
Learning Generalized Linear Programming Value
Functions

Tu Anh-Nguyen
Google Research and Rice University

Houston, TX
tu.na@rice.edu

Joey Huchette
Google Research
Cambridge, MA

jhuchette@google.com

Christian Tjandraatmadja
Google Research
Cambridge, MA

ctjandra@google.com

Abstract

We develop a theoretically-grounded learning method for the Generalized Linear
Programming Value Function (GVF), which models the optimal value of a linear
programming (LP) problem as its objective and constraint bounds vary. This func-
tion plays a fundamental role in algorithmic techniques for large-scale optimization,
particularly in decomposition for two-stage mixed-integer linear programs (MILPs).
This paper establishes a structural characterization of the GVF that enables it to be
modeled as a particular neural network architecture, which we then use to learn
the GVF in a way that benefits from three notable properties. First, our method
produces a true under-approximation of the value function with respect to the
constraint bounds. Second, the model is input-convex in the constraint bounds,
which not only matches the structure of the GVF but also enables the trained
model to be efficiently optimized over using LP. Finally, our learning method is
unsupervised, meaning that training data generation does not require computing
LP optimal values, which can be prohibitively expensive at large scales. We numer-
ically show that our method can approximate the GVF well, even when compared
to supervised methods that collect training data by solving an LP for each data
point. Furthermore, as an application of our framework, we develop a fast heuristic
method for large-scale two-stage MILPs with continuous second-stage variables,
via a compact reformulation that can be solved faster than the full model linear
relaxation at large scales and orders of magnitude faster than the original model.

1 Introduction

The linear programming (LP) value function models the optimal value of an LP as problem data in
that problem varies. Value functions are a fundamental abstraction used in many algorithms for large-
scale optimization. More concretely, many problems where decisions are made sequentially–e.g.,
two-stage stochastic programs [46], facility location problem [17], multi-commodity problems [19],
or network interdiction problems [49]–can be modeled as two-stage mixed-integer linear programs
(MILPs). To pick one common technique as a motivating example: Benders’ decomposition is an
algorithmic technique that decomposes such a large problem into many smaller ones [21, 42, 51]. At
a high level, Benders’ decomposition abstracts each LP subproblem away by replacing it with a value
function. If we somehow had a good approximation of these value functions that we could efficiently
optimize over, this reformulation would be straightforward to approximately solve. In Benders’
decomposition however, we do not have such a representation a priori, and thus we iteratively

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



construct an approximation of it via cutting planes; this is often the most computationally expensive
part of the algorithm [36, 57]. In this paper, we focus on learning such representations.

Separately, it is well-known that neural networks (NNs) are “universal approximators” in theory
[4, 23, 26, 35] and incredibly adept at modeling complex behaviors in practice [1, 7, 9, 37]. Taken
together, we can state two natural questions that motivate this work:

• What are the meaningful structural properties of a value function, and what are suitable
neural network architectures for encoding these properties?

• How good are these approximations in practice, and how can we leverage them to solve
real-world problems?

Contributions. Our work studies the Generalized Linear Programming Value Function (GVF),
defined as the function that models an LP’s optimal value as both its objective and its constraint bounds
vary, and shows how machine learning techniques can be used to build practical approximations of
this function. In particular, our contributions are as follows.

1. A GVF Representation theorem. We study the structure of the GVF and show that it can
be exactly modeled as a maximum of bilinear functions, where each function is the dot
product of two piecewise linear functions that depends only the objective coefficients or
constraint bounds, respectively.

2. A theoretically-grounded NN architecture for GVF. We present the Dual-Stack Model, a
neural network architecture which mimics the structural property of the GVF exposed by
our representation theorem.

3. An unsupervised learning approach. We show that the GVF can be written as the unique
optimal solution of a constrained optimization problem that does not require solving any
LPs to write down. We use this as inspiration for an unsupervised learning method that can
be implemented using standard NN training constructs and libraries.

4. Empirical justification. We present a computational study showing that our unsupervised
training approach can perform comparably with supervised training in terms of approximat-
ing a GVF, without the expensive data generation phase that supervised training requires.

5. A fast heuristic for large-scale two-stage MILPs. Due to the properties of the Dual-Stack
Model, we can easily embed it as an LP within a larger optimization problem. As an
application of our framework, we leverage this fact to produce a heuristic for two-stage
MILPs with continuous second-stage variables, which includes a provable duality gap.

2 Preliminaries

A Linear Program (LP) is a mathematical optimization problem of the form:

min{c · x | Ax ≤ b, x ≥ 0, x ∈ Rn}, (1)

where x are the decision variables, c ∈ Rn is the vector of objective coefficients, A ∈ Rm×n is the
constraint matrix, and b ∈ Rm is the vector of constraint bounds (often called the “right-hand side"
in such a representation).

Duality is a fundamental concept in linear programming that establishes a relationship between the
primal (original) linear program and its dual (related) linear program. This relationship provides
insights into the optimal solutions, and it is valuable for both theoretical understanding and practical
applications. The dual problem of (1) is

max{b · y | AT y ≤ c, y ≤ 0, y ∈ Rm}. (2)

The typical LP Value Function (LPVF) is hA,c(β) := minx {c · x | Ax ≤ β, x ≥ 0, x ∈ Rn}. As a
corollary of strong duality, the LPVF is a piecewise linear convex function, which is the maximum of
a finite number of affine functions. Note that the LPVF only considers varying constraint bounds;
if we also permit the objective coefficients to vary, we obtain the Generalized LP Value Function
(GVF) [52]. Formally, we define a GVF associated with a fixed constraint matrix A ∈ Rm×n as:

hA(γ, β) := min
x
{ γ · x | Ax ≤ β, x ≥ 0} . (3)

2



Many typical decomposition methods only need to consider LPVFs of fixed objective vectors c.
However, learning the entire GVF at once means that we can reuse the same learned model for many
different objectives, potentially saving computation and allowing for a broader generalization.

We use LP(γ, β) to denote the linear program in (3) for fixed values of γ and β. Conventionally,
when LP(γ, β) is infeasible, h(γ, β) = +∞, and when LP(γ, β) is unbounded from below, we
have h(γ, β) = −∞. Let B := {β ∈ Rm | ∃x ∈ Rn s.t Ax ≤ β, x ≥ 0} and C := {γ ∈ Rn | ∃y ∈
Rm s.t AT y ≤ γ, y ≤ 0}. By strong duality and the definitions of B and C: h(γ, β) is finite if and
only if γ ∈ C and β ∈ B. We define X(β) := {x ∈ Rm | Ax ≤ β, x ≥ 0} as the set of feasible
solutions of LP(·, β) for a fixed β ∈ B.

In this work, we will consider two-stage MILPs with continuous second-stage variables, where fixing
the first-stage variables results in the problem decomposing into K independent LPs. In particular,
these have the form:

min
x1,x2

c · x1 +
∑
k∈JKK

dk · x2,k | x1 ∈ χ, T kx1 +Ax2,k ≤ bk, x2,k ≥ 0 ∀k ∈ JKK

 , (4)

where x1 ∈ Rn1 are the first-stage variables, χ is the first-stage feasible set, K ∈ Z+ is the number
of second-stage subproblems, and JKK denotes the set {1, . . . ,K}. For example, in the context of
stochastic programming, K is the number of scenarios, or in a facility location problem, K is the
number of customers. Each subproblem k is associated with corresponding continuous second-stage
variables x2,k ∈ Rn2 . We assume that the second-stage constraint matrices are the same, denoted as
A ∈ Rm2×n2 while the constraint matrices of first-stage and the constraint bounds constraints vector
can vary among second-stages, denoted as T k and bk, respectively. We can rewrite (4) using GVF as

min
x1

c · x1 +
∑
k∈JKK

hA(dk, bk − T kx1) | x1 ∈ X

 . (5)

Within the context of GVFs, we can reformulate equation (3) to elide the requirement for second-stage
variables. The large number of these variables can impede computational efficiency [18], which
motivates a compact representation of GVFs.

3 Related Work

3.1 Value function learning for multi-stage problems

Neural networks are well-known to be powerful “universal approximators” [35]. This has motivated
a line of research focused on learning value functions, particularly those based on constraint bounds
such as LPVF and their MILP analogues, with the main goal of improving methods for two-stage or
multi-stage optimization problems. Dai et al. [13], Lee et al. [34], and Bae et al. [5] propose various
methods to learn the LPVF with the aim to solve multi-stage stochastic programming problems
more quickly. Similar to our work, they use models that are convex on constraint bounds to match
the structure of the LPVF. Beyond the LP value function, neural networks have also been used to
learn IP value functions to improve the integer L-shaped method [33]. Moreover, to tackle difficult
mixed-integer problems with a large number of scenarios, Dumouchelle et al. [14, 15] devise NN
architectures that learn MILP value functions of constraint bounds and scenarios.

Our method differs from the above in that we directly learn the GVF rather than the LPVF (though
[14] learns the GVF indirectly), we do not require solving optimization subproblems (LPs in our case)
to obtain training data. Furthermore, we aim to not only generalize across second-stage subproblems
(scenarios), but also across instances. In particular, by allowing the objective coefficients to vary,
we learn a single value function that encompasses all subproblems, rather than learning one per
subproblem. Of course, learning a single GVF is generally harder than learning a single LPVF, but a
core thesis of this work is that there is underlying structure tying together those many related LPVFs
that we can exploit when learning the GVF.

3.2 Other learning-based approaches

A related research direction in learning for stochastic optimization is scenario reduction, which
seeks a smaller set of “representative scenarios”. Many of these approaches perform some form

3



of clustering to reduce the number of scenarios and then solve a smaller surrogate problem with
these scenarios [10, 16, 30, 41, 44]. Wu et al. [55] uses a conditional variational autoencoder to
learn scenario embeddings and cluster them. Bengio et al. [8] predicts a representative scenario for a
smaller surrogate problem, but it relies on problem structure to build scenarios for training.

Other learning-based methods for tackling two-stage stochastic problems include reinforcement learn-
ing for local search [38] and Benders cut classification [28]. More generally, ML-based approaches
have also been applied for bilevel optimization [29, 47, 48, 56] where value functions are relevant,
though unlike in our case, these only have a single inner optimization subproblem. Finally, there is an
extensive stream of work focusing on applying ML to support decisions within MILP solvers, such as
branching and cutting plane decisions (e.g., [2, 24, 39, 50]).

3.3 Computing value functions

LP value functions are well-studied (e.g., see [45, Chapter 19]), as they play crucial roles in sensitivity
analysis and Benders’ decomposition. On the other hand, GVFs are considerably less well-studied.
While much is known about its structure [22, 27], to the best of our knowledge our method is the first
that aims to learn it directly based on its theoretical properties. The computation of value functions
has also been studied for ILPs and MILPs using superadditive duality [32, 43, 52, 53]. However, they
are less tractable to compute and thus more difficult to leverage into a practical algorithm.

4 A Neural Network Representation for Generalized Linear Programming
Value Functions

In this section, we will develop a characterization of the GVF that, in the sequel, we will use as
inspiration for a neural network architecture that is well-suited to approximate the GVF.

4.1 A Characterization of Generalized Linear Programming Value Function

It is known that B × C can be partitioned into distinct invariancy regions, within each of which the
GVF is bilinear with respect to β and γ [27]. This can be reformulated as the following proposition.
Proposition 1. Fix a matrix A ∈ Rm×n, and define S(β) as the set of all bases of A which are
feasible with respect to fixed constraint bounds β ∈ B. Then, hA(γ, β) = minB∈S(β) γBB

−1β.
Furthermore, hA(·, b) is piecewise linear concave for every fixed b ∈ B and hA(c, ·) is piecewise
linear convex for every fixed c ∈ C.

While Proposition 1 tells us that each invariancy region defined by B can be decomposed into a
product of functions that depend only on γ and β, it does not provide us with a global decomposition
that is valid across all invariancy regions. We now show that there does indeed exist a structured,
global decomposition of a GVF in terms of piecewise linear functions that consider either γ or β, but
not both.
Theorem 2. (GVF Representation Theorem) For a fixed matrix A ∈ Rm×n, there exists a set
of p piecewise linear functions {Fp : Rn → RK}Pp=1 and a piecewise linear convex function
G : Rm → RK such that

hA(γ, β) = max
p∈JP K

{Fp(γ)TG(β)} ∀γ ∈ C, β ∈ B. (6)

We refer the reader to Appendix A for a proof of this result.

4.2 The Dual-Stack Model

We now use Theorem 2 as inspiration for a neural network architecture that we dub the Dual-Stack
Model (DSM). For simplicity, in the remainder we will consider LPs written in the form of (1); see
Appendix F for analogous models for other LP representations.

The architecture of a DSM is depicted in Figure 1. It consists of two stacks of feedforward fully-
connected neural networks of depth N and M corresponding to the objective vector γ and the
constraint bounds vector β; we name them the γ-stack and the β-stack, respectively. Each layer

4



has a piecewise linear activation function to ensure that the entire stack itself is piecewise linear;
either ReLU or Max-pooling is a suitable choice. We denote the output matrix of the γ-stack as
Φ and the output vector of the β-stack as Ψ, respectively. To model the outer maximization in (6),
the output of the model is the maximum element of the dot product between Φ and Ψ. Finally, the
β-stack is constrained so that the first layer has non-positive weights and each subsequent layer has
non-negative weights; this enforces the desired properties of a GVP listed in Theorem 3, such as
convexity on β [3]. In general, the γ-stack represents the functions {Fp}Qp=1 and the β-stack models
the function G from Theorem 2.

linear
transform

linear
transform

max

rhs vector
(input)

linear
projection

objective vector
(input)

-
positive weight constraint

negative weight constraint

value function
(output)

ReLU or Max-pooling

Matrix Multiplication

Theorem 4

Theorem 12

Figure 1: Dual-Stack Model (DSM)

We can summarize the properties of DSM as follows. Let
ai the i-th column of the matrix A. Then we may define
H(A) := {ηA(·) | ηA is a DSM and ηA(γ, ai) ≤ γi ∀γ ∈
C, i ∈ JnK} to be the class of functions that can be rep-
resented by a DSM, subject to what we might call dual
feasibility constraints on their outputs.
Theorem 3. Any function ηA ∈ H(A) has the following
properties:

1. ηA(γ, ·) is piecewise linear, convex, and mono-
tonically decreasing for every fixed γ ∈ C.

2. ηA(·, β) is piecewise linear for every fixed β ∈
B.

3. ηA(γ, β) ≤ hA(γ, β) for every fixed β ∈ B and
γ ∈ C.

This result shows that, for fixed inputs, hA is upper-bounded by the true GVF. In fact, we can show
something even stronger.
Theorem 4. For any fixed A ∈ Rm×n, hA ∈ H(A), and moreover hA is pointwise larger than all
other elements ofH(A).

One way to interpret Theorem 4 is that there exists some DSM architecture whereby we can recover
the GVF by setting the weights in such a way that we recover the pointwise maximum across infinitely
many points in B × C. We can now sharpen this result to show that it suffices to restrict attention to
some finite subset of these points. For any givenM∈ ZM≥0 and N ∈ ZN≥0, define DSM(M,N ) to be
the class of functions represented by a DSM whose γ-stack and β-stack have layers withM and N
neurons each, respectively.
Theorem 5. There exists someM∈ ZM+ , some N ∈ ZN+ , a finite set C̄ ( C, a finite set B̄ ( B, and
some η′ ∈ DSM(M,N ) such that η′(γ, β) = hA(γ, β) for all β ∈ B̄, γ ∈ C̄. Moreover, this same η′
necessarily satisfies η′(γ, β) = hA(γ, β) for all β ∈ B and γ ∈ C.

Finally, we reframe this existential result as an optimization problem; this will form the basis for the
unsupervised training framework we develop in Section 5.
Corollary 6. Take theM,N , B̄, and C̄ that Theorem 5 guarantees must exist. Denote the parameters
of a DSM model with θ. Then, hA is the unique solution of

max
ηθ∈DSM(M,N )

∑
γ∈C̄

∑
β∈B̄

ηθ(γ, β) (7a)

s.t. ηθ(γ, ai) ≤ γi ∀γ ∈ C̄, i ∈ JnK. (7b)

We refer the reader to Figure 2 for an illustration of how, taken together, the results of this section
permit us to learn a good approximation of the GVP. In addition, we highlight that typical “universal
approximation theorems” [35] apply over bounded input domains, whereas here C and B may be
unbounded. However, the above approach shows that we can attain hA without this assumption.

5 Learning Generalized Linear Programming Value Functions

For context, we begin by describing a standard supervised training method to approximate the
function hA using a neural network with parameters θ. First, we generate some training data set

5



data points

initial approximation

true
value function

non-convex approximation

+ Duality constraints

convex approximation

+ Weight-sign constraints + Enough data points

(Theorem 6)

Duality constraints penalty term Enough data points

good approximation

lower-bound
approximation

initial
approximation

true
value function

good
approximation

(Theorem 4)

Figure 2: An illustration of how we learn a GVF, looking at slices along the constraint bounds (Top)
and objective coefficients (Bottom). Given only data points B̄ × C̄ and no constraints, either (7b)
or weight-sign, maximizing

∑
γ∈C̄

∑
β∈B̄ η

θ(γ, β) will yield a poor initial approximation. Adding
constraints (7b) will force the function to be smaller than hA at certain “anchor” points which are
distinct from the input data points, at which the function will still tend to be large. Adding the
weight-sign constraints will force the function to be convex in terms of the constraint bounds, and
will therefore produce an approximation that lower bounds hA. Theorem 5 then tells us that, with
sufficiently many data points to start, we will eventually recover hA directly.

D := {(γi, βi;hA(γi, βi))}|D|i=1. Then, we optimize our parameters θ by minimizing a loss function
(such as an `2-distance) between the output of the NN with our data. Notably, this is an unconstrained
optimization problem. However, data generation may be expensive: in general, we must solve an
linear programming problem, LP(γi, βi), for every training data point i ∈ J|D|K.

5.1 An Unsupervised Learning Approach

Corollary 6 tells that we do not actually need labeled data to learn the GVF. Of course, there is a
trade-off here: directly applying the result requires us to somehow compute the sets B̄ and C̄, and also
requires solving a constrained optimization problem in (7) (as opposed to a typical unconstrained
learning problem). To address the first issue, we propose using two subsets Db ( B and Dc ( C to
use in lieu of B̄ and C̄ respectively, which may come from training data or be randomly generated; this
is further detailed for a specific application in Section 7. To address the second issue, we introduce a
penalty term to the objective to model the constraints (7b) in a “soft" manner. This leaves us with the
following unconstrained, unsupervised learning problem:

min
ηθ∈DSM(M,N )

∑
γ∈Dc

∑
β∈Db

−ηθ(γ, β) + µ
∑
γ∈Dc

∑
i∈JnK

max{ηθ(γ, ai)− γi, 0}, (8)

where µ ∈ R+ is the penalty coefficient. We can motivate both of the alterations introduced above
with the following corollary to Theorem 5. To enforce the constraint ηθ ∈ DSM(M,N ), we take the
positive (respectively, negative) absolute value of the weights for a nonnegative (resp. nonpositive)
weight-sign constraint.
Corollary 7. Given any nonempty subsets Db ⊆ B and Dc ⊆ C, there exists a sufficient large µ such
that hA is an optimal solution of (8).

Note that, while (7) has hA as its unique optimal solution, in general we cannot guarantee that (8)
has an unique optimal solution, meaning that we may recover an optimal solution that deviates from
hA on points outside the training set. However, Corollary 7 ensures that any solution of (8) is at
least as good as hA at (γ, β) ∈ Dc ×Db1. Moreover, in Section 5.2 we will provide computational
evidence that a near-optimal solution of (8) is empirically a good approximation of hA. Corollary 7
also justifies why we elect to use an `1 penalty term in (8), rather than a smooth penalty or Lagrangian

1In fact, because of Theorem 3, any solution of (8) is at least as good as hA at every point of {t(γ, β)| t ≥
0, (γ, β) ∈ Dc ×Db}.

6



multipliers. If we were to modify (8) to use an `2 penalty term, for example, an analogous version of
Corollary 7 need not hold: roughly speaking, hA is the function that satisfies most of (7b) at equality,
whereas an `2 penalty term would tend to push optimal solutions away from the boundary of the
feasible region of (7). We refer the interested reader to [40, Chapter 17] for a detailed discussion of
exact-inexact or smooth-nonsmooth penalty terms.

5.2 Penalty Coefficient Update Strategies

Now, we use standard techniques from nonlinear optimization [40, Chapter 17] to develop a heuristic
scheme for updating our penalty term µ, depicted in Algorithm 1. In practice, the optimization
problem (7) might be numerically unstable. For example, if we initialize µ0 to a small value, then
the first term

∑
γ∈Dc,β∈Db η

θ
A(γ, β) is weighed far more than the penalty term, and so the optimal

solution will tend towards −∞. We resolve this by using upper bounds, u, on hA as “tether” points.
For each training data point, we choose a simple upper bound of the optimal objective (see Section 7
and Appendix E for details).

We parameterize our scheme on the penalty update strategy, which is perhaps the most important
factor. A common choice would be the linear update strategy, which means µ is scaled up by a
constant factor ν at each step, i.e., update(µ) = νµ. However, we propose a more computationally
effective “adaptive update” strategy where we update µ based on how many constraints (7b) the
current solution ηt satisfies. In particular, update(µ) = (2− percentage_cons_satisfied) · µ.

Algorithm 1 Learning GVF with objective upper bounds
1: procedure LEARNINGGENERALIZEDLPVF(A,Dc,Db, u, T, µ0, update)
2: Initialize η0

3: for t← 0, . . . , T − 1 do
4: ηt+1 ← argmin

∑
γ∈Dc

∑
β∈Db

(uγ,β − ηθ(γ, β))2 +
∑
γ∈Dc

∑
i∈JnK

µt ·max{ηθ(γ, ai)− γi, 0}

5: µt+1 ← update(µt)

6: Return ηT .

Note that, since the minimization problem in line 4 of Algorithm 1 is non-convex, we cannot guarantee
a globally optimal solution ηt+1. Therefore, in practice, we solve the minimization subproblem until
some criterion is met, e.g., the gradient is sufficiently small or we reach a prescribed iteration limit.

5.3 Guaranteeing an Under-Approximation

By Theorem 3, any feasible solution for (7) lower bounds the GVF we are attempting to learn.
However, our methods laid out in this section do not guarantee this property for two reasons. First,
the penalty method treats the constraints (7b) as soft constraints rather than hard constraints, and
thus they may not be fully satisfied. Second, we are approximating the set C̄ from Corollary 6 with a
training set Dc, and therefore our solution may not provide a lower bound at other objective vectors
γ. To resolve this, we can scale the function down as much as needed to guarantee the constraints
(7b), with the expectation that our learning method produces a solution that is not too far off from
being dual feasible. However, we can do better if we only need to provide a valid lower bound for a
single objective γ, which is often the case (see Section 6 below). In this way, we can train a single
DSM approximation and reuse it across many objectives by suitably postprocessing it for each. We
describe this procedure in Algorithm 2.

Algorithm 2 Post-processing to guarantee the lower-bounding property
1: procedure POST-PROCESSING(c,ΨA, φA)
2: Φc ← φA(c) ∈ Rp×N
3: for j ← 1, . . . , p do
4: Φcj ← Φcj ·

(
1/maxi

{
ci

(Φcj)
TΨAi

∣∣∣ (Φcj)
TΨA

i ≥ ci
})

return Φc

7



6 A GVF-Based Heuristic for Two-Stage MILPs

As an application of the learning method we developed in Section 5, we propose a heuristic method
for two-stage MILPs with continuous second-stage variables (4). The main idea is to replace each of
the second-stage subproblems with the corresponding LPVFs from our learned function: that is, we
use our approximation to represent hA(dk, bk − T kx1) in (5) for each k. This yields a fast heuristic
for two reasons. First, our learned approximation is piecewise linear convex when restricted to a
fixed objective, meaning that it can be efficiently modeled inside a larger optimization problem as an
LP [3]. Second, the number of variables of this LP scales with the number of neurons in the DSM,
typically much smaller than a second-stage subproblem LP. In practice, this enables the heuristic
to run faster than solving the LP relaxation of (5), despite maintaining integrality of the first-stage
variables.

Given a learned DSM representing the function ηθA, denote by W 0
Ψ,W

1
Ψ, . . . ,W

M
Ψ the weights of the

constraint bounds stack, where W 0
Ψ ≤ 0 and W 1

Ψ, . . . ,W
M
Ψ ≥ 0. For a fixed objective coefficient

c ∈ C and the output of the objective-stack Φc (post-processed as in Section 5.3), we can model the
set {ζ | ζ ≥ ηθA(c, β)} as

DSMθ(c, β) =

{
ζ

∣∣∣∣∣ ∃z s.t. z1 ≥ σ(W 0
Ψβ), zi+1 ≥ σ(W i

Ψzi) ∀i ∈ JMK, ζ ≥ Φci · zM ∀i ∈ JpK

}
.

Our heuristic is then to solve the following problem to obtain a solution for the first-stage variables:

min
x1,ζ1,...,ζK

c · x1 +
∑
k∈JKK

ζk

∣∣∣∣∣ ζk ∈ DSMθ(d
k, bk − T kx1) ∀k ∈ JKK, x ∈ X

 (9)

Note that (9) is simply (5) with the LPVFs replaced by our learned model. Since ηθA(c, β) ≤ hA(c, β)
for all c ∈ C, β ∈ C, the objective value of (9) is a dual bound for the original problem. Once we
compute optimal values of the first-stage variables x∗, we can then recover the second-stage variable
values by solving each of the second-stage LP subproblems independently with fixed x∗, yielding the
full solution. Algorithm 3 describes the full method.

Algorithm 3 GVF-based heuristic for two-stage MILPs with continuous second-stage variables
1: procedure GVFBASEDHEURISTIC(A, c, {T k}k∈JKK, {bk}k∈JKK, {dk}k∈JKK, Ψ, φ)
2: for k ← 1, . . . ,K do Φd

k ←POST-PROCESSING(c,Ψ, φ)
3: ((x∗)1, {ζ∗k}k∈JKK)← optimal solution of (9) with WΨ, {Φd

k}k∈JKK
4: for k ← 1, . . . ,K do
5: (x∗)2,k ← arg minx2,k{dk · x2,k | Ax2,k ≤ bk − T kx∗1, x2,k ≥ 0}

return x∗

7 Computational Results

In this section, we computationally evaluate2 both the approximation quality of the learning method
described in Section 5 and the effectiveness of the heuristic for two-stage problems from Section 6.

We evaluate these methods on the uncapacitated facility location (UFL) [54]. This is a deterministic
two-stage problem, in which we first select nf facilities to open, and allocate each of nc customers to
an open facilities. We consider two classes of instances, Euclidean and KG, both with nc = nf . In
both cases, we take a set of objective and right-hand side vectors from one instance for training and a
second, different, set from five instances for testing (more details are provided in Appendix C).

To produce the training data, we take all or some customer allocation costs from the UFL training
instances as our objective coefficient dataset Dc. Then, for each such cost vector, we generate
bnf/10c points uniformly at random between [0, 1] for our constraint bound dataset Db. Thus, the
total size of the training data is b|Dc| · nf/10c. If all customer costs are selected for Dc, this is

2All code for the experiments can be found at https://github.com/google-research/
google-research/tree/master/learning_gvf.

8

https://github.com/google-research/google-research/tree/master/learning_gvf
https://github.com/google-research/google-research/tree/master/learning_gvf


b|I| · nc · nf/10c where I is the set of training instances. Note that we do not use the facility costs
at all for training. To improve training stability, we normalize the customer allocation costs by
their mean in the training data. For the training dataset, we choose an upper bound of the GVF to
be 2, which is an upper bound for the largest possible assignment cost in the training dataset after
normalization.

To learn each GVF, we run a total of T = 40 iterations in Algorithm 1, at each iteration, we solve
(8) by performing 100 steps of the Adam algorithm [31]. For DSM, we select the model within the
T iterations that satisfies at least 98% of the constraints (7b) from the training dataset with lowest
training objective function (8). Details of hyperparameter tuning for DSMs and DenseNets are
provided in Appendix E. In addition to the numerical study for UFL, we include experiments on the
Stochastic Capacitated Facility Location (SCFL) in Appendix D.

7.1 Learning Method

Arguably, we would expect that the lack of supervised data would make the Dual-Stack Model more
difficult to train than a standard supervised learning approach, especially considering that it also has
training constraints and convexity requirements. On the other hand, our theoretical results suggest that
these same requirements can help the model take the general shape of a GVF. Indeed, we observe in
Table 1 that our approach produces a model that is comparable or better than a standard ReLU network
(see Appendix E for DenseNet) and Random Forest Regressors in terms of how well it approximates
the GVF. Unlike with DSM, these baselines require solving an LP for each training point to produce
labels. The number of LPs can grow large, though they can be solved in an embarassingly parallel
manner, and in the case of UFL we can use an efficient greedy algorithm given that the LP reduces
to fractional knapsack. We report an a posteriori metric, the True Relative Error, defined as the
gap between the model and the GVF, i.e., |η(γ, β)− hA(γ, β)|/max{η(γ, β), hA(γ, β)}, averaged
across all γ, β in the test set. The Lower Bound in Table 1 shows the percentage of constraints (7b)
satisfied for either the training or test set.

We see that, on all but one instance family, we are able to train a DSM that attains a lower True
Relative Error than both DenseNet and Random Forest. Moreover, the training times between DSM
and DenseNet are roughly comparable. We also highlight that the Euclidean instances are relatively
harder to learn than the KG instances; this is observable for all models.

Table 1: Comparison between Dual-Stack Model and DenseNet in Learning GVF.

Class of GVF Dual-Stack Model DenseNet Random Forest
Train Time (s) True Rel. Error Train Lower Bound Test Lower Bound Data Label Time (s) Train Time (s) True Rel. Error Train Time (s) True Rel. Error

KG
250 157.20 1.52 % 98.05 % 25.71 % 5.41 164.31 1.09 % 73.4 6.05 %
500 1288.44 1.14 % 98.76 % 24.70 % 20.61 1439.27 1.64 % 1092.50 6.18 %
750 1082.48 0.87 % 98.73 % 33.19 % 13.27 1125.98 4.64 % 1751.73 6.25 %

Euclidean
100 7.57 33.88 % 98.07 % 58.90 % 1.17 7.74 39.29 % 37.93 41.41 %
200 62.96 33.78 % 98.01 % 67.45 % 4.98 69.66 43.12 % 77.48 37.22 %
300 161.25 31.89 % 99.41 % 76.50 % 8.26 201.31 33.25 % 375.60 39.26 %

Table 1 examines the capacity of the DSM model to learn GVFs. To illustrate the scalability of DSMs,
we train the model on LPs of various sizes. We use the allocation cost vectors of all customers for Dc
in all cases, except for KG 750 where we select 200 customers for Dc due to memory limitations.
Although training time naturally increases with instance size, both the True Relative Error and Lower
Bounds remain stable for KG instances and exhibit only a slight increase in the Euclidean cases. This
observation supports the scalability of the DSM approach.

7.2 Heuristic for Two-Stage Problems

We evaluate our heuristic on our generated UFL instances by comparing its performance against that
of a state-of-the-art open-source MILP solver, SCIP [20]. We compare with the best feasible solution
found by the solver within the time limit specified in the column “MIP Solve Time (s)” in Table 2 for
KG, or the optimal solution for Euclidean instances. For KG, even solving the LP relaxation for the
full model can take a few minutes. On the other hand, despite being an MILP, solving the model (9)
is very fast, often taking less than a second, particularly because we only require binary constraints
on the first-stage variables. After solving this MILP, the second-stage solutions are recovered by
simply taking the closest open facility. Denoting the objective value of the heuristic feasible solution
by v∗ and the optimal value of (9) by V—which is a dual bound to the original problem due to our
under-approximation guarantee—the Provable Gap is computed as (v∗ − V )/v∗, which is an upper

9



bound of the true gap. The Gap to MILP is computed as (v∗ − v̄)/v∗, where v̄ is the objective value
of the MILP baseline. A negative value of Gap to MILP means that the solution returned by our
heuristic is better than the solution returned by SCIP within the time limit. We solve 5 instances
from each class and report the mean and standard deviation for each metric across these selected
instances in each class. When reporting time, we use ’>’ to signal the solver reaches a time limit. We
also compare our method with a heuristic based on Benders Decomposition, which mimics the DSM
heuristic except that we use Benders cuts instead of the GVF. For each instance, we first iteratively
generate a number of Benders cuts for all subproblems, and then solve one MILP with the inclusion
of all generated optimality cuts. For each UFL instance, we set the maximum number of Benders
LP iterations to match the total number of facilities, while the time limit for solving the MILPs with
cuts is fixed at 1 minute. In the Euclidean case, the Benders heuristic was able to produce an optimal
solution for all instances tested. We observe from Table 2 that our approach produces significantly
better solutions than our full model baseline for large KG instances, though not for Euclidean ones.
This may be because the Euclidean instances are more difficult to learn as observed in Table 1, both
for DSM and the dense model. We also note that the Euclidean instances are much easier to solve to
optimality than the KG instances, meaning that a fast heuristic for them is of relatively lesser value.

Table 2: DSM Heuristic Solver on UFL Instances.

Instances DSM Heuristic Solver Full Model Solver Benders Heuristic
Solve Time (s) Provable Gap (%) Gap to MILP (%) Gap to Benders LP Relaxation Solve Time (s) MILP Solve Time (s) Solve Time (s)

KG
250 0.070 ± 0.001 < 27.24 ± 0.76 12.55 ± 0.80 11.54 ± 0.01 3.42 ± 0.31 > 30 63.3 ± 0.2
500 0.111 ± 0.008 < 14.53 ± 0.84 -3.79 ± 1.05 13.14 ± 0.01 36.07 ± 1.52 > 60 92.1 ± 0.5
750 0.313 ± 0.004 < 17.66 ± 0.40 -55.44 ± 1.34 14.25 ± 0.01 > 90 > 90 189 ± 3.6

Euclidean
100 0.018 ± 0.001 < 74.40 ± 3.70 23.32 ± 6.25 23.32 ± 6.25 0.57 ± 0.02 0.20 ± 0.02 0.031 ± 0.001
200 0.032 ± 0.001 < 94.52 ± 0.89 43.59 ± 9.10 43.59 ± 9.10 0.60 ± 0.04 0.67 ± 0.04 0.083 ± 0.016
300 0.048 ± 0.002 < 96.22 ± 0.56 47.98 ± 8.60 47.98 ± 8.60 1.41 ± 0.04 1.55 ± 0.04 0.174 ± 0.019

8 Conclusion

In this study, we provide a structural characterization of the GVF, inspiring an NN architecture and
unsupervised method that approximate it well. Additionally, we utilize this framework to develop a
fast heuristic method for two-stage MILPs with continuous second-stage variables, effective for some
large-scale instances. We will conclude this paper by highlighting two areas for future work, where
we believe that the techniques presented in this paper could be sharpened or otherwise improved.

First, we believe that our training objective could be further improved. During training, we must
balance two terms in our loss function: one that rewards fitting the data well, and another one that
(softly) constrains the function to be below the true value function. Finding a stable balance between
these two terms appears to be one of the most challenging parts of training. We overcome this
limitation by proposing an adaptive update method for the penalty, tuning the initial hyperparameter
well, and proposing a good stopping criterion. However, even with all these measures, we still observe
occasional instability and believe that there is room for improvement, such as developing an adaptive
stopping rule.

A second direction for future work is to improve the generalization of our method to objectives
not seen in the training set. While our theoretical results guarantee that the constraints in (7) are
sufficient to produce a function that lower bounds the GVF, this may require an exponential number
of constraints. In practice, we only enforce this constraint for those objective vectors appearing in
the training data, which does give us a lower bounding guarantee for arbitrary right-hand sides and
objective vectors from outside the training set. We observe empirically that with sufficient samples,
our method performs well on out-of-sample objectives, but we do note that our Test Lower Bound
column in Table 1 differs from the Train Lower Bound column by a significant amount.

10



References

[1] A.A.M. Al-Saffar, H. Tao, and M.A. Talab. Review of deep convolution neural network in image
classification. In 2017 International conference on radar, antenna, microwave, electronics, and
telecommunications (ICRAMET), pages 26–31. IEEE, 2017.

[2] A. M. Alvarez, Q. Louveaux, and L. Wehenkel. A machine learning-based approximation of
strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.

[3] B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. In International Conference
on Machine Learning, pages 146–155. PMLR, 2017.

[4] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with
rectified linear units. In International Conference on Learning Representations, 2018.

[5] H. Bae, J. Lee, W. C. Kim, and Y. Lee. Deep value function networks for large-scale multistage
stochastic programs. In International Conference on Artificial Intelligence and Statistics, pages
11267–11287. PMLR, 2023.

[6] J. E. Beasley. OR-Library. URL: https://people.brunel.ac.uk/ mastjjb/jeb/info.html, Accessed in
May 2024.

[7] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck. An overview on deep learning-based
approximation methods for partial differential equations. Discrete and Continuous Dynamical
Systems - B, 28(6):3697–3746, 2023.

[8] Y. Bengio, E. Frejinger, A. Lodi, R. Patel, and S. Sankaranarayanan. A learning-based algorithm
to quickly compute good primal solutions for stochastic integer programs. In International
Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR), pages 99–111. Springer, 2020.

[9] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: A
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

[10] P. Beraldi and M. E. Bruni. A clustering approach for scenario tree reduction: an application to
a stochastic programming portfolio optimization problem. TOP, 22:934–949, 2014.

[11] C. E. Blair and R. G. Jeroslow. The value function of an integer program. Mathematical
Programming, 23(1):237–273, 1982.

[12] W. D. Cook and R. J. Webster. Caratheodory’s Theorem. Canadian Mathematical Bulletin, 15
(2):293–293, 1972.

[13] H. Dai, Y. Xue, Z. Syed, D. Schuurmans, and B. Dai. Neural stochastic dual dynamic program-
ming. In International Conference on Learning Representations, 2022.

[14] J. Dumouchelle, R. Patel, E. B. Khalil, and M. Bodur. Neur2SP: Neural two-stage stochastic
programming. Advances in Neural Information Processing Systems, 35:23992–24005, 2022.

[15] J. Dumouchelle, E. Julien, J. Kurtz, and E. B. Khalil. Neur2RO: Neural two-stage robust
optimization. In International Conference on Learning Representations, 2024.

[16] J. Dupačová, N. Gröwe-Kuska, and W. Römisch. Scenario reduction in stochastic programming.
Mathematical programming, 95:493–511, 2003.

[17] R. Z. Farahani, M. SteadieSeifi, and N. Asgari. Multiple criteria facility location problems: A
survey. Applied Mathematical Modelling, 34(7):1689–1709, 2010.

[18] M. Fischetti, I. Ljubić, and M. Sinnl. Redesigning benders decomposition for large-scale facility
location. Management Science, 63(7):2146–2162, 2017.

[19] L. R. Foulds. A multi-commodity flow network design problem. Transportation Research Part
B: Methodological, 15(4):273–283, 1981.

11



[20] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander,
A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. Le Bodic, S. J. Maher,
F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. E. Pfetsch, F. Schlösser, F. Serrano,
Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig. The SCIP
Optimization Suite 7.0. Technical report, Optimization Online, March 2020. URL http:
//www.optimization-online.org/DB_HTML/2020/03/7705.html.

[21] A. M. Geoffrion. Generalized Benders’ decomposition. Journal of Optimization Theory and
Applications, 10:237–260, 1972.

[22] A. Ghaffari-Hadigheh, H. Ghaffari-Hadigheh, and T. Terlaky. Bi-parametric optimal partition
invariancy sensitivity analysis in linear optimization. Central European Journal of Operations
Research, 16:215–238, 2008.

[23] B. Hanin. Universal function approximation by deep neural nets with bounded width and ReLU
activations. Mathematics, 7(10):992, 2019.

[24] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms.
Advances in Neural Information Processing Systems, 27, 2014.

[25] M. Hoefer. UflLib: A collection of benchmark instances for the uncapacitated facility location
problem. URL: http://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib,
Accessed in May 2024.

[26] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

[27] B. Jansen, C. Roos, and T. Terlaky. An interior point approach to postoptimal and paramet-
ric analysis in linear programming. Delft University of Technology, Faculty of Technical
Mathematics and Informatics, 1992.

[28] H. Jia and S. Shen. Benders cut classification via support vector machines for solving two-stage
stochastic programs. INFORMS Journal on Optimization, 3(3):278–297, 2021.

[29] H. Jiang, Z. Chen, Y. Shi, B. Dai, and T. Zhao. Learning to defend by learning to attack. In
International Conference on Artificial Intelligence and Statistics, pages 577–585. PMLR, 2021.

[30] K. Julien, O. Janosch, and R. Walter. Problem-driven scenario clustering in stochastic optimiza-
tion. Computational Management Science, 20(1), 2023.

[31] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[32] N. Kong, A. J. Schaefer, and B. Hunsaker. Two-stage integer programs with stochastic right-
hand sides: a superadditive dual approach. Mathematical Programming, 108(2):275–296,
2006.

[33] E. Larsen, E. Frejinger, B. Gendron, and A. Lodi. Fast continuous and integer L-shaped
heuristics through supervised learning. INFORMS Journal on Computing, 36(1):203–223,
2024.

[34] J. Lee, S. Bae, W. C. Kim, and Y. Lee. Value function gradient learning for large-scale multistage
stochastic programming problems. European Journal of Operational Research, 308(1):321–335,
2023.

[35] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):
861–867, 1993.

[36] T. L. Magnanti and R. T. Wong. Accelerating benders decomposition: Algorithmic enhancement
and model selection criteria. Operations Research, 29(3):464–484, 1981.

[37] T. P. Nagarhalli, V. Vaze, and N. K. Rana. Impact of machine learning in natural language
processing: A review. In International Conference on Intelligent Communication Technologies
and Virtual Mobile Networks (ICICV), pages 1529–1534. IEEE, 2021.

12

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html


[38] V. Nair, D. Dvijotham, I. Dunning, and O. Vinyals. Learning fast optimizers for contextual
stochastic integer programs. In UAI, pages 591–600, 2018.

[39] V. Nair, S. Bartunov, F. Gimeno, I. Von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Son-
nerat, C. Tjandraatmadja, P. Wang, et al. Solving mixed integer programs using neural networks.
arXiv preprint arXiv:2012.13349, 2020.

[40] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2nd
edition, 2006.

[41] V. Prochazka and S. W. Wallace. Scenario tree construction driven by heuristic solutions of the
optimization problem. Computational Management Science, 17(2):277–307, 2020.

[42] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The Benders’ decomposition algorithm:
A literature review. European Journal of Operational Research, 259(3):801–817, 2017.

[43] T. K. Ralphs and A. Hassanzadeh. On the value function of a mixed integer linear optimization
problem and an algorithm for its construction. COR@L Technical Report 14T–004, 2014.

[44] W. Römisch. Scenario reduction techniques in stochastic programming. In International
Symposium on Stochastic Algorithms, pages 1–14. Springer, 2009.

[45] C. Roos, T. Terlaky, and J.-P. Vial. Interior point methods for linear optimization. Springer
Science & Business Media, 2005.

[46] R. Schultz, L. Stougie, and M. H. Van Der Vlerk. Two-stage stochastic integer programming: A
survey. Statistica Neerlandica, 50(3):404–416, 1996.

[47] Z. Shao, J. Yang, C. Shen, and S. Ren. Learning for robust combinatorial optimization:
Algorithm and application. In IEEE INFOCOM 2022-IEEE Conference on Computer Commu-
nications, pages 930–939, 2022.

[48] J. Shen, X. Chen, H. Heaton, T. Chen, J. Liu, W. Yin, and Z. Wang. Learning a minimax
optimizer: A pilot study. In International Conference on Learning Representations, 2020.

[49] J. C. Smith and Y. Song. A survey of network interdiction models and algorithms. European
Journal of Operational Research, 283(3):797–811, 2020.

[50] Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer programming: Learning
to cut. In International Conference on Machine Learning, pages 9367–9376. PMLR, 2020.

[51] Z. C. Taskın. Benders’ decomposition. Wiley Encyclopedia of Operations Research and
Management Science. John Wiley & Sons, 2010.

[52] O. Tavaslıoğlu, O. A. Prokopyev, and A. J. Schaefer. Solving stochastic and bilevel mixed-
integer programs via a generalized value function. Operations Research, 67(6):1659–1677,
2019.

[53] A. C Trapp, O. A. Prokopyev, and A. J. Schaefer. On a level-set characterization of the value
function of an integer program and its application to stochastic programming. Operations
Research, 61(2):498–511, 2013.

[54] V. Verter. Uncapacitated and capacitated facility location problems. Foundations of location
analysis, pages 25–37, 2011.

[55] Y. Wu, W. Song, Z. Cao, and J. Zhang. Learning scenario representation for solving two-stage
stochastic integer programs. In International Conference on Learning Representations, 2022.

[56] Y. Xiong and C.-J. Hsieh. Improved adversarial training via learned optimizer. In Computer
Vision–ECCV 2020: 16th European Conference, pages 85–100. Springer, 2020.

[57] S. Zaourar and J. Malick. Quadratic stabilization of benders decomposition. 2014.

13



A Complete Proof for GVF Representation Theorem

In this section, we provide the complete proof for the GVF Representation Theorem (Theorem 2).
The following lemmas are inspired by [11, Lemma 6.1, Theorem 6.2 and Theorem 6.3]. These results
from Blair and Jeroslow are originally stated for the value functions of integer programs. We borrow
their techniques and extend these results for the GVFs. In the following proofs, we use English letters,
e.g., b or c, to indicate a fixed vector, while Greek letters, e.g., β or γ, are used to signal inputs of
some functions and can vary.

A.1 Lemma 8

Lemma 8 states that there is a finite set D of improving directions: given a suboptimal feasible point
x ∈ X(β), we can improve x by moving along some r ∈ D. Notably, the set D depends only on A
and not on γ or β, thus setting a basis for constructing the function hA.

Lemma 8. There exists a finite set D ⊂ Rn such that, for any β ∈ B, γ ∈ C, and x ∈ X(β), exactly
one of the following is true:

1. γ · x = hA(γ, β), or

2. ∃ε > 0 and r ∈ D such that x+ εr ∈ X(β) and γ · r < 0.

Proof. Let {B1, B2, . . . , Bk} ⊂ R(n−1)×n be the set of all full rank submatrix of [AT In]T . Since
Bi is full rank, there exists ri ∈ Rn and ‖ri‖2 = 1 such that for every t ∈ R, tri is a solution of the
system Bir = 0. Let D := {±ri| ∀i ∈ JkK}. We show that the finite set D satisfies the condition of
Lemma 8.

We first show that, for any β ∈ B, every extreme ray of X(β) (normalized so that its `2-norm is one)
belongs to D. Let v be an extreme ray of X(β). Then, by definition, v must satisfy at equality exactly
n− 1 inequalities from Av ≤ 0 and v ≥ 0. Therefore, there exists a matrix Bi such that Biv = 0
and thus v ∈ D.

Consider x ∈ X(β) a feasible solution of LP(γ, β). Let P and V denote the set of extreme
points and extreme rays of X(β) respectively. By Carathéodory’s Theorem [12], for any feasible
point x ∈ X(β), there exists {λp ≥ 0}p∈P where

∑
p∈P λp = 1 and {ρv ≥ 0}v∈V such that

x =
∑
p∈P λpp +

∑
v∈V ρvv. If there exists v′ ∈ V such that ρv′ > 0 and γ · ρv′ > 0, then x

cannot be a optimal solution of LP(γ, β) because x − ρv′v′ has a smaller objective and −v′ ∈ D
satisfies the second condition of Lemma 8. Without loss of generality, from now on, we assume that
x =

∑
p∈P λpp.

Since x is a feasible solution, x is either a optimal solution of LP(γ, β) or not. If x is the optimal
solution, then γ · x = h(γ, β). Otherwise, by definition of B and C, LP(γ, β) has an basic optimal
solution p∗ 6= x such that γ · p∗ < γ · x. Since p∗ − x =

∑
p 6=p∗ λpp

∗ + (1 − λp∗)p∗, we have
p∗ − x ∈ span(D). By our choice of D, if r ∈ D then −r ∈ D, thus there exists r ∈ D such that
γ · r < 0 and ∃ε > 0 and r ∈ D such that x+ εr ∈ X(β).

A.2 Lemma 9

Using the improving directions from Lemma 8, Lemma 9 produces a finite set of extreme rays that
generate the objective coefficient space C. By this lemma, the value of hA(γ, β) can always be
written as a conic combination of {hA(cq, β)}q∈JQK.

Lemma 9. There exists a finite set C := {c1, c2, . . . , cQ} ⊂ C such that for any c ∈ C, b ∈ B,(
γ

hA(c, b)

)
∈ cone

((
c1

hA(c1, b)

)
, . . . ,

(
cQ

hA(cQ, b)

))
(10)

Proof. Let D be the finite set satisfying the condition in Lemma 8. For every subset R ⊂ D, we
define

C(R) = {c ∈ C| c · r ≥ 0 ∀r ∈ R}.

14



Since C(R) is a polyhedral cone for every R ⊂ D, we denote E(R) to be the finite set of extreme
rays of C(R). We show that C := ∪R⊂DE(R) and denote its elements as {c1, c2, . . . , cQ} satisfies
the condition stated in Lemma 9.

For any γ ∈ C and β ∈ B, since LP(γ, β) has a finite optimal solution, there must exists x∗ such that
h(γ, β) = γ · x∗. Let R∗ := {r ∈ D| ∃ε > 0, x∗ + εr ∈ X(β)} be the set of all feasible improving
directions at x∗.

Claim 1: By our choice of R∗, we must have γ ∈ C(R∗). By contradiction, suppose that γ /∈ C(R∗),
then there must exist r∗ ∈ R∗ such that γ · r∗ < 0. However, by definition of R∗, there exists
ε > 0 such that x∗ + εr∗ is a feasible solution of LP(γ, β). In addition, we have γ · (x∗ + εr∗) =
γ ·x∗+ εγ · r∗ < γ ·x∗, which contradicts the fact that x∗ is an optimal solution of LP(γ, β). Hence,
we derive that γ ∈ C(R∗). Moreover, since C(R∗) is a polyhedral cone whose extreme rays E(R∗)
belongs to C by our construction of C, we have there exists α ≥ 0 such that

∑
q∈JQK αqcq = γ.

Claim 2: For every c ∈ C(R∗), we have h(c, β) = c ·x∗. Since x∗ ∈ X(β), we have h(c, β) ≤ c ·x∗.
Moreover, because x∗ is optimal solution of LP(γ, β), we also have γ · r ≥ 0 for every r ∈ R∗. By
contradiction, suppose there exists c ∈ C(R∗) such that h(c, β) < c · x∗. By Lemma 8 and x∗ is
not an optimal solution of LP(γ, β), there exists ε > 0 and r ∈ D such that x∗ + εr ∈ X(β) and
c · r < 0. However, since x∗ + εr ∈ X(β), we must have r ∈ R∗, and by definition of C(R∗), every
c ∈ C(R∗) must satisfy c · r ≥ 0, which contradicts with our conclusion that c · r < 0. Therefore,
h(c, β) = c · x∗ for every c ∈ C(R∗).

Finally, we have that∑
q∈JQK

αqh(cq, β) =
∑
q∈JQK

αqcq · x∗ =

 ∑
q∈JQK

αicq

 · x∗ = γ · x∗ = h(γ, β).

This is because from Claim 1, γ ∈ C(R∗), without loss of generality, we assume that αq = 0 for every
cq /∈ E(R∗). Therefore, we either have αq = 0 or h(cq, β) = cq · x∗. Thus,

∑
q∈JQK αih(cq, β) =∑

q∈JQK αicq · x∗.

A.3 Lemma 10

For ease of notation, we denote gq(β) := hA(cq, β) for every q ∈ JQK. A function gq is obtained
from hA by fixing the objective coefficients to cq. Therefore, gq(β) is an LPVF (parameterized by
constraint bounds), and thus a convex piecewise linear function.

While Lemma 9 shows that hA can be represented by a finite set of LPVFs {gq}q∈JQK, the linear
combination coefficients of such representation depend on b ∈ B and c ∈ C and are unclear how to
obtain. The following Lemma 10 gives a more explicit characterization of the linear combination
coefficients.
Lemma 10. For every γ ∈ C and β ∈ B, we have

hA(γ, β) = max
α

∑
q∈JQK

αqgq(β)

s.t
∑
q∈JQK

αqcq = γ

α ≥ 0.

(LPα(γ, β))

Proof. Let x∗ be the optimal solution of LP(γ, β) and xi be the optimal solution of LP(ci, β) for
every i ∈ JNK. Since x∗ ∈ X(β) is always a feasible solution of LP(cq, β), we have

ci · x∗ ≥ ci · xi ∀q ∈ JQK
Therefore, for every α such that

∑
q∈JQK αqcq = γ, we have

h(γ, β) =
∑
i∈JNK

αicix
∗ ≥

∑
i∈JNK

αi · ci · xi =
∑
i∈JNK

αigi(β),

where the first equality follows Claim 2 of Lemma 9. Combined with the existence of α in Lemma 9,
we derive that hA(γ, β) = maxα≥0{

∑
q∈JQK αqgq(β) |

∑
q∈JQK αqcq = γ}.

15



Since (LPα(γ, β)) is a linear program, for every γ, β, there must exists at least one basic feasible
point that is an optimal solution. Hence, there exists a maximizer α of (LPα(γ, β)) that has at least
N − n elements equal to 0 (non-basic variables), and at most n non-zero elements (basic variables).
The vectors of C corresponding to the basic variables generates a cone. Another way to view Lemma
10 is that, to find h(γ, β), we need to find the cone containing γ that maximizes

∑
i∈JNK αigi(β).

A.4 Lemma 11

The next lemma shows that the optimal basis of (LPα(γ, β)) remains the same when γ varies within
the cone defined by that basis.
Lemma 11. Let b ∈ B and c ∈ C be fixed. Without loss of generality, we assume that c =

∑n
q=1 α

∗
qcq

where α∗q > 0 and the corresponding C∗ := [c1, c2, . . . , cn] is the optimal basis of LPα(c, b). Then
for any α1, . . . , αn ≥ 0 and γ =

∑n
q=1 αqcq , the basis C∗ is also the optimal basis of LPα(γ, b).

Proof. By the hypothesis of the lemma and by Lemma 10, we have:

hA(c, b) =

n∑
i=1

α∗i hA(ci, b).

Since hA(γ, b) is a concave piecewise linear function and γ =
∑n
i=1 αici, we have

hA(γ, b) =

n∑
q=1

‖α‖1hA
(∑ αq

‖α‖1
cq, b

)
≥

n∑
q=1

αqgq(b).

We will show that h(γ, b) =
∑n
q=1 αqgq(b) for every γ ∈ cone(C). Since hA is linear with respect

to γ, we only need to prove that h(γ, b) =
∑n
q=1 λqgq(b) where γ :=

∑n
q=1 λqcq ∈ conv(C). By

contradiction, suppose that there exists γ∗ ∈ argmaxγ∈conv(C)hA(γ, b) and hA(γ∗, b) >
∑n
q=1 λ

∗
qcq .

Let c′ := c
‖α∗‖1 so that c′ ∈ conv(C). By contradiction hypothesis, we have hA(γ∗, b) > hA(c′, b).

Let d := γ∗−c′, and consider the function l(t) = hA(c′+td, b). Since l(t) is concave and l(1) > l(t)
for t ∈ [0, 1), l(t) is a linear function on [0, 1]. However, because c′ is an interior point of conv(C),
there exist ε > 0 such that c′ − εd ∈ conv(C) and l(−ε) ≤ l(0)− ε(l(1)− l(0)), which contradict
the concavity of hA(γ, b). Therefore, we have

h(γ, b) =

n∑
q=1

αqgq(b).

Moreover, because the optimal solution of LPα(cq, b) is αq = 1, αj = 0 ∀j 6= q, C∗ is also the
optimal basis of LPα(cq, b). Thus, C∗ is the optimal basis LPα(γ, b) for every αi ≥ 0, i ∈ JnK.

A.5 Theorem 2

The previous Lemma 11 implies that for a fixed b we can partition the finite set C of Lemma 9 into
subsets of size n, denoted Pb := {Cb1, . . . , Cbvb} such that

1. C = ∪vbv=1cone(Cbv), where the interiors of cone(Cbv) are mutually disjoint, and

2. If γ ∈ cone(Cbv), then Cbv is the optimal basis of LPα(γ, b).

Since C is finite, there can only be a finite number of such partitions. Thus, we can associate each
β ∈ B with a partition of C and group the vectors of B into groups of constraint bounds vectors with
the same partition.

GVF Representation Theorem: For a fixed matrix A ∈ Rm×n, there exists a set of P piecewise
linear functions {Fp : Rn → RQ}Pp=1 and a piecewise linear convex function G : Rm → RQ such
that:

hA(γ, β) = max
p∈JP K

{Fp(γ)TG(β)} ∀γ ∈ C, β ∈ B.

16



Proof. We will construct the function hA(γ, β) as follows. Let {B1, . . . ,BP } be the partition of B
such that, for every p ∈ JP K, Bp contains every constraint bounds vector b with the same partition
of C from Lemma 11, i.e., Pb1 = Pb2 if and only if b1, b2 ∈ Bk for some k. Note that P is finite
because C is finite. Furthermore, we denote Pp := {Cp1 , . . . , Cpvp} to be the partition of C associated
with the set Bp.

Note that Cpv is invertible since it comes from the basis of LPα(γ, bp). Let Fp : Rn → RQ be such
that

[Fp(γ)]q =

{
[(Cpv )−1γ]q if cq, γ ∈ Cpv
0 otherwise.

In addition, let G : Rm → RQ be defined as

G(β) = [g1(β), g2(β), . . . , gQ(β)],

which is convex piecewise linear since each gi is an LP value function. By our choice of Fp, for any
γ, we have F(p)(γ) ≥ 0. Furthermore, let α = Fp(γ), we also have

∑Q
q=1 cqαq = γ. Thus, Fp(γ)

is a feasible solution of LPα(γ, β) for every γ ∈ C, β ∈ B, and p ∈ JP K.

By Lemma 10, we have
h(γ, β) = max

p∈JP K
{Fp(γ)TG(β)}.

B Complete Proofs of the GVF Unsupervised Learning Theory

B.1 Proof of Theorem 3

Theorem 3. Any function ηA ∈ H(A) has the following properties:

1. ηA(γ, ·) is piecewise linear, convex, and monotonically decreasing for every fixed γ ∈ C.

2. ηA(·, β) is piecewise linear for every fixed β ∈ B.

3. ηA(γ, β) ≤ hA(γ, β) for every fixed β ∈ B and γ ∈ C.

Proof. The properties of a function ηA follows by the our choice for activation functions, weight-
signed and output constraints.

1. ηA(c, ·) is linear since the at every layer of the constraint bounds stack, we apply a linear
transformation and a activation that is also pieceiwse linear. Since maximum or non-negative
linear combination of convex functions is convex, ηA(c, ·) is convex with respect to the
constraints bound. In addition, the function is monotonically decreasing since the first layer
of the constraint bounds stack has non-positive weights.

2. Similarly, because of linear transformations at every layer in the objective stack, the function
ηA(·, b) with a fixed b is piecewise linear.

3. For every fixed c ∈ C, ηA(c, ·) is a convex piecewise linear function. Therefore, ηA(c, β)
can be written as maximum of a finite number of linear function. Let ηA(c, β) :=
maxl∈JLK{βT (yl)}. Moreover, by the weight-singed constraint of the first of layer of
the constraint bounds stack, we have yl ≤ 0. In addition, since ηA ∈ H(A), we have that
maxl∈JLK{(ai)T (yl)} ≤ ci for every i ∈ JnK. Therefore, each yl is a feasible solution of
(2). By linear program weak duality, we have ηA(c, β) ≤ hA(c, β). Since the argument
applies for every c ∈ C, we derive ηA(γ, β) ≤ hA(γ, β) for every β ∈ B and γ ∈ C.

17



B.2 Proof of Theorem 4

Property 3 of Theorem 3 relies the linear program weak duality. We will show that the inequality in
Property 3 (Theorem 3) is indeed tight.

Theorem 4. For any fixed A ∈ Rm×n, hA ∈ H(A), and moreover hA is pointwise larger than all
other elements ofH(A).

Proof. By the GVF Representation Theorem (Theorem 2), there exists continuous piecewise
linear functions {Fi}pi=1 and convex piecewise linear function G such that hA(γ, β) =
maxi∈JpK{Fi(γ)TG(β)}. The objective stack can model exactly any continuous piecewise lin-
ear function. Therefore, with sufficient layers and neurons, it can model the functions {Fi}pi=1
exactly. Moreover, as shown in Theorem 2, each component of the function G is a LPVF, and thus
is a piecewise linear convex function with nonpositive slope. On the other hand, the constraint
bounds stack with weight-sign constraint can model precisely any convex piecewise with nonpositive
slope. Hence, with sufficient layers and neurons, it can also model the function G exactly. Thus,
hA ∈ H(A). In addition, by Property 3 of Theorem 3, every function in A is upper bounded by
hA.

B.3 Proof of Theorem 5

Theorem 5. There exists someM∈ ZM+ , some N ∈ ZN+ , a finite set C̄ ( C, a finite set B̄ ( B, and
some η′ ∈ DSM(M,N ) such that η′(γ, β) = hA(γ, β) for all β ∈ B̄, γ ∈ C̄. Moreover, this same η′
necessarily satisfies η′(γ, β) = hA(γ, β) for all β ∈ B and γ ∈ C.

Proof. Let C ∈ C = {c1, . . . , cQ} be the set describe in Lemma 9. Then for every cone generated by
n distinct vectors in C, we pick an arbitrary interior point, and denote the set containing every such
interior points as C ′. Then, we construct a finite set C̄ := C ∪ C ′ as the union of C and C ′. We con-
struct B̄ in a similar way. For every cone generated by m distinct vectors in {a1, . . . , an, e1, . . . , em},
where e1, . . . , em ∈ Rm denotes the unit vector, we pick an arbitrary point, and denote the set
containing every such interior points as B′. We then derive B̄ := {a1, . . . , an, e1, . . . , em} ∪ B′.
The GVF Representation Theorem (Theorem 2) proves existence of functions {Fp}Pp=1 and G to
model hA. Since these functions are piecewise linear, we denote fp as the number of pieces of Fp
for p ∈ JP K and g as number of pieces of G. We then pick features N such that the γ-stack of the
DSM can represent every piecewise linear function with at most f1, . . . , fP pieces. Similarly, for the
β-stack, we pick featuresM such that the stack can represent every convex piecewise linear function
with at most g pieces. 3

Let η′ ∈ DSM(M,N ) and η′(γ, β) = hA(γ, β) ∀β ∈ B̄, γ ∈ C̄, we show that η′(γ, β) =
hA(γ, β) ∀β ∈ B, γ ∈ C. For a fixed c ∈ C̄, the function η′(c, β), by Property 2 of Theorem
3, is a convex piecewise linear function. Moreover, η′(c, β) = hA(c, β) for every β ∈ B̄. By our
choice of B̄, η′(c, β) = hA(c, β) at more point than the number of piece that hA(c, β) can have.
Since η′(c, β) ≤ hA(c, β) ∀β ∈ B and η′(c, β) is convex, we have η′(c, β) = hA(c, β). Hence, we
have η′(cq, β) = gq(β) for every q ∈ JQK, β ∈ B.

By Lemma 9, hA can be represented by a conic combination of {gq(β)}Qq=1. By our choice C̄. The
function η′ equal hA at more points than the number of pieces it can have. Thus η′(γ, β) = hA(γ, β)
for every β ∈ B and γ ∈ C.

B.4 Proof of Corollary 6 and 7

Corollary 6 Take theM, N , B̄, and C̄ that Theorem 5 guarantees must exist. Then, hA is the unique
solution of (7)

Proof. Theorem 5 implies hA ∈ DSM(M,N ). By Theorem 3, we have that hA(c, β) ≥ η(c, β) for
every η satisfies (7). Finally, Theorem 5 shows that we can represent hA through set of point B̄ and C̄.
Therefore, hA is the optimal solution of (7).

3Such features exist because we can construct a NN’s architecture with one wide hidden layer.

18



Corollary 7. Given any nonempty subsets Db ∈ B and Dc ∈ C, there exists a sufficient large µ such
that hA is an optimal solution of (8).

Proof. The Corollary follows from [40, Theorem 17.3] on local minimizer of nonlinear program
with non-smooth penalty function and the fact that hA is the optimal solution of (7).

C Uncapacitated Facility Location

Uncapacitated facility location (UFL) [54] is a classical, widely-applicable problem with the goal
of deciding which of nf “facilities” to open (warehouses, plants, equipment, etc.) while taking into
account a set of nc “customers“ that are allocated to the open facilities. This can be interpreted as a
deterministic two-stage problem: in the first stage, we select a subset of facility locations to open,
and in the second stage, we assign each customer to a single open facility, while minimizing the costs
of opening facilities plus customer allocation. Formally, the problem is as follows:

min
x,y

∑
i∈Jnf K

fiyi +
∑
i∈Jnf K

∑
j∈JncK

cijxij

nf∑
i=1

xij = 1 ∀j ∈ JncK

xij ≤ yi ∀i ∈ Jnf K, j ∈ JncK
xij ≥ 0 ∀i ∈ Jnf K, j ∈ JncK
yi ∈ {0, 1} ∀i ∈ Jnf K

where nf and nc are the number of facilities and customers respectively. Note that the second-stage
variables are implied integer variables, i.e. if y∗ is integer, then there exists an optimal solution
(x∗, y∗) such that x∗ is integer. Therefore, we can effectively treat the second-stage variables x as
continuous variables.

We consider two sets of benchmark instances:

• Euclidean, in which we generate facilities and customers uniformly at random in a box
[0, 1]2, using Euclidean distances as customer costs, with sizes nf = nc ∈ {100, 200, 300};
and

• KG, which are the symmetric Koerkel-Ghosh instances from the UFLLIB benchmark set
[25], with sizes nf = nc ∈ {250, 500, 750}.

For Euclidean UFL instances, we generate one instance of Euclidean for training and five instances
for testing. In the KG set from UFLLIB, we use first instance from the class A instances (a1) for
training and test on the class B instances (classes A and B differ in how the costs were generated).

D Stochastic Capacitated Facility Location

The Stochastic Capacitated Facility Location (SCFL) problem is a variant of the traditional facility
location problem where decision-making occurs under uncertainty regarding demand or other param-
eters, and facilities have limited capacities. SCFL problems are often modeled as two-stage stochastic
programs. In the first stage, we make decisions involve selecting the facilities to open, committing to
fixed setup costs. In the second stage, given the realized demand, the model assigns customers to
open facilities, ensuring capacity constraints are respected while minimizing assignment costs. The
problem can be formulated as follows:

minx,y
∑
i∈Jnf K

fiyi +
∑
s∈S

ps
∑
i∈Jnf K

∑
j∈JncK

csijx
s
ij∑

i∈Jnf K

xsij ≥ dsj , ∀j ∈ JncK,∀s ∈ S

19



∑
j∈JncK

xsij ≤ uiyi, ∀i ∈ Jnf K,∀s ∈ S

xsij ≥ 0, ∀i ∈ Jnf K,∀j ∈ JncK,∀s ∈ S
yi ∈ {0, 1}, ∀i ∈ Jnf K,

where, similar to the UFL case, nf and nc denotes the number of facilities and customers, respectively.
In addition, S is the set of all scenarios and ps denote the probability of the scenario s. Moreover,
we denote fi as the fixed cost of opening facility i, csij as the assignment cost per unit from facility i
to customer j in scenario s, dsj as the demand of customer j in scenario s, and ui as the capacity of
facility i.

A major practical difference from UFL is that we can no longer decompose the problem over
customers, due to capacity constraints that link all customers. However, this stochastic problem has
scenarios that we decompose over, where both the demand and assignment costs can vary. Here, we
have nc · nf variables in each subproblem, whereas in UFL we had nf variables per subproblem.

To generate SCFL instances, we take deterministic instances from the OR-Library [6], and generate
50 scenarios by randomly modifying both the demands and unit costs to be N (µ, σ) where µ is the
original value and σ is drawn from U(0.1µ, 0.2µ), resampling any negative costs. We consider all
scenarios to be equally likely, i.e., ps = 1

|S| . We use 30 samples for Db. We perform the experiment
of learning the GVF function for SCFL in Table 3. We conduct the training on cap61 and testing on
cap62, with 16 customers and 50 facilities.

Table 3: Comparison between Dual-Stack Model and DenseNet in Learning GVF.

Class of GVF Dual-Stack Model DenseNet Random Forest
Train Time (s) True Rel. Error Train Lower Bound Test Lower Bound Data Label Time (s) Train Time (s) True Rel. Error Train Time (s) True Rel. Error

SCFL 16x50 294.89 6.75 % 93.46 % 37.27 % 40.21 280.44 10.69 % 92.67 7.15 %

E Details on Numerical Experiments

For comparison of the performance between DSM and DenseNet in learning GVF, we perform a
parameter tuning for both models in terms of model architecture, dropout and learning rate. We train
both of these models on a single GPU. With DSM, for the β-stack we perform training with 1, 2, 3
layers, each with 32, 64 neurons. The activation of every layer is max-pooling with a window of
size 5. For the γ-stack, we also train with 2, 3 layers each with 32, 64 neurons, except the size of
last layer is 128, 256 respectively. In addition, to avoid vanishing gradients, we use a composition
of GeLU and ReLU during training only. The final layer of γ-stack is then reshaped to 4 × 32 or
4× 64 to match the shape for the output of β-stack. The dropout is only added in the last layer of the
DSM and its parameter is chosen among {0.02, 0.03, 0.04}. With DenseNet, we also train the model
with 1, 2, 3 layers, each with 32, 64 neurons. Dropout is added in every layer of the DenseNet and
its parameter is chosen among {0.1, 0.2, 0.3}. The learning rate of Adam for both model is selected
from {10−2, 10−3, 10−4}. Table 4 summarizes the best configuration for each models.

Another aspect in learning GVF using our unsupervised framework is the choice of penalty µ update
function (see Algorithm 1). We also want to answer how the quality of the upper bound at every
training data point affect the learned function. As we can observe in Table 6 and 5 that the quality of
the learned function depends more on how we update the penalty term µ more than how good the
upper bound is.

Table 4: NN Architectures and Learning Parameters for DSM and DenseNet

Instances Dual-Stack Model DenseNet
Model Arc. Dropout Learning Rate Model Arc. Dropout Learning Rate

KG
250 M = [32], N = [32, 128] 0.03 1e-3 [64, 64, 64] 0.1 1e-3
500 M = [64], N = [64, 256] 0.03 1e-3 [128, 128, 128] 0.1 1e-3
750 M = [64], N = [64, 256] 0.03 1e-3 [128, 128, 128] 0.1 1e-3

Euclidean
100 M = [32], N = [32, 128] 0.03 1e-2 [64, 64, 64] 0.1 1e-3
200 M = [64], N = [64, 256] 0.03 1e-2 [128, 128, 128] 0.1 1e-3
300 M = [64], N = [64, 256] 0.03 1e-2 [128, 128, 128] 0.1 1e-3

20



Table 5: Comparison of update methods and upper bounds for GVF Learning on KG-sym 250

upper bound = 2.0 upper bound = 100.0 upper bound = optimal value upper bound = optimal value x 2 unbound
#cons satisfied true rel error #cons satisfied true rel error #cons satisfied rel abs loss #cons satisfied true rel error #cons satisfied true rel error

linear update 93.02% 5.32% 68.00% 2.73% 100.00% 21.53% 100.00% 10.04% 92.06% 5.94%
100.00% 6.84% 99.98% 13.57% 100.00% 21.53% 100.00% 10.04% 100.00% 6.81%

adaptive update 99.70% 3.91% 74.22% 2.49% 100.00% 12.14% 98.88% 4.60% 92.42% 3.93%
100.00% 4.02% 99.63% 4.89% 100.00% 12.14% 100.00% 5.14% 99.58% 4.15%

Table 6: Comparison of update methods and upper bounds for GVF Learning on Euclidean 100

upper bound = 2.0 upper bound = 100.0 upper bound = optimal value upper bound = optimal value x 2 unbound
#cons satisfied true rel error #cons satisfied true rel error #cons satisfied true rel error #cons satisfied true rel error #cons satisfied true rel error

linear update 55.50% 19.80% 99.80% 99.06% 89.20% 64.75% 99.70% 62.97% 42.20% 21.36%
87.30% 65.43% 99.80% 99.06% 100.00% 82.81% 100.00% 65.43% 97.70% 81.79%

adaptive update 51.00% 23.23% 62.40% 20.27% 100.00% 63.02% 98.10% 48.39% 49.30% 25.75%
90.80% 37.19% 98.50% 44.89% 100.00% 63.02% 99.60% 48.88% 96.10% 55.05%

F Dual-Stack Model for Non-Standard LP Formulations

Table 7 describes the necessary changes to the DSM in the case that the LP is not in standard form.
Alternatively, one may simply convert the LP to standard form.

Table 7: Alterations to the architecture for LPs not in standard form

Linear Program Constraints DSM Weight-Sign Constraints Unsupervised Training Penalty Function
Ax ≤ b Nonpositive first layer of β-Stack None
Ax ≥ b Nonnegative first layer of β-Stack None
Ax = b No sign-constrained first layer of β-Stack None

x ∈ Rn+ None µ
∑
γ∈Dc

∑
i∈JnK ·max{ηθA(γ, ai)− γi, 0}

x ≤ Rn− None µ
∑
γ∈Dc

∑
i∈JnK ·max{γi − ηθA(γ, ai), 0}

x ∈ Rn None µ
∑
γ∈Dc

∑
i∈JnK ·|ηθA(γ, ai)− γi|

21



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We would like to refer to Section 4, 5, 6, and 7.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We would like to refer to Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

22



Justification: We would like to refer to Section 4, Section 5, Appendix A and Appendix B.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We would like to refer to Section 7 and Appendix E.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23



Answer: [No]

Justification: The main contribution of the paper lies in the theory and methodology for
learning GVF. All algorithms and details on experiments are presented in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We would like to refer to Section 7 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations in our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We would like to refer to Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have verified that we follow all items in the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focus on theoretical properties and learning a mathematical object
(the generalized LP value function), which does not have a direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

25

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We study the theory of learning GVF and conduct the experiments on synthetic
data, which poses no risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The only existing asset that we use are benchmark instances from UFLLIB,
which are properly cited in the paper. These assets are not re-released with the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

26

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our study does not involve crowdsourcing.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Introduction
	Preliminaries
	Related Work
	Value function learning for multi-stage problems
	Other learning-based approaches
	Computing value functions

	A Neural Network Representation for Generalized Linear Programming Value Functions
	A Characterization of Generalized Linear Programming Value Function
	The Dual-Stack Model

	Learning Generalized Linear Programming Value Functions
	An Unsupervised Learning Approach
	Penalty Coefficient Update Strategies
	Guaranteeing an Under-Approximation

	A GVF-Based Heuristic for Two-Stage MILPs
	Computational Results
	Learning Method
	Heuristic for Two-Stage Problems

	Conclusion
	Complete Proof for GVF Representation Theorem
	Lemma 8
	Lemma 9
	Lemma 10
	Lemma 11
	Theorem 2

	Complete Proofs of the GVF Unsupervised Learning Theory
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Corollary 6 and 7

	Uncapacitated Facility Location
	Stochastic Capacitated Facility Location
	Details on Numerical Experiments
	Dual-Stack Model for Non-Standard LP Formulations

