,i} < t < \tilde{T}$ and $y_i = j$, we can lower bound $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle$ as follows,

$$\begin{aligned} \langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle &\geq \overline{\rho}_{j,r,i}^{(t)} - 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \\ &\geq 2m^{\frac{1}{q}} \log(T^*) - 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \\ &\geq m^{\frac{1}{q}} \log(T^*), \end{aligned}$$

where the first inequality is by Lemma C.15, the second inequality is by $\overline{\rho}_{j,r,i}^{(t)} > 2m^{\frac{1}{q}}\log(T^*)$ due to the definition of $t_{j,r,i}$, the last inequality is by $32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \le m^{\frac{1}{q}}\log(T^*)$. Similarly, for $t_{j,r,i} < t < \widetilde{T}$ and $y_i = j$, we can also upper bound $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle$ as follows,

$$\begin{aligned} \langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle &\leq \overline{\rho}_{j,r,i}^{(t)} + 8nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot 4\log(T^*) \\ &\leq 4m^{\frac{1}{q}}\log(T^*) + 32nm^{\frac{1}{q}} \sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \\ &\leq 8m^{\frac{1}{q}}\log(T^*), \end{aligned}$$

where the first inequality is by Lemma C.15, the second inequality is by induction hypothesis $\overline{\rho}_{j,r,i}^{(t)} \leq 4m^{\frac{1}{q}} \log(T^*)$, the last inequality is by $32nm^{\frac{1}{q}}\sqrt{\frac{\log(4n^2/\delta)}{d}} \cdot \log(T^*) \leq m^{\frac{1}{q}} \log(T^*)$. Thus, plugging the upper and lower bounds of $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle$ into I_2 gives

$$\begin{aligned} |I_{2}| &= \sum_{t_{j,r,i} < t < \widetilde{T}} \frac{\eta}{nm} \cdot |\ell_{i}^{\prime(t)}| \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_{i} \rangle) \cdot \mathbb{1}(y_{i} = j) \|\boldsymbol{\xi}_{i}\|_{2}^{2} \\ &\leq \sum_{t_{j,r,i} < t < \widetilde{T}} \frac{\eta}{nm} \cdot \exp(-\frac{1}{m}\sigma(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_{i} \rangle) + \widetilde{C}_{0}) \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_{i} \rangle) \cdot \mathbb{1}(y_{i} = j) \|\boldsymbol{\xi}_{i}\|_{2}^{2} \\ &\leq \frac{e^{\widetilde{C}_{0}}\eta T^{*}}{nm} \exp(-\frac{(4m^{\frac{1}{q}}\log(T^{*}))^{q}}{m \cdot 4^{q}})q(4m^{\frac{1}{q}}\log(T^{*}))^{q-1}2^{q-1}\frac{3}{2}\sigma_{p}^{2}d \\ &\leq 0.25T^{*}\exp(-\frac{(4m^{\frac{1}{q}}\log(T^{*}))^{q}}{m \cdot 4^{q}}) \cdot 4m^{\frac{1}{q}}\log(T^{*}) \\ &= 0.25T^{*}\exp(-\log(T^{*})^{q}) \cdot 4m^{\frac{1}{q}}\log(T^{*}) \\ &\leq m^{\frac{1}{q}}\log(T^{*}), \end{aligned}$$

where the first inequality is by (C.33), the second inequality is by Lemma C.8 and upper and lower bound of $\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle$ given above, the third inequality is by $\eta = O(nm/\{e^{\tilde{C}_0}q2^{q+2}[4m^{\frac{1}{q}}\log(T^*)]^{q-2}\sigma_p^2d\})$ in Condition 4.1, and the last inequality is due to the fact that $\log(T^*)^q \ge \log(T^*)$. Plugging the bound of I_1, I_2 into (C.34) completes the proof for $\bar{\rho}_{i,r,i}^{(t)}$.

3023
3. Similarly, we can prove $\gamma_{j,r}^{(0)} \leq \gamma_{j,r}^{(t)} \leq 4m^{\frac{1}{q}} \log(T^*)$ in (C.16). By $|\gamma_{j,r}^{(0)}| \leq 4m^{\frac{1}{q}} \log(T^*)$ in Assumption C.1 and $\gamma_{j,r}^{(t)}$ is increasing, we have $\gamma_{j,r}^{(0)} \leq \gamma_{j,r}^{(t)}$ naturally holds. Therefore, we only need to prove $\gamma_{j,r}^{(t)} \leq 4m^{\frac{1}{q}} \log(T^*)$ holds for all $0 \leq t \leq T^*$: Assume there exists $\gamma_{j,r}^{(t)} > 2m^{\frac{1}{q}}\log(T^*)$ for some $t \in [0,T^*]$, if this does not hold, $\gamma_{j,r}^{(t)} \le 2m^{\frac{1}{q}}\log(T^*) \le 4m^{\frac{1}{q}}\log(T^*)$ holds for all $t \in [0,T^*]$ indicates (C.16) holds. Thus, denote $\tilde{t}_{j,r}$ to be the last time $t < T^*$ that $\gamma_{j,r}^{(t)} \le 2m^{\frac{1}{q}}\log(T^*)$ hold. Then we have that

$$\gamma_{j,r}^{(\widetilde{T})} = \gamma_{j,r}^{(\widetilde{t}_{j,r})} - \underbrace{\frac{\eta}{nm} \cdot \sum_{i=1}^{n} \ell_{i}^{\prime(\widetilde{t}_{j,r})} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(\widetilde{t}_{j,r})}, y_{i}\boldsymbol{\mu} \rangle) \cdot \|\boldsymbol{\mu}\|_{2}^{2}}_{I_{1}^{\prime}} - \underbrace{\sum_{\widetilde{t}_{j,r} < t < \widetilde{T}} \frac{\eta}{nm} \cdot \sum_{i=1}^{n} \ell_{i}^{\prime(t)} \cdot \sigma^{\prime}(\langle \mathbf{w}_{j,r}^{(t)}, y_{i}\boldsymbol{\mu} \rangle) \cdot \|\boldsymbol{\mu}\|_{2}^{2}}_{I_{2}^{\prime}}.$$
(C.35)

We first bound I'_1 as follows,

~

$$|I_1'| \le \eta n^{-1} m^{-1} nq \left(\gamma_{j,r}^{(\tilde{t}_{j,r})}\right)^{q-1} \|\boldsymbol{\mu}\|_2^2 \le q m^{-1} \eta (2m^{\frac{1}{q}} \log(T^*))^{q-1} \|\boldsymbol{\mu}\|_2^2 \le m^{\frac{1}{q}} \log(T^*),$$

where the first inequality is by Lemma C.9 and C.10, the second inequality is by $\gamma_{j,r}^{(t_{j,r})} \leq 2m^{\frac{1}{q}}\log(T^*)$, the last inequality is by $\eta \leq m \cdot 2^{q-3}/\{q[4m^{\frac{1}{q}}\log(T^*)]^{q-2}\|\boldsymbol{\mu}\|_2^2\}$ in Condition 4.1.

We then bound I'_2 , we have

$$|I'_{2}| = \sum_{t_{j,r,i} < t < \widetilde{T}} \frac{\eta}{nm} \cdot \sum_{i=1}^{n} |\ell'^{(t)}_{i}| \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i}\boldsymbol{\mu} \rangle) \cdot \|\boldsymbol{\mu}\|_{2}^{2}$$

$$= \sum_{t_{j,r,i} < t < \widetilde{T}} \frac{\eta}{nm} \cdot \left[\sum_{i=1}^{n} |\ell'^{(t)}_{i}| \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i}\boldsymbol{\mu} \rangle) \cdot \mathbb{1}(y_{i} = j) \|\boldsymbol{\mu}\|_{2}^{2} + \sum_{i=1}^{n} |\ell'^{(t)}_{i}| \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i}\boldsymbol{\mu} \rangle) \cdot \mathbb{1}(y_{i} \neq j) \|\boldsymbol{\mu}\|_{2}^{2}\right]$$

$$= \sum_{t_{j,r,i} < t < \widetilde{T}} \frac{\eta}{nm} \cdot \sum_{i=1}^{n} |\ell'^{(t)}_{i}| \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_{i}\boldsymbol{\mu} \rangle) \cdot \mathbb{1}(y_{i} = j) \|\boldsymbol{\mu}\|_{2}^{2}$$
(C.36)

where the third equality is by $\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle = -\gamma_{j,r}^{(t)} \leq 0$ in Lemma C.9. For $t_{j,r,i} < t < \widetilde{T}$, we upper bound $\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle$, $j = y_i$ (namely $\langle \mathbf{w}_{y_i,r}^{(t)}, y_i \boldsymbol{\mu} \rangle$) as

$$\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle = y_i \cdot j \cdot \gamma_{j,r}^{(t)} = \gamma_{j,r}^{(t)} \le 4m^{\frac{1}{q}} \log(T^*)$$

where the equality is by Lemma C.10, the second inequality is by induction hypothesis $|\gamma_{j,r}^{(t)}| \leq 4m^{\frac{1}{4}} \log(T^*)$. For $\tilde{t}_{j,r} < t < \tilde{T}$ and $y_i = j$, we can also lower bound $\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle$ (namely $\langle \mathbf{w}_{y_i,r}^{(t)}, y_i \boldsymbol{\mu} \rangle$) as follows,

$$\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle = y_i \cdot j \cdot \gamma_{j,r}^{(t)} = \gamma_{j,r}^{(t)} \ge 2m^{\frac{1}{q}} \log(T^*)$$

where the inequality by $\gamma_{j,r}^{(t)} > 2m^{\frac{1}{q}} \log(T^*)$ due to the definition of $\tilde{t}_{j,r}$. Thus, plugging the upper bound of $\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle$ and the lower bound of $\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle$ when $y_i = j$ into $|I'_2|$ (C.36) gives $|I_2'| = \sum_{\substack{t, \dots, t \in \widetilde{T} \\ nm}} \frac{\eta}{nm} \cdot \sum_{i=1}^n |\ell_i'^{(t)}| \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle) \cdot \mathbb{1}(y_i = j) \cdot \|\boldsymbol{\mu}\|_2^2$ $\leq \sum_{t \in \widetilde{C}} \frac{\eta}{nm} \cdot \sum_{i=1}^{n} \exp\left(-\frac{1}{m} \sigma(\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle) + \widetilde{C}_0\right) \cdot \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, y_i \boldsymbol{\mu} \rangle) \cdot \mathbb{1}(y_i = j) \cdot \|\boldsymbol{\mu}\|_2^2$ $\leq \frac{e^{\widetilde{C}_0}\eta T^*}{m} \exp\left(-\frac{(4m^{\frac{1}{q}}\log(T^*))^q}{m \cdot 2^q}\right) q(4m^{\frac{1}{q}}\log(T^*))^{q-1} \|\boldsymbol{\mu}\|_2^2$ $\leq 0.25T^* \exp\left(-\frac{(4m^{\frac{1}{q}}\log(T^*))^q}{m \cdot 2^q}\right) \cdot 4m^{\frac{1}{q}}\log(T^*)$ $\leq 0.25T^* \exp\left(-\log(T^*)^q\right) \cdot 4m^{\frac{1}{q}}\log(T^*)$ $< m^{\frac{1}{q}} \log(T^*),$ where the first inequality is by (C.33), the second inequality is by the upper bound of $\langle \mathbf{w}_{i,r}^{(t)}, y_i \boldsymbol{\mu} \rangle$ and the lower bound of $\langle \mathbf{w}_{i,r}^{(t)}, y_i \boldsymbol{\mu} \rangle$ $(y_i = j)$ given above, the third inequality is by $\eta \leq O(m/\{4e^{\widetilde{C}_0}q[4m^{\frac{1}{q}}\log(T^*)]^{q-2}\|\boldsymbol{\mu}\|_2^2\})$ in Condition 4.1, and the last inequality is due to the fact that $\log(T^*)^q \ge \log(T^*)$. Plugging the bound of I'_1, I'_2 into (C.35) completes the proof for $\gamma_{i,r}^{(t)}$. Therefore, Proposition C.11 holds for $t = \tilde{T}$, which completes the induction. Finally, the following Lemma C.12, which is based on Proposition C.11, is proved. Proof of Lemma C.12. Firstly, we prove that $-\ell'(y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)) \cdot \|\nabla f(\mathbf{W}^{(t)}, \mathbf{x}_i)\|_F^2 = O(\max\{\|\boldsymbol{\mu}\|_2^2, \sigma_z^2 d\}).$ (C.37) Without loss of generality, we suppose that $y_i = 1$ and $\mathbf{x}_i = [\boldsymbol{\mu}^{\perp}, \boldsymbol{\xi}_i]$. Then we have that $\|\nabla f(\mathbf{W}^{(t)}, \mathbf{x}_i)\|_F \leq \frac{1}{m} \sum_{i,r} \left\| \left[\sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\mu} \rangle) \boldsymbol{\mu} + \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) \boldsymbol{\xi}_i \right] \right\|_2$ $\leq \frac{1}{m} \sum_{i,r} \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\mu} \rangle) \|\boldsymbol{\mu}\|_2 + \frac{1}{m} \sum_{i,r} \sigma'(\langle \mathbf{w}_{j,r}^{(t)}, \boldsymbol{\xi}_i \rangle) \|\boldsymbol{\xi}_i\|_2$ $\leq 2q \left[F_{+1}(\mathbf{W}_{+1}^{(t)}, \mathbf{x}_i) \right]^{(q-1)/q} \max\{ \|\boldsymbol{\mu}\|_2, 2\sigma_p \sqrt{d} \}$ $+ 2q \left[F_{-1}(\mathbf{W}_{-1}^{(t)}, \mathbf{x}_i) \right]^{(q-1)/q} \max\{ \|\boldsymbol{\mu}\|_2, 2\sigma_p \sqrt{d} \}$ $\leq 2q \left\{ \left[F_{+1}(\mathbf{W}_{+1}^{(t)}, \mathbf{x}_i) \right]^{(q-1)/q} + \left[1 + 4m^{\frac{1}{q}} \log(T^*) \right]^{(q-1)/q} \right\} \max\{ \|\boldsymbol{\mu}\|_2, 2\sigma_p \sqrt{d} \},$ where the first and second inequalities are by triangle inequality, the third inequality is

3129 by Jensen's inequality and Lemma C.8. The last inequality is by Lemma C.9, i.e., 3130 $\frac{1}{m}\sum_{j=-y,r\in[m]}\sigma(\langle \mathbf{w}_{j,r}^{(t)}, y\boldsymbol{\mu}\rangle) \leq \frac{1}{m}\sum_{j=-y,r\in[m]}\sigma(-\gamma_{j,r}^{(t)}) \leq \frac{1}{m}\sum_{j=-y,r\in[m]}\sigma(-\gamma_{j,r}^{(0)}) \leq \frac{1}{m}\sum_{j=-$ Lemma C.9. Denote $A = F_{\pm 1}(\mathbf{W}_{\pm 1}^{(t)}, \mathbf{x}_i)$, then we have $A \ge 0$. Thus, $-\ell'(y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)) \cdot \|\nabla f(\mathbf{W}^{(t)}, \mathbf{x}_i)\|_F^2$ $\leq -\ell'(A-1-4m^{\frac{1}{q}}\log(T^*))\cdot 4q^2 \left\{ A^{(q-1)/q} + \left[1+4m^{\frac{1}{q}}\log(T^*)\right]^{(q-1)/q} \right\}^2 \cdot \max\{\|\boldsymbol{\mu}\|_2, 2\sigma_p\sqrt{d}\}^2$ $= -4q^{2}\ell'(A-1-4m^{\frac{1}{q}}\log(T^{*}))\left\{A^{(q-1)/q} + \left[1+4m^{\frac{1}{q}}\log(T^{*})\right]^{(q-1)/q}\right\}^{2} \cdot \max\{\|\boldsymbol{\mu}\|_{2}^{2}, 4\sigma_{p}^{2}d\}$ $\leq \left\{ \max_{z>0} -4q^2\ell'(z-1-4m^{\frac{1}{q}}\log(T^*))\{z^{(q-1)/q} + \left[1+4m^{\frac{1}{q}}\log(T^*)\right]^{(q-1)/q}\}^2 \right\} \cdot \max\{\|\boldsymbol{\mu}\|_2^2, 4\sigma_p^2d\}$ $\stackrel{(i)}{=} O(\max\{\|\boldsymbol{\mu}\|_2^2, \sigma_n^2 d\}),$ where (i) is by $\max_{z\geq 0} -4q^2\ell'(z-1-4m^{\frac{1}{q}}\log(T^*))(z^{(q-1)/q} + \left[1+4m^{\frac{1}{q}}\log(T^*)\right]^{(q-1)/q})^2 < 1$ ∞ because ℓ' has an exponentially decaying tail. Now we can upper bound the gradient norm $\|\nabla L_S(\mathbf{W}^{(t)})\|_F$ as follows, $\|\nabla L_S(\mathbf{W}^{(t)})\|_F^2 \le \left[\frac{1}{n}\sum_{i=1}^n \ell' \left(y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)\right) \|\nabla f(\mathbf{W}^{(t)}, \mathbf{x}_i)\|_F\right]^2$ $\leq \left[\frac{1}{n}\sum_{i=1}^{n}\sqrt{-O(\max\{\|\boldsymbol{\mu}\|_{2}^{2},\sigma_{p}^{2}d\})\ell'(y_{i}f(\mathbf{W}^{(t)},\mathbf{x}_{i}))}\right]^{2}$ $\leq O(\max\{\|oldsymbol{\mu}\|_2^2, \sigma_p^2 d\}) \cdot rac{1}{n} \sum_{i=1}^n -\ell' ig(y_i f(\mathbf{W}^{(t)}, \mathbf{x}_i)ig)$ $\leq O(\max\{\|\boldsymbol{\mu}\|_2^2, \sigma_n^2 d\}) L_S(\mathbf{W}^{(t)}),$ where the first inequality is by triangle inequality, the second inequality is by (C.37), the third inequality is by Cauchy-Schwartz inequality and the last inequality is due to the property of the cross entropy loss $-\ell' \leq \ell$.