
Direct Confidence Alignment: Aligning Verbalized Confidence with
Internal Confidence In Large Language Models

Anonymous ACL submission

Abstract
Producing trustworthy and reliable Large Lan-001
guage Models (LLMs) has become increas-002
ingly important as their usage becomes more003
widespread. Calibration seeks to achieve004
this by improving the alignment between the005
model’s confidence and the actual likelihood of006
its responses being correct or desirable. How-007
ever, it has been observed that the internal con-008
fidence of a model, derived from token proba-009
bilities, is not well aligned with its verbalized010
confidence, leading to misleading results with011
different calibration methods. In this paper, we012
propose Direct Confidence Alignment (DCA),013
a method using Direct Preference Optimiza-014
tion to align an LLM’s verbalized confidence015
with its internal confidence rather than ground-016
truth accuracy, enhancing model transparency017
and reliability by ensuring closer alignment be-018
tween the two confidence measures. We evalu-019
ate DCA across multiple open-weight LLMs on020
a wide range of datasets. To further assess this021
alignment, we also introduce three new calibra-022
tion error-based metrics. Our results show that023
DCA improves alignment metrics on certain024
model architectures, reducing inconsistencies025
in a model’s confidence expression. However,026
we also show that it can be ineffective on others,027
highlighting the need for more model-aware ap-028
proaches in the pursuit of more interpretable029
and trustworthy LLMs.030

1 Introduction031

LLMs have revolutionized natural language tasks,032

achieving impressive performance across various033

applications (Wei et al., 2022; Naveed et al., 2024)034

Despite their capabilities, there are still concerns035

about the calibrations of these models, that is, the036

alignment between the confidence they assign to037

their predictions and the actual accuracy of those038

predictions(Jiang et al., 2021). For example, in039

a well-calibrated model, predictions assigned a040

70% confidence level should be correct approx-041

imately 70% of the time. These limitations are042

especially critical in high-risk applications such as 043

decision support systems, healthcare settings (Peng 044

et al., 2023), and legal consultations (Lai et al., 045

2024), where overconfidence in incorrect answers 046

can lead to severe consequences. Examples include 047

erroneous recommendations in decision support 048

systems that can lead to significant financial op- 049

erational losses, misdiagnoses in healthcare, and 050

flawed legal advice that may affect case outcomes. 051

Existing model confidence estimation methods 052

can be categorized into two types: Internal and 053

Verbalized Confidence. 054

Internal Confidence (Ci) is most commonly 055

quantified as the probability of predicting a partic- 056

ular output token semantically linked to an answer 057

given a context. There have also been alternative 058

approaches to estimating internal confidence, such 059

as self-consistency-based approaches and ensem- 060

ble methods (Geng et al., 2024; Portillo Wightman 061

et al., 2023). 062

Verbalized Confidence (Cv) is defined as the 063

LLM’s expression of its confidence level as a cer- 064

tainty percentage in its output answer to a given 065

prompt (Lin et al., 2022a). 066

Whilst existing literature predominantly focuses 067

on accuracy-based calibration, which involves 068

aligning models’ predicted confidence with ground- 069

truth accuracy, they do not cover the effects of 070

calibrating verbalized confidence Cv to internal 071

confidence Ci instead of against accuracy. Further- 072

more, internal confidence Ci derived from logits 073

and verbalized confidence within LLMs are often 074

misaligned with each other, leading to inconsistent 075

confidence expressions, especially in unfamiliar 076

questions where models can be verbally overconfi- 077

dent (Ni et al., 2024). 078

To address these, we propose Direct Confidence 079

Alignment: a method that involves aligning ver- 080

balized confidence Cv with internal confidence Ci 081

using DPO (Rafailov et al., 2024). By aligning 082

verbalized confidence with internal confidence, we 083
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argue that models can provide a more transparent084

and consistent view of their confidence in their085

responses. We evaluate our approach on a range086

of datasets and alignment metrics. We make the087

following contributions:088

1. We introduce a novel method of aligning ver-089

balized confidence Cv with internal confi-090

dence Ci using DPO training, taking inter-091

nal confidence as ground truth to improve the092

transparency and reliability of LLMs.093

2. We show the effects and implications of DCA094

on various LLMs with a wide range of archi-095

tectures across multiple datasets, highlighting096

its varied impact across models.097

3. We introduce and evaluate our method on098

three new metrics based on calibration error,099

which in this paper refers to the model’s in-100

ternal confidence Ci subtracted from its ver-101

balized confidence Cv for each response. Our102

proposed metrics in 4.3 provide a more de-103

tailed assessment of the magnitude and con-104

sistency of alignment between verbalized and105

internal confidence within LLMs.106

2 Related Works107

Confidence Calibration Calibration has been108

an area of extensive research in LLMs. (Lin109

et al., 2022a; Park and Caragea, 2022; Kadavath110

et al., 2022; Kuhn et al., 2022; Guo et al., 2017)111

show that a pre-trained LLM’s calibration can112

improve with model size, fine-tuning, prompting,113

self-consistency, or post-hoc methods such as114

temperature scaling. Temperature scaling in LLM115

calibration applies a single scalar parameter to116

adjust model logits before softmax. Known for117

its simplicity and effectiveness in improving cali-118

bration while preserving accuracy, it outperforms119

techniques such as Platt scaling and isotonic120

regression across a range of NLP tasks (Guo et al.,121

2017; Desai and Durrett, 2020). Other approaches122

involve forms of self-consistency, however, (Zhao123

et al., 2021) demonstrate that a model’s confidence124

can be sensitive to prompting variation. To address125

this, (Wang et al., 2024; Portillo Wightman126

et al., 2023) generates an ensemble of prompts,127

using prompt agreement to generate a calibrated128

confidence. More recently, (Tao et al., 2024)129

proposes Confidence-Quality-Order-preserving130

alignment approach, which incentivizes the model131

to verbalize greater confidence for responses of132

higher quality, addressing the lack of a definite 133

ground truth standard for confidence that aligns 134

with response quality in other methods. 135

136

Verbalized Confidence As model logits are ei- 137

ther inaccessible in black box LLMs or rendered 138

inaccurate due to RLHF, recent work (Tian et al., 139

2023; Xiong et al., 2024) explores the calibration 140

of verbalized confidence. For example, (Tian et al., 141

2023) takes the mean of k verbalized confidence 142

samples; however, it is sensitive to the prompting 143

structure, making it difficult to generalize sequen- 144

tial reasoning and limited to short answers. To 145

explore this, (Xiong et al., 2024) asks the model 146

to elicit verbal confidences using different temper- 147

atures and prompt strategies, including Chain-of- 148

Thought, Multi-Step, and Top-K reasoning. 149

Unlike the above techniques for confidence 150

calibration, our work seeks to align a model’s 151

verbalized confidence with its internal confidence, 152

making no reference to ground-truth accuracy or 153

response quality. 154

155

Confidence-Probability Alignment (Kumar 156

et al., 2024) introduces the concept of Confidence- 157

Probability Alignment, a measurement of the corre- 158

lation between a model’s verbalized certainty and 159

its internal confidence, quantified using answer 160

token probabilities. They posit that Confidence- 161

Probability Alignment is crucial for the reliability 162

of a model’s output. Our work expands on this 163

study by aligning these two confidence measures 164

using DPO. 165

Direct Preference Optimization (Rafailov 166

et al., 2024) demonstrates that Direct Preference 167

Optimization (DPO) achieves comparable or supe- 168

rior performance to existing reinforcement learning 169

from human feedback (RLHF) methods in various 170

text generation tasks while being computationally 171

efficient. Although they show that DPO has previ- 172

ously been successfully used to align LLMs with 173

human preferences in sentiment control and im- 174

prove dialogue quality, our work focuses on the 175

fact that DPO uses a preference dataset to serve as 176

a learning signal for preferred and non-preferred 177

model outputs as opposed to a reward function, 178

making it ideal for aligning a model’s verbalized 179

confidence with its internal confidence in a pair- 180

wise format. 181
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3 Methodology182

We define DCA as a method to improve the align-183

ment between verbalized confidence and internal184

confidence within LLMs using DPO, expanding on185

the study of (Kumar et al., 2024), which introduced186

this concept.187

3.1 Verbalized Confidence Extraction188

To extract the model’s verbalized confidence Cv,189

we prompt it in the format of our prompt template190

in A.1 and extract the Cv from its output.191

3.2 Internal Confidence Extraction192

To extract the model’s internal confidence Ci, we193

use the computed probability of the answer token194

(e.g., A, B, C, D) in its output.195

3.3 Preference Dataset Creation196

To generate an entry in our preference dataset for197

DPO training, we first generate a sample with198

full-text completion via our base prompt in A.1199

to obtain a formatted answer. We then extract Ci200

using our method in 3.2 and extract Cv from the201

model response. Using these values, we create two202

versions of the answer:203

204

Original Response: Original response of the205

model206

Modified Response: A copy of the original207

response where the model’s Cv is overwritten with208

its Ci.209

210

For each entry in our preference dataset, the mod-211

ified response will be the chosen option, and the212

original response will be the rejected option. See213

Figure 1 for a visual summary of this process.214

4 Experiment215

4.1 Models216

We use three open-weight instruct tuned LMs for217

our experimental setup, namely Meta’s Llama 3.2-218

3B-Instruct (Team, 2024b); Google’s Gemma 2-9B-219

Instruct (Team, 2024a); and Mistral AI’s Mistral220

7B-Instruct (Team, 2023).221

Figure 1: An overview of the entry generation process
for our preference dataset. Sample question and re-
sponse are from MMLU elementary mathematics and
Gemma 2-9B-Instruct, respectively.

4.2 Datasets 222

We use the following datasets for experimentation: 223

• OpenBookQA (Mihaylov et al., 2018) - A sci- 224

ence multiple choice dataset modelled after 225

open-book exams testing knowledge and ap- 226

plications of facts 227

• TruthfulQA (Lin et al., 2022b) - A dataset 228

crafted to test LLMs’ ability to truthfully 229

answer questions. Scoring well reflects the 230

model’s ability to avoid generating false an- 231

swers from imitating human text. 232

• CosmosQA (Huang et al., 2019) - A read- 233

ing comprehension dataset based on common 234

sense and reading between the lines for a di- 235

verse set of personal everyday narratives. 236

• Massive Multitask Language Understanding 237

(MMLU) (Hendrycks et al., 2021) - An evalu- 238

ation benchmark designed to test knowledge 239

gained from pretraining, containing 57 sub- 240

jects and a wide range of difficulty levels. 241

For the preference dataset, we use samples from 242

the "train" split of CosmosQA and an equal number 243

of samples split evenly between subjects in the 244

"test" split of MMLU. 245
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Model Method OpenBookQA TruthfulQA CosmosQA MMLU Mean
ρ ↑ σϵ ↓ |ϵ| ↓ σM ↓ ρ ↑ σϵ ↓ |ϵ| ↓ σM ↓ ρ ↑ σϵ ↓ |ϵ| ↓ σM ↓ ρ ↑ σϵ ↓ |ϵ| ↓ σM ↓ ρ ↑ σϵ ↓ |ϵ| ↓ σM ↓

Mistral-7B-Instruct Vanilla 0.17 25.06 20.08 1.12 0.20 30.64 25.99 1.07 0.20 20.59 19.53 0.53 0.18 26.24 24.25 0.67 0.19 25.63 22.96 0.85
DCA 0.14 20.77 47.83 0.93 0.06 24.47 43.90 0.86 0.16 23.23 52.47 0.59 0.17 23.23 51.53 0.59 0.13 22.93 48.93 0.74

Gemma-2-9B-Instruct Vanilla 0.32 19.43 9.86 0.87 0.41 17.21 10.74 0.60 0.30 14.88 9.39 0.39 0.33 16.36 9.64 0.43 0.34 16.97 9.91 0.57
DCA 0.39 16.83 5.06 0.76 0.51 12.71 5.06 0.46 0.38 9.97 4.00 0.25 0.39 13.64 6.00 0.35 0.42 13.79 5.03 0.46

Llama-3-2.3B-Instruct Vanilla 0.31 42.01 37.55 1.90 0.17 43.40 38.48 1.57 0.46 37.91 38.69 0.97 0.18 43.45 39.95 1.15 0.28 41.19 38.67 1.40
DCA 0.30 23.20 46.00 1.04 0.15 23.76 38.04 0.83 0.24 21.00 50.47 0.54 0.22 23.54 43.62 0.60 0.23 22.88 44.03 0.75

Table 1: Alignment evaluation across OpenBookQA, TruthfulQA, CosmosQA, and MMLU. ↑ indicates higher is
better, ↓ indicates lower is better. Best values per column are bolded. Mean values of each metric for each model
are also shown for aggregation. All values of ρ are significant (p < 0.01).

For the evaluation dataset, we use all questions246

from the "test" split of OpenBookQA and the "vali-247

dation" split of TruthfulQA’s multiple choice sub-248

set for evaluation on out-of-distribution (OOD)249

datasets, as well as an equal sample of ques-250

tions from the "validation" splits of MMLU and251

CosmosQA for evaluation on in-distribution (ID)252

datasets.253

4.3 Metrics254

We use Spearman’s Rank Correlation Coef-255

ficient ρ (Spearman.,1904) to directly evaluate256

the effectiveness of our method on improving257

Confidence-Probability Alignment (Kumar et al.,258

2024). However, ρ only measures the strength of259

a monotonic correlation and does not reference260

the perfect calibration line of y = x. Hence, we261

introduce and use Standard Deviation of Calibra-262

tion Error σϵ, Mean Absolute Calibration Error263

|ϵ|, and Standard Error of Calibration Error264

σM , as they can intrinsically reference the perfect265

calibration line of y=x as a global extremum and266

isolate the overall bias within the Cv of the models.267

268

5 Results and Analysis269

Table 1 presents our results for all models across270

all datasets. Gemma 2-9B-Instruct showed the271

strongest and most consistent improvements in met-272

rics after DCA, demonstrating superior alignment273

across all datasets. Most notably, it demonstrated274

the largest improvements in ρ and |ϵ| of all models275

on TruthfulQA. In contrast, mixed results were ob-276

served for Llama-3.2-3B-Instruct and Mistral-7B-277

Instruct across all datasets. For example, Llama-278

3.2-3B- Instruct demonstrates an increase in ρ from279

0.18 to 0.22 for MMLU however ρ fell from 0.46280

to 0.24 on CosmosQA. Mistral-7B-Instruct demon-281

strates a large increase in |ϵ| from 19.53 to 52.47282

for CosmosQA and a large reduction in ρ from283

0.20 to 0.06 on TruthfulQA. These findings indi- 284

cate that DCA is ineffective for these models on 285

certain tasks. Gemma 2-9B-Instruct’s consistent 286

performance on OOD datasets suggest that DCA 287

was effective at generalising its stronger alignment 288

between Cv and Ci to unseen questions. σϵ and σM 289

improved across most models and datasets, suggest- 290

ing that DCA lowered the variance in calibration 291

error for all models, especially for Llama-3.2-3B- 292

Instruct (see Figure 4 for an example). However, 293

a low σϵ is only useful if |ϵ| is also low, which 294

would indicate consistent and strong alignment be- 295

tween verbalized and internal confidence as shown 296

by Gemma 2-9B-Instruct (see Figure 3 for an exam- 297

ple). The similarity between results on ID datasets 298

and OOD datasets across models also suggest that 299

the effectiveness of DCA may be more model- 300

dependent than task-dependent, relying more on 301

the model architecture and how different models 302

process confidence elicitation in QA tasks. 303

6 Conclusion 304

In this paper we present Direct Confidence Align- 305

ment: a method of using DPO to improve the align- 306

ment between verbalized and internal confidence in 307

LLMs. Our results show that DCA can be effective 308

at improving this alignment as demonstrated by 309

Gemma 2-9B-Instruct, but also highlight the press- 310

ing need for improvements, such as expanding the 311

method to be compatible with a wider range of 312

model architectures and exploring more strategies 313

to improve this alignment. 314

Limitations 315

Access to Logits This method is limited to mod- 316

els with access to internal logits to extract model 317

internal confidence. This makes it inapplicable to 318

state-of-the-art (SOTA) closed-source models. 319

Reliance on well calibrated token probabilities 320

This method will be most useful if the internal con- 321
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fidence of the model is better calibrated against322

accuracy than its verbalized confidence, and thus323

may require other ground-truth-based calibration324

techniques to be used in conjunction for best re-325

sults.326
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A Appendix

Model OpenBookQA TruthfulQA CosmosQA MMLU
Vanilla DCA Vanilla DCA Vanilla DCA Vanilla DCA

Mistral-7B-Instruct 59.00% 58.23% 32.84% 20.98% 60.48% 54.02% 55.91% 48.85%
Gemma 2-9B-Instruct 86.06% 86.21% 59.68% 60.85% 79.63% 80.01% 72.41% 72.05%
Llama 3.2-3B-Instruct 47.14% 64.00% 29.71% 37.75% 66.43% 73.55% 39.92% 49.77%

Table 2: Comparison of accuracy across our datasets for models before and after DCA. Higher accuracy between
Vanilla and DCA versions of each model are in bold.

A.1 Prompt Template486

{Question}
{Options}

Provide your best guess (letter only) and
the probability that it is correct (0% to 100%) for
the above question. Give ONLY the guess and
probability, no other words or explanation. For
example:

Guess: <the letter only, as short as possi-
ble; not a complete sentence, just the letter!>
Probability: <the probability between 0% and
100% that your guess is correct, without any extra
commentary whatsoever; just the probability!>

487

488

We use a slightly modified version of (Tian et al.,489

2023)’s Verb. 1S top-1 prompt as our prompt tem-490

plate. We match this prompt across all of our exper-491

iments and training processes to ensure consistent492

responses and output formats during training, and493

post-training evaluation.494

A.2 DCA Training495

For DPO training, we use the Unsloth library496

(Daniel Han and team, 2023) for improved train-497

ing speeds and efficient memory usage. We loaded498

LoRA adapters onto our Instruct models using the499

configurations in Table 3 before training. Training500

was run on RTX 4000 Ada GPUs, and we used501

the ipo loss function (Azar et al., 2023) to avoid502

overfitting on the preference dataset. The complete503

training parameters can be found in Table 4.504

A.3 Effects of DCA on accuracy505

Table 2 shows that DCA can have mixed im-506

pacts on model accuracy. While accuracy re-507

mained stable on Gemma 2-9B-Instruct, Mistral-508

7B-Instruct demonstrated lower accuracies after509

DCA, especially on TruthfulQA. Interestingly, ac-510

curacy increased for Llama 3.2-3B-Instruct across511

all datasets.512

A.4 Supplementary Figures 513

Figures 2,3,and 4 below show supplementary fig- 514

ures for the results of Mistral-7B-Instruct, Gemma 515

2-9B-Instruct, and Llama 3.2-3B-Instruct, respec- 516

tively, along with their DCA-trained counterparts 517

on MMLU. For each model, the observed visual 518

trends were broadly consistent across the other 519

datasets. 520
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Hyperparameter Value Notes

r (LoRA rank) 16 Low-rank dimension for adapter updates
target_modules "q_proj",

"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj"

Only these weight matrices receive LoRA updates

lora_alpha 16 Scales the low-rank updates
lora_dropout 0.0 No dropout on LoRA adapters
bias "none" Do not update any bias parameters in LoRA
use_gradient
_checkpointing

"unsloth" Unsloth’s gradient-checkpointing strategy

random_state 3407 Seed for LoRA weight initialization and any randomness
use_rslora False Standard LoRA (RSLORA disabled)
loftq_config None No custom quantization configuration

Table 3: LoRA / PEFT Hyperparameters

Training Parameter Value

logging_steps 10
loss_type ipo
bf16 True
save_steps 100
per_device_train_batch_size 2
gradient_accumulation_steps 32

learning_rate (default) 1e-06
weight_decay (default) 0.0
num_train_epochs (default) 3
optimizer (default) AdamW (β1=0.9, β2=0.999)
lr_scheduler_type (default) constant (no warmup)
seed 3407

Table 4: DPO Fine-Tuning Hyperparameters

(a) Scatter (Baseline) (b) Calibration Error (Baseline) (c) Distributions (Baseline)

(d) Scatter (DCA) (e) Calibration Error (DCA) (f) Distributions (DCA)

Figure 2: Comparison of baseline vs. DCA-trained Mistral-7B-Instruct on MMLU. Top row: Verbalized vs. internal
confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline model.
Bottom row: Same visualizations for the DCA-trained model.
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(a) Scatter (Baseline) (b) Calibration Error (Baseline) (c) Distributions (Baseline)

(d) Scatter (DCA) (e) Calibration Error (DCA) (f) Distributions (DCA)

Figure 3: Comparison of baseline vs. DCA-trained Gemma 2-9B-Instruct on MMLU. Top row: Verbalized vs.
internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.

(a) Scatter (Baseline) (b) Calibration Error (Baseline) (c) Distributions (Baseline)

(d) Scatter (DCA) (e) Calibration Error (DCA) (f) Distributions (DCA)

Figure 4: Comparison of baseline vs. DCA-trained Llama 3.2-3B-Instruct on MMLU. Top row: Verbalized vs.
internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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