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ABSTRACT

We introduce LION, a novel sequence-to-sequence framework that unifies the bidi-
rectionality and parallelized training of Transformers with the fast inference of
recurrent neural networks. LION is built upon a mathematical formulation where
full kernelized attention with a learnable mask is efficiently computed using a bidi-
rectional selective recurrent model, matching the effectiveness of softmax-based at-
tention with constant-time inference. Our framework naturally accounts for spatial
and temporal relationships within input sequences, reducing reliance on heuristic
positional embeddings and facilitating straightforward scalability in context length
and resolution. Using our framework and inspired by the recent state-space mod-
els, we propose three main running examples LION-LIT , LION-RETNET , and
LION-S , a transformer with selective mask and recurrent inference. Numerical

evaluations on tasks such as language modeling, the Long-Range Arena, and im-
age classification show that LION framework achieves performance on par with
state-of-the-art models while delivering fast training and inference efficiency.

1 INTRODUCTION

The new material added for the rebuttal is in blue.

Transformers (Vaswani et al., 2017) have become a key pillar for large language models (LLMs),
with different variants tailored to specific applications (Brown et al., 2020; Achiam et al., 2023; Team
et al., 2023). A key distinction lies in the use of causal (autoregressive) Transformers for language
modeling (Kojima et al., 2022; Dubey et al., 2024), which predict tokens sequentially based on prior
context. In contrast, bidirectional Transformers are central to large vision-language models (Liu
et al., 2023; Zhu et al., 2024a; Wu et al., 2024), such as the Vision Transformer (ViT), which encodes
image data in models like CLIP (Radford et al., 2021) and acts as the decoder in diffusion models
for image generation (Ho et al., 2020).

Despite the success of autoregressive Transformers, they face significant resource challenges,
particularly in the need to store key and value information, known as KV-cache (Pope et al., 2023),
during inference. This leads to increased memory consumption, especially when processing long
sequences in stark contrast to earlier recurrent neural networks (RNNs) (Elman, 1990), which has
long offered a more memory-efficient alternative by maintaining a hidden state.

To address the resource bottlenecks in Transformers, Linear Transformer (Katharopoulos et al., 2020)
has been proposed, expressing attention as a linear dot-product of kernel feature maps. This allows
Transformers to be reformulated as RNNs, enabling the processing of longer sequences with reduced
memory demands. Given the popularity of bidirectional Transformers across various fields and the
efficiency of RNNs, a natural question arises:

Is a bidirectional Transformer actually a bidirectional RNN?

In this paper, we answer this question affirmatively. Indeed, we demonstrate that applying two linear
attention mechanisms simply in opposite directions and then summing them does not recover the
original bidirectional Transformer (cf., Observation 3.1). Instead, we propose a novel design, LION,
that allows the bidirectional Transformer to be expressed as a bidirectional RNN. Our framework
retains the advantages of parallel training found in Transformers, offering bidirectionality in inference
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while addressing the memory issues inherent in traditional Transformer models. A schematic of
the proposed framework LION is visualized in Figure 1.

Besides the popularity of Transformers and their variants, state space models (SSMs) have emerged as
another family of architecture for sequence modeling due to their efficient inference capabilities (Gu
et al., 2022; Smith et al., 2023; Gu et al., 2020). The representative works Mamba (Gu & Dao, 2024)
and Mamba-2 (Dao & Gu, 2024) have also demonstrated strong performance in language modeling.
Building on our bidirectional Transformer theory, LION framework combines the expressive power
of bidirectional Transformers with the selective mechanism of Mamba, further enhancing the model’s
capability to process long sequences while maintaining computational efficiency. Through this
approach, we aim to provide a scalable and efficient solution for tasks that demand both long-range
dependency modeling and dense information processing. Overall, our main contributions can be
summarized as follows:

• We propose a theoretical framework LION (Theorem 3.3), which expresses bidirectional
Transformers as bidirectional RNNs, enabling efficient inference for long sequences while
benefiting from well-established Transformer training (cf., Table 1).

• Our theoretical framework offers the foundations to transform a wide class of autoregressive
recurrent models (cf., Appendix B) into their bidirectional counterparts.

• We propose three main running examples of our framework, inspired by prior work, namely:

1. LION-LIT : Scaled attention without masking, a bidirectional extension of Linear
Transformer Katharopoulos et al. (2020).

2. LION-RETNET : Fixed masked scaled attention with scalar and learnable state param-
eter γ, an extension of RETNET Sun et al. (2023) into the bidirectional setting.

3. LION-S : Selective masked scaled attention with input-dependent mask λi, inspired
by the selectivity of Mamba-2 Dao & Gu (2024).

• Through extensive experiments in the Long Range Arena, Vision Tasks, and Masked
Language Modeling, we have demonstrated the capabilities of the LION framework and the
models built upon it, as outlined above.

Due to the space constraints, a detailed overview of related work is deferred to Appendix B. Section 2
in the sequel provides the necessary preliminaries on attention, state space model, and linear recurrent
network. Section 3 then explains our framework LION, and mathematically grounds our concrete
contributions. Section 4 describes how to build LION-S by introducing selectivity via discretization
of continuous state-space models, which is then followed by numerical evidence in Section 5 and the
conclusions in Section 6.

2 PRELIMINARIES AND BACKGROUND

Notation. Matrices (vectors) are symbolized by uppercase (lowercase) boldface letters, e.g., Y and
y. The Hadamard product is denoted by ⊙ and ∗ signifies the scalar product.

Attention. Attention have been a cornerstone of foundation models for several years (Vaswani et al.,
2017; Kojima et al., 2022). Given a data sequence x1,x2, . . . ,xL, a single-head softmax-attention
uses a softmax function to define the attention weights:

(qi,ki,vi) = (Wqxi,Wkxi,Wvxi) , yi =

i∑
j=1

exp(q⊤
i kj)∑i

p=1 exp(q
⊤
i kp)

vj , (1)

where qi,ki,vi,yi ∈ Rd and the weights Wq,Wk,Wv ∈ Rd×d with d being the projection
dimension. With Q := [q1, . . . ,qL]

⊤, K := [k1, . . . ,kL]
⊤, V := [v1, . . . ,vL]

⊤ ∈ RL×d, we can
then express the attention as the following matrix form: Y = softmax

(
QK⊤)V. Such matrix form

is crucial for parallelized training over the sequence length. In contrast, (1) is used during inference
for generating or processing tokens. However, for autoregressive transformers (Kojima et al., 2022),
employing (1) requires storing the previous L tokens to attend to the latest token during inference.
This approach is less efficient than RNNs, where only the state is stored regardless of the previous
sequence (cf., Orvieto et al. (2023)).

Attention can be generalized via a kernel function κ : Rd × Rd → R (Tsai et al., 2019) as

2
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Figure 1: (Left) standard Transformer block. (Middle) training mode of LION with the bidirectional
Transformer. (Right) inference mode of LION with the bidirectional RNN. Norm refers to Layer
normalization, Proj is the projection operation to calculate Q,K,V and λ values, Scale is the scaling
operation in Eq. (4), Inv is the inversion operation, A is the linear attention matrix, A = QKT ,
MF/B are forward/backward recurrence masks, yF/B are forward/backward outputs and cF/B are
forward/backward are the scaling coefficients. For further definitions of the architectural elements in
LION, please refer to Sections 2 and 3.

Table 1: Summary of training and inference strategies. ⇄ represents bidirectionality of the method.
Complexity indicates the computational and memory requirements during inference for processing
L tokens and d is the model dimension. LION (Theorem 3.3) is designed to parallelize training
using masked attention while employing recurrence during inference, specifically for bidirectional
sequence modeling. denotes the adaptation of auto regressive recurrent models with LION to
truly exploit bidirectionality and attention, such as Linear Transformer as LION-LIT. represents
injecting selectivity into attention while inferring with bidirectional recurrence as well as benefiting
from the transformer training system pipeline, such as LION-S.

Train
Strategy

Inference
Strategy

Method
Instantiations

Train sequential
operations Complexity Inference

Memory ⇄

Recurrence Recurrence LSTM, GRU O(L) O(Ld) O(d) ✗
Recurrence Recurrence ELMO O(L) O(Ld) O(Ld) ✓
Attention Attention Transformer, Vit, BERT O(1) O(L2d2) O(L2d2) ✓
Causal Attention KV Cache GPT-x, Llama O(1) O(L2d2) O(Ld2) ✗
Causal Attention Recurrence LinearTrans, RetNet O(1) O(Ld2) O(d2) ✗
Parallel Scan Recurrence Mamba, Mamba-2, S5 O(1) O(Ld) O(d) ✗
Parallel Scan Recurrence Vim O(1) O(Ld2) O(Ld) ✓
Attention LION (3.3) LION-LIT O(1) O(Ld2) O(Ld) ✓
Attention LION (3.3) LION-RETNET O(1) O(Ld2) O(Ld) ✓
Attention LION (3.3) LION-S O(1) O(Ld2) O(Ld) ✓

yi =

i∑
j=1

κ(qi,kj)∑i
p=1 κ(qi,kp)

vj . (2)

Katharopoulos et al. (2020) introduces Linear Attention which replaces the exponential kernel
κ(qi,kj) = exp(q⊤

i kj) with feature map function ϕ(qi)
⊤ϕ(kj) where ϕ(·) : Rd → Rn maps to

a higher-dimensional space. For simplicity of notation, we use qi := ϕ(Wqxi) and similarly for
ki := ϕ(Wkxi) in the sequel. This approach enables the transformer to be framed as an RNN with
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linear recurrence 1, as shown in (4). This formulation eliminates the need to store previous tokens
during inference, while still maintaining a parallelized form for training.

State Space Models. Inspired by continuous-time systems, state space models (SSMs) have emerged
as alternative sequence models. These models project tokens into a state space representation, and
learn the discretized parameters (Ā, B̄, and C̄) of the continuous SSM (A(t), B(t), and C(t)) (Gu
et al., 2022; Smith et al., 2023; Gu et al., 2020). Recent SSMs designed for language modeling,
such as Mamba (Gu & Dao, 2024), use input-dependent matrices Āi, B̄i, and C̄i, showing strong
performance and competitiveness with Transformers. Recently, Mamba-2 (Dao & Gu, 2024) has
demonstrated a strong connection between transformers and SSMs through the theory of State Space
Duality (where C̄i, B̄i can be considered as qi,kj).

Linear Recurrent Models. The Transformer and SSMs motivate examining all these architectures
through the lens of the linear recurrent models (Yang et al., 2024):
STATE SPACE MODEL

CONTINUOUS

S′
(t) = A(t)S(t) +B(t)x(t), (3a)

y(t) = C(t)S(t) (3b)

DISCRETE

Si = ĀiSi−1 + B̄ixi, (3c)
yi = CiSi (3d)

LINEAR ATTENTION

Si = Si−1 + kiv
⊤
i , (4a)

zi = zi−1 + ki, (4b)

SCALED : yi =
qi

⊤Si

qi
⊤zi

(4c)

NON-SCALED : yi = qi
⊤Si (4d)

LINEAR RECURRENT MODEL

Si = Λi ⋆Si−1 + γi kiv
⊤
i , (5a)

zi = αi zi−1 + βi ki, (5b)

SCALED : yi =
qi

⊤Si

qi
⊤zi

(5c)

NON-SCALED : yi = qi
⊤Si (5d)

where Si ∈ Rd×d and zi ∈ Rd are the hidden state matrix and the vector used for scaling.

Linear recurrent models provide another general framework for sequence modeling in addition to
standard transformers (Vaswani et al., 2017; Kojima et al., 2022). These models however introduce
four additional parameters, Λi,γi, βi, αi, along with their corresponding operation functions and
⋆; please refer to Table 5 for detailed choices for different architectures.

When chosen wisely (e.g., using the HIPPO theory (Gu et al., 2020)), these parameters can
significantly enhance the model’s ability to capture long-range dependencies within sequences (Gu
et al., 2022; Gu & Dao, 2024; Yang et al., 2024). For linear recurrent models, efficient training is
achieved either by employing a form similar to Y = softmax

(
QK⊤)V or by using techniques like

parallel scan (Blelloch, 1990), as utilized by many SSMs (e.g., Mamba, S5). Table 1 summarizes
the training strategy and inference complexity of different sequence models.

3 LION: EXPANDING FULL ATTENTION TO BIDIRECTIONAL RNN

We first develop the theoretical foundation for extending the autoregressive case to the bidirectional
setting with equivalence to the scaled attention. We introduce LION, a bidirectional sequence-to-
sequence framework equivalent to attention that benefits from attention parallelization during training
and achieves fast linear recurrence during inference.

Observation 3.1. First, we observe that the combination of the forward and backward recurrences of
the linear recurrent model cannot yield the attention. Consider the following bidirectional recurrence
equations:

a1) SF/B
i = S

F/B
i−1 + kiv

⊤
i , z

F/B
i = z

F/B
i−1 + ki, y

F/B
i =

qi
⊤S

F/B
i

qi
⊤z

F/B
i

. ̸= a2) Y = SCALE(QK⊤)V (6)

b1) SF/B
i = λiS

F/B
i−1 + kiv

⊤
i , z

F/B
i = λiz

F/B
i−1 + ki, y

F/B
i =

qi
⊤S

F/B
i

qi
⊤z

F/B
i

. ̸= b2) Y = SCALE(QK⊤ ⊙M)V (7)

F/B indicates that the same recurrent model is applied in both forward and backward recurrence
directions, and SCALE(·) denotes the scaling of the attention matrix across its rows (SCALE(A)ij =

Aij/
∑L

j=1 Aij). Note that in Eqs. (6) and (7) and the following content, when doing backward
recurrence, the subscript of S, z,y,q,k,v should be flipped by the rule of i := L− i+ 1. The final
output is the addition of the forward and the backward recurrences, i.e., yi = yF

i + yB
i ,∀i ∈ [L].

1However, softmax based attention due to applying non-linearity into the attention formulation can not be
linearized in this form
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Figure 2: Differences between attention and the addition of two linear recurrent models. a1) Addition
of two linear transformers, a2) Attention with scaling, b1) Addition of two linear recurrent models,
b2) Masked attention with scaling. The red text highlights the differences between attention and
the summed recurrent models. We use for the causal (forward recurrence), for the non-causal
(backward recurrence), and for the diagonal part of the attention.

While a1 and a2 in Eq. (6) represents the attention without the mask, b1 and b2 in Eq. (7) corresponds
to masked attention. Moreover, λi corresponds to the scalar version of Λi in Eq. (5a).

We show in Figure 2 that this recurrence does not equal the attention matrix, regardless of whether
scaling is applied before (6) or after (7) the mask, as the naive addition of two linear recurrent models
for forward and backward recurrences fails to produce an attention matrix (more details of proofs
are at Appendix C.1). These key differences can be described as follows: (i) The diagonal elements
representing attention for each token appear in both recurrences, leading to twice the attention score
for a token and itself compared to others. (ii) Causal (forward recurrence) and non-causal (backward
recurrence) attention scores are scaled individually, resulting in tokens not being properly scaled
relative to the keys of other tokens in the sequence, unlike attention shown in Figure 2, parts a2 and b2.

We precede our main result with a proposition from Sun et al. (2023), which states that an autoregres-
sive transformer can be expressed as a linear recurrent model:

Proposition 3.2. Considering the following forward recurrence:

SF
i = λiS

F
i−1 + kiv

⊤
i , zFi = λiz

F
i−1 + ki, yi =

qi
⊤SF

i

qi
⊤zF i

. (8)

The vectorized output takes the following form:

Y =
(

SCALE(QK⊤ ⊙MC)
)
V, MC

ij =

{
Πj+1

k=iλk, i ≥ j;

0, i < j,
(9)

with MC being the selective causal mask.

Our goal is to derive a bidirectional linear recurrence for attention with scaling and
(SCALE(QK⊤ ⊙ M)), as this framework is more generalized and can be adapted to vari-
ous linear recurrent models (more detail on different variation like scaling prior to masking
SCALE(QK⊤) ⊙ M are provided at Appendix C.1). Motivated by (9) and the observation
of how the attention matrix is divided into causal and non-causal components, we begin our
method by splitting the attention matrix and the mask into upper and lower triangular parts.

Y = SCALE





q⊤
1 k1 q⊤

1 k2 · · · q⊤
1 kL

q⊤
2 k1 q⊤

2 k2 · · · q⊤
2 kL

...
...

. . .
...

q⊤
Lk1 q⊤

Lk2 · · · q⊤
LkL


︸ ︷︷ ︸

A = QK⊤

⊙



1 λ2 λ2λ3 · · · λ2 · · ·λL

λ1 1 λ3 · · · λ3 · · ·λL

λ1λ2 λ2 1 · · · λ4 · · ·λL

...
...

...
. . .

...

λL−1 · · ·λ1 λL−1 · · ·λ2 λL−1 · · ·λ3 · · · 1


︸ ︷︷ ︸

M




v⊤
1

v⊤
2

v⊤
3
...

v⊤
L

 , (10)

where we use for upper triangular elements, for lower triangular elements, and for the
diagonal elements of the attention matrix and the mask. By splitting (10) into upper and lower
triangular forms, we obtain the following:
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q⊤
1 k1 q⊤

1 k2 · · · q⊤
1 kL

q⊤
2 k1 q⊤

2 k2 · · · q⊤
2 kL

...
...

. . .
...

q⊤
Lk1 q⊤

Lk2 · · · q⊤
LkL


︸ ︷︷ ︸

A = QK⊤

=



1
2q

⊤
1 k1

q⊤
2 k1

1
2q

⊤
2 k2

...
...

. . .

q⊤
Lk1 q⊤

Lk2 · · · 1
2q

⊤
LkL


︸ ︷︷ ︸

AF

+



1
2q

⊤
1 k1 q⊤

1 k2 · · · q⊤
1 kL

1
2q

⊤
2 k2 · · · q⊤

2 kL

. . .
...

1
2q

⊤
LkL


︸ ︷︷ ︸

AB

(11)



1 λ2 λ2λ3 · · · λ2 · · ·λL

λ1 1 λ3 · · · λ3 · · ·λL

λ1λ2 λ2 1 · · · λ4 · · ·λL

...
...

...
. . .

...

λL−1 · · ·λ1 λL−1 · · ·λ2 λL−1 · · ·λ3 · · · 1


︸ ︷︷ ︸

M

=



1

λ1 1

λ1λ2 λ2 1
...

...
...

. . .

λL−1 · · ·λ1 λL−1 · · ·λ2 λL−1 · · ·λ3 · · · 1


︸ ︷︷ ︸

MF

+



1 λ2 λ2λ3 · · · λ2 · · ·λL

1 λ3 · · · λ3 · · ·λL

1 · · · λ4 · · ·λL

. . .
...

1


︸ ︷︷ ︸

MB

−I (12)

As in (11) and (12), the attention matrix and mask are split into lower (AF ,MF ) and upper triangular
(AB ,MB) matrices. The scaling operator divides each row of the attention matrix to its summed
value, and hence equals to a diagonal matrix C−1 multiplied by the attention:

Y =
(

SCALE(QK⊤ ⊙M)
)
V = (C−1(QK⊤ ⊙M))V, Ci = q⊤

i

L∑
j=1

Mijkj . (13)

Decomposing C into causal and non-causal parts as Ci = q⊤
i

∑i
j=1 Mijkj + q⊤

i

∑L
j=i Mijkj −

q⊤
i ki, we can similarly split the scaling matrix into two parts as follows:

Ci = q⊤
i

∑i

j=1
Mijkj −

1

2
q⊤
i ki︸ ︷︷ ︸

CF
i

+ q⊤
i

∑L

j=i
Mijkj −

1

2
q⊤
i ki︸ ︷︷ ︸

CB
i

(14)

Therefore, matrix C can be decomposed into C = CF +CB . Since we have A = AF +AB and
M = MF +MB − I, we can proceed to rewrite the output of the scaled, masked attention as

Y =
(

SCALE(QK⊤ ⊙M)
)
V = (C−1(QK⊤ ⊙M))V

= ( CF + CB )−1
(
( AF + AB )⊙ ( MF + MB − I)

)
V (15)

= (CF +CB)−1
(
AF ⊙MF +AF ⊙MB +AB ⊙MF +AB ⊙MB −AF ⊙ I−AB ⊙ I

)
V.

Since the forward and backward recurrence matrices (AF ,AB for attention and MF ,MB for mask)
only share the diagonal with each other, and the diagonal of both forward and backward recurrence
masks consists entirely of ones, we can simplify the above equation as follows:

Y = (CF +CB)−1
(
AF ⊙MF +AF ⊙MB︸ ︷︷ ︸

AF⊙I

+AB ⊙MF︸ ︷︷ ︸
AB⊙I

+AB ⊙MB −AF ⊙ I−AB ⊙ I
)
V

= ( CF + CB )−1( (AF ⊙MF )V︸ ︷︷ ︸
FORWARD

+ (AB ⊙MB)V︸ ︷︷ ︸
BACKWARD

). (16)

As seen from Proposition 3.2, the FORWARD part above can be expressed as a linear recurrence.
We now demonstrate that the BACKWARD recurrence term can also be represented by the same
recurrence in reverse. We re-write the equation (16) by flipping the vector V as:



1
2
q⊤
LkL

q⊤
LzL

q⊤
L−1kL

q⊤
2 zL

1
2

q⊤
L−1kL−1

q⊤
2 zL

...
...

. . .
q⊤
1 kL

q⊤
1 zL

q⊤
1 kL−1

q⊤
1 zL

· · · 1
2
q⊤
1 k1

q⊤
1 zL


︸ ︷︷ ︸

F (AB)

⊙


1
λL 1

λLλL−1 λL−1 1
...

...
...

. . .
λL · · ·λ2 λL · · ·λ3 λL · · ·λ4 · · · 1


︸ ︷︷ ︸

F (MB)


v⊤
L

v⊤
L−1

v⊤
L−2
...

v⊤
1

 (17)

The equations above are the exact representations for the forward pass, as shown in (16), but with the
tokens in reverse order. The matrices AB and MB are also modified to match the final flipped output

6
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using flipped input values V using functions F (X) = JLXJL and FLIP(X) = JLX, where JL is
an L-dimensional exchange matrix, as detailed in Appendix C.4. Thus, the outputs of the forward
and backward recurrences can be expressed as follows:

Y = (CF +CB)−1( YF + YB ),where (18)

YF = (AF ⊙MF )V, YB = (AB ⊙MB)V = FLIP
((

F (AB)⊙ F (MB)
)
FLIP(V)

)
.

(19)

Theorem 3.3. (LION) Since (18) is the vectorized form of the recurrence presented in (3.2), we can
therefore express the equivalent recurrence for the scaled attention as follows:

S
F/B
i = λiS

F/B
i−1 + kiv

⊤
i , (20)

z
F/B
i = λiz

F/B
i−1 + ki, (21)

c
F/B
i = qi

⊤z
F/B
i − 1

2
qi

⊤ki, (22)

y
F/B
i = qi

⊤S
F/B
i − 1

2
qi

⊤kivi, (23)

OUTPUT: yi =
yF
i + yB

i

cFi + cBi
(24)

= Y = SCALE(QK⊤ ⊙M)V (25)

The terms 1
2qi

⊤kivi and 1
2qi

⊤ki are subtracted because the diagonal of the attention in the forward
and backward recurrences is half of the other attention scores. This recurrence is equivalent to scaled
and masked attention, represented as Y =

(
SCALE(QK⊤ ⊙M)

)
V.

Many recurrent models trained with attention in autoregressive tasks can be generalized within
this framework as an example by simply fixing the λi = 1 we can have a bidirectional version of
Linear Transformer (Katharopoulos et al., 2020) which we refer to as LION-LIT (cf., Appendix C.5,
where we adapt various causal recurrent models to the bidirectional setting). Since the forward and
backward recurrences operate independently, they can process the sequence in parallel, requiring
only L time points for L tokens, similar to autoregressive models. For any token, both outputs yF

i

and yB
i along with the scaling parameters cFi and cBi are extracted, allowing the final output to

be stored directly in the same memory cell, only requiring L memory units, akin to autoregressive
models, as shown in Appendix B.5. Additionally, it is important to note that by saving the states
c
F/B
i and y

F/B
i , the memory required scales linearly with the model dimension, as the first state

is scalar and the second is a vector, leading to a O(Ld) memory requirement. In contrast, if we were
to naively store the matrix-valued hidden states for each token, SF/B

i , this would result in a O(Ld2)
memory requirement, which grows quadratically with d.

4 LION-S: SELECTIVITY INSPIRED FROM CONTINUOUS SYSTEMS

This section outlines the selectivity for the bidirectional recurrent model and proposes LION-S. As
shown in Dao & Gu (2024), transformers can be represented as SSMs through a state-space duality,
where the parameters Ci and Bi in the SSM correspond to qi and ki. However, this connection
was established in the discrete domain. In our work, we explore the transformer recurrence with
scaling in the continuous domain before discretizing it, which leads to the recurrence parameter
λi. By considering the transformer recurrence in the continuous domain and applying zero-order
hold discretization (Kalman, 1960), we obtain

CONTINUOUS

S′
(t) = S(t) + k(t)v

⊤
(t), (26a)

z′(t) = z(t) + k(t), y(t) =
q⊤
(t)S(t)

q⊤
(t)z(t)

(26b)

DISCRETE

Si = eaiSi−1 + (eai − 1)kiv
⊤
i , (27a)

zi = eaizi−1 + (eai − 1)ki, yi =
q⊤
i Si

q⊤
i zi

. (27b)

This leads to the parameter λi to have an exponential form proven at appendix B.6 λi = eai , resulting
in the mask M defined as follows:

Dij =


∑j+1

k=i ak if i > j∑j
k=i+1 ak if i < j

0 if i = j

, M = exp(D), (28)

where exp(·) is applied element-wise and M can be learned with trainable ai or with selectivity as
ai = log(σ(w⊤

a xi + b)), where σ is the sigmoid function. The parameter ai can also be treated as

7
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Table 2: Performance on Long Range Arena Tasks. For each column (dataset), the best and the second
best results are highlighted with bold and underline respectively. Note that the MEGA architecture
has roughly 10× the number of parameters as the other architectures.

Category Model ListOps Text Retrieval Image Pathfinder PathX Avg.
(input length) 2048 4096 4000 1024 1024 16K

Transformer
Transformer 36.37 64.27 57.46 42.44 71.40 ✗ 54.39
MEGA (O(L2)) 63.14 90.43 91.25 90.44 96.01 97.98 88.21
MEGA-chunk (O(L)) 58.76 90.19 90.97 85.80 94.41 93.81 85.66

SSM

DSS 57.60 76.60 87.60 85.80 84.10 85.00 79.45
S4 (original) 58.35 86.82 89.46 88.19 93.06 96.30 85.36
S5 (v1) 61.00 86.51 88.26 86.14 87.57 85.25 82.46
S5 (v2) 62.15 89.31 91.40 88.00 95.33 98.58 87.46
Mamba 38.02 82.98 72.14 69.82 69.26 67.32 66.59
Mamba (From Beck et al. (2024)) 32.5 N/A 90.2 68.9 99.2 N/A N/A

RNN LRU 60.2 89.4 89.9 89.0 95.1 94.2 86.3
xLSTM 41.1 N/A 90.6 69.5 91.9 N/A N/A

Transformer as
Linear Recurrent
Model

Local Att. 15.82 52.98 53.39 41.46 66.63 ✗ 46.06
Sparse Transformer 17.07 63.58 59.59 44.24 71.71 ✗ 51.24
Longformer 35.63 62.85 56.89 42.22 69.71 ✗ 53.46
Linformer 16.13 65.90 53.09 42.34 75.30 ✗ 50.55
Reformer 37.27 56.10 53.40 38.07 68.50 ✗ 50.67
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 ✗ 51.48
BigBird 36.05 64.02 59.29 40.83 74.87 ✗ 55.01
Linear Trans. 16.13 65.90 53.09 42.34 75.30 ✗ 50.55
Performer 18.01 65.40 53.82 42.77 77.05 ✗ 51.41
FNet 35.33 65.11 59.61 38.67 77.80 ✗ 55.30
Nyströmformer 37.15 65.52 79.56 41.58 70.94 ✗ 58.95
Luna-256 37.25 64.57 79.29 47.38 77.72 ✗ 61.24
H-Transformer-1D 49.53 78.69 63.99 46.05 68.78 ✗ 61.41
LION-LIT 16.78 65.21 54.00 43.29 72.78 ✗ 50.41
LION-S 62.25 88.10 90.35 86.14 91.30 97.99 86.07

a vector, allowing it to be multiplied with the Hadamard product on the state Si, as discussed in
C.7. Adding the selective parameter ai into the LION framework introduces LION-S a bidirectional
selective transformer with recurrence inference. Importantly, due to the use of the recurrence
parameter ai, LION-S does not require any additional positional encoding, enabling it to extrapolate
beyond the context length or resolution during inference.

In addition to its connection to continuous systems, the matrix D can be computed using a prefix
sum algorithm (Blelloch, 1990), allowing for the summation of ai values in O(log(L)) time, after
which it can be exponentiated to derive the mask M. Note that, as the same parameter eai − 1 has
appeared in (27a) and (27b), we can consider this term as a part of ki.

5 EXPERIMENTS

This section illustrates the performance of LION-LIT and -S on well-established benchmarks: Long
Range Arena, masked language modelling, and image classification. Note that thanks to Theorem 3.3,
LION-S benefits from the parallelization capabilities built for masked attention during training. We
similarly achieve efficient inference through the bidirectional recurrence as also illustrated by Figure
1. Due to the use of ai from (28), LION-S does not require positional encodings and can extrapolate
beyond context length during inference, which we will also demonstrate below.

5.1 LONG RANGE ARENA

We assess the performance of LION-S on the Long Range Arena (LRA) (Tay et al., 2020b), a
well-established benchmark for efficient transformers. As shown in Table 2, LION-S is the only
Transformer employing recurrent inference to achieve an impressive 86.07% on the LRA dataset and
is capable of tackling the challenging Path-X problem, where other linear recurrent models shows
clear limitations. Our results indicate that LION-S achieves performance comparable to SSMs, which
are renowned for their capabilities to capture long-range interactions within data and excel in the
LRA task. Furthermore, among transformers, MEGA (Ma et al., 2022) is the only one with roughly
ten times the parameter count that demonstrates performance comparable to LION-S. An extensive
discussion on the choice of non-linearity, scaling, and dimensions of parameters is presented in
Appendix D.2 and D.3. For more information on the LRA benchmarks, see Appendix D.1.
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Table 3: C4 Masked Language Modelling and GLUE results. For each column (dataset), the best and
the second best results for each model size are highlighted with bold and underline respectively.

Model MLM Acc. MNLI RTE QQP QNLI SST2 STSB MRPC COLA Avg.

BERTLARGE 69.88 85.68 67.44 89.90 91.89 93.04 88.63 90.89 56.14 82.95
LION-LIT LARGE 67.11 83.73 57.18 89.85 89.93 91.86 88.02 90.18 55.36 80.76
LION-RETNET 68.64 83.82 60.72 89.72 89.79 92.93 87.29 89.66 56.83 81.34
LION-S LARGE 69.16 84.38 57.69 89.57 90.30 92.93 87.68 90.57 59.54 81.58

5.2 MASKED LANGUAGE MODELLING

We assess BERT, LION-S, and a Linear Attention variant of BERT combined with our bidirectional
approach (LION-LIT) using the Masked Language Modeling (MLM) task, which is ideally suited
for bidirectional models (Devlin et al., 2019; Liu et al., 2019). Our approach involves initially
pre-training the models on the C4 dataset (Dodge et al., 2021), followed by fine-tuning and evaluating
their downstream performance on the GLUE benchmark (Wang et al., 2018). Both the pre-training
and fine-tuning phases employ the M2 hyperparameters (Fu et al., 2023), except for the LARGE
models, where learning rates of 2 · 10−4 and 10−5 for pretraining and finetuning were employed
for stability based on our results in Appendix D.6. For additional experimental details and results
with smaller scaled models, we refer to Appendix D.5 and Appendix D.4 respectively.

In Table 3, without extensive tuning, the LION models perform closely follow BERT in both the
MLM pretraining task and the GLUE finetuning tasks. However, when we test the models beyond
the context length used in training, LION greatly retains or even improves the MLM accuracy in
comparison to the BERT baseline, see Section 5.4.

5.3 IMAGE CLASSIFICATION

The image classification is an important task for bidirectional models, where Vision Transform-
ers (Radford et al., 2021) perform well. We analyze the performance of the LION-S architecture
and compare it against Vision Transformer (ViT-T), Linear Transformer in the bidirectional
format (LION-LIT) (c.f Appendix C.5) , Hydra (Hwang et al., 2024) and LION-S with improved
masking locality referenced as LION-S (v2) (details in Appendix C.8) on the CIFAR-10, CIFAR-
100 (Krizhevsky, 2009) and ImageNet-1K (Russakovsky et al., 2015) datasets not only in terms of
accuracy but also memory used during inference.

During training, we leverage the ViT-Tiny/16 (5.5M) architecture and adapt it for each baseline
accordingly. For each dataset, the resolution is fixed to 224× 224, and the models are pre-trained
from scratch. We use the original ViT pre-training recipe and only adjust the base learning rate and
warmup for our models. Extensive tuning of the pre-training recipe could further improve current
results but is outside the scope of this work. For complete details on the training hyperparameters
please refer to Appendix D.8. For LION-LIT, we build on the Katharopoulos et al. (2020) approach
but use Theorem 3.3 for bidirectionality. In other words, following the implementation, we removed
the softmax, added the nonlinearity ϕ(x) = elu(x) + 1, and scaling. For Hydra we consider the
original hyperparameters and we modify the number of layers to match the parameter size of ViT-T.

Table 4 presents the Top-1 accuracy of models on each dataset. While LION-LIT and LION-S have
the same complexity, LION-S architecture significantly outperforms the LION-LIT model in each task.

Table 4: Image classification task results. We present the Top-1 accuracy on the validation data.
LION-S shows competitive performance against ViT models. * indicates that results are directly
copied from paper Zhu et al. (2024b), where the authors are training under a different setup (e.g.,
with data-augmentation).

Model CIFAR-10 CIFAR-100 ImageNet
ViT-T 92.84 77.33 70.23
HYDRA-T 96.11 77.70 69.60
Vim-T∗ N/A N/A 76.1
LION-LIT 90.05 73.61 62.69
LION-RETNET 93.78 75.66 67.31
LION-S 93.25 77.56 67.95
LION-S (v2) 94.77 80.07 69.22

Model ImageNet
ViT-S 72.19
Vim-S∗ 80.3
LION-LIT SMALL 69.62
LION-RETNET 71.96
LION-SSMALL 70.86
LION-S (v2)SMALL 73.44
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Figure 3: (Left) the accuracy of models on MLM task as the sequence length increases. LION-S
maintains its high performance for sequences 3.5 times longer than the training sequence length.
(Center/Right) Inference GPU memory consumption of models at different resolutions for the image
classification task on Imagenet with a batch size of 128 (Center) and MLM on C4 with a batch size
of 4 (Right). While ViT goes out of memory (OOM) for resolution 1248, LION-S only needs ∼ 6 GB
which is ∼ 94.4% more efficient. Similarly, BERT goes OOM for sequence length 14, 336, while
for the same sequence length, LION-S requires less than 15GB of GPU memory.

ViT-T, which has a quadratic complexity performs slightly better than LION-S on ImageNet and worse
in other datasets. When considering a larger ViT-Small (21.7M) parameters, this gap between trans-
former and LION-S on ImageNet gets smaller. LION-S (v2) significantly improves the performance of
LION-S in all tested scenarios and over ViT-T on CIFAR-100. For further ablations, cf., Appendix D.7.

5.4 CONTEXT EXTENSION AND MEMORY DURING INFERENCE

When considering the number of tokens (analogous to resolution in images) that Transformer-like
architectures can effectively process, two primary limitations emerge: (i) positional embeddings and
(ii) memory constraints. Transformers are typically trained up to a specific sequence length and
lack predefined positional encodings for tokens that exceed this limit, which can hurt their ability to
recognize token positions beyond trained lengths. Furthermore, the quadratic complexity of these
models during inference places significant demands on memory resources, often leading to constraints
that reduce processing efficiency.

LION-S architecture is free of these two limitations. In Figure 3 (Left), we test the LION-S model
trained on 128 tokens tested on different lengths. While BERT and LION-LIT models peak at the
training length, afterwards they experience a sharp decrease. LION-S, on the other hand, maintains
its high performance at 3.5 times of training sequence length. Additionally, LION-S can infer beyond
the 512 tokens, as compared to the other models.

For memory usage during inference, as Figure 3 (Center/Right) illustrates, LION-S demands signifi-
cantly lower memory than ViT on image classification or BERT on MLM tasks. Due to the quadratic
complexity of Transformers, as the resolution of the image increases, the memory consumption
also drastically changes. As a result, ViT and BERT go out of memory (OOM) even with small
batch sizes. With the LION-S architecture, thanks to the linear complexity during inference, the
change in memory consumption is minimal. At 1248 resolution, LION-S is ∼ 94.4% more efficient
than the ViT-T model. Similarly, at sequence length 14, 336, LION-S is 83.35% more efficient than
BERT. These two strengths combined, i.e., usage of the recurrence parameters and linear inference
complexity, allow LION-S to efficiently extrapolate beyond the context length (or resolution) during
inference. For further results on length expansion, see Appendices A and D.7.

6 CONCLUSIONS

This paper presents the LION framework, which casts bidirectional Transformers as bidirectional
RNNs. Notably, LION allows popular linear recurrent models, such as Linear Transformers, to
leverage the well-established transformer training pipeline during training, while benefiting from
efficient recurrence during inference in the bidirectional setting. The main examples of the LION
framework include LION-LIT (without masking the attention), LION-RETNET (which uses a fixed
mask inspired by Sun et al. (2023)), and LION-S (which employs a selective mask similar to Dao &
Gu (2024); Yang et al. (2023)). Our experiments show that the LION framework facilitates efficient
inference and parallel training in the bidirectional setting, while models built upon LION excel
at handling complex tasks, such as long-range dependencies in vision and bidirectional language
modeling, all while using modest computational and memory resources.
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Benedikt Alkin, Maximilian Beck, Korbinian Pöppel, Sepp Hochreiter, and Johannes Brandstetter.
Vision-LSTM: xLSTM as generic vision backbone. arXiv preprint arXiv:2406.04303, 2024.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
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APPENDIX

In and this following sections we include additional experiments, further insights on related work,
proofs, and theoretical details. The sections are organized as follows:

• In Appendix A, we provide additional experiments on causal language modeling.
• In Appendix B, we include an extension of related work.
• In Appendix C, we present proofs and theoretical details.
• In Appendix D, we explore ablation studies and parameter configurations for LRA and

Image Classification tasks.

A CAUSAL LANGUAGE MODELLING

Efficient causal language modelling with linearized attention was previously studied by Katharopoulos
et al. (2020) and Sun et al. (2023). In this setup, our formulation becomes similar to the retentive
network (Sun et al., 2023), with the difference that Sun et al. (2023) choose their selective parameters
before training and keep them fixed, while our selective parameters (ai in Eq. (28)) are trained jointly
with the rest of the model.

We evaluate the performance of our formulation against the GPT-2 architecture (Radford et al., 2019)
and its linearized version obtained by simply removing the softmax (LinAtt). Our architectures
LION-S is trained with a trainable linear layer to obtain input-dependent selectivity, i.e., ai =
log(σ(Waxi + b)) in Eq. (28). Note that our model do not use absolute positional encodings.
We train our models in the OpenWebText corpus (Gokaslan & Cohen, 2019). We evaluate the
architectures in the 124 M parameter setup. Our implementation is based on nanoGPT2. We use the
default GPT-2 hyperparameters and train our models for 8 days in 4 NVIDIA A100 SXM4 40 GB
GPUs.

Model Perplexity

GPT-2 17.42(±1.11)

LinAtt 21.07(±1.32)

LION-S (1D) 18.16(±1.16)

(a) OpenWebText PPL
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(b) Perplexity vs. sequence length

Figure 4: Causal Language Modelling results in the GPT-2 128M size. (a) Perplexity in the
OpenWebText dataset. (b) Perplexity vs. sequence length in OpenWebText. Our models improve
over the LinAtt baseline (Katharopoulos et al., 2020) while obtaining similar performance to the GPT
baseline and being able to extrapolate to larger context lengths than the one used during training.

In Figure 4 we can observe LION-S (1D) significantly improve over the LinAtt baseline, while obtain
perplexity close to GPT-2. The lack of absolute positional encodings allows LION-S (1D) to scale to
larger sequence lengths than the one used during training.

In Figure 5 we evaluate the latency and memory of LION-S (1D) in three modes: Attention, Attention
+ KV cache and RNN. While the three modes have the same output, the RNN formulation allows
to save computation from previous token generations to require constant memory and latency for
generating the next token. Our results align with the findings of Sun et al. (2023), showing that
efficient models in training and inference, with a strong performance (up to a small degradation) can
be obtained.

2https://github.com/karpathy/nanoGPT
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Figure 5: Efficiency of the LION-S (1D) framework in the next-token generation task. In (a) and (b)
we measure respectively the latency and memory to generate the next token in the sentence. We
compare three generation modes: Attention, Attention with KV cache and the Recurrence formulation.
While all three produce the same output, the Recurrence formulation is the most efficient, requiring
constant memory and latency to generate the next token.

B DETAILED RELATED WORK

B.1 STATE SPACE MODELS AND TRANSFORMERS

State Space Models, such as S4 (Gu et al., 2022) and S5 (Smith et al., 2023), advanced efficient
sequence modeling with linear complexity. Mamba (Gu & Dao, 2024) and Mamba-2 (Dao &
Gu, 2024) introduced selective mechanisms within SSMs, achieving strong language modeling
performance. Recently, many recurrent models for language have been proposed, e.g., xLSTM (Beck
et al., 2024), RWKV (Peng et al., 2024). While RNNs for autoregressive modelling are prevalent,
bidirectional models are less explored. Hydra (Hwang et al., 2024) extends Mamba to bidirectional
settings using quasiseparable matrix mixers. VisionMamba (Zhu et al., 2024b) employs two separate
SSMs to pass over images. However, these works are not equivalent to bidirectional attention. LION
adopts a different approach: instead of extending SSMs, we derive equivalence between bidirectional
attention with learnable mask and bidirectional RNNs.

Since the pioneering works (Tsai et al., 2019; Katharopoulos et al., 2020), many works have been
proposed to enhance linearized attention, including learnable relative positional encoding (Dai et al.,
2019), gate mechanisms (Peng et al., 2021; Han et al., 2024; Ma et al., 2022), FFT for kernelized
attention (Luo et al., 2021), decay terms in RetNet (Sun et al., 2023), and variants with enhanced
expressiveness (Arora et al., 2024; Zhang et al., 2024; Yang et al., 2024). These works focus on causal
attention and cannot be directly applied with bidirectionality, while we explicitly write bidirectional
attention as bidirectional RNN combined with selectivity, enhancing performance and providing a
principled framework for parallel training and linear-time inference in non-causal tasks.

B.2 LINEAR RECURRENT MODELS SUMMARY

As noted in Qin et al. (2022), scaling the attention can lead to performance instability; therefore,
many linear recurrent models avoid scaling the attention matrix. Consequently, we categorize these
models into two groups: scaled and non-scaled. We discuss how various choices of parameters and
their corresponding operational functions result in different well-known SSMs and Transformers at
Table 5.

B.3 PARALLEL TRAINING AND EFFICIENT INFERENCE

For linear recurrent models, efficient training is ideally achieved either by employing a form similar
to Y = softmax

(
QK⊤)V or by using techniques like parallel scan, as utilized by many SSMs (e.g.,

Mamba, S5) (Blelloch, 1990). We will cover both techniques in the following sections.
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Table 5: Overview of recent linear recurrent models applied to autoregressive language modeling.
The − mark indicates models without scaling, as they lack αi and βi and do not scale attention scores.
The × denotes matrix multiplication, ⊙ represents the Hadamard product, and ∗ signifies the scalar
product. All these models are used for autoregressive language modeling. To our knowledge, bi-
directional SSMs or linear recurrent models with connections to Transformers, other than LION-LIT
and LION-S, do not exist The order is approximately chronological.

Model Recurrence Parameters Operations Scaled ⇄
Λi αi βi γi ⋆

Linear Trans (Katharopoulos et al., 2020) I 1 1 1 × × ✓ ✗

DeltaNet (Schlag et al., 2021) I− γikik
⊤
i − − γi ∗ × ✗ ✗

S4/S5 (Gu et al., 2022; Smith et al., 2023) e(−(δ1⊺)⊙exp(A)) − − B ⊙ ⊙ ✗ ✗
Gated RFA (Peng et al., 2021) gi gi 1− gi 1− gi ∗ ∗ ✓ ✗
RetNet (Sun et al., 2023) a − − 1 ∗ ∗ ✗ ✗

Mamba (S6) (Gu & Dao, 2024) e(−(δi1
⊺)⊙exp(Ai)) − − Bi ⊙ ⊙ ✗ ✗

GLA (Yang et al., 2023) DIAG(gi) − − 1 ∗ × ✗ ✗
RWKV (Peng et al., 2024) DIAG(gi) − − 1 ∗ × ✗ ✗
xLSTM (Beck et al., 2024) fi fi ii ii ∗ ∗ ✓ ✗
Mamba-2 (Dao & Gu, 2024) ai − − 1 ∗ ∗ ✗ ✗
LION-LIT (ours) 1 1 1 1 ⊙ ∗ ✓ ✓
LION-S (ours) e−ai e−ai 1 1 ⊙ ∗ ✓ ✓

Parallel training in transformers. As illustrated in equation Y = softmax
(
QK⊤)V of the

Transformer, vectorization over the sequence is crucial to avoid sequential operations, where the model
iterates over the sequence, leading to extensive training times (Vaswani et al., 2017). Parallelizing the
operations across the sequence length for linear recurrent models ideally should take a form similar
to (Katharopoulos et al., 2020; Sun et al., 2023):

Y = M ∗
(
ϕ(Q)ϕ(K)

⊤
)
V (29)

Here, M represents a mask generated from the interaction of recurrent model parameters (Λi, γi, αi,
βi). Attention scores can be scaled before or after applying the mask M and during inference the
scaling can be done by using the scaling state zi. The symbol ∗ indicates the operation in-which mask
is applied to the attention. Equation (29) highlights the importance of carefully selecting operations
and parameters to ensure parallelizability during training. The mask M is a lower diagonal mask in
case of autoregressive models (Ma et al., 2022).

Parallel Scan. Most SSMs utilize the state matrix Λi as a full matrix, with the ⋆ operation defined as
matrix multiplication. Consequently, the output of each layer cannot be represented as in (29). This
limitation becomes evident when applying recurrence over the discrete sequence in (3), leading to the
output:

yi = C̄⊤
i

i∑
j=1

 i∏
k=j+1

Āk

 B̄jxj , (30)

which requires matrix multiplications for Āk across all tokens between i and j, resulting in substantial
memory requirements during training.

To mitigate this issue, SSMs adopt the parallel scan approach (Blelloch, 1990; Ladner & Fischer,
1980), which enables efficient parallelization over sequence length. Initially introduced in S5 (Smith
et al., 2023), this method has a time complexity of O(L logL). However, Mamba (Gu & Dao, 2024)
improves upon this by dividing storage and computation across GPUs, achieving linear scaling of
O(L) with respect to sequence length and enabling parallelization over the state dimension N . Ideally,
a model should achieve complete parallelization in training without sequential operations, maintain a
memory requirement for inference independent of token count, and have linear complexity. Table
1 summarizes various training and inference strategies, along with their complexity and memory
demands.

Linear recurrent models (Sun et al., 2023; Katharopoulos et al., 2020) employ attention during training
and recurrence during inference, placing them in the last category of Table 1. To our knowledge, an
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exact mapping between attention and bidirectional recurrence does not exist; thus, naive forward
and backward recurrence cannot be theoretically equated to the attention formulations in (29) and
Y = softmax

(
QK⊤)V.

B.4 ARCHITECTURAL DIFFERENCES IN AUTOREGRESSIVE LINEAR RECURRENT MODELS

Multi-head attention and state expansion. Another difference between various linear recurrent
models, particularly SSMs and transformers, is how they expand single-head attention or SSM
recurrence (3) to learn different features at each layer, akin to convolutional neurons in CNNs (He
et al., 2016). Transformers achieve this through multi-head attention, while SSMs like Mamba and
Mamba-2 (Gu & Dao, 2024; Dao & Gu, 2024) use state expansion also known as Single-Input
Single-Output (SISO) framework to enlarge the hidden state. In SISO framework, the input xi in (3)
is a scalar and recurrence is applied to all elements in the hidden state independently (Smith et al.,
2023), allowing for parallelization during inference and training.

In contrast, simplified SSMs like S5 employ a Multiple-Input Multiple-Output (MIMO) approach,
where xi is a vector, which aligns them more closely with RNN variants like LRU (Orvieto et al.,
2023) that are successful in long-range modeling (Smith et al., 2023). However, the SISO framework
continues to be effective in Mamba models for language modeling (Dao & Gu, 2024).

Rule of Positional Encoding. The parameter Λi serves as a gating mechanism (Yang et al., 2023;
Gu & Dao, 2024) and can also be interpreted as relative positional encoding (Sun et al., 2023). For
instance, in an autoregressive model, considering Λi as scaler, the mask M can be defined as follows:

SELECTIVE MASK

Mij =

{
Πj+1

k=iλk i ≥ j

0 i < j
(31)

FIXED MASK

Mij =

{
λi−j i ≥ j

0 i < j
(32)

In this context, the selective mask (where Λi = λi varies for each token) is used in architectures like
Mamba (Gu & Dao, 2024), while the fixed mask (where Λi = λ is constant across all tokens) is
implemented in architectures like RetNet (Sun et al., 2023). In both cases, the mask Mij provides
rich relative positional encoding between tokens i and j. Its structure reinforces the multiplication of
all Λk elements for k ∈ [j, . . . , i], while the selectivity allows the model to disregard noisy tokens,
preventing their inclusion in the attention matrix for other tokens.

In contrast, linear recurrent models such as Linear Transformer (Katharopoulos et al., 2020) set
Λk = 1, resulting in M functioning as a standard causal mask, similar to those used in generative
transformers (Kojima et al., 2022). This necessitates the injection of positional information into
the sequence, which is achieved using the traditional positional encoding employed in transformers
(Vaswani et al., 2017). In this framework, each element of the input data sequence is represented
as xi = fi + ti, where fi denotes the features at time i and ti represents the positional embedding.
However, this traditional positional encoding has been shown to be less informative compared to
relative positional encoding (Su et al., 2024), which is utilized in other linear recurrent models where
Λk ̸= 1.

B.5 MEMORY ALLOCATION IN LION DURING FORWARD AND BACKWARD RECURRENCES

During the forward and backward recurrences, as illustrated in Figure 6, each recurrence saves its
corresponding output vector for each token, along with the scaling factor c, to generate the final
output. Once the backward recurrence reaches a token that the forward recurrence has already passed,
it can directly calculate the output yi for that token, as cFi and yF

i have already been computed
during the forward pass. Furthermore, the backward recurrence can overwrite the final output in
the same memory cell where yF

i was stored, since both outputs share the same dimensions. This
approach keeps memory allocation consistent with the forward pass, and the time required to process
the sequence remains similar to that of autoregressive models, as both recurrences can traverse the
sequence in parallel.
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Figure 6: Memory allocation in LION during Forward and Backward recurrences. The efficient way
of re-using the memory during inference is explained.

B.6 ZERO-ORDER HOLD DISCRETIZATION

Below we explain the zero-order hold discretization derived by Kalman (1960). An LTI system can
be represented with the equation:

ḣ(t) = Ah(t) +Bx(t), (33)

which can be rearranged to isolate h(t):

ḣ(t)−Ah(t) = Bx(t). (34)

. By multiplying the equation by e−At, we get

e−Atḣ(t)− e−AtAh(t) = e−AtBx(t) (35)

Since ∂
∂te

At = AeAt = eAtA, Eq. (35) can be written as:

∂

∂t

(
e−Ath(t)

)
= e−AtBx(t). (36)

After integrating both sides and simplifications, we get

e−Ath(t) =

∫ t

0

e−AτBx(τ) dτ + h(0). (37)

By multiplying both sides by eAt to isolate h(t) and performing further simplifications, at the end we
get

h(t) = eAt

∫ t

0

e−AτBx(τ) dτ + eAth(0). (38)

To discretize this solution, we can assume sampling the system at even intervals, i.e. each sample
is at kT for some time step T , and that the input x(t) is constant between samples. To simplify the
notation, we can define hk in terms of h(kT ) such that

hk = h(kT ). (39)

Using the new notation, Eq. (38) becomes

hk = eAkTh(0) + eAkT

∫ kT

0

e−AτBx(τ) dτ. (40)

Now we want to express the system in the form:

hk+1 = Ãhk + B̃xk. (41)

To start, let’s write out the equation for xk+1 as

hk+1 = eA(k+1)Th(0) + eA(k+1)T

∫ (k+1)T

0

e−AτBx(τ) dτ. (42)
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After multiplying by eAT and rearranging we get

eA(k+1)Th(0) = eAThk − eA(k+1)T

∫ kT

0

e−AτBx(τ) dτ. (43)

Plugging this expression for xk+1 in Eq. (42) yields to

hk+1 = eAThk − eA(k+1)T

(∫ kT

0

e−AτBx(τ) dτ +

∫ (k+1)T

0

e−AτBx(τ) dτ

)
, (44)

which can be further simplified to

hk+1 = eAThk − eA(k+1)T

∫ (k+1)T

kT

e−AτBx(τ) dτ. (45)

Now, assuming that x(t) is constant on the interval [kT, (k + 1)T ), which allows us to take Bx(t)
outside the integral. Moreover, by bringing the eA(k+1)T term inside the integral we have

hk+1 = eAThk −
∫ (k+1)T

kT

eA((k+1)T−τ) dτ Bxk. (46)

Using a change of variables v = (k+1)T − τ , with dτ = −dv, and reversing the integration bounds
results in

hk+1 = eAThk +

∫ T

0

eAv dvBxk. (47)

Finally, if we evaluate the integral by noting that d
dte

At = AeAt and assuming A is invertible, we
get

hk+1 = eAThk +A−1
(
eAT − I

)
Bxk. (48)

Thus, we find the discrete-time state and input matrices:

Ã = eAT (49)

B̃ = A−1
(
eAT − I

)
B. (50)

And the final desecrate state space representation is:

hk = eAThk−1 +A−1
(
eAT − I

)
Bkxk. (51)

As in case of LION-S (similar to choice of mamba2 Dao & Gu (2024)) the matrix A is identity while
the time step T is selective and equal to ai. And simply for LION-S scenario the term Bx(t) will
change into kiv

⊤
i therefor considering Linear Transformer as continuous system like:

S′
(t) = S(t) + k(t)v

⊤
(t), (52)

z(t) = z(t) + k(t), (53)

(54)

By applying the ZOH discritization the final descreate LION-S will be equal to:

DISCRETE

Si = eaiSi−1 + (eai − 1)kiv
⊤
i , (55)

zi = eaizi−1 + (eai − 1)ki, (56)

And it applies to both directions forward and backward.

C PROOFS

C.1 PROOF OF PROP. 3.2: DUALITY BETWEEN LINEAR RECURRENCE AND ATTENTION

Considering the following recurrence:
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Si = λiSi−1 + kiv
⊤
i , (57)

zi = λizi−1 + ki, (58)

SCALED : yi =
qi

⊤Si

qi
⊤zi

(59)

We can calculate each output yi recursively as below:

S1 = k1v
⊤
1 , z1 = k1, y1 = v1 (60)

S2 = k2v
⊤
2 + λ1k1v

⊤
1 , z2 = k2 + λ1k1, y2 =

q2
⊤(k2v

⊤
2 + λ1k1v

⊤
1 )

q2
⊤(k2 + λ1k1)

(61)

S3 = k3v
⊤
3 + λ1k2v

⊤
2 + λ2λ1k1v

⊤
1 , z3 = k3 + λ1k2 + λ2λ1k1, y3 =

q⊤
3 (k3v

⊤
3 + λ1k2v

⊤
2 + λ2λ1k1v

⊤
1 )

q⊤
3 (k3 + λ1k2 + λ2λ1k1)

(62)

⇒ yi =
q⊤
i (
∑i

j=1 M
C
ijkjv

⊤
j )

q⊤
i (
∑i

j=1 M
C
ijkj)

, MC
ij =

{
Πj+1

k=iλk i ≥ j

0 i < j
(63)

This can be shown in a vectorized form as:

Y = SCALE(QK⊤ ⊙MC)V (64)

Where SCALE is the scaling function which scaled the attention matrix with respect to each row or
can also be written as:

SCALE(A)ij =
Aij∑L
j=1 Aij

(65)

Similarly if the SCALE is applied before masking we have:

Y =
(

SCALE(QK⊤ ⊙MCAUSAL)⊙M
)
V (66)

With MCAUSAL being the causal mask used in autoregressive models (Kojima et al., 2022). This
vectorized form is equivalent to:

yi =
q⊤
i (
∑i

j=1 Mijkjv
⊤
j )

q⊤
i (
∑i

j=1 kj)
, Mij =

{
Πj+1

k=iλk i ≥ j

0 i < j
(67)

And the recurrence for this vectorized form can be written as:

Si = λiSi−1 + kiv
⊤
i , (68)

zi = zi−1 + ki, (69)

SCALED : yi =
qi

⊤Si

qi
⊤zi

(70)

C.2 FORWARD AND BACKWARD RECURRENCES THEORETICAL DETAILS

Considering the following recurrence:

Si = λiSi−1 + kiv
⊤
i , (71)

zL =

L∑
i=1

ki (72)

yi =
qi

⊤Si

qi
⊤zL

(73)
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This recurrence is the same as recurrence (68) but with zL being fixed to the summation of all keys in
the sequence, therefor the output yi can simply be written as:

yi =
q⊤
i (
∑i

j=1 Mijkjv
⊤
j )

q⊤
i zL

, Mij =

{
Πj+1

k=iλk i ≥ j

0 i < j
(74)

By replacing the zi =
∑i

j=1 kj in the denominator of equation (70) with zL. Therefore in vectorized
form, it will become:

Y = (AC ⊙M
)
V (75)

With AC being:

AC =



q⊤
1 k1

q⊤
1 zL

q⊤
2 k1

q⊤
2 zL

q⊤
2 k2

q⊤
2 zL

q⊤
3 k1

q⊤
3 zL

q⊤
3 k2

q⊤
3 zL

q⊤
3 k3

q⊤
3 zL

...
...

...
. . .

q⊤
Lk1

q⊤
LzL

q⊤
Lk2

q⊤
LzL

· · · q⊤
LkL

q⊤
LzL


Importantly this equation can be written as:

Y =
(

SCALE(QK⊤)⊙M
)
V (76)

which despite equation (66) scaling is applied over the whole sequence not for the causal part of
the sequence. The matrix AC is helpful for driving the recurrent version of LION for Forward and
Backward recurrences and the mask here M is equal to LION’s forward mask MF in equation (16).
As shown in (16) the forward recurrence for the causal part of the attention can be presented as
YB = AF ⊙MF the matrix AF can be created simply by using matrix AC as bellow:



1
2
q⊤
1 k1

q⊤
1 zL

q⊤
2 k1

q⊤
2 zL

1
2
q⊤
2 k2

q⊤
2 zL

q⊤
3 k1

q⊤
3 zL

q⊤
3 k2

q⊤
3 zL

1
2
q⊤
3 k3

q⊤
3 zL

...
...

...
. . .

q⊤
Lk1

q⊤
LzL

q⊤
Lk2

q⊤
LzL

· · · 1
2
q⊤
LkL

q⊤
LzL


︸ ︷︷ ︸

AF

=



q⊤
1 k1

q⊤
1 zL

q⊤
2 k1

q⊤
2 zL

q⊤
2 k2

q⊤
2 zL

q⊤
3 k1

q⊤
3 zL

q⊤
3 k2

q⊤
3 zL

q⊤
3 k3

q⊤
3 zL

...
...

...
. . .

q⊤
Lk1

q⊤
LzL

q⊤
Lk2

q⊤
LzL

· · · q⊤
LkL

q⊤
LzL


︸ ︷︷ ︸

AC

−



1
2
q⊤
1 k1

q⊤
1 zL

1
2
q⊤
2 k2

q⊤
2 zL

1
2
q⊤
3 k3

q⊤
3 zL

. . .
1
2
q⊤
LkL

q⊤
LzL


︸ ︷︷ ︸

DF

Or equivalently:

YF = AF ⊙MF = (AC −DF )⊙MF (77)

Since the diagonal values of the mask MF are all ones and the matrix DF is diagonal, we have:

YF = (AC −DF )⊙MF = AC⊙MF −DF (78)

As AC ⊙ MF corresponds to linear recurrence shown at (74). The vectorized form (78) can be
presented as linear recurrence:

yi =
q⊤
i (
∑i

j=1 Mijkjv
⊤
j )

q⊤
i zL

− 1

2

q⊤
i ki

q⊤
i zL

, Mij =

{
Πj+1

k=iλk i ≥ j

0 i < j
(79)
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This is equivalent to the linear recurrence presented in equation (73). The same theoretical approach
applies to the backward recurrence, leading to the following linear recurrence for both recurrences:

SF
i = λiS

F
i−1 + kiv

⊤
i , (80a)

yF
i =

qi
⊤SF

i

qi
⊤zL

− 1

2

qi
⊤ki

qi
⊤zL

(80b)

SB
i = λL−iS

B
i−1 + kL−i+1v

⊤
L−i+1, (81a)

yB
L−i+1 =

qL−i+1
⊤SB

i

qL−i+1
⊤zL

− 1

2

qL−i+1
⊤kL−i+1

qL−i+1
⊤zL

(81b)

However, the above equation requires access to the summation of scaling values zL. A naive
approach would involve adding an additional scaling recurrence alongside the forward and backward
recurrences to compute the summation of all keys in the sequence. This approach, however, is
inefficient, as it complicates the process. While the forward and backward recurrences can traverse
the sequence in parallel to obtain the forward and backward recurrences outputs YF and YB ,
the scaling recurrence must be computed prior to these recurrences because both the forward and
backward recurrences computations rely on the final scaling value zL to generate their outputs.

C.3 EFFICIENT AND SIMPLE METHOD FOR SCALING ATTENTION DURING INFERENCE

As shown in previous section scaled attention matrix can be formulated as two recurrences (80) and
(81) with an additional recurrence to sum all the keys (zL). This section we will proof how to avoid
an extra scaling recurrence by simple modifications to equation (80) and (81).

Considering having a scaling recurrence as part of forward and backward recurrence we will have:

SF
i = λiS

F
i−1 + kiv

⊤
i , (82a)

zFi = zFi−1 + ki (82b)

cFi = qi
⊤zFi − 1

2
qi

⊤ki (82c)

yF
i = qi

⊤SF
i − 1

2
qi

⊤kivi

(82d)

SB
i = λL−iS

B
i−1 + kL−i+1v

⊤
L−i+1, (83a)

zBi = zBi−1 + kL−i+1 (83b)

cBi = q⊤
L−i+1z

B
i − 1

2
q⊤
L−i+1kL−i+1 (83c)

yB
L−i+1 = qL−i+1

⊤SB
i − 1

2
q⊤
L−i+1kL−i+1v

⊤
L−i+1 (83d)

The equations above are similar to the previous ones, with the addition of scalar states cF and cB for
the backward and forward recurrences, respectively. During each recurrence, the outputs yF

i and yB
i ,

along with the scalars cFi and cBi , are saved for each token to construct the final output of each layer.
It is also important to note that there is no need to save zF and zB for each token; these states can
simply be overwritten in memory. The final output of each layer is equal to:

yi =
yF
i + yB

i

cFi + cBi
(84)

Where yF
i and yB

i can be written as:

yF
i = q⊤

i (

i∑
j=1

MF
ijkjv

⊤
j )−

1

2
qi

⊤kivi , yB
i = q⊤

i (

L∑
j=i

MB
ijkjv

⊤
j )−

1

2
qi

⊤kivi (85)

So the addition yF
i + yB

i is equal to:

yF
i + yB

i = q⊤
i (

i∑
j=1

MF
ijkjv

⊤
j ) + q⊤

i (

L∑
j=i

MB
ijkjv

⊤
j )− qi

⊤kivi (86)

⇒ yF
i + yB

i = q⊤
i (

i∑
j=1

MF
ijkjv

⊤
j +

L∑
j=i

MB
ijkjv

⊤
j )− qi

⊤kivi (87)

Where by considering the mask M as bellow:
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Mij =


Πi+1

k=jλk i > j

Πj
k=i+1λk i < j

1 i = j

=



1 λ2 λ2λ3 · · · λ2 · · ·λL

λ1 1 λ3 · · · λ3 · · ·λL

λ1λ2 λ2 1 · · · λ4 · · ·λL

...
...

...
. . .

...

λL−1 · · ·λ1 λL−1 · · ·λ2 λL−1 · · ·λ3 · · · 1


(88)

The above mask is equal to MF +MB − I, allowing equation (86) to be rewritten as:

yF
i + yB

i = q⊤
i (

i∑
j=1

MF
ijkjv

⊤
j +

L∑
j=i

MB
ijkjv

⊤
j )− qi

⊤kivi (89)

= q⊤
i (

L∑
j=1

Mijkjv
⊤
j ) + qi

⊤kivi − qi
⊤kivi (90)

= q⊤
i (

L∑
j=1

Mijkjv
⊤
j ) (91)

So we can finally find the output of each layer yi as:

yi =
yF
i + yB

i

cFi + cBi

Equation (91)−−−−−−−→ yi =
q⊤
i (
∑L

j=1 Mijkjv
⊤
j )

cFi + cBi
(92)

It can easily be shown that:

cFi = q⊤
i (

i∑
j=1

kj)−
1

2
q⊤
i ki , cBi = q⊤

i (

L∑
j=i

kj)−
1

2
q⊤
i ki (93)

⇒ cFi + cBi = q⊤
i (

L∑
j=1

kj) + q⊤
i ki −

1

2
q⊤
i ki −

1

2
q⊤
i ki (94)

⇒ cFi + cBi = q⊤
i (

L∑
j=1

kj) + q⊤
i ki − q⊤

i ki = q⊤
i (

L∑
j=1

kj) = q⊤
i zL (95)

So the final output of the layer is:

yi =
yF
i + yB

i

cFi + cBi
=

q⊤
i (
∑L

j=1 Mijkjv
⊤
j )

q⊤
i (
∑L

j=1 kj)
(96)

Alternatively, in vectorized form, it can be expressed as:

Y = YF +YB =
(

SCALE(QK⊤)⊙M
)
V (97)

with M being the attention mask created by λis as in equation 88.
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C.4 FLIPPING OPERATION IN BACKWARD RECURRENCE

Here we define the operation which flip the matrices AB ,MB for the reverse reccurence th goal is to
find the F (.) such that:

AB =



1
2q

⊤
1 k1 q⊤

1 k2 · · · q⊤
1 kL

1
2q

⊤
2 k2 · · · q⊤

2 kL

. . .
...

1
2q

⊤
LkL


→ F (AB) =



1
2
q⊤
LkL

q⊤
LzL

q⊤
L−1kL

q⊤
2 zL

1
2

q⊤
L−1kL−1

q⊤
2 zL

...
...

. . .
q⊤
1 kL

q⊤
1 zL

q⊤
1 kL−1

q⊤
1 zL

· · · 1
2
q⊤
1 k1

q⊤
1 zL

 (98)

MB =



1 λ2 λ2λ3 · · · λ2 · · ·λL

1 λ3 · · · λ3 · · ·λL

1 · · · λ4 · · ·λL

. . .
...

1


→ F (MB) =


1
λL 1

λLλL−1 λL−1 1
...

...
...

. . .
λL · · ·λ2 λL · · ·λ3 λL · · ·λ4 · · · 1

 (99)

The above can be achieved by:

F (A) = JLAJL, ,JL =


1

1

. . .

1

 (100)

C.5 MAPPING EXISTING AUTOREGRESSIVE MODELS INTO LION

As noted, other autoregressive recurrent models can also be integrated into our bidirectional frame-
work, benefiting from parallelization during training and fast bidirectional inference. Here, we
demonstrate how to map several well-known linear recurrent models into the bidirectional form of
LION, along with their corresponding masked attention matrix and inference linear recurrence.

Linear Transformer (LION-LIT). According to Katharopoulos et al. (2020) the linear transformer
has a recurrence:

SF
i = SF

i−1 + kiv
⊤
i , (101)

zFi = zFi−1 + ki, (102)

SCALED : yF
i =

qi
⊤SF

i

qi
⊤zFi

(103)

NON-SCALED : yF
i = qi

⊤SF
i (104)

As observed, this is a special case of our bidirectional recurrence defined in (24) with λi = 1, as LION
resembles the scaled masked attention. In the case of the linear transformer, we require attention
without scaling for the recurrence. The vectorized form for the scaled version can then be derived
easily as follows:
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S
F/B
i = S

F/B
i−1 + kiv

⊤
i , (105)

z
F/B
i = z

F/B
i−1 + ki (106)

c
F/B
i = qi

⊤z
F/B
i − 1

2
qi

⊤ki, (107)

y
F/B
i = qi

⊤S
F/B
i − 1

2
qi

⊤kivi

(108)

= Y = SCALE(QK⊤V) (109)

For the non-scaled variant, we simply remove the scaling state z as well as the scaling parameter
c. Consequently, the bidirectional linear transformer, which is equivalent to and parallelizable with
attention without scaling, can be expressed as follows:

S
F/B
i = S

F/B
i−1 + kiv

⊤
i , (110)

y
F/B
i = qi

⊤S
F/B
i − 1

2
qi

⊤kivi

(111)

= Y = QK⊤V (112)

The final output for scaled version can be extracted as yi =
yB
i +yB

i

cBi +cBi
for scaled and as yi =

yB
i + yB

i for non-scaled version. Variations of linear transformers, such as Performer (Choromanski
et al., 2021), which employ different non-linearities ϕ(.) for keys and queries, can be adapted to a
bidirectional format using the framework established for linear transformers.

Retentive Network (LION-RETNET). According to Sun et al. (2023) the forward equation for a
retentive network can be written as:

SF
i = λSF

i−1 + kiv
⊤
i , (113)

yF
i = qi

⊤SF
i (114)

This architecture can also be expanded to bi-directional setting simply by not scaling the attention in
our framework and only using the mask with non input-dependent λi = λ values:

S
F/B
i = λS

F/B
i−1 + kiv

⊤
i , (115)

y
F/B
i = qi

⊤S
F/B
i − 1

2
qi

⊤kivi

(116)

= Y = (QK⊤ ⊙MR)V (117)

Note that: MR
ij = λ|i−j|.

xLSTM (LION-LSTM). According to Beck et al. (2024) the recurrence for forward recurrence of
xLSTM can be written as:

SF
i = fiS

F
i−1 + iikiv

⊤
i , (118)

zFi = fiz
F
i−1 + iiki, (119)

yF
i =

qi
⊤SF

i

qi
⊤ziF

(120)

The above recurrence is equivalent to (8) by considering iiki as a new key. The term iiki can be
easily vectorized by aggregating all ii values for each token into a vector i. Thus, we can express the
vectorized form of the bidirectional xLSTM and its equivalence to attention as follows:
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(124)

Output: yi =
yF
i + yB

i

max(cFi + cBi , 1)
(125)

= Y = SCALE’(Q(i⊙K⊤))⊙Mf )V
(126)

where the mask Mf is equal to the LION mask (88) just by replacing λi = fi. And where operation
SCALE’ consider the maximum of operation in the denominator as:

SCALE’(A)ij =
Aij

max(
∑L

j=1 Aij , 1)
(127)

Gated RFA (LION-GRFA). Gated RFA (Yang et al., 2023) in autoregressive mode exhibits a
recurrence similar to that of xLSTM, with only minor differences:

SF
i = giS

F
i−1 + (1− gi)kiv

⊤
i , (128)

zFi = giz
F
i−1 + (1− gi)ki, (129)

yF
i =

qi
⊤SF

i

qi
⊤ziF

(130)

Thus, the bidirectional version of the model retains a similar output, achieved by replacing the vector
i in (126) with 1− g, where g represents the vectorized form of all scalar values gi.

S
F/B
i = giS

F/B
i−1 + (1− gi)kiv

⊤
i , (131)

z
F/B
i = giz

F/B
i−1 + (1− gi)ki (132)

c
F/B
i = qi

⊤z
F/B
i − 1

2
qi

⊤ki, (133)

y
F/B
i = qi

⊤S
F/B
i − 1

2
qi

⊤kivi (134)

= Y = SCALE(Q((1− g)⊙K⊤)⊙M)V (135)

C.6 GENERATION OF THE MASK

Below we present the Python code used for the creation of the bidirectional mask M as described in
previous sections.

1 def mask_single_direction(tensor):
2 # cumsum = cumulative_sum(tensor) Definition
3 prepend_zeros = zeros(tensor.shape[:-1], 1, dtype=tensor.dtype)
4 cumsum = concatenate((prepend_zeros, cumsum), dim=-1)
5 A = cumsum[..., 1:].unsqueeze(-2) - cumsum[..., :-1].unsqueeze(-1)
6 A = lower_triangle(A.transpose(-1, -2))
7 zero_row = zeros(A.shape[:-2], 1, A.shape[-1], dtype=A.dtype)
8 A = concatenate((zero_row, A[..., :-1, :]), dim=-2)
9 return lower_triangle(exp(A))

10

11 def mask_bidirection(vec):
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12 vec_shape = vec.shape
13 A_for = mask_single_direction(vec.unsqueeze(-1).transpose(-1, -2)).

squeeze()
14 vec_back = concatenate((vec, ones((vec_shape[0], vec_shape[1], 1))),

dim=-1)
15 A_back = mask_single_direction(vec_back)[:,:,1:].unsqueeze(-1).

transpose(-1,-2).squeeze()
16 return A_for + A_back - eye(A_for.shape[-1])

C.7 EXPANDING THE DIMENSION OF ai

Similar to other recurrent models, particularly SSM variations, the dimension of ai can be increased
beyond a scalar. When ai is a scalar, the same mask M is applied to all elements of the value
vector v. However, if we allow ai to be a vector ai ∈ Rd, the mask matrix transforms into a tensor
M̄ ∈ RL×L×d. This tensor can be computed in parallel for each individual value element along the
last dimension. The last dimension will then be multiplied using the Hadamard product with the
values, resulting in the following vectorized form:

Y = SCALE(QK⊤ ⊙ M̄) ∗V (136)

In this equation, the operation ∗ denotes the Hadamard product applied along the last dimension of
the tensor mask M̄ with the value vector V, while the first two dimensions are combined using a
standard matrix product. The corresponding code is as follows:

1 attn = (Q @ K.transpose(-2, -1))
2 attn = torch.einsum("nhkmd,nhkm->nhkmd", M, attn)
3 attn = scale(attn)
4 x = torch.einsum("nhkmd,nhmd->nhkd", attn, V)

C.8 CHANGING THE ORDER OF PATCHES

When processing images, both the spatial relationships among neighboring pixels and their positions
are as critical as the pixel values themselves. Positional embeddings provide a way to incorporate
these spatial relationships. A common approach in Transformers involves flattening the image,
as illustrated in the left panel of Figure 7. However, we argue that this method of flattening is
suboptimal and can be enhanced to include additional contextual information.

Furthermore, in scenarios involving a fully masked setup or RNN-based inference, the se-
quence in which pixels are processed becomes increasingly important. To address this, we propose
a new reordering scheme for pixel values. In the attention module, the pixel values are reordered
following the patterns depicted in the center and right panels of Figure 7. Forward and backward
passes are then executed based on this new ordering, adhering to established procedures. The outputs
from these two passes are subsequently averaged to generate the final result.

We refer to this method as LION-S (v2) throughout the paper. This approach demonstrated
a notable improvement in accuracy for image classification tasks while maintaining the efficiency and
flexibility inherent to the method. A similar concept has been previously explored in Vision-LSTM
(Alkin et al., 2024).

D ADDITIONAL EXPERIMENTAL VALIDATION

D.1 CITATIONS FOR LRA BENCHMARKS

The LRA baselines included in Table 2 correspond to Transformer (Vaswani et al., 2017), MEGA
and MEGA-chunk (Ma et al., 2022), DSS (Gupta et al., 2022), S4 (Gu et al., 2022), S5 (Smith et al.,
2023), Mamba (Gu & Dao, 2024), Local Att. (Vaswani et al., 2017), Sparse Transformer (Child et al.,
2019), Longformer (Beltagy et al., 2020), Linformer (Wang et al., 2020), Reformer (Kitaev et al.,
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Figure 7: Reordering of patches. Left is the naive approach to flatten images, also used in LION-S.
Center and right figures are the new approaches applied in LION-S (v2) to consider further spatial
information.

2020), Sinkhorn Transformer (Tay et al., 2020a), BigBird (Zaheer et al., 2020), Linear Transformer
(Katharopoulos et al., 2020), Performer (Choromanski et al., 2021), FNet (Lee-Thorp et al., 2022),
Nyströmformer (Xiong et al., 2021), Luna-256 (Ma et al., 2021) and H-Transformer-1D (Zhu &
Soricut, 2021).

D.2 LRA CONFIGURATIONS FOR LION

For the LRA task, we utilized the same model dimensions as specified in the S5 (Smith et al., 2023)
paper, following the guidelines from the S5 GitHub repository3. Our state matrix was represented as
a vector Λi = λi, where each element contains a scalar non-input dependent value ea. The value a
was initialized based on HIPPO theory, alongside the input-dependent ai, as described in main body.

We employed the ADAMW optimizer with an initial learning rate of 5× 10−4 and a cosine learning
rate scheduler (Loshchilov & Hutter, 2016). The weights for the queries and keys, as well as the
selective component of Λ, were initialized using a Gaussian distribution with a standard deviation
of 0.1. For the values v, we initialized Wv using zero-order hold discretization, represented as
W init

v =
(
Λ−1 · (Λ− I)

)
. The non-selective parts of Λ were initialized based on the HIPPO (Smith

et al., 2023) matrix.

D.3 ABLATION STUDIES ON LRA DATASET

Table 6: Effects of different parameter choices and non-linearities in LION-S on LRA tasks. Codes:
[1] Sigmoid non-linearity was applied to the k and q values with unscaled masked attention; [2]
ReLU non-linearity was utilized, and the masked attention was scaled; [3] The parameter ai was
selected as a scalar instead of a vector; [4] LION-S model parameters were used without scaling; [5]
The attention matrix of LION-S was scaled, but attention values were adjusted without the factor of
λi; [6] The selective component of ai was removed; [7] SoftPlus activation function was employed
for the ai values.

Model ListOps Text Retrieval Image Pathfinder PathX Avg.
(input length) 2048 2048 4000 1024 1024 16K
[1] ϕ(x) = σ(x) w.o scaling 61.02 88.02 89.10 86.2 91.06 97.1 85.41
[2] ϕ(x) = RELU(x) w. scaling 36.37 65.24 58.88 42.21 69.40 ✗ 54.42
[3] ai only scalar 36.23 60.33 60.45 58.89 70.00 ✗ 57.17
[4] LION w.o scaling 58.76 67.22 59.90 60.0 65.51 ✗ 62.27
[5] scaled attention w.o mask 60.12 87.67 87.42 88.01 89.23 ✗ 82.49
[6] ai From HIPPO w.o selectivity 60.12 88.00 89.22 83.21 91.0 96.30 84.64
[7] ai = SOFTPLUS(x) 16.23 59.90 60.00 45.12 70.07 ✗ 50.26
LION-S 62.25 88.10 90.35 86.14 91.30 97.99 86.07

3https://github.com/lindermanlab/S5
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We have observed that bounding the keys and queries significantly enhances the model’s ability to
solve tasks. This finding is consistent with the observations in Yang et al. (2024). As demonstrated in
variation [1], it can successfully tackle the LRA task even without scaling, while the RELU activation
fails to do so. Additionally, we found that scaling plays a crucial role, particularly when it comes
to scaling the masked attention. The approach used in LION, which scales the attention before
applying the mask expressed as Y = SCALE(QK⊤)⊙M has proven ineffective in addressing the
challenging PathX task, as shown in [5]. Furthermore, the modifications implemented in LION-S
have demonstrated superior performance compared to all other variations tested.

D.4 ADDITIONAL EXPERIMENTAL RESULTS FOR THE MLM/GLUE TASKS

In this section and in Table 7, we present our bidirectional language task results in the BASE scale
using the BERT pretraining and BERT24 (Izsak et al., 2021) finetuning recipes.

Table 7: C4 Masked Language Modelling and GLUE results with the BERT pretraining and BERT24
finetuning recipes. For each column (dataset), the best and the second best results for each model size
are highlighted with bold and underline respectively.

Model MLM Acc. MNLI RTE QQP QNLI SST2 STSB MRPC COLA Avg.

BERT 67.23 84.26 59.21 89.87 90.24 92.35 88.12 90.24 56.76 81.38
LION-LIT 65.08 82.37 55.81 89.49 89.57 91.74 86.27 88.25 44.46 78.50
LION-S 66.19 82.50 57.47 89.38 87.88 92.70 82.42 82.46 53.39 78.40

D.5 EXPERIMENTAL DETAILS FOR THE MLM/GLUE TASKS

Architectures We train the BASE (110M parameters) and LARGE (336M parameters) model
families from the original BERT paper (Devlin et al., 2019). For the LION models, we replace
the standard self-attention blocks with LION-LIT/LION-RETNET/LION-S blocks while keeping all
hyperparameters the same. For LION-LIT, we incorporate LayerNorm (Ba, 2016) after the attention
block to enhance stability. Our implementation is based on the M2 repository (Fu et al., 2023), i.e.,
https://github.com/HazyResearch/m2.

Pretraining All our pretraining hyperparameters follow Fu et al. (2023): We employ the
C4 dataset (Dodge et al., 2021), a maximum sequence length during pretraining of 128 and a masking
probability of 0.3 and 0.15 for the training and validation sets respectively. We train our model for
70, 000 steps with a batch size of 4096. We employ the decoupled AdamW optimizer with a learning
rate of 8 · 10−4, β1 = 0.9, β2 = 0.98, ϵ = 10−6 and weight decay 10−5. As a scheduler, we perform
a linear warm-up for 6% of the training steps and a linear decay for the rest of training until reaching
20% of the maximum learning rate.

Our only change in the pretraining hyperparameters is setting the learning rate to 2 · 10−4

for the LARGE model family. In our preliminary experiments, we found that training diverged when
using a learning rate of 8 · 10−4 for BERT-LARGE.

For completeness, in Table 7 we present the results with the BERT pretraining4 and BERT
24 finetuning5 recipes available in the M2 repository.

Finetuning For the GLUE finetuning experiments, we employ four different configurations:

• BERT24: Available in Izsak et al. (2021) and the file https://github.
com/HazyResearch/m2/blob/main/bert/yamls/finetune-glue/
hf-transformer-finetune-glue-bert-base-uncased.yaml.

4https://github.com/HazyResearch/m2/blob/main/bert/yamls/pretrain/
hf-transformer-pretrain-bert-base-uncased.yaml

5https://github.com/HazyResearch/m2/blob/main/bert/yamls/finetune-glue/
hf-transformer-finetune-glue-bert-base-uncased.yaml
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Table 8: GLUE finetuning recipes employed in this work. All recipes finetune on RTE, STSB and
MRPC from the weights finetuned in MNLI and the rest from the C4-pretrained weights. All recipes
use a sequence length of 128 tokens except BERT24, that uses 256. D. AdamW stands for decoupled
AdamW.

Recipe Param. Dataset
MNLI QNLI QQP RTE SST2 MRPC COLA STSB

BERT24
(Izsak et al., 2021)

LR 5 · 10−5 1 · 10−5 3 · 10−5 1 · 10−5 3 · 10−5 8 · 10−5 5 · 10−5 3 · 10−5

WD 5 · 10−6 1 · 10−5 3 · 10−6 1 · 10−6 3 · 10−6 8 · 10−5 5 · 10−6 3 · 10−6

Epochs 3 10 5 3 3 10 10 10
Optimizer D. AdamW D. AdamW D. AdamW D. AdamW D. AdamW D. AdamW D. AdamW D. AdamW

M2-BASE
(Fu et al., 2023)

LR 5 · 10−5 5 · 10−5 3 · 10−5 1 · 10−5 3 · 10−5 8 · 10−5 8 · 10−5 8 · 10−5

WD 5 · 10−6 1 · 10−5 3 · 10−6 1 · 10−6 3 · 10−6 8 · 10−5 5 · 10−6 3 · 10−6

Epochs 3 10 5 3 3 10 10 10
Optimizer D. AdamW D. AdamW D. AdamW D. AdamW D. AdamW D. AdamW D. AdamW AdamW

M2-LARGE
(Fu et al., 2023)

LR 5 · 10−5 5 · 10−5 3 · 10−5 5 · 10−5 3 · 10−5 8 · 10−5 5 · 10−5 8 · 10−5

WD 5 · 10−6 1 · 10−6 3 · 10−6 1 · 10−6 3 · 10−6 8 · 10−6 1 · 10−6 3 · 10−5

Epochs 3 10 5 2 3 10 10 8
Optimizer D. AdamW D. AdamW D. AdamW AdamW D. AdamW D. AdamW D. AdamW D. AdamW

Modified
(Ours)

LR 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

WD 5 · 10−6 1 · 10−6 3 · 10−6 1 · 10−6 3 · 10−6 8 · 10−6 1 · 10−6 3 · 10−5

Epochs 3 10 5 2 3 10 10 8
Optimizer D. AdamW D. AdamW D. AdamW AdamW D. AdamW D. AdamW D. AdamW D. AdamW

Table 9: Combining positional embeddings with LION-RETNET and LION-S. Both pretrained
models improve in the validation MLM acc. when employing positional embeddings.

Model Pos. Emb. MLM Acc. MNLI RTE QQP QNLI SST2 STSB MRPC COLA Avg.

LION-RetNet ✗ 66.62 82.85 52.49 89.63 88.43 91.86 85.96 83.94 53.58 78.59
✓ 66.97 83.37 54.08 89.52 88.32 92.35 83.58 79.40 54.53 78.15

LION-s ✗ 67.05 83.17 53.50 89.35 88.89 93.00 37.73 77.87 53.18 72.09
✓ 67.35 83.26 52.42 89.82 88.38 92.58 83.87 79.54 55.25 78.14

• M2-BASE: Available in Fu et al. (2023), Section C.1 and the file https://github.
com/HazyResearch/m2/blob/main/bert/yamls/finetune-glue/
monarch-mixer-finetune-glue-960dim-parameter-matched.yaml.

• M2-LARGE: Available in Fu et al. (2023), Section C.1 and the file https://github.
com/HazyResearch/m2/blob/main/bert/yamls/finetune-glue/
monarch-mixer-large-finetune-glue-1792dim-341m-parameters.
yaml.

• Modified: Same as M2-LARGE but all learning rates are set to 10−5.

The recipes are summarized in Appendix D.5. The Modified hyperparameter set was devised as
M2-LARGE was found to diverge for BERT-LARGE.

D.6 ABLATION STUDIES IN THE MLM/GLUE TASKS

Combining positional embeddings with LION. We compare the GLUE performance of
LION-RETNET and LION-S when including positional embeddings. We pretrain the BASE models
and finetune them with the M2-BASE recipe.

In Table 9 we can observe that adding positional embeddings increased the MLM acc. in around
0.3 percentage points. In the GLUE benchmark, we observe that for LION-RETNET performance
degraded in 0.44 percentage points, while for LION-S, performance improved in 6.05 percentage
points. We attribute this behavior in GLUE to the dependence on the finetuning recipe.

Recipe selection. In this section, we select the best finetuning recipe for each model family and size.
For the BASE models, we test the M2-BASE and Modified recipes. For the LARGE models, we test
the M2-LARGE and Modified recipes.

In Table 10, firstly, we observe that the M2-BASE recipe generally provides a higher GLUE
score than the Modified recipe for the BASE models, e.g., 82.25 v.s. 80.26 for the BERT model.
Secondly, we observe that for the LARGE model family, the M2-LARGE recipe fails, providing
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Table 10: Recipe selection for the GLUE benchmark.

Model MLM Acc. Recipe MNLI RTE QQP QNLI SST2 STSB MRPC COLA Avg.

BERT 67.70 M2-BASE 84.63 64.33 89.99 89.80 92.51 86.69 89.62 60.42 82.25
Mod. 83.09 58.27 89.35 89.88 92.16 86.56 87.78 55.02 80.26

LION-LIT 65.47 M2-BASE 82.50 63.47 89.72 89.27 91.74 87.18 89.37 49.22 80.31
Mod. 80.88 54.95 88.80 88.83 91.32 85.42 87.07 46.98 78.03

LION-RETNET 66.62 M2-BASE 82.85 52.49 89.63 88.43 91.86 85.96 83.94 53.58 78.59
Mod. 80.52 52.85 88.93 88.36 91.55 82.05 84.48 49.13 77.23

LION-S 67.05 M2-BASE 83.17 53.50 89.35 88.89 93.00 37.73 77.87 53.18 72.09
Mod. 78.14 56.39 88.68 88.52 92.39 51.22 77.60 49.75 72.84

BERTLARGE 69.88 M2-LARGE 84.97 69.10 31.59 49.15 91.93 53.61 87.87 51.16 64.92
Mod. 85.68 67.44 89.90 91.89 93.04 88.63 90.89 56.14 82.95

LION-LIT LARGE 67.11 M2-LARGE 83.20 54.51 89.08 84.90 90.44 68.57 85.25 23.35 72.41
Mod. 83.73 57.18 89.85 89.93 91.86 88.02 90.18 55.36 80.76

LION-RETNET LARGE 68.64 M2-LARGE 83.82 52.85 41.48 53.67 91.13 36.87 82.41 45.79 61.00
Mod. 83.82 60.72 89.72 89.79 92.93 87.29 89.66 56.83 81.34

LION-S LARGE 69.16 M2-LARGE 83.71 50.04 38.81 53.98 91.59 36.98 82.29 50.27 60.96
Mod. 84.38 57.69 89.57 90.30 92.93 87.68 90.57 59.54 81.58

poor performances between 60.96 and 72.41 GLUE points. When reducing the learning rate to 10−5

(Modified recipe), training is more stable and performance reaches between 80.76 and 82.95 GLUE
points. We find that small changes in the finetuning recipe have a large effect in the performance.
Our results in standard recipes show that the LION family of models can obtain a high performance
without extensive tuning and closely follow the performance of the BERT family models, at 80.31
v.s. 82.25 for the BASE model size and 81.58 v.s. 82.95 for the LARGE model size.

D.7 ABLATION STUDIES WITH IMAGE CLASSIFICATION

Resolution vs. Accuracy. The most common practice in the literature on Vision Transformers is
to resize images to 224 × 224 even though most of the images in the ImageNet dataset are larger.
Since regular Transformers have positional embedding, it is not possible to use a larger resolution
during inference than the training. However, since the LION-S architecture does not include any
positional embeddings, it can be used with different resolutions. In Figure 8, we present the accuracy
of the architectures trained on 224× 224 resolution on the ImageNet dataset at different inference
resolutions. As the results illustrate, the abilities of LION-S can be effectively transferred among
different resolutions.

Choice of λi values.

In this section, we study the properties of the selectivity parameter ai on CIFAR-100 dataset. We
tested, three cases: (i) fixed mask with scalars ai = ai, (ii) vector, input-dependent ai ∈ Rd (cf.,
Appendix C.7) and iii) input dependent scalar ai ∈ R. The results, presented in Table 11, show that
while the input dependency is beneficial, the expansion of ai is not necessary for image tasks. As a
result, we employ option three in all image classification tasks, and the end model is called LION-S.
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Figure 8: Top-1 accuracy on Imagenet of the models at different resolutions. Images are resized
at the corresponding resolution and fed into the model. Due to positional embeddings, ViT and
LION-LIT models cannot perform with sizes larger than the training size while LION-S can preserve
the accuracy for much higher resolutions.
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Table 11: Ablation studies on image classification. Additional ablations with CIFAR100 dataset to
determine the size and input dependency of the selectivity parameter of the model LION-S.

Models Top-1 Acc.

Fixed mask ai = ai 75.66
Vector ai ∈ Rd 67.55
Scalar, input dependent ai ∈ R (LION-S) 77.56

Understanding the power of non-linearity, softmax, and positional embeddings. In Table 12, we
present additional ablations on certain design elements of a Vision Transformer. We perform these
experiments on CIFAR-100 data using the same hyperparameters with LION-S. We have observed
that either nonlinearity or softmax is essential for the model to converge with a nice accuracy. Though
positional embedding boosts the accuracy, a mask can easily replace it.

Table 12: Ablation studies on image classification. Additional ablations with the CIFAR-100 dataset
to understand the contribution of softmax, nonlinearities in a model is presented. Soft., PosEmb and
NonLin expresses if softmax, positional embedding, and non-linearity have been applied. ✗ means
the model did not converge. The symbol denotes the adaptation of recurrent models that achieve
equivalence to attention during training while utilizing recurrence during inference, as established by
our theorem.

Models Top-1 Acc.

[1] Soft. + PosEmb + NonLin 73.88
[2] Soft. + PosEmb (ViT-T) 77.33
[3] Soft. + NonLin ✗
[4] Soft. 73.15
[5] PosEmb + Non.Lin (LION-LIT) 73.61
[6] PosEmb 68.54
[7] NonLin 65.28
[8] Base ✗

Non.Lin + Mask (LION-S) 77.56

Table 13: Summary of training hyperparameters for image classification tasks. Corresponding to
variations of ViT recipe from Touvron et al. (2020). Nonlinearity is chosen based on performances.

Models ViT-T LION-LIT LION-S

Datasets CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet

Epochs 1000 1000 300 1000 1000 300 1000 1000 300
Batch size 128 128 3072 128 128 3072 128 128 3072
Learning rate 5e-4 0.001 0.003 5e-4 0.001 0.001 5e-4 0.01 0.002
Weight decay 0.05 0.05 0.3 0.05 0.05 0.3 0.05 0.05 0.3
Warmup epochs 5 5 3 5 5 3 5 5 4
Warmup starting learning rate 1e-6 1e-6 5e-4 1e-6 1e-6 5e-4 1e-6 1e-6 5e-4
Dropout 0 0.1 0.1 0 0.1 0.1 0 0.1 0.1
Gradient Clip. ✗ 1.0 1.0 ✗ 1.0 1.0 ✗ 1.0 1.0
Nonlinearity softmax softmax softmax elu() + 1 elu() + 1 elu() + 1 SILU(x)

||SILU(x)||
SILU(x)

||SILU(x)||
SILU(x)

||SILU(x)||

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Scheduler Cosine Cosine Cosine Cosine Cosine Cosine Cosine Cosine Cosine
Minimum learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
Drop path 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Model EMA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Model EMA decay 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996
Color jitter 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Train interpolation bicubic bicubic bicubic bicubic bicubic bicubic bicubic bicubic bicubic

D.8 HYPERPARAMETERS FOR TRAINING IMAGE CLASSIFIERS

In Table 13, we present the training hyperparameters for image classification tasks. All experiments
were conducted in a single (CIFAR-10, CIFAR-100) or multiple (ImageNet) machines with NVIDIA
A100 SXM4 80GB GPUs. The codes for training and evaluating the models are adapted from
Touvron et al. (2020) and Wightman (2019).
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D.9 CALCULATION OF NUMBER OF FLOPS

Below we present a theoretical number of FLOPS used in the attention of vision transformers and
LION-S during inference where L is the resolution/context length and D is the hidden dimension.
Results show that while transformer has O(L2 + LD2) LION-S has O(LD2). Note that in this
calculation, the exponentials and other nonlinearities are considered as 1 FLOP whereas in reality,
the Softmax introduces additional complexities. The same calculations should also apply to other
bi-directional models.

The number of FLOPs in the one head of the one layer attention for a vision transformer:

• Calculating Q,K,V: 6LD2,

• Attention A = QKT : 2L2D

• Softmax (assuming 1 FLOP for exp): 2L2

• Calculating Y: 2L2D

• TOTAL: L(6D2 + 4LD + 2L)

The number of FLOPs in the attention module for LION:

• Calculating Q,K,V, λ: 6LD2 + 2LD,

• For each token in one forward/backward recurrence:

– Updating S
F/B
i : 3D2

– Updating z
F/B
i : 2D

– Calculating c
F/B
i : 4D + 2

– Calculating y
F/B
i : 2D2 + 4D + 1

– Total: 5D2 + 10D + 3

• L forward + backward recurrences: 2L(5D2 + 10D + 3)

• Calculating Y: 2L(D + 1)

• TOTAL: L(16D2 + 24D + 7)

D.10 DISTILLATION RESULTS OF LION-S

We have also used the same recipe from DeiT distillation Touvron et al. (2021) and distilled the
RegNet network into LION-S. We observed that the distillation outperforms the original ViT-Tiny on
the ImageNet dataset. The results are shown in the table below:

Table 14: Distillation results of LION-S.

Models Top-1 Acc.
LION-S 67.95
VIT-Tiny 70.23
LION-S (Distilled) 70.44

D.11 TRAINING TIME FOR DIFFERENT MODELS IN VISION EXPERIMENTS

In Table 15, we present the average time per epoch to train each model on the CIFAR-100 dataset
with batch size 1024. The same set-up is used in all measurements.

D.12 ABLATION STUDIES IN MAPPING OF AUTOREGRESSIVE MODELS TO LION FRAMEWORK

Building on the mapping of autoregressive models in Appendix C.5, we conducted additional ex-
periments using LION-RETNET and LION-GRFA. Specifically, we modified the transformer block
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Table 15: Training Time per Epoch for Different Models. Best in bold and second best is in italic
form.

Training Strategy (Model) Time (s) /Epoch
Attention (VIT) 24.6
Attention (LION-S) 35.8
Attention (LION-LIT) 26.6
Parallel Scan (Hydra) 43.4

of the VIT-Tiny model according to the proposed mapping and evaluated its performance on the
CIFAR-100 dataset, maintaining the same training recipes as LION-S. The results, summarized in
Table 16, demonstrate that the LION framework facilitates the seamless extension of other autoregres-
sive models to a bi-directional setting, achieving strong performance without requiring additional
hyperparameter tuning.

Table 16: Mapping of autoregressive models to bidirectional setting with LION framework.. These
models benefit from the expansion to the bi-directional setting using the LION framework.

Model Top-1 Acc.
GRFA (Uni-directional) 71.56
LION-GRFA (Bi-directional) 73.24
RETNET (Uni-directional) 72.24
LION-RETNET (Bi-directional) 75.66

D.13 ABLATION STUDIES ON IMPORTANCE OF BI-DIRECTIONALITY ON IMAGE
CLASSIFICATION

To highlight the importance of bi-directionality and demonstrate the versatility of the LION framework,
we conducted additional experiments examining the processing directions of the blocks. We evaluated
four settings: (i) all blocks process patches in the forward direction only (Forward), (ii) all blocks
process patches in the backward direction only (Backward), (iii) odd-numbered blocks process
patches in the forward direction while even-numbered blocks process them in the backward direction
(Forward-Backward), and (iv) all blocks process patches in both directions (Bi-directional). The
results reveal that incorporating both directions improves performance by approximately 4%, while
full bi-directionality achieves a significant boost of up to 10%.

Table 17: Results for LION-S and LION-S (v2) with different directional settings on CIFAR-100.
Incorporating both directions improves performance by approximately 4%, while full bi-directionality
achieves a significant boost of up to 10%.

Model Top-1 Acc.
LION-S (Forward) 71.08
LION-S (Backward) 69.61
LION-S (Forward-backward) 73.93
LION-S (Bi-directional) 77.56
LION-S (v2) (Forward) 70.24
LION-S (v2) (Backward) 70.42
LION-S (v2) (Bi-directional) 80.07

35


	Introduction
	Preliminaries and background
	Lion: Expanding Full Attention to bidirectional RNN
	Lion-s: Selectivity Inspired From Continuous Systems
	Experiments
	Long Range Arena
	Masked Language Modelling
	Image Classification
	Context extension and memory during inference

	Conclusions
	Causal Language Modelling
	Detailed related work
	State Space Models and Transformers
	Linear Recurrent Models Summary
	Parallel Training and Efficient Inference
	Architectural Differences in Autoregressive Linear Recurrent Models
	Memory allocation in Lion during Forward and Backward recurrences
	Zero-Order Hold Discretization 

	Proofs
	Proof of prop:ssd: Duality between Linear Recurrence and Attention
	Forward and Backward Recurrences Theoretical Details
	Efficient and Simple Method for Scaling Attention During Inference
	Flipping Operation in Backward recurrence
	Mapping Existing autoregressive models into Lion
	Generation of the Mask
	Expanding the Dimension of ai
	Changing the order of patches

	Additional experimental validation
	Citations for LRA Benchmarks
	LRA Configurations for Lion
	Ablation Studies on LRA dataset
	Additional experimental results for the MLM/GLUE tasks
	Experimental details for the MLM/GLUE tasks
	Ablation studies in the MLM/GLUE tasks
	Ablation Studies with Image Classification
	Hyperparameters for Training Image Classifiers
	Calculation of Number of FLOPS
	Distillation Results of LION-S
	Training time for Different models in Vision Experiments
	Ablation studies in mapping of autoregressive models to Lion framework
	Ablation studies on importance of bi-directionality on image classification


