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Abstract
We proposed a neural network (NN)-based frame-
work for the joint estimation of hardware impair-
ments in wireless devices. We validated the ap-
proach using real-world measurements from Blue-
tooth Low Energy (BLE) and WiFi devices. Ex-
perimental results show that the estimated impair-
ments exhibit a stationary distribution after the
warm-up phase, highlighting their stability and po-
tential as device-specific fingerprints. Moreover,
we demonstrated that these impairments provide
a lightweight yet robust alternative to raw IQ sam-
ples for RF fingerprinting (RFFP), achieving an
average improvement of 54% in classification ac-
curacy across different domains.

Keywords: Wireless device identification, hardware impair-
ment estimation, neural network-based optimization.

1. Introduction
Recent studies have shown that hardware-induced imper-
fections can serve as unique, device-specific fingerprints
and signatures, extractable from received radio frequency
(RF) signals, thereby enabling security features such as net-
work device identification and authentication (Elmaghbub &
Hamdaoui, 2023; del Arroyo et al., 2024). These RF-based
security mechanisms are especially promising for low-end
IoT devices and networks, where traditional cryptographic
approaches may be too resource-intensive. As a result, es-
timating and leveraging hardware impairments for device
fingerprinting has recently become a prominent area of re-
search focus (Elmaghbub & Hamdaoui, 2023; del Arroyo
et al., 2024; Givehchian et al., 2022).

Early works centered their effort on developing analyti-
cal models of these impairments. For instance, Polak et
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al. (Polak & Goeckel, 2015) proposed statistical methods
to estimate the CFO and phase noise, emphasizing their
temporal consistency and device specificity. Elmaghbub et
al. (Elmaghbub & Hamdaoui, 2023) examined the impact of
domain shifts on RF fingerprints and found that WiFi signal
envelopes distorted by CFO can be used as reliable identi-
fiers. Del Vecchio et al. (del Arroyo et al., 2024) showed that
the distribution of IQ imbalance varies across devices and
can serve as a distinctive fingerprinting feature. Building
on this, recent studies have demonstrated that a vector of
estimated hardware impairments can serve as a robust and
lightweight device identifier. For instance, Elmaghbub et
al. (Elmaghbub & Hamdaoui, 2024a) successfully identified
WiFi devices using impairments measured with a signal an-
alyzer. The authors studied the warm-up phase effect on the
fingerprints, but did not study the domain adaptation prob-
lem. Givehchian et al. (Givehchian et al., 2022) performed
a physical-layer tracking attack—essentially a form of RF
fingerprinting—by jointly estimating several hardware im-
pairments of the target devices. To address the resulting
non-convex optimization problem, the authors proposed
an iterative approach, which, however, often converges to
suboptimal solutions.

Motivated by these challenges, we propose a framework for
jointly estimating hardware impairments directly from re-
ceived RF signals. Specifically, we design a neural network
(NN)-based model to estimate these hardware impairments
by solving the underlying optimization problem. Experi-
mental results show that our method offers a more stable and
efficient optimization process, reaching lower loss values in
fewer steps compared to conventional iterative techniques.
In addition, visual analysis shows that the estimated impair-
ments exhibit stable distributions, making them effective
compressed features and improving device identification
accuracy by 54% compared to models using raw signals as
their inputs. Moreover, we showed that these estimated im-
pairments provide a lightweight yet robust alternative to raw
IQ samples for RF fingerprinting and device identification,
achieving an average improvement of 54% in classification
accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces key RF hardware impairments and de-
scribes their impact on received IQ signals. Section 3
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Figure 1. Impairments’ impact on the instantaneous IQ phase of BLE/GFSK signals.

presents the problem formulation and describes the pro-
posed neural-network framework for solving the formulated
optimization problem. Section 4 evaluates the accuracy and
robustness of the proposed framework using WiFi and BLE
data. Finally, Section 5 concludes the paper and summarizes
the main findings.

2. The Impact of Device Hardware
Impairments on IQ Signals

Radio Frequency (RF) hardware impairments refer to the
inherent imperfections and non-ideal behaviors of the RF
hardware components of communication devices. These
impairments arise from manufacturing variations, compo-
nent tolerances and environmental influences, collectively
affecting signal integrity and communication performance.
Although RF impairments distort transmitted signals and
reduce overall system efficiency, it also plays a crucial role
in security applications such as device identification and au-
thentication. Understanding, modeling, and mitigating these
hardware imperfections are needed for designing robust
wireless communication systems and maintaining reliable
connectivity. In this section, we study and demonstrate via
simulations the impact of different hardware impairment val-
ues on the IQ signal behavior. Our simulator implemented
the BLE PHY layer specifications as indicated in (BT-Spec-
2023) and adopted the GFSK 1M PHY mode described in
Section 3.1.1. An arbitrary 41-bit sequence, sampled at 6
MS/s, resulting in a signal duration of 246 samples, was
used to generate all the presented graphs. In this work, we
studied the following key impairments.

2.1. Carrier Frequency Offset (fCFO)

The carrier frequency offset (CFO) represents the deviation
of the carrier frequency from its nominal frequency value
and is typically caused by factors like local oscillator inaccu-
racies and Doppler shift. In Figure 1(a), we show the impact
of CFO values on the phase of received IQ of Bluetooth
signals. Observe that CFO introduces a slope in the signal’s
phase, with different CFO values resulting in varying slopes.

2.2. Phase Offset (θPO)

Phase offset (PO) is another form of distortion arising from
both device-specific and channel-specific factors. While
PO is generally treated as a nuisance parameter rather than
a reliable device identifier, its accurate estimation is crit-
ical, as it can significantly affect the estimation of other
impairments—particularly due to its strong sensitivity to
channel conditions (Xu & Kan, 2023). Figure 1(b) illus-
trates the phase of IQ signals under varying phase offset
values, where different θPO values result in vertical shifts in
the signal phase.

2.3. Bandwidth Duration (BT ) Product

BT characterizes the smoothness of the Gaussian filter and
is typically set to a standard value; e.g., 0.5 in the Blue-
tooth specification (BT-Spec-2023). In practical systems,
however, the filter’s 3-dB bandwidth (B) may deviate from
this nominal value, leading to a distorted version, denoted
by B̃T . These deviations have been shown to function as
distinctive device-specific identifiers (Zhang et al., 2025).
Figure 1(c) illustrates the impact of varying BT values on
the system behavior, where smaller values lead to flatter
pulse shapes.

2.4. Maximum Frequency Deviation (MFD) Offset

MFD is a frequency modulation-specific parameter that
represents the difference between the maximum positive
frequency and the central frequency, determined by the
modulation index. In BLE, the modulation index is defined
to be between 0.45 and 0.55, with an ideal value of 0.5, re-
sulting in a frequency deviation of 250 kHz (BT-Spec-2023).
However, hardware imperfections can affect this deviation
adding an error ∆f to the optimal value and leading to a
distorted signal, thereby contributing to the overall device
fingerprint. Figure 1(d) shows how the addition of ∆f to
the ideal MFD impacts the instantaneous phase of the signal,
creating a separation that be used for device identification.
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Figure 2. Constellation diagrams with the impact of IQ imbalance and DC offset on BLE/GFSK signals.

2.5. IQ Amplitude Imbalance (IQAmp), IQ Phase
Imbalance (IQPhase) and IQ Offset (IDC and QDC )

IQ imbalance arises when there is an amplitude and/or phase
mismatch between the in-phase (I) and quadrature (Q) com-
ponents of a transmitter or receiver, typically resulting from
hardware manufacturing errors and variations (Schuchert
et al., 2001). Figure 2(a) and 2(c) show how the ampli-
tude and phase imbalances affect the constellation diagram,
which ideally forms a unit circle. We can see that higher
imbalances leads to an elliptic distortion. IQ offset, on the
other hand, occurs when the IQ origin shifts from its in-
tended position, often appearing as a constant DC offset
or carrier feedthrough in the modulated signal. This mis-
alignment is also caused by hardware imperfections, such
as imbalances in the analog and digital processing chains,
and can degrade signal quality if not properly corrected.
Figure 2(b) shows the effect of different DC offset values
on the IQ the constellation diagram.

3. The Proposed Neural Network-Based
Impairments Estimation Framework

Estimating and compensating for hardware impairments
has always been crucial for reliable communication. How-
ever, recent research efforts have also leveraged such device-
specific impairments to fingerprint and identify wireless de-
vices to support various security application like automated
network authentication. Most existing systems estimate
hardware impairments using method-of-moments (MoM)
techniques because they are simple and fast. However, these
methods are often less accurate than approaches that learn
by minimizing a loss function. In this work, we propose a
loss-based method that directly learns to estimate hardware
impairments from RF signals.

3.1. The Impairment Estimation Formulation

Let yG[n; Θ̂] denote a synthetic (generated) baseband signal
distorted by the impairment vector Θ̂. Let yM [n] represent
the complex baseband signal captured from device transmis-
sions, for which we aim to estimate the underlying impair-
ments. Here, n = 0, 1, . . . , N , where N denotes the total
number of signal samples. We assume that both signals,
yM [n] and yG[n; Θ̂], convey the same bit sequence d[n].
Omitting the time variable n for simplicity and without loss
of generality, the impairments estimation problem can be
formulated as:

min
Θ̂

L
(
f(yM ), f(yG(Θ̂))

)
(1)

subject to IQPhase ∈ [−π, π] and θPO ∈ [−π, π] where
L(·, ·) denotes the estimation loss function, and f(·) is a non-
linear transformation function that maps the input signal to
an alternative representation, such as phase, magnitude, or
other signal-specific representations. We found that select-
ing a transformation function f(·) that unfolds the signals
as a direct function of the binary bit sequence d significantly
improves convergence; more on this will be said later.
Since both signals share the same bit sequence d, the gener-
ated signal yG(Θ̂) can be expressed as:

yG(Θ̂) = Mod
(
Dem (yM ) , Θ̂

)
where Dem(·) denotes a demodulation function that takes a
measured signal and returns its corresponding baseband bit
sequence d, and Mod(d, Θ̂) is a modulation function that
takes the bit sequence d and an impairments vector Θ̂ and
generates the corresponding baseband modulated signal.

In this work, we validated our proposed estimation approach
using both WiFi and BLE signals. To perform this valida-
tion, we implemented the signal generation and modulation
procedures in Python. For completeness, we next provide
details on the Mod(·, ·) and Dem(·) functions used for
each of the WiFi and BLE communication technologies.

3



Neural Network-Driven Estimation of Hardware Impairments for Robust Wireless Device Identification

3.1.1. THE Mod(·, ·) FUNCTION BLOCK

WiFi/DSSS Signal Generation: Given the baseband data
d[n] and the predefined DSSS spread code c[n], the base-
band spread signal can be expressed as g[n] = d[n] · c[n].
Assuming Gaussian pulse-shaping filter (Linz & Hendrick-
son, 1996), we can then write h[n] =

√
π
a e−π2n2/a2

where
a = (1/B̃T )

√
ln(2)/2 is a parameter related to 3-dB band-

width. Again, B̃T represents bandwidth duration product
under hardware impairments. The pulse-shaped baseband
signal is then given by x[n] = g[n] ∗ h[n], where ∗ repre-
sents the convolution operation. The generated WiFi signal
distorted by hardware impairments can be modeled as (del
Arroyo et al., 2024):

ỹ[n] = (ỹI [n] + jỹQ[n]) e
j2πfCFOn (2)

with ỹI [n] = GI x[n] cos(θPO + IQPhase/2) + IDC and
ỹQ[n] = GQ x[n] sin(θPO − IQPhase/2) +QDC . Where
fCFO, θPO, IDC , QDC and IQPhase are again the car-
rier frequency offset, phase offset, In-phase component of
DC-offset, Quadrature component of DC-offset, and phase
imbalance between the In-phase and Quadrature compo-
nents, respectively. GI and GQ represent the in-phase and
quadrature gains introduced by the IQ amplitude imbal-
ance IQAmp, and are defined as GI = 10 IQAmp/40 and
GQ = 10−IQAmp/40. The modulation function block for
WiFi can then be implemented as ModWiFi(d[n], Θ̂) ≜
yG[n; Θ̂] = ỹ[n] where ỹ[n] is as defined in Eq. (2) and
Θ̂ = {B̃T , fCFO, θPO, IDC , QDC , IQPhase, IQAmp}.

BLE/GFSK Signal Generation: Given the baseband data
d[n] and the impulse response of a Gaussian pulse-shaping
filter h[n], the Gaussian filtered pulse stream can be ex-
pressed as g[n] = d[n] ∗ h[n]. The instantaneous angular
shift function can then be expressed as discrete version
of running integral ϕ[n] = 2π (fm +∆f)

∑n
k=0 g[k] TS ,

where fm, ∆f and TS represent the optimal peak frequency
deviation, the offset from the optimal value of fm and the
sampling interval, respectively. Figure 3 illustrates the BLE
modulation steps, starting from d[n] and ending at yG[n],
with all impairment values set to zero. The received dis-
torted signal can be expressed as (Givehchian et al., 2022):

ỹ[n] = (ỹI [n] + jỹQ[n]) e
j(2πfCFOn+θPO) (3)

with ỹI [n] = (1− IQAmp) cos(ϕ[n]− IQPhase/2)+ IDC

and ỹQ[n] = (1+IQAmp) sin(ϕ[n]+IQPhase/2)+QDC .
As with the WiFi case, the BLE modulation function
can similarly be implemented as ModBLE(d[n], Θ̂) =
ỹ[n] where ỹ[n] is as defined in Eq. (3) and Θ̂ =

{B̃T ,∆f, fCFO, θPO, IDC , QDC , IQPhase, IQAmp}.

3.1.2. THE Dem(·) FUNCTION BLOCK

Demodulation, the process of retrieving the baseband bit
sequence from a received signal, is essentially the inverse of
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Figure 3. Steps of the BLE signal modulation process.
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the signal modulation steps described earlier. While demod-
ulating a signal under high levels of impairment-induced
distortion can lead to errors, it remains feasible when the im-
pairments are sufficiently small. In the case of WiFi, given
a captured signal yM [n], we extract the unwrapped phase
∠yM [n] to recover the spread code sequences. Figure 4(a)
shows the normalized phase of the WiFi preamble, where
the red dashed line separates the original data bits, which
alternate between 0 and 1. Each data bit is represented by a
fixed 11-chip spreading code. The captured signal exhibits
noticeable distortions, including a negative phase offset.

In BLE, the original bit sequence can be recovered by com-
puting the discrete-time derivative (i.e., the first difference)
of the unwrapped phase of yM [n], denoted as ∆n∠yM [n].
Figure 4(b) shows the normalized ∆n∠yM [n] of BLE sig-
nal, which carries the same sequence as the one shown in
Figure 3. When the signal is highly distorted and produces
bit errors, a practical solution is for both ends to agree on a
predefined bit sequence, thereby bypassing the need for the
demodulation block. Alternatively, lightweight impairment
estimation/compensation techniques can be applied for bit
recovery. However, such impairments can be noisy and
inaccurate, thus unsuitable for RFFP tasks.
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Figure 5. The proposed NN-based estimation framework.

3.2. The Proposed NN-based Optimization Framework

Solving (1) is challenging due to the non-convex nature
of the problem (Givehchian et al., 2022). Thanks to their
non-linear activation functions and robust optimizers, neural
networks (NNs) have shown a stable estimation and good
convergence when it comes to solving non-convex complex
optimization problems (Kawaguchi, 2016; Nikbakht et al.,
2020). Motivated by this, we opted for using neural net-
works to minimize the loss between f(yM ) and f(yG(Θ̂)).
Since directly using the raw signals as input to the neural
network often leads to suboptimal performance (Elmagh-
bub & Hamdaoui, 2023), we introduce a transformation
function g(·) that projects the raw signal into alternative
representations that are more suitable for the impairments
estimation task. After passing yM through g(·), the re-
sults are used as an input to the neural network to output
the estimated impairments, Θ̂, as shown in Fig. 5. yM is
also passed to Dem(·) to output a baseband bit sequence,
which, along with the output Θ̂ of the NN, are then fed to
the modulation block, Mod ( · , · ), to produce yG(Θ̂) and
finally f(yG(Θ̂)). The NN is updated by minimizing the
loss between transformed signals f(·)–instead of the raw
signals–to address the multiple-solution ambiguity caused
by the inherent sinusoidal structure of BLE/GFSK baseband
signals (McKilliam et al., 2010).

Finally, we satisfied the objective constraints by utilizing
scaled and shifted versions of a tanh(·) activation function
from each neuron of the output layer. We found that the L1
loss consistently yielded better performance than the L2 loss,
and therefore adopt it as our loss function L(·, ·). To ensure
stability, we applied L2 regularization with coefficient λ,
leading to the following modified optimization

min
Θ̂

L
(
f(yM ), f(yG(Θ̂))

)
+ λ

W∑
i=1

w2
i (4)

where wi denotes the the i-th NN parameter and W is the
total number of NN parameters.

4. Performance Evaluation and Analysis
We validate the accuracy of the proposed estimation frame-
work and assess its fingerprinting effectiveness using WiFi
and BLE datasets. After updating the weights using Eq. (4),

Table 1. Proposed framework architecture parameters

Parameter Value

Number of Filters (F ) {64, 64, 96, 128, 96}
Kernel Sizes (H) {48, 18, 98, 106, 98}
Number of Neurons (N ) {1024, 512}
Initial learning rate 1.84× 10−4

λ 8.3× 10−4

τ 0.15
Optimizer AdamW

we evaluate the achievable performances using the L2 er-
ror directly between the signals yM and yG(Θ̂), denoted
as MSE(yM , yG(Θ̂)). Optimization terminates when this
error converges or falls below a predefined threshold ϵ. In
addition to that, we define the matching score S, as the
percentage of generated samples that closely match the cor-
responding measured samples, where a generated sample
is considered a match if its relative absolute error with re-
spect to the measured sample is less than the threshold τ .
Formally,

S =
1

N

N∑
n=1

I

(∣∣∣∣∣yG[n; Θ̂]− yM [n]

yM [n]

∣∣∣∣∣ < τ

)
× 100% (5)

where N denoting the total number of samples and τ rep-
resenting the relative error threshold used to determine a
match. I(·) is the indicator function, which returns 1 if the
condition within it is satisfied and 0 otherwise. The pro-
posed NN used for estimation includes 5 CNN blocks, each
followed by MaxPooling layers and LeakyReLU activa-
tion function, and 2 Fully connected NN, each followed by
ReLU activation function, the rest of the model parameters
are summarized in Table 1.

4.1. Proposed NN-based Method vs. Iterative Method

We begin our evaluation by comparing the proposed opti-
mization approach with baseline methods, specifically it-
erative optimization techniques. For this comparison, Gra-
dient Descent (GD) (Rumelhart et al., 1986) and Adam
method (Kingma, 2014) were employed to solve the min-
imization problem defined in Eq. (4). Both methods were
evaluated using proper learning rates across 50 different
random initializations using distinct seed values to ensure
robustness and fairness in the comparison. Figure 6 presents
the MSE loss along with a confidence interval representing
one standard deviation, plotted against the number of update
steps (epochs). The results clearly demonstrate that the pro-
posed model consistently outperforms the baseline iterative
methods. Notably, our approach converges to a loss on the
order of 10−6 within approximately 70–110 steps, whereas
the iterative methods require around 2500 steps to reach
convergence—if they converge at all. Traditional iterative
optimization methods are limited by their sequential loss
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computation, where each step depends on the previous one.
In contrast, neural network-based solvers, despite comput-
ing loss sequentially, mitigate this bottleneck by computing
a more accurate loss per update by leveraging large num-
bers of highly parallelized parameters, fully utilizing GPU
hardware and resulting in fewer update-steps overall.

4.2. Estimation Validation Results

We validate the accuracy of the proposed NN–based estima-
tion model using WiFi signals by comparing the hardware
impairment estimates generated by our model with ground-
truth measurements obtained from a Keysight N9030B PXA
signal analyzer. For this, we leverage the WiFi 802.11b
RF Fingerprints with Hardware Impairments Dataset intro-
duced in (Elmaghbub & Hamdaoui, 2024a), which provides
recorded WiFi signals alongside corresponding impairment
values measured using the Keysight analyzer.

For the generated WiFi signals, we used the same bit se-
quences and spreading codes described in Sec. 3.1.1 to
generate BPSK/DSSS signals. Without loss of generality,
we set the transformation functions g(·) and f(·) defined
in Sec. 3.2 as the identity, i.e., g(z) = f(z) = z. All other
parameters were retained as previously defined.

In our evaluation, we primarily focused on comparing the
CFO measured via Signal Analyzer (SigAn), denoted as
fSigAn

CFO , and our estimated CFO, denoted asfEstimated
CFO . After

jointly estimating all hardware impairments using our pro-
posed method, we generated the synthetic signal yG[n; Θ̂]
twice: once using fEstimated

CFO to get yEstimated
G [n; Θ̂], obtained

from our model, and once using fSigAn
CFO to get ySigAn

G [n; Θ̂],
while keeping all other impairments fixed.

Table 2 presents fSigAn
CFO and fEstimated

CFO values, along with
their corresponding average mean squared error (MSE) and
matching score of their generated waveforms, evaluated
during both the stable and warm-up phases of transmis-
sion. As shown, estimated CFOs derived from stable-phase
signals closely match the measured values, whereas those
obtained during the warm-up phase exhibit higher discrep-
ancies. Overall, the table demonstrates that our estimated
CFO values achieve superior performance in terms of their

Table 2. Comparison of SigAn and estimated CFO values fCFO

(Hz), along with their associated average MSE [10−5] and aver-
age matching score [%], at N = 2000.

Signal Analyzer Ours

fSigAn
CFO MSE↓ (S ↑) fEstimated

CFO MSE↓ (S ↑)

St
ab

le

12481.7 0.58 (75.2) 12361.7±55.0 0.56 (77.1)
12510.6 4.52 (69.5) 12538.8±20.7 4.49 (69.5)
12776.9 3.34 (70.1) 12624.5±35.2 3.30 (70.2)
13099.3 1.23 (71.7) 12695.1±24.8 1.02 (77.3)

W
ar

m
in

g-
up 15286.8 5.17 (63.3) 14141.5±2.33 3.55 (71.9)

17633.5 6.00 (59.9) 16381.5±14.9 4.07 (70.2)
19069.0 8.26 (60.5) 17798.9±42.6 6.40 (69.3)
20766.5 9.66 (57.6) 19013.6±65.6 6.04 (67.1)
22125.1 8.49 (59.7) 20731.3±42.7 6.19 (69.3)

average MSE and matching score across all the evaluated
cases.

As the impairments can be highly unstable during the warm-
up phase (Elmaghbub & Hamdaoui, 2024a), we studied the
impact of the size N on the estimated impairments during
both the warm-up and stable periods. Figure 7 shows the
In-phase component of the generated signals ySigAn

G [n] and
yEstimated
G [n] based on the estimated and measured values

of CFO, respectively, for N = 250 and N = 2000. The
signal yO[n] is measuring the overlaps between the captured
signal yM [n] and the generated one, using the matching
score defined in Eq. (5). The figure shows that for small N ,
the estimated CFO closely matches the value measured by
the signal analyzer, giving approximately similar MSE of
1.55× 10−4 and around 1.62% improvement on S. On the
other hand, when N is large, the gap between fEstimated

CFO and
fSigAn

CFO increases, introducing a larger mismatch between
the generated signals. This leads to differences in both
MSE and S values, where our estimated CFO achieves
S = 81.72% and MSE = 2.72 × 10−6, compared to the
measured CFO that results in S = 66.80% and MSE =
2.76× 10−5.

4.3. Fingerprinting Accuracy Results

After demonstrating the effectiveness of our estimation
framework, we now leverage the estimated impairments
to perform lightweight RF fingerprint classification. Specif-
ically, we compared classification performance using the
estimated impairment vector Θ̂ as input to the machine
learning classifier against using normalized raw IQ samples.

For this assessment, we used BLE signals that we collected
in our lab. The BLE dataset comprises stable BLE frames
captured from multiple devices under diverse scenarios, lo-
cations, receiver setups, and frequency channels. Wireless
data were collected at two locations with device-to-receiver
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Figure 7. Impact of the number of samples, N, on the the estimated
impairments during the warm-up period

spacings of 1m and 2m, while maintaining a fixed receiver
and a BLE channel. For wired data collection, the same
setup was used, but with varying frequency channels. With-
out loss of generality, Channel 1 (Ch1), Channel 2 (Ch2),
and Channel 14 (Ch14) were selected for this study. Addi-
tionally, a second receiver was employed to collect wired
data on Ch1. Prior to each data collection session, all de-
vices were powered on and allowed a 6-minute warm-up
period to ensure hardware stabilization (Elmaghbub & Ham-
daoui, 2024b). Data were collected using GNU Radio, cap-
turing raw IQ samples with a 2MHz bandwidth and a 6MS/s
sampling rate. The receiver gain was set to 29dB for wire-
less and 8dB for wired measurements.

To obtain a reliable estimate of Θ̂, we used N = 250 sam-
ples for estimation—approximately three times the length
of a BLE preamble—and set the stopping condition to
ϵ = 6 × 10−6. To resolve the ambiguity caused by en-
coding information in sinusoidal GFSK signals, the trans-
formation functions g(z) and f(z) presented in Sec. 3.2
are defined as f(z[n]) = g(z[n]) + CD∆ng(z[n]) with
g(z[n]) = unwrap(∠z[n]), ∆n being the first order discrete
time derivative and CD = 10 being a constant that regulates
the impact of the derivative. The time derivative term is
included based on the observation that it directly relates to
CFO. In particular, when CD → ∞, the estimator ignores
static impairments such as Phase Offset (PO) and focuses on
dynamic ones like CFO. In the other hand, when CD = 0,
all impairments are considered, but this might place less em-
phasis on critical ones like CFO (Elmaghbub & Hamdaoui,
2023). Figure 8 illustrates how a BLE generated signal
progressively aligns with the measured signal after several
iterations, resulting in an accurate estimate of Θ̂ using our
proposed method.
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Figure 8. The optimization process of our proposed framework

For consistency and fair comparison, the classifier using
raw IQ samples adopted the same architecture presented
in Table 1. In contrast, the classifier using Θ̂ employed a
lightweight two-layer fully connected neural network with
32 neurons in each layer. Both classifiers share a common
output layer consisting of 12 neurons, corresponding to the
12 target devices. The overall dataset consists of approxi-
mately 2,400 frames per device and was split into training,
testing, and validation sets with ratios of 78.4%, 20%, and
1.6%, respectively.

4.3.1. ROBUSTNESS TO VARYING RECEIVERS

We first demonstrate device separability through visualiza-
tion of the estimated impairments, and then assess our pro-
posed method’s ability in performing device classification
using the estimated values of Θ̂.

Figs. 9(a) and 9(b) show the estimated values of CFO and
IQgain for 12 devices, each represented by a distinct color,
when signals are sampled by Receiver 1 and Receiver 2, re-
spectively. IQgain is defined as 1+IQAmp

1−IQAmp
. The figure clearly

indicates that each device exhibits a unique distribution that
remains consistent across different receivers.

Fig. 10 shows the classification accuracy when training is
performed on data collected by Rx1 or by Rx2 and tested
on data collected by Rx1 or Rx2. Our proposed approach
demonstrates stronger overall generalization across different
receivers. It achieves an accuracy of 97.22% when trained
and tested on Rx1 data and 88.52% when trained on Rx1
data and tested on Rx2 data—outperforming the raw IQ-
based classifier by approximately 66%. Similarly, when
trained and tested on data from Rx2, our approach obtains
around 87% accuracy and 81.5% when tested on Rx1, yield-
ing a 45% improvement over the raw IQ-based classifier.
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Figure 9. Estimated IQgain vs CFO in various domains, where
each point represents the average of five independent estimates

Raw IQ Proposed Raw IQ Proposed
0

20

40

60

80

100

Te
st

in
g 

Ac
cu

ra
cy

 (
%

)

Trained on Rx1 Trained on Rx2

Tested on Rx1 Tested on Rx2

Figure 10. Classification results for 12 BLE devices

Note that there was a slight drop in classification accuracy
when the model was trained and tested on the same receiver.
This is expected, as compressing the RF fingerprinting in-
formation from a raw IQ signal of size N = 1850 × 2 (2
for I&Q) into a compact vector of size |Θ̂| = 8 inevitably
leads to some information loss during the process.

4.3.2. ROBUSTNESS TO VARYING ENVIRONMENT

We now evaluate the proposed method’s ability to perform
fingerprinting under varying environmental conditions and
across different frequency channels—a known challenge
when using raw IQ-based fingerprinting models (Fu et al.,
2023; Hamdaoui & Elmaghbub, 2022).

Figs. 9(c) and 9(d) present the distributions of IQgain and
fCFO for 12 devices transmitting over different BLE fre-
quency channels. A trend similar to that observed across
different receivers (Figs. 9(a–b)) is evident, indicating a
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Figure 11. Classification results for 12 BLE devices when the
model is trained on wired data sent over Ch1/Rx1

generally stable distribution of the estimated impairments
when signals are transmitted over wired connections.

On the other hand, Figs. 9(e) and 9(f), which depict wireless
transmissions across different locations, indicate that the
wireless environment introduces both shifts and dispersion
in the estimated impairments. Notably, IQgain appears to
be more sensitive to these environmental variations. For
example, one device (dark green), which previously exhib-
ited a large positive outlier during wired transmission, no
longer shows this behavior under wireless conditions. Ad-
ditionally, the fCFO values for all devices exhibit a slight
rightward shift—approximately 5 kHz—while preserving
their relative ordering and spacing.

Figure 11 shows the classification accuracy when the model
is trained on wired data transmitted over Channel 1 and
tested on the previously introduced scenarios. Despite
some dispersion observed in the estimated impairments un-
der wireless conditions, the proposed impairment-based
classifier achieves accuracies of 67.3% and 74.5% when
tested on wireless signals from Loc1 and Loc2, respec-
tively—representing an improvement of approximately 40%
over raw IQ-based fingerprinting methods.

Furthermore, when evaluating the model on data from dif-
ferent frequency channels, the proposed method continues
to outperform the raw IQ-based approach. Specifically, it
achieves 56% accuracy versus 11.13% on Channel 2, and
82% versus 22.4% on Channel 14.

5. Conclusion
We proposed a neural network-based framework for estimat-
ing hardware impairments of RF-based wireless communi-
cation devices. Validation of the proposed estimation frame-
work and evaluation of its fingerprinting accuracy were
conducted using real-world WiFi and BLE measurements.
Results demonstrate that the impairments estimated by our
model are highly accurate and can serve as robust device
fingerprints—outperforming more complex deep learning-
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based RF fingerprinting approaches that rely on raw IQ
signals. Future work could explore using a larger model
to predict impairments for unseen devices, allowing for
real-world deployment to enhance signal quality and ex-
tract impairment-based signatures to enable open-set device
authentication for network access authorization.

Impact Statement
This work presents a neural network-based approach for
accurately estimating hardware impairments in wireless
devices. The resulting estimates can enhance communi-
cation performance and serve as lightweight features for
RF fingerprinting-based device identification. While this
technique strengthens wireless security by enabling phys-
ical layer-based authentication and intrusion detection, it
also raises potential privacy concerns if deployed without
consent. To avoid misuse, we recommend deploying this
method within established ethical and regulatory boundaries
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