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Abstract: Imitation learning from large-scale human demonstrations has emerged as
a promising paradigm for training robot policies. However, collecting demonstrations
is burdensome for expert operators. We introduce a new data collection paradigm,
RoboCrowd, which distributes the workload by utilizing crowdsourcing principles and
incentive design. We build RoboCrowd on top of ALOHA [1]—a bimanual platform
that supports data collection via puppeteering—to explore the design space for crowd-
sourcing in-person demonstrations in a public environment. We propose three classes of
incentive mechanisms to appeal to users’ varying sources of motivation for interacting
with the system: material rewards, intrinsic interest, and social comparison. We instanti-
ate these incentives through tasks that include physical rewards, engaging or challenging
manipulations, as well as gamification elements such as a leaderboard. We conduct a
large-scale, two-week field experiment in which the platform is situated in a university
café. Over 200 individuals independently volunteered to provide a total of over 800 inter-
action episodes. Our findings validate the proposed incentives as mechanisms for shap-
ing users’ data quantity and quality. Further, we demonstrate that the crowdsourced data
can serve as useful pre-training data for policies fine-tuned on expert demonstrations—
boosting performance up to 20% compared to when this data is not available. These
results suggest the potential for RoboCrowd to reduce the burden of robot data collection
by carefully implementing crowdsourcing and incentive design principles.

1 Introduction
Imitation learning (IL) has become a popular paradigm for training robot policies [1–5]. However, modern
IL algorithms continue to have significant data requirements especially as tasks increase in number and
variety—on the order of hundreds to thousands of demonstrations [5, 6]. Prior efforts to scale up real-world
data collection include pooling demonstration data across different institutions [6–8], which has amortized
the cost of real-robot data collection to a degree. A fundamental limitation to scaling up is that the source
of demonstrations is primarily researchers or designated operators. To explore ways to scale up robot data
collection, we ask: Who can effectively collect robot data, and how might they be incentivized to do so?

To tackle this problem, we look to a large body of work outside of robotics which studies strategies for incen-
tivizing people in crowdsourced data labeling tasks [9–14]. The goal of these works is to align the incentives
of crowdworkers with researchers’ goals of labeling a given dataset—for example, gamifying the data label-
ing process [11]. Our key idea is to build a system that leverages similar ideas for robot data collection—i.e.,
aligning human incentives to provide robot demonstration data. We propose RoboCrowd, a framework for
incentive design in the context of crowdsourced robot data collection. Our framework centers five key prop-
erties: public accessibility, capability, intuitiveness, safety, and gamification. We incorporate three classes
of incentives to appeal to users’ varying sources of motivation for interacting with the system. To instantiate
the framework, we build upon ALOHA [1]—a bimanual platform for robot teleoperation. We deploy the
system in a field experiment in which the robot is situated near a university café, where users participate in a
self-guided, gamified data collection experience. Over 200 individuals independently volunteered to provide
a total of over 800 interaction episodes. We compile the crowdsourced interactions into a dataset and anno-
tate each trajectory with quality scores and task labels. We additionally validate the incentive mechanisms
for shaping user interactions with the robot. Finally, we analyze the usefulness of the crowdsourced data for
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Figure 1: System Overview. (Left) RoboCrowd uses the ALOHA robot [1]. Users can perform tasks in scenes put in
place by the scene designer; tasks may include physical rewards that the user can bring to the End Zone and access via
the Handover Region. (Right) Users are guided by a GUI on a tablet. Functionalities include an Interactive Tutorial, a
Task Page, and a Leaderboard. For additional details, please see Appendix E.

training policies. We demonstrate that the crowdsourced data can serve as useful pre-training data when fine-
tuning on expert demonstrations, boosting policy performance up to 20% compared to expert-only policies.

2 Related Work
Crowdsourcing is a well-studied technique in human-computer interaction, often used for collecting data la-
bels from a large set of users, with a variety of applications from computer vision to natural language process-
ing [14–23]. While many works utilize platforms such as Amazon Mechanical Turk [24] and Prolific [25]
to pay crowdworkers for data labels, other works consider how to incentivize crowdworkers via other incen-
tives beyond direct payment to gather data [12, 26–29]. Crowdsourcing has also been an attractive approach
for collecting data in robotics in recent years. Prior works have attempted to crowdsource robot data via re-
mote teleoperation in simulation or via web interfaces. RoboTurk [30, 31] develops a smartphone interface
to allow crowdworkers on Mechanical Turk to collect demonstrations remotely, and shows the potential of
using crowdsourced data to aid policy learning. Several works have developed new interfaces to make robot
demonstration collection more distributed. Recent works [32–34] design new hardware interfaces—e.g., sen-
sorized hand-held grippers or portable motion capture systems—to allow for demonstration collection in the
real-world without needing access to a physical robot. However, crowdsourcing data with these interfaces
is not immediately possible since it still requires data collectors to have access to this custom hardware. In
this work, we leverage an existing interface (puppeteering via ALOHA [1], which enables precise bimanual
manipulation at a low-cost) and choose to situate it directly in a public space to make it accessible to data col-
lectors. To make scaling up data collection possible, we design the system so it can be used by non-experts.

3 RoboCrowd
We apply incentive design to the collection of robot demonstrations for imitation learning, and develop a
system to collect demonstrations directly from the public. We establish a set of desired properties for our sys-
tem to enable crowdsourcing robot data: [P1] publicly accessible, [P2] capable hardware, and [P3] intuitive
and [P4] safe for novices, and [P5] gamified. Additionally, we design incentive mechanisms to shape these
interactions into useful data. We expect that crowdworkers vary in their motivations; we therefore design
for three incentive mechanisms: [M1] material rewards (e.g., physical rewards for completing a task), [M2]
intrinsic interest (e.g., challenging or engaging tasks), and [M3] social comparison (e.g., a leaderboard).
This section explains how we meet these desiderata through our hardware and software design.

Hardware Design. We select ALOHA [1], a system for bimanual teleoperation, as the base platform for our
system. ALOHA consists of two “follower” arms (ViperX) that are controlled via puppeteering with two
“leader” arms (WidowX). We choose to use the ALOHA platform due to its low-cost, repairability, as well as
its ability for collecting data for a wide task range. Fig. 1 illustrates a set of enhancements to outfit ALOHA
for public use to achieve our desired properties and enable crowdsourcing. First, we implement mechanisms
for user and robot safety (P4): (a) collision avoidance to prevent self-collisions, achieved via a parallel
MuJoCo [35] simulator, as well as a visual-audial alarm when the robot is near collision; (b) plexiglass and



Figure 2: Scenes. BinScene, Bin+DispenserScene,
and Bin+ZiplocScene, and the objects relevant to
the tasks (hi-chew, tootsie-roll, hershey-kiss,
jelly-bean, hi-chew-bin, hi-chew-ziploc).

Figure 3: Dataset composition by number of time
steps for each of our three scenes. Tasks receive qual-
ity scores from 1 to 3 (higher is better) which are also
indicated by brighter shades. Tutorial data receives a
score of 1 or 2. Play data always receives a score of 0.

vinyl film to cover all sides of the ALOHA workcell to enclose the puppet arms; (c) extended extrusion
bars on the leader arms to increase the distance between users and leader arms; (d) mounting of scene props
(such as bins and dispensers) to mitigate scene damage; and (e) a remote observation camera for the scene
designer to periodically monitor the scene. We also include enhancements to increase the intuitiveness of the
platform for members of the public (P3): (a) a tablet interface, described in the next section; (b) a mechanical
stop for users to automatically terminate episodes by resting the puppet arms. To enable a gamified setup
(P5), we utilize (a) an ID card reader to authenticate and track users and (b) demarcate an “End Zone” within
scenes, where a user a can place physical rewards and access them via a handover region at the bottom
of the plexiglass casing. Given its ability to perform versatile tasks, ALOHA satisfies our capability goal
(P2). We physically situate it in a public environment (Section 4) to make it accessible to crowd users (P1).

Software Design. To make operating the robot intuitive (P2) for members of the public, we implement
a tablet application to complement the hardware platform and guide users through the operation process
(Fig. 1; right). The interface additionally features a variety of elements of gamification (P5). We develop an
onboarding process for new users to sign-in and receive a tutorial to familiarize themselves with the platform.
We design our onboarding process to be efficient and interactive: users begin by tapping their university ID
card on a card reader, which directs them to a Sign In page to create a user profile. Users are then directed
to complete a consent form and an interactive tutorial to learn how to puppeteer the robot (Fig. 1; right). The
tutorial contains four steps and takes less than one minute to complete. We detail the stages of the interactive
tutorial in Appendix E. After completing the tutorial, users can choose to enter a Task Page where they see
videos of different tasks they can complete in the scene (Fig. 1; right). In service of P5, we use gamified ver-
biage and elements throughout the interface (e.g. a Start Playing button, and a countdown timer on perform-
ing tasks). Specifically for M3, we implement a point system where users receive points for completing tasks,
which are tallied and visible on a Leaderboard Page, where users can see how their scores rank compared to
other users (Fig. 1; right). We describe implementation details of the software architecture in Appendix E.

4 Experiments
We utilize RoboCrowd to collect a crowdsourced dataset over a two-week period in a public university
café. We instantiate three types of incentive mechanisms (M1-M3) to appeal to users’ varying motivations,
and design scenes in order to verify if these mechanisms can shape demonstration quantity and quality.

Scene Design. On each day of crowdsourcing, two of six tasks are made available to users, with different
pairs corresponding to different scenes (Fig. 2). BinScene contains bins with two types of candies for
single arm bin-picking tasks (hi-chew and tootsie-roll). Bin+DispenserScene contains the same
bins with a single type of candy (hershey-kiss), as well as a cup dispenser and a jelly bean dispenser
(jelly-bean). Bin+ZiplocScene contains the same bins with a single candy type (hi-chew-bin) as
well as a closed Ziploc bag full of candies (hi-chew-ziploc). Please see Appendix A for task details.

We observe significant engagement with RoboCrowd over the two-week collection period: there were
N = 231 unique users in total. We collect 129 interaction episodes in BinScene (Day 1), 381 in
Bin+DispenserScene (Days 2–5), and 307 in Bin+ZiplocScene (Days 6–11). In aggregate, users spent
54.2% of interaction time performing the preset tasks in the scene, 9.6% on the interactive tutorial, and
36.1% on free-play. In Fig. 3, we show the distribution of tasks and qualities over timesteps for each scene.
Qualities are determined on a scale from 1–3 for task-relevant data and a scale of 1–2 for tutorial data based
on the smoothness of the user’s motion and whether there is retrying behavior or extraneous movements.

We detail the quality annotation rules in Appendix E, and illustrate sample trajectories in Appendix A.



Effects of Incentives on Data Quantity and Quantity. Material Rewards. While BinScene contains
two bin-picking tasks with nearly identical difficulty, users in aggregate spend 2× as many timesteps
performing hi-chew compared to tootsie-roll. This suggests that users devote more interaction
time to tasks where the direct material incentive is more preferred (users generally express preferences
for Hi-Chews per our offline study). Users also spend a significant amount of time (50.7%) on free-play
with the system in BinScene, engaging in behaviors such as trying out more challenging tasks (e.g.,
attempting to unwrap the candies; see Appendix B). Thus, while material incentives can influence user
demonstrations, drivers of intrinsic motivation such as task difficulty also play a role.

Intrinsic Motivation. In Bin+DispenserScene, which contains a harder bin-picking task than in Scene
A (hershey-kiss) and a challenging candy dispensing task (jelly-bean), users spend only 35.3% of the
time in free-play. Despite the fact that users do not generally prefer Jelly Beans over Hershey Kisses as a ma-
terial reward, they still spend more (1.5×) time performing the jelly-bean task. This suggests that intrin-
sic interest can influence users to allocate more time doing harder task compared to easier ones, or engaging
in free-play. To probe this effect even when controlling for material reward, we consider Bin+ZiplocScene.
Here, the incentive is contained within a closed Ziploc bag which must be opened. The same incentive is
available in the bin to be picked. Users spend 4.18× as many timesteps on hi-chew-ziploc compared to
hi-chew-bin, again suggesting that intrinsic motivation influences which tasks users perform in the scene.
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Figure 4: Quantity and quality by
leaderboard use. Violin plot showing
the distribution of quantity and quality
of demonstrations for users who did
and did not visit the leaderboard.

Social Comparison. To examine how different people respond differ-
ently to explicit comparison mechanisms in the system, we record
which users visit the Leaderboard Page, and conduct a Mann-Whitney
U-test to compare the quantity and quality of demonstrations provided
by Leaderboard visitors compared to other users. Fig. 4 illustrates
the distribution of quality (number of interactions) and quality (mean
quality score) conditioned on Leaderboard visitation. We find that that
visitors of the Leaderboard provide significantly more demonstrations
(p<0.001) that are higher quality on average (p<0.05).

Task Expert Co-train Fine-tune

hi-chew 37.5% 27.5% 42.5%
tootsie-roll 42.5% 25% 40%
hershey-kiss 20% 32.5% 35%
hi-chew-bin 20% 12.5% 40%
jelly-bean 48.9 ± 18.6 8.9 ± 10.1 19.7 ± 29.7

hi-chew-ziploc 5.4 ± 12.2 17.1 ± 15.8 22.1 ± 14.3

Table 1: Policy Performance. Performance of policies
trained on expert demonstrations (# Exp.), co-trained on
crowd data, and pre-trained on expert+crowd data then fine-
tuned on expert data. We conduct 40 trials for each cell. For
the long-horizon tasks (jelly-bean, hi-chew-ziploc),
we provide a normalized return (out of 100) rather than
success rate (see Appendix D for details).

Policy Learning. Finally, we study how useful
the crowdsourced data is for downstream policy
learning. To complement the crowdsourced data,
we collect a set of high-quality expert demonstra-
tions for each task: 30 demonstrations for each of
hi-chew and tootsie-roll, 60 for hershey-
kiss, 80 for hi-chew-bin, and 100 for each of
jelly-bean and hi-chew-ziploc. In Table 1,
we compare different methods of mixing crowd-
sourced data and expert data on our six tasks. All
policies use ACT [1] with default hyperparameters.
Training exclusively with the expert data on each
task constitutes the Expert setting. Co-train refers
to naı̈vely mixing data from a crowdsourced task (i.e., task-relevant data of any quality) with the expert data.
We also compare to Fine-tune, which trains in two stages: first co-training on the crowd data and expert
data and then fine-tuning on expert data only; for fair comparison, note that Fine-tune is trained for fewer
total steps (150K) than both Expert and Co-train (200K). Crowdsourced data provides performance im-
provements in multiple cases, but the specific effects vary by task. For example, crowdsourced data for the
bin-picking tasks can involve low-quality behaviors (i.e., regrasping behavior or grasping multiple items at
a time), which may cause the Co-train to perform worse than Expert, but still provide a useful initialization
for Fine-tune. We provide additional qualitative analysis of the trained policies in Appendix D.2.

Discussion. We propose and validate a new paradigm for robot data collection via crowdsourcing and
incentive design. Crowdsourcing can reduce data collection effort of individual researchers, but also presents
challenges of data quality and heterogeneity. Future work can seek to understand the style of different
operators and the most effective ways to leverage crowdsourced data during downstream policy learning.
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Overview of Appendices
In the appendices below, we provide additional details on the implementation of RoboCrowd, our experi-
ments, and our crowdsourced dataset. We provide a brief overview of each appendix below. For videos,
please see our website: https://robocrowd.github.io

Appendix A – Task Details

We give descriptions of each of our 6 tasks, as well as renderings and images depicting sample expert
demonstrations for each task.

Appendix B – Dataset Examples

We provide sample trajectories from our collected dataset including their task and quality annotations,
to qualitatively illustrate the diversity of the behaviors in the dataset.

Appendix C – Additional Dataset Analysis

We provide further data analysis, including an offline user study to justify our scene choices, additional
data quality analysis, and results on users’ self-reported Likert ratings of their interactions with the
system.

Appendix D – Additional Details on Policy Learning Experiments

We provide additional details on the training and evaluation procedures for our policy learning
experiments, as well as further qualitative analysis of the results.

Appendix E – Additional Details on Software Implementation and Data Annotation

We provide further details on the graphical user interface, interactive tutorial, software implementation,
and data annotation pipeline.

Appendix F – Additional Details on Pilot Studies and System Development

We provide more details on how we designed and refined the system through pilot studies.

Appendix G – Overview of Action Chunking with Transfomers (ACT) [1]

We provide additional background on the Action Chunking with Transfomers (ACT) algorithm.

A Task Details
In Tables 2 to 7 below, we provide a verbal description of the behavior that the expert demonstrations
perform for each task. We additionally include a virtual rendering of different segments of a sample
demonstration (where the gripper is rendered with increasing opacity for later timesteps). Additionally, we
show a timelapse of the overhead camera image observation for the same sample expert demonstration.

https://robocrowd.github.io


Task Name Pick up a Hi-Chew (hi-chew)

Task Description Move the right arm towards the candy bin. Grasp one Hi-Chew. Drop it in
the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  449 Steps 450  504

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500

Table 2: Description of the hi-chew task, as well as a rendering and timelapse of a sample expert trajectory.

Task Name Pick up a Tootsie Roll (tootsie-roll)

Task Description Move the left arm towards the candy bin. Grasp one Tootsie Roll. Drop it in
the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  499 Steps 500  599

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500

Table 3: Description of the tootsie-roll task, as well as a rendering and timelapse of a sample expert trajectory.



Task Name Pick up a Hershey Kiss (hershey-kiss)

Task Description Move the right arm or the left arm towards the candy bin. Grasp one Hershey
Kiss. Drop it in the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  399 Steps 400  453

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Table 4: Description of the hershey-kiss task, as well as a rendering and timelapse of a sample expert trajectory.

Task Name Eject a Jelly Bean from the Candy Dispenser (jelly-bean)

Task Description

Use the left arm to pull a cup from the cup dispenser. Bring the cup near the
lever of the candy dispenser. Use the right arm to align the cup under the
lever, then press the lever. Then, use the right arm to pick up the cup and
bring it to the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  499 Steps 500  624 Steps 625  874 Steps 875  1049

Steps 1050  1131

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500 Step 600 Step 700 Step 800 Step 900

Step 1000 Step 1100

Table 5: Description of the jelly-bean task, as well as a rendering and timelapse of a sample expert trajectory.



Task Name Pick up a Hi-Chew from the Bin (hi-chew-bin)

Task Description Move the right arm or the left arm towards the candy bin. Grasp one Hi-
Chew. Drop it in the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  549 Steps 550  741

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500 Step 600 Step 700

Table 6: Description of the hi-chew-bin task, as well as a rendering and timelapse of a sample expert trajectory.



Task Name Open the Ziploc, Pick up a Hi-Chew, then Close the Ziploc (hi-chew-
ziploc)

Task Description

Use the right arm to bring the Ziploc bag to the center of the table. Then, use
the left arm to hold the Ziploc while pulling the Ziploc tab with the right arm
to open the bag. Then, spread the Ziploc open and pick out a Hi-Chew with
the right arm, and bring it to the End Zone. Then, use the right arm to hold
the Ziploc while pulling the Ziploc tab closed with the left arm. Finally, use
the right arm to place the Ziploc back in the corner of the table, and return
the arms to the home position.

Expert Trajectory
Rendering

Steps 0  99 Steps 100  299 Steps 300  799 Steps 800  1499 Steps 1500  1624

Steps 1625  1999 Steps 2000  2199 Steps 2200  2385

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500 Step 600 Step 700 Step 800 Step 900

Step 1000 Step 1100 Step 1200 Step 1300 Step 1400

Step 1500 Step 1600 Step 1700 Step 1800 Step 1900

Step 2000 Step 2100 Step 2200 Step 2300

Table 7: Description of the hi-chew-ziploc task, as well as a rendering and timelapse of a sample expert trajectory.



B Dataset Examples
In Figs. 5 to 7, we give 3 qualitative examples of interaction episodes in our crowdsourced dataset. We
illustrate a timelapse of each episode with the overhead camera observation. We also include the task and
quality annotations at each timestep, with a verbal description of the episode in the caption.



 tootsie-roll (Quality 2) 

Step 0

 tootsie-roll (Quality 2) 

Step 200

 tootsie-roll (Quality 2) 

Step 400

 tootsie-roll (Quality 2) 

Step 600

 play (Quality 0) 

Step 800

 play (Quality 0) 

Step 1000

 play (Quality 0) 

Step 1200

 play (Quality 0) 

Step 1400

 play (Quality 0) 

Step 1600

Figure 5: In this trajectory, the user begins by performing the tootsie-roll task with moderate quality—i.e., there
are about 3 attempts to grasp the candy, and there is some extraneous movement in the right arm, but the user is
otherwise successful at grasping the candy. Before bringing the candy all the way to the End Zone, the user attempts to
unwrap the candy. They then hand it over to the other arm, place it in the End Zone, and then move the arms upward.
The first half of the episode is marked as tootsie-roll (Quality 2) and the latter half of the episode is marked as
play (Quality 0).
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Figure 6: In this trajectory, the user grasps a cup from the cup dispenser and places it under the lever of the candy
machine. They are successful in collecting jelly beans in the cup, though the trajectory includes retrying behavior and
is not as smooth as an expert trajectory. The user brings the cup halfway to the End Zone, and then begins behaviors
that are not part of the task—i.e., placing a Hershey Kiss in the cup before bringing it to the End Zone. The first part of
the episode is marked as jelly-bean (Quality 2) and the latter part is marked as play (Quality 0).
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Figure 7: In this trajectory, the user correctly moves the Ziploc from the corner of the table to the center of the table,
and grasps a Hi-Chew from inside the Ziploc which they bring to the End Zone. They are unsuccessful in closing the
Ziploc before episode termination. The user is task-directed for the whole episode, however takes longer than better
quality trajectories for this task and performs retrying behavior at each subtask. The whole trajectory is marked as
hi-chew-ziploc (Quality 1).



C Additional Dataset Analysis
In this section, we provide additional data analysis. In Appendix C.1, we describe an offline study
over user preferences for different candies, informing our different scene setups. In Appendix C.2 and
Appendix C.2.1, we examine additional metrics (i.e., tutorial quality and Likert ratings) that correlate with
quality of user interaction episodes, and in Appendix C.3, we provide additional statistics on usage and
retention.

C.1 Justification for Scene Choices

To justify our scene setup and task pairings, we perform an offline survey on user preferences for various
candies. On a sample of N = 16 users, we find that 81% prefer a Hi-Chew to a Tootsie Roll. Thus,
BinScene (which includes the hi-chew and tootsie-roll tasks) allows us investigate whether this
preference for material reward shapes task choice when teleoperating demonstrations, when the task is
otherwise equivalent besides the material reward. Users exhibit a more mild preference for a Hershey
Kiss compared to a small handful of Jelly Beans (with 62% of respondents preferring the Hershey
Kiss). Bin+ZiplocScene (which includes the hi-chew-bin and hi-chew-ziploc tasks) allows us to
investigate how intrinsic motivation and task difficulty affects user behavior when teleoperating in the case
that the material reward (a Hi-Chew) is held constant between the the simpler task and the more challenging
task. Bin+DispenserScene allows us to investigate this question when the material rewards are different,
and users do not exhibit an overall preference for the reward from the harder task (and even mildly prefer
the reward from the easier task).

C.2 Additional Metrics on Demonstration Quality

Our crowdsourced dataset contains rich interaction data per user ID—-during and after the interactive
tutorial period. This dataset can help to yield insights about which users give higher quality trajectories,
and what factors can help predict this quality. As an example, we examine how the quality of interactions
after the tutorial (i.e., when the user selects tasks in the scene to perform) correlates with quality during
the tutorial period (i.e., when the user is instructed to complete simple onboarding tasks). Specifically,
we examine the distribution of mean quality during task interactions versus minimum quality during the
tutorial period; the user’s tutorial period is classified as 0 if there is any off-task behavior, 1 if the tutorial
is performed but with retrying, and 2 if the tutorial is performed smoothly. We observe a loose positive
correlation between higher minimum tutorial quality and mean task quality; and notably, users who produce
consistently high quality task demonstrations (quality 3) are more present in the group with high quality
tutorials. The tutorial period can therefore be a first-cut proxy at filtering demonstrators by quality.
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Figure 8: Distribution of Mean Task Quality versus Minimum Quality during the Tutorial Period.

C.2.1 Self-Reported Likert Metrics

After every interaction episode, we prompt the user to answer whether they agree with 3 statements, on a
5-point scale (1 - Strongly Disagree; 2 - Disagree; 3 - Neutral; 4 - Agree; 5 - Strongly Agree).

• Intuitive: Controlling the robot was intuitive.
• Interesting: Controlling the robot was fun and interesting.
• Wanted: The robot accomplished the task in the way that I wanted.

Fig. 9 summarizes the responses to these questions, aggregated by users’ minimum ratings to each statement
over their interaction episodes. The majority of users agree with all three statements, and most often have
the strongest ratings for Interesting compared to Intuitive and Wanted. We find also that there are
loose correlations between the manually annotated quality scores for users’ interaction episodes and users’
self-reported ratings for each of these metrics. Specifically, users who self-report low ratings on each of the
three metrics have lower mean quality scores. However, users who self-report high ratings have quality
scores that span low to high.

C.3 Usage and Retention

We illustrate the usage of the RoboCrowd in Fig. 10. We observe significant engagement with RoboCrowd
over the two-week collection period: there were N= 231 unique users in total. On most days, more than
two-thirds of these were new users that had not used the system on prior days. There were a total of 817
interaction episodes distributed throughout the period. The most common time at which users interacted
with the system was about 1pm, corresponding to the most trafficked time in the café (lunchtime). We
collect 129 interaction episodes in BinScene (Day 1), 381 in Bin+DispenserScene (Days 2-5), and
307 in Bin+ZiplocScene (Days 6-11).

D Additional Details on Policy Learning Experiments
In this section, we give additional details on our policy learning experiments. Appendix D.1 provides
training details and hyperparameters, Appendix D.2 provides details on our evaluation procedure, and
Appendix D.3 provides additional qualitative discussion of our learned policies.

D.1 Training Details

For the Expert and Co-train experiments, we train policies for 200K steps for all tasks. For the Fine-
tune experiments, we fine-tune the co-trained model (partially trained for 100K steps) for an additional
50K steps on expert data only. We use the implementation of ACT [1] from [36], including the default
hyperparameters from [1], as shown in Table 8.
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Figure 9: (Top) Histogram of Likert Ratings (aggregated by the user’s minimum response over their interaction
episodes) for the Intuitive, Interesting, and Wanted questions. (Bottom) Distribution of mean quality of
interaction episodes for different Likert Ratings for Intuitive, Interesting, and Wanted.
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Figure 10: Statistics on usage over a two-week period: number of users per day (left), number of interaction episodes
per day (middle), and distribution of interaction episodes by time of day (right).

D.2 Evaluation Details

We perform policy evaluations for 40 trials each, early stopping when policies exhibit excessively jittery
or unsafe behavior. While the RoboCrowd training dataset was collected in a café where lighting varies
throughout the day, during evaluation, we move the setup to a location with a visually similar background
but consistent lighting for controlled evaluations.

For the bin-picking tasks, we define success as the robot arm picking exactly one of the desired candy and
bringing it to the End Zone. For our challenging, long-horizon tasks (jelly-bean and hi-chew-ziploc),
success is 0% for all policies, so we instead compare policies via normalized return to measure partial
proficiency at tasks. We describe the process for computing normalized return below.

Each of the following subtasks in jelly-bean corresponds to 1 point in the episode return: Retrieves
Cup from Dispenser; Places Cup Down; Aligns Cup Under Lever; Presses Lever; Collects Jelly Beans
in Cup; Picks up Cup; Brings Cup to End Zone. Each of the following subtasks in hi-chew-ziploc
corresponds to 1 point in the episode return: Picks up Bag; Places Bag in Center of Table; Slides Open;
Picks Hi-Chew; Brings Hi-Chew to End Zone; Closes Bag; Places Bag in Corner of Table. For these tasks,
we report normalized return—the average return over evaluation trials divided by the maximum return
(achieved by all expert demonstrations).



Learning Rate 1e-5
Batch Size 8
# Encoder Layers 4
# Decoder Layers 7
Feedforward Dimension 3200
Hidden Dimension 512
# Heads 8
Chunk Size 100
KL-weight (β) 10
Dropout 0.1
Backbone ResNet-18
Image Augmentations RandomCrop, Random-

Resize, RandomRotation,
ColorJitter

Table 8: Hyperparameters for ACT, shared for all experiments.

D.3 Qualitative Analysis of Learned Policies

We find that in most cases, Co-train and/or Fine-tune improve upon Expert. However, the specific effects
vary by task. For example, we find that for the hi-chew task, the co-trained policy performs worse than
the expert policy, but the fine-tuned policy performs better; whereas with the hershey-kiss task, both
the co-trained policy and fine-tuned policy perform better. We hypothesize that the crowdsourced data is
more useful for hershey-kiss because (a) hershey-kiss is a more complex task (in that it is more
multimodal, i.e., either arm can be used to pick up a Hershey Kiss, and the grasping required needs to be
more precise to not crush the Hershey Kiss) and (b) a greater proportion of the hershey-kiss data is of
higher quality. We notice that the crowdsourced data for jelly-bean is especially diverse, and naı̈vely
co-training or fine-tuning underperforms using the expert data only.

Qualitatively, we observe in several cases that the co-trained and fine-tune policies exhibit meaningful but
suboptimal behaviors from the crowdsourced data (e.g., picking up multiple objects from the bin instead of
one). On the other hand, there are also helpful behaviors from the crowdsourced data (not represented in
the expert data) that benefit trained policies—e.g., regrasping behavior.

Overall, the RoboCrowd dataset is very diverse, and contains both task-relevant behaviors (of various levels
of quality) and free-play behavior. Future work on more sophisticated policy learning methods that leverage
these diverse characteristics can help to get the maximum utility out of crowdsourced demonstration data.

E Additional Details on Software Implementation and Data Annotation
In this section, we provide additional details on our software interface and implementation, as well as
our data annotation pipeline. Appendix E.1 provides an overview of the application flow and interface,
Appendix E.2 details the interactive tutorial procedure, Appendix E.3 provides implementation details, and
Appendix E.4 details the data annotation pipeline.

E.1 Application Flow and User Interface

Fig. 11 gives an overview of the flow through the tablet application, and Table 9 provides screenshots of
the major pages referenced in the flowchart. We additionally highlight the Interactive Tutorial in Fig. 12
and the visual warning for collision detection in Fig. 13. We now briefly describe the application flow. To
begin a new session, the user taps their ID card on the card reader, which advances the tablet application
to a screen where the user can enter a nickname (if they are a new user). They are then directed to the
Main Page, where they complete a consent form and the interactive tutorial. From the Main Page, users
can also press a “Start Playing” button which directs them to the Task Page, where they can see videos of
tasks available in the scene, and can tap on a task to see more details and begin demonstrating the task.



For safety, the user receives an audial and visual warning (Fig. 13) if the arms are near-collision. When
users are done with the task (i.e., they click a Stop button on the Task Detail Page or they rest the grippers
on the mechanical stop), they are asked to mark their demonstration as a success or failure, and fill out
a brief survey. The success/failure markings are used as the basis for the points which are added to the
user’s point total in the Leaderboard, which is accessible from the Main Page; in our experiments, users
receive 10 points for successful “easy” tasks (bin-picking) and 20 points for successful “difficult” tasks (the
remaining tasks). From the Main Page, users can also choose to provide feedback, or press a Request Help
button which immediately notifies the study team (e.g., if the user needs assistance or if the setup requires
maintenance).

E.2 Interactive Tutorial

We provide a zoomed-in version of the pages in the Interactive Tutorial in Fig. 12. The aim of the tutorial
is to guide the user on how to start and stop interaction episodes as well as how to puppeteer with ALOHA.
Specifically, users are first instructed to wait until ALOHA’s arms rise to the home position, and then they
are given instructions on how to start puppeteering (by squeezing both sets of grippers on the leader arms).
After they do so, the tutorial automatically proceeds to the next stage, where users then are told to gently
touch the left and right arms to the table; the goal is to help users get calibrated to the robot’s range of
motion and degrees of freedom, as well as the types of forces they need to apply to move the arms. Finally,
users are given instructions on how to stop the interaction episode, by resting the grippers of the leader
arms in the grooves of the mechanical stops. When the user does so, the puppet arms are automatically
lowered, and the user is presented a brief video on how to navigate the rest of the interface.

E.3 Implementation Details

The software application is implemented with React (frontend) and Flask (backend), and uses WebSocket
connections to communicate between the user client and backend server. We use a SocketIO-ROS bridge
to pass messages between the backend server and robot controller. The robot controller operates at 50Hz
and is based on [1]. When the robot is being teleoperated, we run a parallel simulation in MuJoCo [35]
which is updated at every time step to detect self-collisions.

Sign In Consent

Interactive TutorialMain Page

Leaderboard

Task Page Task Detail Page

Survey

Request Help

Give Feedback

Figure 11: Flowchart illustration of pages in the user interface.

E.4 Data Annotation Pipeline

We annotate episodes in our crowdsourced dataset by task and quality. We implement an interface for
annotation, which we illustrate in Fig. 14. We annotate episodes by dragging a slider which scrubs through
the episode and selecting a task and quality annotation for different segments of the episode. We describe
the annotation rules below.

• play (Quality 0). All free-play behavior is marked as play with quality 0. Play data includes
undirected movements and tasks that the user makes up (e.g., trying to unwrap a candy). It also
includes extraneous movements before and after the user performs a task.
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Figure 12: Screenshot of the pages in the interactive tutorial interface.

Figure 13: Screenshot of a visual collision warning on the task page. An audial alarm (beeping sound) is played on the
tablet when the visual collision warning appears.

• tutorial (Quality 1–2). Movements associated with the tutorial (e.g., touching the grippers to
the table) are marked as Q1 if there is any retrying behavior and Q2 if the motions are smooth.

• <task> (Quality 1–3). Task-relevant motions for each of our six tasks are labeled with the task
name and a quality from 1 to 3. Q3 is used to describe segments that complete subtasks smoothly
with no more than 2 retries. Q2 is used to describe segments that use no more than 4 retries for
any one subtask, or that are completed but with slight errors (e.g., grabbing more than 1 candy
from a bin). Q1 is used to describe segments that are task-relevant but of poor quality (e.g., more
than 4 retries for any one subtask), cause changes to the scene (e.g., dropping a candy on the
table), or complete the task in a significantly different manner than the expert demonstrations
(e.g., using the opposite arm for any subtask).

F Additional Details on Pilot Studies and System Development
Prior to full system deployment, we conducted pilot studies on a smaller population to help us iterate on
our system. We obtained the Institutional Review Board’s approval before both the pilot studies and the
full deployment. We recruited N=10 participants to interact with the system. In order to mimic organic
interactions as closely as possible, we did not provide the participants with any verbal instructions, other
than to begin interacting with the system as if they happened upon it organically. Our software interface
guided the participants through the consent form and tutorial. Here is a sample of feedback provided by
participants, coupled with changes we made to the system.

• Degrees of Freedom: Users indicated that puppeteering demonstrations was challenging the first time
because they needed to “understand the degrees of freedom” of the robot. To address this feedback,



Figure 14: Screenshot of the data annotation interface. Annotators can scrub through the episode and label segments
with task and quality labels, which color codes a bar to visualize the different tasks and qualities in the episode. When
the annotator is done labeling an episode, they can “commit” their labels and proceed to the next episode.

we created a tutorial where the user was guided through how to perform primitive movements of the
leader arms (e.g., controlling both puppet arms to touch the bottom of the workspace) before they began
interacting with the system.

• Tutorial Format: In an initial prototype, our tutorial was a video that a user would watch before using the
system. Users provided feedback that they felt “impatient” and would rather “explore what it is like to
interface with the robot” rather than “watch a long video.” To address this feedback, we made the tutorial
efficient and interactive: 4 steps that the user would perform with the robot after watching them on the
screen. The interactive tutorial automatically advances after detecting that each step is complete.

• Start and Stopping Demonstrations: In an initial prototype, users begin demonstrations by (1) tapping
a Start button on an interface and (2) squeezing the grippers of the leader arms closed. To terminate
episodes, they would simply need to (1) leave the arms to rest on the robot body and (2) tap a Stop button
on the interface. We received feedback that squeezing the gripper to start episodes “made sense” but
the “rest position at the end was confusing.” To address this feedback, we designed and 3D printed a
mechanical stop for users to rest the arms. We automatically terminate episodes when handles of the
leader arms make contact with this mechanical stop.

• Interface: In an initial prototype, users would access the interface on their own smartphone by scanning a
QR code pasted on the platform. A user reported that they would prefer if more of their interaction would
happen “in the position that they will be doing the task.” We therefore switched to a tablet interface
mounted at the base of the platform, which was accessible when the user sat down to begin interacting
with the robot. On the interface itself, users reported that it was “easy to understand.”

• Collisions: We observed that participants did not actively pay much attention to collisions between the
robots, as well as the collision of wrist-camera mounts and objects mounted on the table. To address this,
we (1) added collision avoidance between the arms and the table, (2) added an audio-visual alarm when
arms were near collision, and (3) mounted objects to the table so that they would not move.

G Overview of Action Chunking with Transformers (ACT)
In this section, we provide a more extended background overview of imitation learning (IL) and the Action
Chunking with Transformers (ACT) algorithm [1].

Imitation learning (IL) aims to learn a policy πθ parameterized by θ given access to a datasetD composed
of expert demonstrations. Defined within the framework of a standard partially observable Markov



decision process (POMDP), each trajectory ξ ∈ D is a sequence of observation-action transitions
{(o0,a0), ... , (oT ,aT )}. Most commonly, IL is instantiated as behavior cloning, which trains πθ to
minimize the negative log-likelihood of data, L(θ)=−E(o,a)∼D[logπθ(a|o)].

In practice, the human-collected demonstrations in D may be diverse. To effectively learn from such
diverse data, we can condition the policy on a latent variable z, which helps to capture the variability in the
demonstrations by representing different modes of behavior. Representing this policy as the decoder in a
conditional variational autoencoder (cVAE), we in addition learn an encoder qφ from (observation, action)
pairs to the latent space: qφ(z | at,ot). And we condition our policy on the latent variable: πθ(ât | ot,z).
At test time, we sample latent vectors from the standard normal distribution, z∼N(0,1). We regularize
the outputs of our encoder towards this distribution via a KL-penalty: DKL(qφ(z |at,ot)∥N(0,1)). This
method is formalized as Action Chunking with Transformers (ACT) [1], an imitation learning algorithm
designed to learn from diverse human demonstrations.



Page Name Screenshot Page Name Screenshot

Sign In (Tap ID
Card)

Sign In (Create
User Profile)

Main Page Interactive Tutorial

1 2 3

4 5 6

Task Page Task Detail Page

Leaderboard Survey Page

Request Help Give Feedback

Table 9: Screenshots of pages in the user interface.
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