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The detection and tracking of the spread of emerging pathogens is critical
to the design of effective public health responses. Policymakers face the
challenge of allocating finite testing resources across locations, with the
goal of maximising the information obtained about the underlying disease
distribution. We model this decision-making process as an iterative node
classification problem on an undirected and unweighted graph, in which
nodes represent locations and edges represent movement of infectious agents
among them. To begin, a single node is randomly selected for testing and
determined to be either infected or uninfected. Test feedback is then used
to update estimates of the probability of unobserved nodes being infected
and to inform the selection of nodes for further testing at the next itera-
tion, until a certain resource budget is exhausted. Under this framework,
we evaluate and compare the performance of previously developed Active
Learning policies, including node-entropy and Bayesian Active Learning by
Disagreement. Using data from simulated outbreaks on both random and
empirical human mobility networks, we explore the performance of these
policies under different outbreak scenarios and graph structures. Further,
we propose a novel policy that considers the distance-weighted average
entropy of infection predictions among the unobserved neighbours of each
candidate node. Our proposed policy outperforms existing ones in most
outbreak scenarios, leading to a reduction in the number of tests required
to achieve a certain predictive accuracy. Our findings could help design
cost-effective surveillance policy for emerging and endemic pathogens, ac-
celerating disease detection in resource-constrained situations.
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1 INTRODUCTION
Disease surveillance is critical for managing infectious disease out-
breaks, as it enables public health authorities to monitor and respond
to ongoing disease spread. Notable examples in the past decade
include the 2014-2016 West African and 2018-2020 Kivo Ebola epi-
demic, and more recently, the COVID-19 pandemic, where early
detection of the virus and continued tracking of its spread helped
inform the design of effective interventions including targeted vacci-
nations [20, 23, 26, 45, 46], case isolation [2, 10, 12, 24, 27] and social
distancing [6, 13, 15, 18]. Without timely and accurate surveillance
data, the effectiveness of these interventions would likely have been
compromised, with potentially increased public health risks and
greater socio-economic disruptions. For example, it has been shown
that travel restrictions targeted at countries where new variants of
SARS-CoV-2 were first observed were rendered largely ineffective
by delay in case detection and insufficient pathogen sequencing
[42, 44]. Similarly, the lack of baseline testing prior to the 2015-2016
Zika epidemic likely contributed to the delay in the identification
of the scale of disease spread, thereby allowing the virus to propa-
gate to numerous countries before a global response was initiated
[16, 21].

Well documented examples of effective disease surveillance have
been largely limited to within-country efforts (e.g., the Real-time
Assessment of Community Transmission (REACT) in the UK [36],
and the National Notifiable Diseases Surveillance System (NNDSS)
in the US [14]), while globally coordinated programs remain rare
[33]. This leads to disproportionate and inequitable distribution of
testing resources both within and between regions or countries,
with some local authorities able to conduct large-scale mass test-
ing for sustained periods of time, while others manage only sparse
and sporadic testing [19, 49]. One study showed that the intensity
of genomic sequencing during the COVID-19 pandemic was posi-
tively associated with Research & Development expenditures at a
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country-level [8]. This likely allowed the virus to continue prolifer-
ating undetected in locations with insufficient testing, potentially
prolonging local outbreaks.

1.1 Related Work
Previous research on disease surveillance has primarily focused on
developing models to identify sentinel sites, with the objective of
classifying nodes in networks that could serve as observational units
for monitoring disease spread [1, 3, 34]. Recently since the COVID-
19 pandemic, there has been a growing interest in the design of
optimal control measures to contain disease spread [4], with some
studies examining the cost-effectiveness of different strategies for
testing and isolation in reducing transmission intensity; one recent
study also explored the impact of different air travel regulations on
the likelihood of a local epidemic escalating into a global pandemic
[40]. However, the effectiveness of these interventions ultimately
depends on the capacity of local authorities to conduct disease
surveillance and to collectively provide an accurate assessment
of the overall disease distribution at any stage of an outbreak - a
challenge which, to the best of our knowledge, has received little
attention to date [47].
Our work in this study attempts to fill this research gap by for-

mulating the problem of disease surveillance as a node classifica-
tion task with Active Learning (AL). Active node classification is a
well-studied problem and a comprehensive comparison of the per-
formance of existing AL methods on empirical graphs is presented
in a recent study [29]. More recent development in this area has
primarily focused on the design of methods that incorporate node
attributes, particularly with applications on large Graph Neural
Networks (GNNs) [9, 30, 48], as a result of recent advances in GNNs
and the use of increasingly large datasets for model training. There
has been limited work to date, however, on the use of these methods
in the context of disease surveillance, or epidemiology, in general.

1.2 Contributions
Our contributions in this study are summarised below:

• We formulate the problem of designing an appropriate policy
as a node classification problem with Active Learning on an
undirected and unweighted network, where nodes represent
locations and edges represent movement of infectious agents
between locations. We allocate tests to a selected node at
each iteration via a policy with the goal of achieving the best
possible classification performance with a given budget.

• We design an adaptive test deployment framework to evaluate
and compare the performance of different allocation policies
in the context of disease surveillance, as shown in Figure 1.

• We propose a novel policy, named Selection by Local-Entropy
(LE), which takes into consideration graph-based uncertain-
ties in its decision-making. We evaluate the performance of
our proposed policy alongside existing AL policies (Table 1)
under various outbreak scenarios and on networks with dif-
ferent structural properties, including those commonly found
in empirical human mobility networks.

• We show that the performance of a given policy depends
on both the test budget available and the geometry of the

underlying disease distribution, which is in turn determined
by the network structure and stage of outbreak progression.

• Our proposed policy outperforms existing uncertainty-based
policies in most scenarios, highlighting a need to consider
the trade-off between exploration (sampling of unlabelled
regions) and exploitation (sampling of regions with known
heterogeneous disease distribution).

2 BACKGROUND AND PROBLEM SETUP

2.1 Disease Surveillance as a Node Classification Task
We consider the deployment of a disease surveillance program on
a mobility network as a node classification task, where the goal of
a policymaker (or agent) is to predict the presence or absence of a
disease of interest (or whether the disease prevalence is below or
above a certain threshold) at any unobserved node, provided that
the infection status of a subset of nodes are known. We assume
that the mobility network can be represented as an undirected and
unweighted graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑁 such that each node
𝑣𝑖 ∈ 𝑉 represents a location, and an edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 indicates the
existence of movement of infectious agents between the nodes 𝑣𝑖
and 𝑣 𝑗 . Prior to the start of a surveillance program, it is assumed
that there is an underlying disease distribution resulting from an
outbreak that originated from a single infected node. Importantly,
we assume that i) the outbreak can be modelled as a stochastic
Susceptible-Infected (SI) process, where transmission can only occur
between an infected node and an uninfected node if there is an edge
between them (see Appendix A. of the supplementary document
[43]), and ii) that the timescale over which transmission occurs is
sufficiently longer than the timescale over which testing is deployed,
such that the underlying disease distribution can be considered to
be static over the course of the surveillance program. To indicate the
underlying disease distribution, each node 𝑣𝑖 in themobility network
is assigned a binary label𝑦𝑖 ∈ {0, 1} representing its infection status,
where 𝑦𝑖 = 1 if the node is infected (presence of disease of interest)
and 𝑦𝑖 = 0 if uninfected (absence of disease of interest). Exploration
of the impact of relaxing these assumptions will be addressed in
future work.
In a typical outbreak scenario, there is often little information

available to inform the initial allocation of testing resources; it is also
possible for the initial observation to be of either infection status
under certain contexts of disease surveillance (e.g., during baseline
monitoring of an endemic disease among wildlife reservoirs). With
these inmind, herewe assume that each surveillance program begins
with the known infection status of a single (randomly selected)
node. Given this initial observation, a hypothetical policymaker is
then tasked with answering the question: how should a finite
amount of testing resources be deployed across the network
to maximise the information gained about the underlying
disease distribution?

2.2 Test Allocation as an Active Learning Task
The study of this question is known as Active Learning (AL) [39],
where the objective is to maximise the predictive performance of
a model in training (also known as a surrogate model) with the
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Fig. 1. A schematic illustration of the adaptive test deployment framework.
The flow of information or data (grey boxes with a black corner) from one
component to another is represented as arrows. The eye symbol indicates
when the true infection status of a selected node is queried from the un-
derlying disease distribution at each test iteration. Note that the simulated
outbreak terminates at the time of first observation, i.e. the underlying dis-
ease distribution is assumed to be static over the course of test deployment.

fewest instances of labelled data possible. Since the process of la-
belling data can be expensive and time-consuming, the selection
of data instances for labelling can alternatively be performed in
an iterative fashion, where a small number of unlabelled data in-
stances are selected at each iteration by an AL policy. The labels of
these selected data instances are then revealed and used as input
to retrain the surrogate model and to generate label predictions for
unlabelled instances. Note that the label of each node is assumed
to be unchanging between iterations, following the assumption of
static disease distributions as described earlier.

A number of previously developed approaches exist for construct-
ing the surrogate model, e.g., label propagation [50], Gaussian Ran-
dom Field [51], and more recently, GNNs [25]. Here we adopt an
approach that is particularly popular in spatial epidemiology, known
as the Conditional Autoregressive (CAR) model, which assumes that
the value of a variable at a given node in a network is conditional on
the values at neighbouring nodes, with weights specified by the ad-
jacency matrix, A. In the context of disease surveillance with binary
infection status, the CAR model allows us to estimate 𝑝 (𝑣𝑖 |Dr) for
a given node 𝑣𝑖 , i.e. the probability that the node is infected condi-
tioned on the observed data Dr = {(𝑣 𝑗 , 𝑦 𝑗 ) |∀𝑣 𝑗 ∈ 𝑉𝑜𝑏𝑠,𝑟 }, where 𝑦 𝑗
is the observed infection status of a node 𝑣 𝑗 , with𝑉𝑜𝑏𝑠,𝑟 being the set
of nodes with known infection status up to the current iteration 𝑟

(see 3.1 for a more detailed description). Note that it is not the focus

of this study to consider the predictive performance of different
surrogate models, but rather the relative performance of different
test allocation strategies given the same surrogate model. In future
extensions where additional model complexities are incorporated
(e.g., weighted and directed edges, node attributes), the performance
of the different strategies given different surrogate models should
be compared and assessed.

At each iteration, the predicted infection status generated by the
surrogate model are used to guide the selection process at the next
iteration, according to the acquisition policy of choice. One impor-
tant group of AL policies is uncertainty-based, i.e. selecting nodes
for observation according to where the surrogate model’s predic-
tions are maximally uncertain. One common measure of uncertainty
is the information entropy of label predictions - the larger the en-
tropy, the more uncertain the model is about its label prediction
for a given node, and the more likely it is that the node would be
selected for observation at the next iteration. Another uncertainty-
based policy that is the state-of-the-art among Bayesian approaches
is Bayesian Active Learning by Disagreement (BALD) which se-
lects nodes that maximise the mutual information between label
predictions and model posterior [22]. A number of alternatives to
uncertainty-based policies exist in the AL literature, e.g., graph-
based heuristics and Expected Error Reduction [37]. In this study
we focus our attention primarily on policies that rely on graph-
based heuristics and uncertainty-based policies that are adaptive
(i.e. nodes to be observed are selected iteratively using information
from previous observations); a summary of all policies considered
in our experiments can be found in Table 1.

3 METHODOLOGY

3.1 Surrogate Model (CAR)
The Conditional Autoregressive (CAR) model is widely used in the
small area estimation domain [5], where data consists of observa-
tions 𝑦𝑦𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑁 ] over a set of 𝑁 spatial units, which in
the context of our study represent locations in a mobility network.
The CAR model assumes that the value of a variable at a given
node (or location) depends on the values at its neighbouring loca-
tions, with weights specified by a spatial adjacency matrix𝐴𝐴𝐴. For
unweighted models, like the ones we work with in this paper, the
adjacency matrix𝐴𝐴𝐴 is binary and captures the presence or absence
of edges between corresponding nodes. The spatial random effect
𝑓𝑓𝑓 = [𝑓1, 𝑓2, . . . , 𝑓𝑁 ] follows the multivariate normal prior with pre-
cision matrix𝑄𝑄𝑄 :

𝑓𝑓𝑓 ∼ N(0,𝑄𝑄𝑄−1) (1)
𝑄𝑄𝑄 = 𝜏 (𝐴𝐴𝐴 − 𝛼𝐷𝐷𝐷) (2)

The parameter 𝛼 captures the amount of spatial correlation: if 𝛼 =

0, the model reduces to a set of independent errors at each location;
and if 𝛼 = 1, the model reduces to the ICAR (intrinsic conditional
autoregressive) model. In this study, we set 𝛼 to a fixed value at 0.95
to clearly separate the tasks of spatial inference on graph from the
task of optimisation test allocation. We use 𝜏 ∼ logNormal(0, 0.1)
as prior on the marginal precision.
CAR, as well as ICAR, are standard models in spatial statistics.

Similar to Gaussian Processes (GPs), which are a standard choice
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Table 1. Summary of policies considered in this study. Abbreviation for each policy is shown in brackets following the policy name. For all policies, random
tie-breaking is performed if and when there are multiple candidate nodes given equal preference according to a selection criterion.

Allocation Policy Policy Type Brief Description

Least-Confidence (LC) [28] Uncertainty-based
Adaptive

Select the unlabelled node with predicted infection probability (posterior mean)
that is closest to 0.5, indicating the least confidence in label prediction.

Node-Entropy (NE) [28] Select the unlabelled node with the highest entropy in its label prediction accord-
ing to the surrogate model. It can be shown that NE always selects the same node
as the policy LC at any iteration (see Appendix B. of the supplementary document
[43]); as a result, only NE is considered hereafter.

Bayesian Active Learning by
Disagreement (BALD) [22]

Select the unlabelled node with the highest mutual information between label
prediction and posterior from the surrogate model.

Local-Entropy (LE)
(our proposed policy)

Select the unlabelled node with the highest Local-Entropy, as defined by Equations
(3)–(5), with 𝜆 = 0 (maximal exploration).

Degree-Centrality (DC) Graph-based
Non-Adaptive

Select the unlabelled node with the highest degree-centrality (most connections).

PageRank-Centrality (PC) Select the unlabelled node with the highest PageRank-centrality [7].

Reactive-Infected (RI) Benchmark
Adaptive

Select at random an unlabelled node among immediate neighbours of nodes that
are known to be infected from previous observations, if available; otherwise,
sample randomly from remaining unlabelled nodes.

Random (RAND) Benchmark
Non-Adaptive

Select an unlabelled node at random.

for surrogates over continuous space, CAR is the default model
choice for modelling over a discrete set of areas. Future work should
consider a wider range of surrogates, such as GPs on graphs when
no knowledge about the spread of the disease is available; or mech-
anistic models, such as SIR and SEIR models, when the underlying
mechanisms of the disease spread are well understood.

3.2 A Novel Policy: Selection by Local-Entropy (LE)
One potential drawback of uncertainty-based policies is that they
can lead to a bias in favour of selecting nodes from regions with
highly heterogeneous node labels. In the context of disease surveil-
lance, this can be interpreted as an exploitation-exploration trade-off,
where exploitation means the selection of nodes that lie along the
boundaries between infected and uninfected regions (i.e. decision-
boundaries), and exploration means the selection of nodes from less
observed regions of the graph. Previous attempts to account for this
trade-off have been made, particularly in the context of AL with
GNN models, where exploration of less observed regions is encour-
aged by increasing the probability that a node is selected according
to the number of unlabelled neighbours to which it is connected
[31], or the degree to which the candidate node is representative of
its unlabelled neighbours in feature space according to their node
attributes [9].
With insights from these previous efforts, here we propose a

novel policy which we refer to as Selection by Local-Entropy (LE),
whereby the informativeness of an unlabelled node is evaluated by
taking into account not only the uncertainty in the predicted label
of the candidate node itself, but also that of connected nodes. At a
given iteration 𝑟 , we define the Local Entropy of an unlabelled node

𝑣𝑘 as a linear combination of the entropy of the label prediction for
node 𝑣𝑘 itself denoted by Ω

𝑠𝑒𝑙 𝑓

𝑘,𝑟
, and the distance-weighted average

entropy of the label predictions for surrounding nodes, denoted by
Ω𝑠𝑢𝑟𝑟
𝑘,𝑟

, as follows,

Ω𝑘,𝑟 = 𝜆Ω
𝑠𝑒𝑙 𝑓

𝑘,𝑟
+ (1 − 𝜆)Ω𝑠𝑢𝑟𝑟

𝑘,𝑟
(3)

with 𝜆 ∈ [0, 1], and
Ω
𝑠𝑒𝑙 𝑓

𝑘,𝑟
= H(𝑣𝑘 |𝐷𝑟𝐷𝑟𝐷𝑟 ) (4)

Ω𝑠𝑢𝑟𝑟
𝑘,𝑟

=

∑𝑑𝑚𝑎𝑥

𝑑=1
∑

𝑣𝑖 ∈𝑉 (𝑑,𝑣𝑘 ) H(𝑣𝑖 |𝐷𝑟𝐷𝑟𝐷𝑟 )/𝑑∑𝑑𝑚𝑎𝑥

𝑑=1
∑

𝑣𝑖 ∈𝑉 (𝑑,𝑣𝑘 ) 1/𝑑
(5)

whereH(𝑣𝑖 |𝐷𝑟𝐷𝑟𝐷𝑟 ) is the entropy of the label prediction for node 𝑣𝑖 , con-
ditioned on the currently observed data𝐷𝑟𝐷𝑟𝐷𝑟 = {(𝑣1, 𝑦1), (𝑣2, 𝑦2), . . . , (𝑣𝑛, 𝑦𝑛)},
and the entropy (for binary random variables) is defined as

H(𝑣𝑖 |𝐷𝑟𝐷𝑟𝐷𝑟 ) = − 𝑝 (𝑣𝑖 |𝐷𝑟𝐷𝑟𝐷𝑟 ) log𝑝 (𝑣𝑖 |𝐷𝑟𝐷𝑟𝐷𝑟 )
− [1 − 𝑝 (𝑣𝑖 |𝐷𝑟𝐷𝑟𝐷𝑟 )] log[1 − 𝑝 (𝑣𝑖 |𝐷𝑟𝐷𝑟𝐷𝑟 )]

(6)

Note the double summations in the expression for Ω𝑠𝑢𝑟𝑟
𝑘,𝑟

(Equa-
tion (5)), with the first summing over all neighbourhoods at differ-
ent 𝑑-hop distances from candidate node 𝑣𝑘 for 𝑑 𝑖𝑛[1, 𝑑𝑚𝑎𝑥 ]. Here,
𝑑𝑚𝑎𝑥 is an integer parameter whose value is bounded by the diame-
ter of the graph, 𝑑𝐺 , i.e. the greatest geodesic distance between any
pair of nodes; it determines the cut-off in 𝑑-hop distance beyond
which the observed label of a node is assumed to have a negligi-
ble effect on the label prediction of an unobserved node (radius of
influence). The second summation sums over the entropy of the
label prediction for all nodes in a given 𝑑-hop neighbourhood of the
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candidate node 𝑣𝑘 (denoted by 𝑉 (𝑑, 𝑣𝑘 )), weighted by the inverse
of the geodesic distance, 𝑑 .
Key insights that motivate the above definition of Local Entropy

can be summarised as follows:
(1) The information that can be gained from the observation of a

node is likely to be greater if it is in close proximity to other
unlabelled nodes with highly uncertain label predictions.

(2) The influence that a new observation has on the label pre-
diction of surrounding nodes decays with increasing 𝑑-hop
distance. This, together with insight (1), motivates the defi-
nition of Ω𝑠𝑢𝑟𝑟

𝑘,𝑟
, i.e. the sum of the entropy of the label pre-

diction of all surrounding nodes (up to 𝑑-hop distance 𝑑𝑚𝑎𝑥 )
weighted by 1/𝑑 , as a proxy measure of the total impact that
the new observation is likely to have on the label predictions
of surrounding nodes.

(3) This sum, as described in (2), is normalised by sum of the
distance-weights across all 𝑑-hop neighbourhoods (up to 𝑑-
hop distance 𝑑𝑚𝑎𝑥 ); this is to avoid the bias where centrally
located nodes would have larger values of Ω𝑠𝑢𝑟𝑟

𝑘,𝑟
, simply as a

result of having more connections.
(4) The balance between exploitation and exploration, as de-

scribed previously, can be fine-tuned by specifying differ-
ent values of 𝜆; in the case where 𝜆 = 1, we recover the
uncertainty-based policywhich performs node selection based
on node-entropy alone.

Note that we set 𝑑𝑚𝑎𝑥 to the graph diameter, 𝑑𝐺 , in all our fol-
lowing experiments; we leave the exploration of different values
of 𝑑𝑚𝑎𝑥 for future work. We also set 𝜆 = 0 in all subsequent con-
siderations of our proposed policy LE (i.e. maximal exploration).
Results from a sensitivity analysis comparing the performance of
LE at 𝜆 = 0, 0.5, and 1 on an aperiodic lattice graph can found in
Appendix G. of the supplementary document [43].

4 EXPERIMENTS
We evaluate and compare the performance of the different policies
(as summarised in Table 1) in three sets of experiments. In the
first set of experiments, we consider an aperiodic lattice graph
(with square-tiling), where each node has degree 4 except for those
in the corners and at the edges of the lattice. To account for the
inherent randomness in the stochastic SI process, we simulate 50
outbreaks realisations, with each outbreak terminating when at least
30% of the nodes become infected (𝐼/𝑁 = 0.3). In the second set of
experiments, we consider four different synthetic graphs, namely:
1) a periodic lattice graph (with square-tiling; each node has exactly
four connections, unlike its aperiodic counterpart; Fig. 2a), 2) a
random graph generated by the Barabási-Albert (BA) model, with
each node having a minimum of two connections (𝑚 = 2) (Fig. 2b),
3) a random graph generated by the stochastic block (SB) model
with low modularity (Fig. 2c), and 4) a random graph generated
by the SB model with high modularity (Fig. 2d) (see Appendix E.
of the supplementary document [43] for more details). For each
graph, we again simulate 50 random outbreaks for each termination
condition, i.e. when 10% (𝐼/𝑁 = 0.1), 30% (𝐼/𝑁 = 0.3), and 50%
(𝐼/𝑁 = 0.5) of the nodes become infected. Finally, in the third set of
experiments, we consider graphs constructed from two empirical

a) b)

c) d)

e) f)

Fig. 2. Graphs considered in this study, including synthetic graphs ((a):
a lattice graph with square-tiling; (b): a random graph generated by the
Barabási-Albert model; (c): a random graph generated by the stochastic
block model with low-modularity settings; (d): a random graph generated
by the stochastic block model with high-modularity settings), and graphs
constructed from empirical human mobility data ((e): within-country mobil-
ity data collected from mobile phone users in Italy, with thinning-threshold
at 15%; (f): between-country air traffic data, with thinning-threshold at 5%).

human mobility datasets, namely: 1) aggregated mobility data from
mobile phone trajectories collected in Italy at a provincial level
in 2020 [35] (Fig. 2e), and 2) global air traffic data collected at a
country level in 2020 [38] (Fig. 2f). See Appendix C. and D. of the
supplementary document [43] for more descriptions of these two
datasets, which are both openly available.

For each random outbreak realisation, 25 different nodes are ran-
domly selected as the initial labelled node; at the beginning of each
experiment, the infection status of the same selected node is made
available to all agents to ensure a fair comparison between policies.
This is done to account for any variability in policy performance
resulting from different initial observations, stochasticity from the
Markov chain Monte Carlo (MCMC) inference process and random
tie-breaking when two or more candidate nodes are given equal
preference by a policy according to its selection criterion.

In the experiment where we consider empirical human mobility
data, an unweighted and undirected graph has to be constructed
from each dataset by (i) first symmetrising the matrices representing
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Fig. 3. Top panel shows the test allocation up to three different iterations
(𝑟 = 10, 𝑟 = 40 and 𝑟 = 100) by three selected agents, each with a different
designated (uncertainty-based) policy. Bottom panel shows the performance
of the three selected agents (top), and the aggregated performance of the
three policies (bottom), each summarised across 1,250 agents (50 outbreak
realisations, each with 25 unique initial labelled nodes). In the bottom plot,
shaded regions represent the interquartile range and the solid lines represent
the median.

the mobility flows and ii) averaging them over the collection period,
followed by (iii) removing edges with mobility flow below a certain
threshold (also known as graph-thinning; see Appendix C. and D.
of the supplementary document [43]). We also perform a series of
sensitivity analyses to ensure that our results are robust to different
thinning-thresholds (see Appendix J. and K. of the supplementary
document [43]).

4.1 Test Budget and Performance Evaluation
The performance of each policy at a given iteration (or test budget)
𝑟 is evaluated by calculating the Area Under the Receiver Operating
Characteristics Curve (AUC), based on the model predictions from
the surrogate model conditioned on the observed data up to the
current iteration, 𝐷𝑟𝐷𝑟𝐷𝑟 ; an AUC of 0.5 indicates no discriminative
power and 1 indicates perfect predictions. Note that the AUC score
is only evaluated for the set of nodes with unknown infection status
at each iteration, as opposed to a held-out validation set.

Note that we also consider a policy referred to as Reactive-Infected
(RI) designed to mimic the decisions of a policymaker whose aim
is to identify as many infected locations as possible with the given
resources, i.e. a “contact-tracing” approach. This policy provides
a benchmark for the average test budget required to identify all
infected nodes in a given outbreak scenario. It is therefore only at
test iterations below this test budget that the objective of accurately
predicting the presence or absence of a disease of interest may
be considered relevant to public health decisions. In all following
experiments, we compare the performance of the different policies
only at test iterations up to this benchmark (median number of
test iterations needed by RI to identify all infected nodes across all
outbreak scenarios for a given graph); full results can be found in
Appendix H. and I. of the supplementary document [43].

4.2 Disease Surveillance on an Aperiodic Lattice Graph
As a preliminary experiment to illustrate the differences between
the uncertainty-based policies considered, we evaluate and compare
their performance on an aperiodic lattice graph (with square-tiling).
From the bottom plot in Fig. 3, we observe that LE on average
performs better than both NE and BALD at small numbers of test
iterations (𝑟 < 30). LE and NE show similar performance between
𝑟 = 30 and 𝑟 = 50; at 𝑟 > 50, however, NE overtakes LE as the best
performing policy with an AUC that rapidly approaches 1, while
both LE and BALD struggle to attain a perfect AUC. This difference
in performance between LE and NE can be understood in the context
of the exploitation-exploration trade-off, as described previously: at
small 𝑟 , LE encourages an even allocation of tests across the graph
(exploration), while NE favours regions with highly heterogeneous
disease distributions (exploitation) (top panel in Fig. 3) - this results
in a more rapid increase in model performance for LE as 𝑟 increases.
At large 𝑟 , however, the greater preference for exploitation by NE
results in almost all of the nodes that lie along the decision-boundary
being sampled - this results in an AUC that rapidly approaches 1.
Although LE also shows a preferential selection of nodes close to
the decision-boundary at large 𝑟 , it does so at a much slower rate
compared to NE.
BALD performs on average worse than both NE and LE across

all test iterations. This is due to an apparent preferential selection
of low-degree nodes (either in the corners or along the edges); only
at 𝑟 > 40 (at which point there are no remaining low-degree nodes
to be observed) do we see a pattern of test allocation that roughly
resembles that of NE. Briefly, this can be explained by noting that
the second term in the selection metric for BALD [22] represents
the average entropy of the posterior infection probabilities. For
a given surveillance exercise, as the test iteration and therefore
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Fig. 4. Performance of policies considered in experiments with simulated disease distribution at different stages of outbreak progression (as indicated by
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represent the median. Performance is only shown up to the median number of test iterations required for all infected nodes to be observed under the policy
Reactive-Infected (RI). For corresponding numerical results, refer to Appendices L. to V. in the supplementary document [43].
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Fig. 5. Performance of policies considered in experiments with simulated
disease distribution at different stages of outbreak progression (as indicated
by labels on the right) and on two graphs constructed from empirical human
mobility data (left: within-country mobility in Italy, 2020; right: between-
country air traffic in 2020). Shaded regions represent the interquartile range
and the solid lines represent the median. Performance is only shown up
to the median number of test iterations required for all infected nodes
to be observed under the policy Reactive-Infected (RI). For corresponding
numerical results, refer to Appendices W. to AB. in the supplementary
document [43].

number of observations increases, this term increases more quickly

for high-degree nodes compared to low-degree nodes, while the
first term varies independently of node-degree. Overall, this results
in the preferential selection of low-degree nodes, especially at small
𝑟 when the second term dominates over the first term.

4.3 Disease Surveillance on Synthetic Graphs
There are three key observations from our results presented in Fig.
4. First, all policies except for BALD and RI outperform random
allocation (RAND) across most outbreak scenarios, especially at
large 𝑟 when the performance of random allocation appears to only
increase slowly with increasing 𝑟 . Given the preferential selection
of low-degree nodes by BALD as described in the previous section,
it is not surprising that BALD only shows comparable performance
in the periodic lattice graph which has no degree variation. Sec-
ondly, uncertainty-based policies (NE, BALD and LE) underperform
substantially compared to graph-based policies (DC, PC) on the syn-
thetic graph generated by the BAmodel (referred to as the BA-graph
hereafter), with NE performing worse than RAND for 𝐼/𝑁 = 0.1,
0.3. This observation can be explained by considering a quantity
known as infection-assortativity, 𝑟infection, which in the context of
disease distribution, is a measure of the tendency for two connected
nodes to share the same infection status (see Appendix F. of the
supplementary document [43]). Evaluating the average 𝑟infection
across all 50 outbreak realisations on each graph shows that out-
breaks on the BA-graph have on average the lowest 𝑟infection at 0.12
(compared to 0.89 for the periodic lattice graph, 0.45 and 0.55 for
the graphs generated by the SB model (SB-graphs) with low and
high modularity [32], respectively). A low (but positive) 𝑟infection
indicates a weak tendency for two connected locations to share the
same infection status, and therefore a low degree of homophily in
the underlying disease distribution. This results in an overall poor

epiDAMIK 24, August 26, 2024, Barcelona, Spain.



8 • Joseph L.-H. Tsui, Mengyan Zhang, Prathyush Sambaturu, Simon Busch-Moreno, Oliver G. Pybus, Seth Flaxman, Elizaveta Semenova, and Moritz U. G. Kraemer

predictive performance from the surrogate model, which in turn
limits the effectiveness of the uncertainty-based policies. In such
cases, it may then be advantageous to consider node-centrality alone
during node selection, especially at small 𝑟 when there is little data
to inform model predictions. Note also that PC tends to perform
better than DC - this is not unexpected given that nodes with the
most connections are not necessarily the most central in a network.
Finally, we observe generally favourable performance from LE

across most of the different outbreak scenarios considered on graphs
with a high degree of structural order (unlike the BA-graph, as de-
scribed), especially at small 𝑟 . At larger 𝑟 , however, we again observe
superior performance from NE with AUCs that rapidly approach 1 -
this can again be explained by the preference for exploitation over
exploration by NE, which leads to the complete observation of the
decision-boundary between infected and uninfected regions given
a sufficient number of test iterations.

4.4 Disease Surveillance on Empirical Human Mobility
Networks

From Fig. 2, it is clear that the two graphs constructed from empirical
human mobility data ((e) and (f)) have markedly different structural
properties. Graph-A, generated from aggregated mobility data de-
rived from mobile phone trajectories in Italy at a provincial-level
[35], shows distinct community structures with close resemblance
to the SB-graphs as described in the previous section; whereas
Graph-B, generated from the global air traffic data collected at a
country-level [38], displays structural properties that are similar to
those of the BA-graph, as consistent with previous studies which
show the global air traffic network to have scale-free properties
[11, 17] (e.g., both have a negative degree-assortativity (-0.25 and
-0.27 for the BA-graph and the Graph-B, respectively; see Appendix
F. of the supplementary document [43] for more details), indicating
a hub-and-spoke as opposed to hub-and-hub structure [41]).
Indeed, from Fig. 5 we observe policy performances on Graph-

A and Graph-B that are similar to those from experiments on the
SB-graphs and BA-graph, respectively. Most notably for Graph-A,
LE again shows rapid increases in model performance given small
numbers of test iterations, only to be surpassed by NE at large 𝑟 , as
expected. For Graph-B, graph-based policies (DC, PC) outperform
uncertainty-based policies especially at small 𝑟 , again consistent
with results from experiments on synthetic graphs. However, the
superior performance of these graph-based policies only extends
to larger values of 𝑟 if the outbreak under surveillance is at the
early stages (i.e. 𝐼/𝑁 = 0.1); at later stages of outbreak progression,
the performance of these policies in fact decreases with further in-
creases in 𝑟 . This counterintuitive observation can be explained by
considering the changes in the distribution of the decision-boundary
between the infected and uninfected regions in the graph during a
transmission process. At the beginning of an outbreak, nodes that
are centrally located are more likely to be infected early on due
to their high degree of connectivity. This implies that most of the
decision-boundary between infected and uninfected regions can
be found close to the central nodes, thus explaining the superior
performance of graph-based policies which preferentially selected
nodes with high degree of centrality. As the outbreak progresses,

the decision-boundary shifts towards the periphery of the graph
with the already infected central nodes acting as secondary hubs
of the emerging pathogen. This results in a decrease in the per-
formance of graph-based policies, as the central nodes continue
to be targeted while the peripheral regions of the graph (where
most heterogeneities in the disease distribution lie) remain largely
unexplored. Note that a similar drop in the performance of PC (sec-
ond column in Fig. 4) at large 𝑟 during later stages of outbreak
progression (𝐼/𝑁 = 0.3 and 𝐼/𝑁 = 0.5) can also be observed.

The same reasoning can also potentially explain the unexpected
superior performance of graph-based policies and comparable per-
formance of RI at small 𝑟 , especially during the early stage of an
outbreak (first row in see Fig. 4). More generally, provided that the
number of infected nodes is sufficiently small and that they are
confined to a small local region of the graph, any policy with which
there is a high probability of selecting an infected node is likely to
perform well compared to other policies, especially given a small
number of test iterations.

5 DISCUSSION
In this study, we addressed the question of how a finite amount of
testing resources should be allocated across a network in order to
maximise the information gained about the underlying distribution
of a disease of interest. By modelling the decision-making process as
a node classification problem with AL, we evaluated and compared
the performance of existing AL policies under different outbreak
scenarios and on networks with different structural properties. We
proposed a novel policy which, unlike most existing uncertainty-
based policies, considers not only the uncertainty associated with
the label prediction of a candidate node itself, but also the average
level of uncertainty in the neighbourhood through a quantity named
Local-Entropy.
Our results show that in general there is not a single optimal

policy that performs best across all outbreak scenarios - instead, the
performance of a given policy depends on both the test budget avail-
able and the geometry of the underlying disease distribution, which
is in turn determined by the network structures and the stage of
outbreak progression. For example, graph-based policies which tar-
get central nodes generally perform better than uncertainty-based
policies when the underlying disease spread cannot be modelled
with high accuracy and certainty. However, as a result of the non-
iterative nature of these graph-based policies, their performance
especially given a large test budget may be limited by their fail-
ure to identify and sampling in regions with highly heterogeneous
disease distribution. Uncertainty-based policies are generally more
effective when there are well-defined community structures in the
network, with policies that encourage greater exploration early on
often outperforming those that target nodes lying between infected
and uninfected regions, especially when given a small test budget.
As future work, this framework can be extended to consider

transmission models with greater complexities (e.g., SEIR models,
spatially-explicit models) and more realistic mobility networks (e.g.,
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directed and weighted graphs), with additional constraints to ac-
count for practical considerations in test deployments (e.g., obser-
vational noise and delay in test feedback). We hope that our ap-
proach can serve as a starting point for the development of more
sophisticated surveillance strategies to inform globally coordinated
responses to future infectious disease outbreaks.

6 DATA AND MATERIALS AVAILABILITY
Code and analysis files used in this work are openly accessible from
GitHub at https://github.com/joetsui1994/osga.
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