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Abstract

Producing trustworthy and reliable Large Lan-
guage Models (LLMs) has become increas-
ingly important as their usage becomes more
widespread.  Calibration seeks to achieve
this by improving the alignment between the
model’s confidence and the actual likelihood of
its responses being correct or desirable. How-
ever, it has been observed that the internal con-
fidence of a model, derived from token proba-
bilities, is not well aligned with its verbalized
confidence, leading to misleading results with
different calibration methods. In this paper, we
propose Direct Confidence Alignment (DCA),
a method using Direct Preference Optimiza-
tion to align an LLLM’s verbalized confidence
with its internal confidence rather than ground-
truth accuracy, enhancing model transparency
and reliability by ensuring closer alignment be-
tween the two confidence measures. We evalu-
ate DCA across multiple open-weight LLMs on
a wide range of datasets. To further assess this
alignment, we also introduce three new calibra-
tion error-based metrics. Our results show that
DCA improves alignment metrics on certain
model architectures, reducing inconsistencies
in a model’s confidence expression. However,
we also show that it can be ineffective on others,
highlighting the need for more model-aware ap-
proaches in the pursuit of more interpretable
and trustworthy LLMs.

1 Introduction

LLMs have revolutionized natural language tasks,
achieving impressive performance across various
applications (Wei et al., 2022; Naveed et al., 2024)
Despite their capabilities, there are still concerns
about the calibrations of these models, that is, the
alignment between the confidence they assign to
their predictions and the actual accuracy of those
predictions(Jiang et al., 2021). For example, in
a well-calibrated model, predictions assigned a
70% confidence level should be correct approx-
imately 70% of the time. These limitations are

especially critical in high-risk applications such as
decision support systems, healthcare settings (Peng
et al., 2023), and legal consultations (Lai et al.,
2024), where overconfidence in incorrect answers
can lead to severe consequences. Examples include
erroneous recommendations in decision support
systems that can lead to significant financial op-
erational losses, misdiagnoses in healthcare, and
flawed legal advice that may affect case outcomes.

Existing model confidence estimation methods
can be categorized into two types: Internal and
Verbalized Confidence.

Internal Confidence (C;) is most commonly
quantified as the probability of predicting a partic-
ular output token semantically linked to an answer
given a context. There have also been alternative
approaches to estimating internal confidence, such
as self-consistency-based approaches and ensem-
ble methods (Geng et al., 2024; Portillo Wightman
et al., 2023).

Verbalized Confidence (C),) is defined as the
LLM’s expression of its confidence level as a cer-
tainty percentage in its output answer to a given
prompt (Lin et al., 2022a).

Whilst existing literature predominantly focuses
on accuracy-based calibration, which involves
aligning models’ predicted confidence with ground-
truth accuracy, they do not cover the effects of
calibrating verbalized confidence C,, to internal
confidence C; instead of against accuracy. Further-
more, internal confidence C; derived from logits
and verbalized confidence within LLMs are often
misaligned with each other, leading to inconsistent
confidence expressions, especially in unfamiliar
questions where models can be verbally overconfi-
dent (Ni et al., 2024).

To address these, we propose Direct Confidence
Alignment: a method that involves aligning ver-
balized confidence C, with internal confidence
C; using Direct Preference Optimization (DPO)
(Rafailov et al., 2024). While aligning C,, to C;



may suggest that C; is better calibrated than C,,,
our method is not focused on accuracy-based cali-
bration. We instead treat C; as a reference signal of
the model’s internally expressed uncertainty, and
argue that by aligning verbalized confidence with
internal confidence, models can provide more trans-
parent and consistent confidence reporting in their
responses. We evaluate our approach on a range
of datasets and alignment metrics. We make the
following contributions:

1. We introduce a novel method of aligning ver-
balized confidence C, with internal confi-
dence C; using DPO training, taking inter-
nal confidence as ground truth to improve the
transparency and reliability of LLMs.

2. We show the effects and implications of DCA
on various LLMs with a wide range of archi-
tectures across multiple datasets, highlighting
its varied impact across models.

3. We introduce and evaluate our method on
three new metrics based on calibration error
€, which in this paper refers to the model’s
internal confidence C; subtracted from its ver-
balized confidence C,, for each response. Our
proposed metrics in 4.3 provide a more de-
tailed assessment of the magnitude and con-
sistency of alignment between verbalized and
internal confidence within LLMs.

2 Related Works

Confidence Calibration Calibration has been
an area of extensive research in LLMs. Lin et al.
(2022a); Park and Caragea (2022); Kadavath et al.
(2022); Kuhn et al. (2022); Guo et al. (2017)
show that a pre-trained LLM’s calibration can
improve with model size, fine-tuning, prompting,
self-consistency, or post-hoc methods such as
temperature scaling. Temperature scaling in LLM
calibration applies a single scalar parameter to
adjust model logits before softmax. Known for
its simplicity and effectiveness in improving cali-
bration while preserving accuracy, it outperforms
techniques such as Platt scaling and isotonic
regression across a range of NLP tasks (Guo et al.,
2017; Desai and Durrett, 2020). Other approaches
involve forms of self-consistency, however, Zhao
et al. (2021) demonstrates that a model’s confi-
dence can be sensitive to prompting variation. To
address this, (Wang et al., 2024; Portillo Wightman
et al., 2023) generates an ensemble of prompts,

using prompt agreement to generate a calibrated
confidence. More recently, Tao et al. (2024)
proposed a Confidence-Quality-Order-preserving
alignment approach, which incentivizes the model
to verbalize greater confidence for responses of
higher quality, addressing the lack of a definite
ground truth standard for confidence that aligns
with response quality in other methods.

Verbalized Confidence As model logits are ei-
ther inaccessible in black box LLMs or rendered
inaccurate due to RLHF, recent work (Tian et al.,
2023; Xiong et al., 2024) explores the calibration
of verbalized confidence. For example, Tian et al.
(2023) takes the mean of k verbalized confidence
samples; however, it is sensitive to the prompting
structure, making it difficult to generalize sequen-
tial reasoning and limited to short answers. To
explore this, Xiong et al. (2024) asks the model
to elicit verbal confidences using different temper-
atures and prompt strategies, including Chain-of-
Thought, Multi-Step, and Top-K reasoning.

Unlike the above techniques for confidence
calibration, our work seeks to align a model’s
verbalized confidence with its internal confidence,
making no reference to ground-truth accuracy or
response quality.

Confidence-Probability Alignment Kumar
et al. (2024) introduces the concept of Confidence-
Probability Alignment, a measurement of the corre-
lation between a model’s verbalized certainty and
its internal confidence, quantified using answer
token probabilities. They posit that Confidence-
Probability Alignment is crucial for the reliability
of a model’s output. Our work expands on this
study by aligning these two confidence measures
using DPO.

Direct Preference Optimization Rafailov et al.
(2024) demonstrates that Direct Preference Op-
timization (DPO) achieves comparable or supe-
rior performance to existing reinforcement learning
from human feedback (RLHF) methods in various
text generation tasks while being computationally
efficient. Although DPO has been shown to suc-
cessfully align LLMs with human preferences for
sentiment control and dialogue quality, our work
leverages it specifically to align a model’s verbal-
ized confidence (C),) with its internal confidence
(C3). By using a preference dataset as the learn-
ing signal, distinguishing between preferred and
non-preferred outputs as opposed to a reward func-



tion, DPO’s pairwise format is ideally suited for
confidence alignment.

3 Methodology

We define DCA as a method to improve the align-
ment between verbalized confidence and internal
confidence within LLMs using DPO, expanding on
the study of (Kumar et al., 2024), which introduced
this concept.

3.1 Verbalized Confidence Extraction

To extract the model’s verbalized confidence C,,
we prompt it in the format of our prompt tem-
plate in A.1. We then extract the C,, from its re-
sponse by parsing the numerical value outputted
after Probability: as shown in Figure 1. The
observed error rate for extraction was <5% for all
experiments across all models as some responses
did not contain a valid C,,.

3.2 Internal Confidence Extraction

To extract the model’s internal confidence C;, we
use the computed softmax probability of the answer
token (e.g., A, B, C, D) in its output.

3.3 Preference Dataset Creation

To generate an entry in our preference dataset for
DPO training, we first generate a sample with
full-text completion via our base prompt in A.1l
to obtain a formatted answer. We then extract C;
using our method in 3.2 and extract C,, from the
model response. Using these values, we create two
versions of the answer:

Original Response: Original response of the
model
Modified Response: A copy of the original
response where the model’s C), is overwritten with
its C;.

For each entry in our preference dataset, the mod-
ified response will be the chosen option, and the
original response will be the rejected option. See
Figure 1 for a visual summary of this process. This
is done separately for all models and applied to
their individual DPO training runs.

4 Experiment

4.1 Models

We use three open-weight instruct tuned LMs for
our experimental setup, namely Meta’s Llama-

/ Prompt \

\What is the measure, in degrees, of an angle that is equivalent to 1/360 of a circle?
A1

B. 90

C. 180

D. 360

Provide your best guess (letter only) and the probability that it is correct (0% to 100%)
for the above question. Give ONLY the guess and probability, no other words or
lexplanation. For example:

Guess: <the letter only, as short as possible; not a complete sentence, just the letter!>
Probability: <the probability between 0% and 100% that your guess is correct, without

Ttra commentary whatsoever; just the probability!> j

|
1

Instruct-tuned Model

Formatted
Answer
Guess: A
Probability: 100%

Guess: A
Probability: 100%

Figure 1: An overview of the entry generation process
for our preference dataset. Sample question and re-
sponse are from MMLU elementary mathematics and
Gemma-2-9B-Instruct, respectively.

3.2-3B-Instruct (Team, 2024b); Google’s Gemma-
2-9B-Instruct (Team, 2024a); and Mistral AI’s
Mistral-7B-Instruct (Team, 2023).

4.2 Datasets

We use the following datasets for experimentation:

* OpenBookQA (Mihaylov et al., 2018) - A sci-
ence multiple choice dataset modelled after
open-book exams testing knowledge and ap-
plications of facts

* Truthful DA (Lin et al., 2022b) - A dataset
crafted to test LLMs’ ability to truthfully
answer questions. Scoring well reflects the
model’s ability to avoid generating false an-
swers from imitating human text.

* CosmosQA (Huang et al., 2019) - A read-
ing comprehension dataset based on common
sense and reading between the lines for a di-
verse set of personal everyday narratives.

* Massive Multitask Language Understanding
(MMLU) (Hendrycks et al., 2021) - An evalu-
ation benchmark designed to test knowledge



CosmosQA
ptoclleldom

MMLU
ptoclleldomd

Mean

ptocllellomd

0.20 20.59 19.53 0.53
0.16 23.23 52.47 0.59

0.18 26.24 24.25 0.67
0.17 23.23 51.53 0.59

0.19 25.63 22.96 0.85
0.1322.93 48.93 0.74

0.30 14.88 9.39 0.39
0.38 9.97 4.00 0.25

0.3316.36 9.64 0.43
0.39 13.64 6.00 0.35

0.3416.97 991 0.57
0.4213.79 5.03 0.46

Model Method OpenBookQA TruthfulQA
prtoclleflomd prtocllelomd
Mistral 7B Instrae. VANl 0.1725.06 20.08 112 0.20 30.64 25.99 1,07
ISral-/B-ANSIUCE oA 0.14 2077 47.83 093 0.06 24.47 43.90 0.86
Gemma2-9B Instrucy. VA0la 03211043 9.86 087 041 17.21 10.74 0.60
DCA 0391683 506 0.76 0.511271 5.06 0.46
Llama.3. 238 Instruce Vanilla 03142013755 190 0.1743.40 3848 1.57
: ; DCA  03023.2046.00 1.04  0.1523.76 38.04 0.83

0.46 37.91 38.69 0.97
0.24 21.00 50.47 0.54

0.18 43.4539.95 1.15
0.22 23.54 43.62  0.60

0.28 41.19 38.67 1.40
0.23 22.88 44.03 0.75

Table 1: Alignment evaluation across OpenBookQA, TruthfulQA, CosmosQA, and MMLU. 1 indicates higher is
better, | indicates lower is better. Best values per column are bolded. Mean values of each metric for each model
are also shown for aggregation. All values of p are significant (p < 0.01).

gained from pretraining, containing 57 sub-
jects and a wide range of difficulty levels.

For the preference dataset, we use samples from
the "train" split of CosmosQA and an equal number
of samples split evenly between subjects in the
"test" split of MMLU.

For the evaluation dataset, we use all questions
from the "test" split of OpenBookQA and the "vali-
dation" split of TruthfulQA’s multiple choice sub-
set for evaluation on out-of-distribution (OOD)
datasets, as well as an equal sample of ques-
tions from the "validation" splits of MMLU and
CosmosQA for evaluation on in-distribution (ID)
datasets.

Further details about the preference and evalua-
tion datasets can be found in A.2.

4.3 Metrics

We use Spearman’s Rank Correlation Coef-
ficient p (Spearman.,1904) to directly evaluate
the effectiveness of our method on improving
Confidence-Probability Alignment (Kumar et al.,
2024). However, p only measures the strength of a
monotonic correlation and does not reference the
perfect calibration line of y = x. Hence, we in-
troduce and use three metrics based on calibration
error e = C, — C; below:

Standard Deviation of Calibration Error o,
measures the deviation of individual € values from
its mean value, quantifying the variability in e.

Mean Absolute Calibration Error |¢| measures
the average magnitude of €, showing how much C,
and C; deviate from each other on average.

Standard Error of Calibration Error o, esti-
mates the uncertainty in the mean e, indicating how
much the average alignment between C,, and C;
would vary when evaluated on different samples of
questions within the same distribution.

These additional metrics are used as they can
intrinsically reference the perfect calibration line

of y = x as a global extremum and isolate the
overall bias within the C,, of the models.

5 Results and Analysis
5.1 Confidence Alignment

Table 1 presents our results for all models across
all datasets. Gemma-2-9B-Instruct showed the
strongest and most consistent improvements in met-
rics after DCA, demonstrating superior alignment
across all datasets. Most notably, it demonstrated
the largest improvements in p and |e| of all mod-
els on TruthfulQA. However, we observed that
Gemma-2-9B-Instruct’s initial verbalized and inter-
nal confidence distributions were already heavily
skewed towards the 90-100% range. This raises a
possibility that DCA may have been more success-
ful as a very clear majority of "chosen" confidence
values were within this range, thus the training pro-
cess may have reinforced this existing bias. Conse-
quently, the observed improvements in confidence
alignment may partially be due to a collapse to-
wards high confidence values.

In contrast, mixed results were observed for
Llama-3.2-3B-Instruct and Mistral-7B-Instruct
across all datasets. For example, Llama-3.2-3B-
Instruct demonstrates an increase in p from 0.18 to
0.22 for MMLU however p fell from 0.46 to 0.24
on CosmosQA. Mistral-7B-Instruct demonstrates
a large increase in |¢| from 19.53 to 52.47 for Cos-
mosQA and a large reduction in p from 0.20 to 0.06
on Truthful QA. These findings indicate that DCA
is ineffective for these models on certain tasks.

Gemma-2-9B-Instruct’s consistent performance
on OOD datasets suggest that DCA was effective
at generalising its stronger alignment between C,,
and C; to unseen questions.



Model OpenBookQA

Vanilla DCA

Truthful QA
Vanilla

MMLU
Vanilla DCA

CosmosQA

DCA Vanilla DCA

59.00% 58.23%
86.06% 86.21%
47.14% 64.00%

Mistral-7B-Instruct
Gemma-2-9B-Instruct
Llama-3.2-3B-Instruct

32.84% 20.98%
59.68% 60.85%
29.71% 37.75%

60.48% 54.02%
79.63% 80.01%
66.43% 73.55%

55.91% 48.85%
72.41% 72.05%
39.92% 49.77%

Table 2: Comparison of accuracy across our datasets for models before and after DCA. Higher accuracy between

Vanilla and DCA versions of each model are in bold.

oe and oy improved across most models and
datasets, suggesting that DCA lowered the vari-
ance in calibration error for all models, especially
for Llama-3.2-3B-Instruct (see Figure 13 for an
example).

However, a low o is only useful if | €| is also low,
which would indicate consistent and strong align-
ment between verbalized and internal confidence
as shown by Gemma-2-9B-Instruct (see Figure 12
for an example).

The similarity between results on ID datasets
and OOD datasets across models also suggests
that the effectiveness of DCA may be more model-
dependent than task-dependent, relying more on
the model architecture and how different models
process confidence elicitation in QA tasks.

5.2 Model Accuracy

Despite our method not being designed to explic-
itly improve the accuracy of model responses, we
also evaluate the downstream effects of DCA on
model accuracy. Table 2 shows that DCA can have
mixed impacts on model accuracy. While accuracy
remained stable on Gemma-2-9B-Instruct, Mistral-
7B-Instruct demonstrated lower accuracies after
DCA, especially on Truthful QA. Interestingly, ac-
curacy increased for Llama-3.2-3B-Instruct across
all datasets.

6 Conclusion

In this paper we present Direct Confidence Align-
ment: a method of using DPO to improve the align-
ment between verbalized and internal confidence in
LLMs. Our results show that DCA can be effective
at improving this alignment as demonstrated by
Gemma-2-9B-Instruct, but also highlight the press-
ing need for improvements, such as expanding the
method to be compatible with a wider range of
model architectures, and exploring more strategies
to improve this alignment.

Limitations

Access to logits Our method is limited to models
with access to internal logits to extract model in-

ternal confidence. This makes it inapplicable to
state-of-the-art (SOTA) closed-source models.

Reliance on well-calibrated token probabili-
ties Our method will be most useful if the internal
confidence of the model is better calibrated against
accuracy than its verbalized confidence, and thus
may require other ground-truth-based calibration
techniques to be used in conjunction for best re-
sults.

Impacts of DCA on model accuracy Our
method focuses on aligning LLMs’ verbalized and
internal confidence expressions in their answers
rather than directly improving the correctness of
those answers. Consequently, the entries in the
preference dataset include some incorrect answer
choices. We acknowledge this as a potential source
of degradation in model accuracy and leave strate-
gies to mitigate this limitation to future work.

References

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal
Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A General Theoreti-
cal Paradigm to Understand Learning from Human
Preferences. arXiv preprint. ArXiv: 2310.12036.

Michael Han Daniel Han and Unsloth team. 2023. Un-
sloth.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 295-302, Online.
Association for Computational Linguistics.

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl,
Preslav Nakov, and Iryna Gurevych. 2024. A sur-
vey of confidence estimation and calibration in large
language models. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
6577-6595, Mexico City, Mexico. Association for
Computational Linguistics.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning - Volume 70, ICML’17,


https://doi.org/10.48550/arXiv.2310.12036
https://doi.org/10.48550/arXiv.2310.12036
https://doi.org/10.48550/arXiv.2310.12036
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2024.naacl-long.366
https://doi.org/10.18653/v1/2024.naacl-long.366
https://doi.org/10.18653/v1/2024.naacl-long.366

pages 1321-1330. IMLR.org. Event-place: Sydney,
NSW, Australia.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring Massive Multitask Language Un-
derstanding. arXiv preprint. ArXiv: 2009.03300.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos QA: Machine Reading
Comprehension with Contextual Commonsense Rea-
soning. arXiv preprint. ArXiv: 1909.00277.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How Can We Know When Language
Models Know? On the Calibration of Language Mod-
els for Question Answering. Transactions of the As-
sociation for Computational Linguistics, 9:962-977.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer EIl-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and
Jared Kaplan. 2022. Language Models (Mostly)
Know What They Know. arXiv preprint. ArXiv:
2207.05221.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2022.
Semantic Uncertainty: Linguistic Invariances for Un-
certainty Estimation in Natural Language Generation.

Abhishek Kumar, Robert Morabito, Sanzhar Umbet,
Jad Kabbara, and Ali Emami. 2024. Confidence
under the hood: An investigation into the confidence-
probability alignment in large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 315-334, Bangkok, Thailand.
Association for Computational Linguistics.

Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and
Philip S. Yu. 2024. Large language models in law: A
survey. Al Open, 5:181-196.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022a.
Teaching Models to Express Their Uncertainty in
Words. Transactions on Machine Learning Research.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022b.
Truthful QA: Measuring How Models Mimic Human
Falsehoods. arXiv preprint. ArXiv: 2109.07958.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a Suit of Armor Conduct
Electricity? A New Dataset for Open Book Question
Answering. arXiv preprint. ArXiv: 1809.02789.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2024. A
Comprehensive Overview of Large Language Mod-
els. arXiv preprint. ArXiv: 2307.06435.

Shiyu Ni, Keping Bi, Lulu Yu, and Jiafeng Guo. 2024.
Are Large Language Models More Honest in Their
Probabilistic or Verbalized Confidence?  arXiv
preprint. ArXiv: 2408.09773.

Seo Yeon Park and Cornelia Caragea. 2022. On the cal-
ibration of pre-trained language models using mixup
guided by area under the margin and saliency. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5364-5374, Dublin, Ireland. As-
sociation for Computational Linguistics.

Cheng Peng, Xi Yang, Aokun Chen, Kaleb E. Smith,
Nima PourNejatian, Anthony B. Costa, Cheryl Mar-
tin, Mona G. Flores, Ying Zhang, Tanja Magoc, Glo-
ria Lipori, Duane A. Mitchell, Naykky S. Ospina,
Mustafa M. Ahmed, William R. Hogan, Elizabeth A.
Shenkman, Yi Guo, Jiang Bian, and Yonghui Wu.
2023. A study of generative large language model
for medical research and healthcare. npj Digital
Medicine, 6(1):210.

Gwenyth Portillo Wightman, Alexandra Delucia, and
Mark Dredze. 2023. Strength in numbers: Es-
timating confidence of large language models by
prompt agreement. In Proceedings of the 3rd Work-
shop on Trustworthy Natural Language Processing
(TrustNLP 2023), pages 326-362, Toronto, Canada.
Association for Computational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct Preference Optimization: Your Lan-
guage Model is Secretly a Reward Model. arXiv
preprint. ArXiv: 2305.18290.

Shuchang Tao, Liuyi Yao, Hanxing Ding, Yuexiang Xie,
Qi Cao, Fei Sun, Jinyang Gao, Huawei Shen, and
Bolin Ding. 2024. When to trust LLMs: Aligning
confidence with response quality. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 5984-5996, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Gemma Team. 2024a. Gemma 2: Improving Open
Language Models at a Practical Size. arXiv preprint.
ArXiv: 2408.00118.

Llama 3 Team. 2024b. The Llama 3 Herd of Models.
arXiv preprint. ArXiv: 2407.21783.

Mistral Team. 2023. Mistral 7B. arXiv preprint. ArXiv:
2310.06825.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human


https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.1909.00277
https://doi.org/10.48550/arXiv.1909.00277
https://doi.org/10.48550/arXiv.1909.00277
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.48550/arXiv.2207.05221
https://doi.org/10.48550/arXiv.2207.05221
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://doi.org/10.18653/v1/2024.acl-long.20
https://doi.org/10.18653/v1/2024.acl-long.20
https://doi.org/10.18653/v1/2024.acl-long.20
https://doi.org/10.1016/j.aiopen.2024.09.002
https://doi.org/10.1016/j.aiopen.2024.09.002
https://openreview.net/forum?id=8s8K2UZGTZ
https://openreview.net/forum?id=8s8K2UZGTZ
https://doi.org/10.48550/arXiv.2109.07958
https://doi.org/10.48550/arXiv.2109.07958
https://doi.org/10.48550/arXiv.1809.02789
https://doi.org/10.48550/arXiv.1809.02789
https://doi.org/10.48550/arXiv.1809.02789
https://doi.org/10.48550/arXiv.2307.06435
https://doi.org/10.48550/arXiv.2307.06435
https://doi.org/10.48550/arXiv.2307.06435
https://doi.org/10.48550/arXiv.2408.09773
https://doi.org/10.48550/arXiv.2408.09773
https://doi.org/10.18653/v1/2022.acl-long.368
https://doi.org/10.18653/v1/2022.acl-long.368
https://doi.org/10.18653/v1/2022.acl-long.368
https://doi.org/10.1038/s41746-023-00958-w
https://doi.org/10.1038/s41746-023-00958-w
https://doi.org/10.18653/v1/2023.trustnlp-1.28
https://doi.org/10.18653/v1/2023.trustnlp-1.28
https://doi.org/10.18653/v1/2023.trustnlp-1.28
https://doi.org/10.48550/arXiv.2305.18290
https://doi.org/10.48550/arXiv.2305.18290
https://doi.org/10.18653/v1/2024.findings-acl.357
https://doi.org/10.18653/v1/2024.findings-acl.357
https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330

feedback. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5433-5442, Singapore. Association for
Computational Linguistics.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Lifeng
Jin, Haitao Mi, Jinsong Su, and Dong Yu. 2024. Self-
Consistency Boosts Calibration for Math Reasoning.
arXiv preprint. ArXiv: 2403.09849.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,

Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent Abilities of Large Language Models. arXiv
preprint. ArXiv: 2206.07682.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie

Fu, Junxian He, and Bryan Hooi. 2024. Can LLMs
Express Their Uncertainty? An Empirical Evaluation
of Confidence Elicitation in LLMs. arXiv preprint.
ArXiv: 2306.13063.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and

Sameer Singh. 2021. Calibrate Before Use: Im-
proving Few-Shot Performance of Language Models.
arXiv preprint. ArXiv: 2102.09690.


https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.48550/arXiv.2403.09849
https://doi.org/10.48550/arXiv.2403.09849
https://doi.org/10.48550/arXiv.2206.07682
https://doi.org/10.48550/arXiv.2206.07682
https://doi.org/10.48550/arXiv.2306.13063
https://doi.org/10.48550/arXiv.2306.13063
https://doi.org/10.48550/arXiv.2306.13063
https://doi.org/10.48550/arXiv.2102.09690
https://doi.org/10.48550/arXiv.2102.09690

A Appendix

A.1 Prompt Template

{Question}
{Options}

Provide your best guess (letter only) and
the probability that it is correct (0% to 100%) for
the above question. Give ONLY the guess and
probability, no other words or explanation. For
example:

Guess: <the letter only, as short as possi-
ble; not a complete sentence, just the letter!>
Probability: <the probability between 0% and
100% that your guess is correct, without any extra
commentary whatsoever; just the probability!>

We use a slightly modified version of (Tian et al.,
2023)’s Verb. 1S top-1 prompt as our prompt tem-
plate. We match this prompt across all of our exper-
iments and training processes to ensure consistent
responses and output formats during training and
post-training evaluation.

A.2 Dataset Details

For the preference dataset, "train" splits were
used where possible. However, MMLU’s "auxil-
iary_train" split did not contain subject labels, and
hence the "test" split was used to ensure an equal
sample of questions from each subject. The final
number of instances for the preference dataset was
9348.

For the evaluation dataset, "test" splits were also
used where possible. However, TruthfulQA’s mul-
tiple choice subset only contained only 1 "valida-
tion" split, and no test split was available. Cos-
mosQA’s test split did not contain answer labels
due to it using a leaderboard evaluation system,
thus, the "validation" split was used instead. The
final number of instances for the evaluation dataset
was 4379.

A.3 DCA Training

For DPO training, we use the Unsloth library
(Daniel Han and team, 2023) for improved train-
ing speeds and efficient memory usage. We loaded
LoRA adapters onto our Instruct models using the
configurations in Table 3 before training. Training
was run on RTX 4000 Ada GPUs, and we used
the ipo loss function (Azar et al., 2023) to avoid
overfitting on the preference dataset. The complete

training parameters can be found in Table 4.

A.4 Supplementary Figures

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and
13 below show supplementary figures for the re-
sults of Mistral-7B-Instruct, Gemma-2-9B-Instruct,
and Llama-3.2-3B-Instruct along with their DCA-
trained counterparts on OpenbookQA, TruthfulQA,
CosmosQA, and MMLU respectively. As seen in
the figures, for each model the observed visual
trends were broadly consistent across all datasets,
also suggesting that the effects of DCA are more
model-dependent than task-dependent.

In particular, Mistral-7B-Instruct and Llama-
3.2-3B-Instruct demonstrate consistent verbalized
underconfidence after DCA across all datasets,
with Mistral-7B-Instruct responding with verbal-
ized confidence values between 40-50% for the ma-
jority of questions during evaluation, and Llama-
3.2-3B-Instruct’s verbalized confidence distribu-
tion shifting towards 0-50%. Interestingly, the inter-
nal confidence distributions of Mistral-7B-Instruct
tended to skew more heavily towards higher confi-
dence values after DCA, with an increased number
of internal confidence values in the 75-100% range.
In addition, the internal confidence distributions of
Llama-3.2-3B-Instruct tended to change from fa-
voring confidence values between 25-50% to more
skewed towards values of 50-100% after DCA. Un-
like the other models, Gemma-2-9B-Instruct’s in-
ternal and verbalized confidence distributions did
not change significantly both before and after DCA.



Hyperparameter Value Notes
1 (LoRA rank) 16 Low-rank dimension for adapter updates
target_modules "q_proj”, Only these weight matrices receive LoRA updates
"k_proj"”,
"v_proj"”,
"o_proj”,
"gate_proj",
"up_proj”,
"down_proj"
lora_alpha 16 Scales the low-rank updates
lora_dropout 0.0 No dropout on LoRA adapters
bias "none” Do not update any bias parameters in LoORA
fiﬁ;ii;gii:;ng "unsloth” Unsloth’s gradient-checkpointing strategy
random_state 3407 Seed for LoRA weight initialization and any randomness
use_rslora False Standard LoRA (RSLORA disabled)
loftq_config None No custom quantization configuration

Table 3: LoRA / PEFT Hyperparameters

Training Parameter Value
logging_steps 10
loss_type ipo
bf16 True
save_steps 100
per_device_train_batch_size 2
gradient_accumulation_steps 32
learning_rate (default) 1e-06
weight_decay (default) 0.0
num_train_epochs (default) 3

optimizer (default)
Ir_scheduler_type (default)
seed

AdamW (31=0.9, 52=0.999)
constant (no warmup)
3407

Table 4: DPO Fine-Tuning Hyperparameters
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Figure 2: Comparison of baseline vs. DCA-trained Mistral-7B-Instruct on OpenbookQA. Top row: Verbalized
vs. internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 3: Comparison of baseline vs. DCA-trained Gemma-2-9B-Instruct on OpenbookQA. Top row: Verbalized
vs. internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 4: Comparison of baseline vs. DCA-trained Llama-3.2-3B-Instruct on OpenbookQA. Top row: Verbalized
vs. internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 5: Comparison of baseline vs. DCA-trained Mistral-7B-Instruct on TruthfulQA. Top row: Verbalized vs.
internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 6: Comparison of baseline vs. DCA-trained Gemma-2-9B-Instruct on TruthfulQA. Top row: Verbalized
vs. internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 7: Comparison of baseline vs. DCA-trained Llama-3.2-3B-Instruct on Truthful QA. Top row: Verbalized
vs. internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 8: Comparison of baseline vs. DCA-trained Mistral-7B-Instruct on CosmosQA. Top row: Verbalized vs.
internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 9: Comparison of baseline vs. DCA-trained Gemma-2-9B-Instruct on CosmosQA. Top row: Verbalized
vs. internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 10: Comparison of baseline vs. DCA-trained Llama-3.2-3B-Instruct on CosmosQA. Top row: Verbalized
vs. internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 11: Comparison of baseline vs. DCA-trained Mistral-7B-Instruct on MMLU. Top row: Verbalized vs.
internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 12: Comparison of baseline vs. DCA-trained Gemma-2-9B-Instruct on MMLU. Top row: Verbalized vs.
internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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Figure 13: Comparison of baseline vs. DCA-trained Llama-3.2-3B-Instruct on MMLU. Top row: Verbalized vs.
internal confidence scatter plot, calibration error histogram, and confidence score distributions for the baseline
model. Bottom row: Same visualizations for the DCA-trained model.
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