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Abstract: Robotic systems interacting with humans through natural language
must adequately represent a wide range of challenging tasks. Linear temporal
logic (LTL) has become a prevalent specification language to represent challeng-
ing non-Markovian tasks, such as completing subtasks in a specific order and
repetitive task execution. In this work, we frame the problem of grounding natural
language commands to an LTL expression as a neural machine translation prob-
lem, leveraging the capabilities of pre-trained large language models (LLMs). A
key challenge for translation tasks is the collection of a large corpus of paired lan-
guage and translated specifications. LLMs have demonstrated few-shot learning
capabilities in many natural language tasks and can be used to overcome data-
complexity challenges. We propose Lang2LTL, a new model architecture for
translating natural language commands to LTL specifications. Results in naviga-
tion domains show that our modular approach outperforms our end-to-end base-
lines in translation accuracy and is more sample efficient than the encoder-decoder
baseline at generalization across environments.
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1 Introduction

Commanding robotic systems through natural language represents a promising interaction modality
for taskable multi-purpose robotic systems in the future. For example, human users can command
an autonomous drone to always avoid certain air spaces while visiting a sequence of landmarks in
a specific order and ask a robot to repetitively patrol regions of a school campus. Linear temporal
logic (LTL) [1] is a widely used specification language that can express a range of challenging non-
Markovian tasks, such as completing subtasks in a specific order, defining avoidance states, and
repetitive task execution. This work proposes to ground natural language commands given to a
robot to LTL expressions which serve as a task specification for downstream planning and learning
algorithms. Following prior works [2, 3], we model this grounding procedure as a neural machine
translation problem.

Existing methods [2, 3] using RNN encoder-decoder models for translation are only applicable
within the environment the model was trained on and require retraining in every new environment.
We take advantage of the recent success of large language models (LLMs) in many natural lan-
guage tasks, such as name-entity recognition and machine translation. LLMs are generative models
pretrained on a vast amount of data in varied linguistic contexts. We hypothesize that the large
pre-trained corpus combined with a modular approach to deploying LLMs can outperform narrow
environment-specific translation models developed in prior work in terms of sample efficiency and

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



generalization ability. The key advantage of deploying pre-trained LLMs for command translation
is its ability to transfer to a wide range of domains utilizing similar task descriptions, for example,
navigation at multiple scales ranging from a single house to city-wide.

We examined three approaches for translating natural language commands to LTL specifications
with varying levels of inductive bias and structure built into the model architecture. We propose de-
composition of translation problem into subtasks, namely name-entity recognition (NER), ground-
ing, and translation, where name entities in language commands are replaced by placeholder sym-
bols during translation, and tested such a modular approach where each task is solved separately.
We also propose two variants of the modular approach. In the first variant, the LLM is first called
to solve the NER, and the grounding task. The model then translates the natural language command
into LTL specification without explicitly replacing named entities in the commands with the place-
holders. In the second variant the LLM is directly prompted to translate the input natural language
command into an LTL formula without explicitly solving any of the subtasks. Results in navigation
domains show that our modular approach outperforms our end-to-end baseline in translation accu-
racy and is more sample efficient across environments than a previously proposed encoder-decoder
baseline.

2 Preliminaries

2.1 Linear Temporal Logic for Task Specification

Linear temporal logic (LTL) is a promising alternative to a numerical reward function for express-
ing task specifications. An LTL formula φ is a Boolean function that determines whether a given
trajectory has satisfied the objective expressed by the formula. Littman et al. [4] argue that such
task specifications are more natural than numerical reward functions, and they have subsequently
been used as a target language for acquiring task specifications in several settings, including from
natural language [3] learning from demonstration [5] and generalization [6]. Formally, an LTL for-
mula is interpreted over traces of Boolean propositions over discrete time, and is defined through
the following recursive syntax:

φ := α | ¬φ | φ1 ∨ φ2 | Xφ | φ1 U φ2 (1)

Here α ∈ AP represents a Boolean proposition, mapping a state to a Boolean value; φ, φ1, φ2 are
any valid LTL formulas. The operator X (next) is used to define a property Xφ that holds if φ holds
at the next time step. The binary operator U (until) is used to specify ordering constraints. The
formula φ1 U φ2 holds if φ1 holds until φ2 first holds at a future time instant. The operators ¬ (not)
and ∨ (or) are identical to propositional logic operators. We also utilize the following abbreviated
operators: ∧ (and), F (finally or eventually), and G (globally or always). Fφ specifies that the
formula φ must hold at least once in the future, while Gφ specifies that φ must always hold in the
future.

2.2 Prompting with Large Language Models

Large language models (LLMs) are large neural networks pretrained on huge text corpora in an
unsupervised fashion. LLMs have successfully demonstrated few-shot adaptation on a wide gamut
of tasks when framed as a text completion problem [7]. Deploying an LLM involves prompting
the model with a priming text, followed by the model generating a completion. Generating a well
performing prompt involves the largest amount of engineering effort. A successful prompt typically
enables in-context learning by providing task descriptions and examples for the model to follow.

For instance, the prompt to the LLM for one translation task may start with the task description,
“Your task is to translate English utterances into linear temporal logic (LTL) formulas” followed by
an example and another English utterance to be translated,
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Utterance: go to A but avoid going through B
LTL: F A ∧G ! B

Utterance: go to A then go to B
LTL:

3 Related Work

Prior work proposed using RNN encoder-decoder models to translate natural language commands
to LTL expressions [2, 3, 8] that require training on a parallel corpus for every environment. Our
approaches use LLMs to help generalize across environments. Patel et al. [3] introduced a weakly
supervised approach where a latent LTL expression is fed into a planner that generates a trajectory to
provide training signals. After examining the dataset and the model, we discovered that the interme-
diate LTL expressions mostly represent simple sequential tasks. We work on more diverse datasets
that cover a wider range of LTL expressions. To improve the generalizability of encoder-decoder
models to new environments, Berg et al. [8] used CopyNet [9] to resolve novel landmark names.
However, the performance decreased significantly when there are more than one unseen landmarks.
We used LLMs for name-entity recognition which showed better performance at identifying novel
landmarks in input utterances.

Early works in navigational language grounding focused on utilizing semantic parsers to ground
natural language into representations and then into robot actions [10, 11, 12, 13, 14]. Mei et al.
[15] introduced a Bi-LSTM model that directly translated instructions into low-level actions. Fried
et al. [16] applied pragmatic inference to further improve the performance. Neural end-to-end meth-
ods require the input utterance to be descriptive of low-level actions. In contrast, LTL expressions
can model high-level language instructions describing complex robot behaviors and provide safety
guarantees.

4 Translating Natural Language to LTL Specification

Consider a natural language command such as “The robot has to go to the cafe on Main street, then
stop by a bank, then go to McDonald’s, but only after visiting the bank”, and a set of landmarks
{Starbucks, Chase,McDonald, ...} as propositions for constructing a valid LTL expression. The
desired LTL formula of this command can be expressed as follows:

φ = F (Starbucks ∧ F Chase) ∧ F McDonalds ∧ ¬McDonaldsU Chase (2)

We decompose such translation of language to LTL specifications into the following subproblems:

1. Identification of substrings referring to Boolean propositions, in this case, “the cafe on
Main street”, “McDonald’s” and “bank”, but not “the robot”.

2. Grounding referring substrings to environment propositions, i.e., knowing that the phrases
“the cafe on Main street”, “the bank” and “McDonald’s” refer to the pre-defined environ-
ment propositions Starbucks, Chase, McDonalds.

3. Translating the input instruction into the LTL formula and simultaneously swapping the
identified substrings into corresponding environment propositions.

In this section, we propose a modularized pipeline with pretrained large language models for tackling
each of these subproblems and completing the translation of natural language to LTL specifications
for the robotic system in the context of navigation, where the language propositions are grounded to
known landmarks within the task environment.
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We hypothesize that this task decomposition should produce a higher translation accuracy as com-
pared to an approach that translates an input utterance directly into an LTL formula through a single
prompt completion problem given to an LLM.

Figure 1: Lang2LTL-Modular Approach: Green blocks are pretrained or off-the-shelf models. Yel-
low blocks are input or output data of each module.

4.1 Name-Entity Recognition for Landmarks

In order to extract word sequences from given utterances, we add a name-entity recognition (NER)
module based on a separate call to a pretrained LLM. Moreover, the task here is dissimilar to the
typical NER task where all name entities are extracted and labeled. Instead, an NER module in our
proposed pipeline must only output name entities with the required type as mentioned previously,
and include informative words into each entity, e.g., “the cafe on Main street” rather than “the cafe”
and “Main street”.

The former can be solved by only selecting entities with location labels, while the latter is generally
challenging to all existing pretrained NER models, especially without adequate examples for fine-
tuning. We demonstrate high performance on the latter task by adapting the GPT-3 prompt with task
description and examples to enable in-context learning. An example prompt is shown as follows,

Your task is to repeat exact strings that refer to landmarks from the given utterance.

Utterance: go to the bank then go to the restaurant
Landmarks: the bank; the restaurant

Utterance: go to the cafe on Main street, then a bank, then McDonald’s
Landmarks:

4.2 Grounding Name Entities to Environment Propositions

Due to the diversity of natural language, a single landmark can be referred to using multiple ex-
pressions. Grounding these expressions to the correct propositions is challenging. We approach
this by labeling propositions with unique identifying language token. The problem of grounding
expressions to propositions is then equivalent to mapping the expression to the most similar token.

We propose leveraging the latent embeddings computed by LLM encoders as the metric space for
measuring similarity. Following Berg et al. [8], we match the referring expressions to the proposition
tokens by matching their respective embeddings using the cosine similarity metric. This approach
enables us to handle a variety of referring expressions, as the entire substring, e.g., attributes such
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as “building” and “facility” or physical addresses such as “99 Main street”, are transformed into the
latent embedding by the LLM encoder.

4.3 Abstract Translation with Placeholders

A straight-forward way of translating natural language to LTL is to treat the language utterances as
input and target LTLs as output. However, language generation is inherently difficult partly due to
the large size of the target vocabulary, and generating language with strict syntactical restrictions
heavy the burden. Even if LLMs are capable of performing in-context generation tasks, having a
larger vocabulary can significantly deteriorate the translation performance.

In our modular approach, we add a translation module that replaces all the landmarks in a grounded
language command with placeholder tokens (for example, letters of an alphabet). A separate call to
the LLM with a prompt, including examples of commands and corresponding LTL formulas with the
placeholders, is used to obtain the structure of the output LTL formula. An example of such prompt
is shown in Section 2.2. Finally, the mapping from placeholder propositions to the substrings and
the mapping from substrings to the environment propositions are used to transform the output LTL
formula into the requisite output.

4.4 Proposed Lang2LTL model architectures

Our proposed modular approach, Modular-NER+Placeholders, is shown in Figure 1. The NER
module takes natural language utterance as input and output identified landmark entities, and then the
grounding module grounds each entity into a proposition, and then the translation module performs
abstract translation with the placeholder map built on landmark entities and generates the grounded
LTL expression as the final output.

We hypothesize that the key benefit of our modular approach is the decoupling of the problem of
proposition recognition from the formula structure translation, thus allowing the language model to
operate over a wide variety of LTL formula templates.

In addition to the modular approach, we also present two approaches in which the model makes a
trade-off between inductive bias and generalization:

1. Naive Translation is a modular approach with a module that directly translates utterances
with environmental propositions to final LTLs. This approach is proposed for evaluating
the influence of abstract translation with placeholders, and it demands three calls to an
LLM, the same as the modular approach. We refer to this approach as Modular-NER in
subsequent sections.

2. End-to-End Approach takes as input a natural language command and a list of known
landmarks situated in the environment and produces the corresponding LTL expression
where the propositions are grounded to known landmarks. The approach translates the
language commands into an LTL specification with a single call to an LLM. We refer to
this approach as End-to-End in subsequent sections.

5 Experiments

Our experiments are aimed to evaluate the following hypotheses:

• H1: A modular approach performs better than an end-to-end approach at translating natural
language to LTL specification.

• H2: A modular approach combined with LLMs is better than an RNN encoder-decoder
model at generalizing across different domains that share similar task descriptions.

A number of pre-trained language models can be used for each module, e.g., BERT [17] and GPT-
3 [18]. We chose GPT-3 because it is one of the largest language models that was pretrained on a
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vast amount of data in varied linguistic contexts, and it has shown state-of-the-art performance in
many natural language tasks.

5.1 Cleanup World Dataset

We evaluated the three Lang2LTL approaches on a subset of an annotated corpus of natural language
commands paired with LTL expressions collected by Gopalan et al. [2]. The task environment,
first introduced in [19], is partitioned into distinctly colored rooms, and the language commands
instruct a robot to move through rooms in a specific order while possibly avoiding certain rooms.
We chose this dataset as our test set because of the diverse natural language commands and LTL
types compared to similar datasets from other prior work. Our test set contains 697 natural language
commands corresponding to 14 unique LTL expressions in 4 different types. Some example pairs of
language instructions and LTL expressions are shown in Table 2.

5.2 OpenStreetMap Dataset

To evaluate the generalization capability of our approaches that use LLMs, we randomly sampled 50
data points of similar task descriptions from the OpenStreetMap (OSM) dataset presented in [20].
With the same model architecture and prompts, we hypothesize that the LLM approach can achieve
better translation accuracy on the OSM dataset than the baseline RNN encoder-decoder method.
This test set consists of 48 unique LTL expressions in 4 different types, one of which is not presented
in the prompt to the translation module. The language commands contain a diverse number of
landmark names, which increases the difficulty of translation. Some example pairs of language
instructions and LTL expressions are shown in Table 4.

5.3 Evaluation

To evaluate the performance of different approaches, we compare the output LTL expression with the
ground truth one, and report an accuracy as the percentage of the test data that the two expressions
are a match. We use Spot library [21] to test the logical equivalence of the two LTL expressions and
the syntax of the output LTL expressions. Spot does the equivalence check by first converting the
output and ground truth LTL formulas f and g and their negation into four automata Af , A¬f , Ag

and A¬g , then evaluating if that the multiplicative conjunctions Af ⊗A¬g and A¬f ⊗Ag are empty.

6 Results and Discussion

The accuracy of Modular-NER+Placeholders approach on the Cleanup World dataset is 84.10%,
significantly higher that of Modular-NER (75.50%) and End-to-End (78.65%). The results show
that building inductive bias into the system pipeline helps improve translation performance, and
the choice of inductive biases are important, thus supporting H1. Some examples of successful
and failed translations of the Modular-NER+Placeholders model on the Cleanup World dataset are
shown in Table 2 and 3, respectively.

Table 1: Summary of Model Accuracies

Model Accuracy
End-to-End 78.65%
Modular-NER 75.50%
Modular-NER+Placeholders 84.10%

Next, we evaluated the Modular-NER+Placeholders system using GPT-3 on the OSM dataset, and
got a 72% translation accuracy. Some examples of successful and failed translations of the Modular-
NER+Placeholders model on the OSM dataset are shown in Table 4 and 5, respectively. Given that
the baseline RNN encoder-decoder model [2] was only trained on the Cleanup World dataset, its
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Table 2: Examples Successful Translations in Cleanup World

Input Natural Language Command Output and Ground Truth LTL Expression
move to the red room F red room
go through blue room to green room ∧ F blue room F green room
go to the blue room but avoid the red room ∧ F blue roomG ! red room
go through red or yellow to get to green F ∧ ∨ red room yellow room F green room

Table 3: Examples Failed Translations in Cleanup World

Input Natural Language Command Ground Truth LTL Expression
Output LTL Expression

move to the red room and stop after entering F red room
F ∧ red roomX

go to the blue room via the green room F ∧ green room F blue room
F ∧ ∨ green room F blue room

go from the blue room to the red room F ∧ red room F green room
and then go from the red room to the green room F ∧ blue room F red room ∧ F green room

enter the blue room without crossing the red room ∧ F blue roomG ! red room
F ∧ blue roomG ! red room

Table 4: Examples Successful Translations in OSM

Input Natural Language Command Output and Ground Truth LTL Expression
find science library F science library
go to fedex office and then go to cvs F ∧ fedex office F cvs
stay away from main st and find chipotle ∧G !main st F chipotle
stay on main st and find bookstore ∧ F bookstore Gmain st

Table 5: Examples Failed Translations in OSM

Input Natural Language Command Ground Truth LTL Expression
Output LTL Expression

find bookstore and then find fedex office F ∧ bookstore F fedex office
∧ F bookstore GF fedex office

go to citizens bank and then go to marston hall F ∧ citizens bank Fmarston hall
F citizens bank Fmarston hall

do not leave main st and find science library ∧ Gmain st F science library
∧ G !main st F science library

transfer ability to the OSM dataset is limited because the OSM contains more diverse language
commands with a completely different set of named entities. This result supports H2.

We note that a large number of errors was due to the invalid syntax of the output LTL expressions,
which shows the limited ability of GPT-3 to master LTL grammar with few-shot prompts. In ad-
dition, GPT-3 tends not to understand negation well, e.g., the translation of “go through the room
which is not red to get to the blue room” is F ∧ red room F blue room while the ground truth
translation is ∧ F blue roomG! red room.

7 Conclusion & Future Work

We introduced Lang2LTL, a novel model architecture that translates natural language commands
with temporal specifications to LTL expressions, and showed that decomposing this task into sub-
tasks and using an LLM for each module performs better than end-to-end approaches. We demon-
strated the ability of LLM approaches to generalize across domains without retraining on parallel
corpora. Lang2LTL enables human users to interact with robots via natural language commands
containing complex temporal specifications.
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For future work, there are several fruitful directions to explore: (1). Handling longer LTL specifi-
cation generation tasks is beneficial to implementations in real scenarios, and could be potentially
realized by further task decomposition with LLMs. (2). Resolving ambiguity in natural language,
e.g., does “Go to the red room and then to the blue room” restrict the agent not to visit the blue room
before reaching the red room? (3). In robotic applications, LTL formulas can be used to specify
tasks for a planner, and the learned policy is executed on a real robot.
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