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Abstract: Robust and generalized tool manipulation requires an understanding of
the properties and affordances of different tools. We investigate whether linguis-
tic information about a tool (e.g., its geometry, common uses) can help control
policies adapt faster to new tools for a given task. We obtain diverse descrip-
tions of various tools in natural language and use pre-trained language models
to generate their feature representations. We then perform language-conditioned
meta-learning to learn policies that can efficiently adapt to new tools given their
corresponding text descriptions. Our results demonstrate that combining linguis-
tic information and meta-learning significantly accelerates tool learning in several
manipulation tasks including pushing, lifting, sweeping, and hammering. 2
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“The handle of a plier is a tool used to grip objects. 

It is designed to fit comfortably in the hand. The 
handle is typically long and thin”

“A mallet typically has a long, cylindrical shape with 
a flat head on one end. Mallets are used to strike or 
push objects, or to hammering in nails”

“Most paint rollers are cylindrical in shape, with a 
rounded end and a flatter end. The rounded end is 
used to apply paint to the surface”

“A faucet generally has a cylindrical shape, with a 
hole near the top for the water to come out of. The 
hole is usually surrounded by a ring”

Figure 1: Rich, semantic knowledge from language descriptions, such as geometric features and common use
of the tools, can help policies adapt faster to unseen tools (right) in pushing, lifting, sweeping, and hammering
tasks (bottom) after meta-learning on training tools (left).

1 Introduction

The ability to quickly learn how to use a broad range of new tools is considered one of the hallmarks
of human intelligence [1]. Humans are able to attain a degree of proficiency with a new tool (e.g.,
a new hand tool or a virtual tool such as a joystick or remote) within just a few minutes of interac-
tion [2]. This rapid learning relies on the ability to understand or discover the affordances [3] of a
new tool, i.e., the ability to perform a certain action with the tool in a given environment. For exam-
ple, a hammer affords the opportunity to grasp it, use it to hammer a nail, or use it to push another
object. In contrast, a spatula affords the opportunity to flip a pancake or sweep food ingredients into
a bowl. Endowing robots with the ability to quickly discover and exploit affordances of a new tool in
order to learn how to perform a given task has been a long-standing grand challenge in robotics [4].
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2Video showing the four manipulation tasks: https://shorturl.at/dmCEW
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While humans routinely rely on geometric priors and visual observations for tool manipulation,
they can also ‘read’ text manuals or linguistic descriptions to understand affordances of new tools
and quickly adapt to using them. In this work, we investigate whether language can help robots
accelerate the process of learning to use a new tool. In particular, consider the following descriptions
of two types of tools:

The shape of tongs is typically that of a V, with two long, thin handles that come to a point
at the top, and a gripping area in the middle.
A spatula is a kitchen utensil for flipping over food while cooking. The head of the spatula
is usually rectangular or oval in shape. The handle of the spatula is usually long and thin.

Our key intuition is that such natural language descriptions of tools contain information about the
affordances of the tools, how to exploit these affordances for a given task, and how perceptual
features of tools (e.g., their visual appearance and geometry) relate to their affordances. Moreover,
language can help capture the shared structure of tools and their affordances. Thus, if one has
previously learned to use a set of tools (with corresponding language descriptions), a description of
a new tool can help to exploit this prior knowledge in order to accelerate learning.

Statement of Contributions. Our primary contribution is to propose ATLA — Accelerated Learn-
ing of Tool Manipulation with LAnguage — a meta-learning framework leveraging large language
models (LLMs) to accelerate learning of tool manipulation skills. The overall approach is illustrated
in Fig. 1. We propose to use LLMs in two distinct ways: to generate the language descriptions
for tools and to obtain the corresponding feature representations. At meta-training time, the meta-
learner updates a base-learner that quickly fine-tunes a manipulation policy; this fine-tuning process
is conditioned on the LLM representations corresponding to the language descriptions of each tool.
Specifically, we propose a simple gradient-based meta-learning setup based on Reptile [5] that per-
forms off-policy updates. At test time, the base-learner adapts to a new tool using its language
descriptions and interactions with it. To our knowledge, our approach is the first to utilize LLMs to
accelerate learning of new tools. We demonstrate the benefits of using language in a diverse set of
tool-use tasks including pushing, lifting, sweeping, and hammering.

2 Related Work

Tool Manipulation. Tool manipulation [6, 7, 8, 9, 10] is one of the long-standing problems in
robotics research. A major challenge is understanding the affordances of the tool in different tasks.
Previous work has modeled and learned affordances from parameterized keypoints on the tools
[7, 10], from human demonstrations [8], and from spatial-temporal parsed graphs of the tools [11].
Our work instead leverages natural language (e.g., describing affordances of the tools in words) for
generalization of affordances in tool manipulation and is compatible with previous approaches.

Language-informed Control. Natural language has been applied to enable efficient robotic learn-
ing through (1) generating primitive language instructions for producing control actions (i.e., in-
struction following task) [12, 13, 14, 15, 16, 17, 18, 19], (2) learning language-informed reward
functions for training control policies [20, 21, 22, 23, 24, 25], and (3) using language to correct or
adapt the behavior of the robot [26, 27]. However, these works primarily translate natural language
into action policies for a specific task with the text providing information on the desired actions that
optimize returns (e.g., “push the door”). This means that the text is tightly coupled with the task
seen during training, making it difficult to generalize to a new distribution of tasks with different
dynamics. In contrast, the text in our work only provides a high-level description of the property
of each tool, encouraging the agent to extract useful information to generalize to a new task. Some
prior work [28, 29, 30, 31] also uses language descriptions of environment dynamics to enable gen-
eralization of policies but does not leverage meta-learning.

Meta-learning. Our work uses the framework of meta-learning [32, 33, 34, 35, 36], in which the
agent is trained with a distribution of tasks, and later adapts quickly to a previously unseen task.
“Reptile” is proposed in [5] as a simple first-order, gradient-based meta-learning algorithm that
learns an initialization of the neural network’s parameters for fast adaptation at test time. Recent pa-
pers [37, 38, 39, 40] have also explored providing additional context information (e.g., the property
of the task) to encode task-specific knowledge for a meta-learning agent. However, all these works
directly provide the context information either through scalar signals or a learned task embedding,
which require domain expertise or a pre-training stage. In this work, we assume that the agent is
provided with a text description of the tool, which is more accessible and easier to collect.
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3 Problem Formulation

We consider the following goal: given a new tool and corresponding language description(s), we
aim to quickly learn a policy for using the tool to achieve a given task. We pose this problem in a
meta-learning setting in which a policy is trained with a distribution of tools for a given task, and
later adapts quickly to a previously unseen tool sampled from this distribution in the same task.

Meta-training. During meta-training, we assume access to a set T = {τi}Ki=1 of tools, where K is
the number of available tools. For each tool τi, we are also provided a set of corresponding language
descriptions Li = {lij}Nij=1, lij ∈ L,whereNi is the number of available descriptions for tool τi and
L is the set of possible textual descriptions. In addition, each lij can describe a different property of
tools such as shape and common use. Given a particular robotic manipulator and a particular task
(e.g., pushing, lifting, sweeping, or hammering), each tool τ induces a partially-observable Markov
decision process (POMDP): 〈Sτ ,A,O,Pτ , Rτ 〉. Here, Sτ is the state of the entire environment (i.e.,
combined state of the robot, tool, and potentially other objects to be manipulated using the tool). The
robot’s action space A (e.g., corresponding to robot joint torques) and observation space (e.g., the
space of RGB-D observations from a camera) are fixed across tools. The transition probabilities are
given by Pτ : Sτ ×A× Sτ → [0, 1], and the reward function is R : Sτ ×A× Sτ → [0, 1]. During
meta-training, our goal is to learn a policy πθ : O × L → A parameterized by θ (e.g., weights of a
neural network) that can be quickly fine-tuned at test time.

Meta-testing. At test time, we are provided a new tool τν and corresponding language descriptions
Lν = {lνj}Nνj=1, lνj ∈ L. We aim to let the meta-learned policy quickly adapt to this new tool in
a fixed number of interactions with the tool in order to maximize the expected cumulative reward.
This is a challenging task since the new tool can be quite different in terms of visual appearance and
affordances as compared to previously seen tools in meta-training.

4 Approach

The key idea behind our approach is to collect and embed language information of the environment
into meta-learning, allowing the policy to adapt faster and better to unseen environments.

4.1 Collecting Language Information Using Pre-Trained Large Language Models

A common use of language in robotics is to use it to provide an instruction to the robot (e.g., “pick
up the green block on the table”). Such instructions are typically specified by humans manually
through crowd-sourcing, which can be labor intensive. In our setting, we consider language as
additional information about the environment (e.g., “the hammer has a long handle and large head
at the top”). The language here is not used to describe the goal (e.g., what to do), but to provide
information about properties of the environment (e.g., tool shape). This makes the text here task-
agnostic, forcing the agent to learn generalizable policies. To obtain a diverse set of language
descriptions, we are inspired by the recent advances in LLMs that are trained with vast amounts
of online data and imbued with rich, semantic knowledge of different objects. We propose using
LLMs to provide language descriptions of the tools in the form of question answering. Specifically,
we provide the GPT-3 [41] model with the following template prompt through the OpenAI API:

“Describe the [feature] of [name] in a detailed and scientific response: ”

where “feature” is selected from one of [“shape”, “geometry”] or one of [“common use”, “purpose”]
and “name” describes the tool (e.g., “a hammer”, “a pair of tongs”). We find that adding “detailed
and scientific” to the prompt significantly improves the quality of the texts generated. For each tool,
we generate 10 different paragraphs of descriptions for each of the four features, and then combine
paragraphs in each of the four permutations of the features (“shape” and “common use”, etc). Each
tool τi is thus paired with a diverse set of 800 language descriptions Li (see Appendix A1 for more
examples). Each description lij ∼ Li is approximately 2-4 sentences long.

4.2 Obtaining Feature Representations from Large Language Models

With the collected language descriptions, we now incorporate them into policy training. One com-
mon choice is to train a language module (e.g., long short-term memory (LSTM) [42]) from scratch
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“A hammer is a 
hand tool that 
consists of a 

handle attached to 
a head, usually 

made of metal. The 
head is usually in 

the shape of a 
rectangle with a flat 
surface on one side 

and a cylindrical 
surface on the 

other, which is used 
for striking nails.”

Figure 2: Model Overview. First, we prompt OpenAI GPT-3 to obtain a diverse set of language descriptions
Li of the tool τi. Then for each episode collected, we sample a language description lij randomly from Li,
which is then fed into a pre-trained BERT model to obtain the representation. The language head further distills
the language information. We concatenate the representations from the language head and the image encoder,
and then the features are shared by the critic head and the actor head.

to embed features of the language input, which can take substantial time and effort to tune. Instead,
we use a pre-trained LLM to distill the language descriptions into feature representations. Since
LLMs are trained with vast amounts of data, they can better interpret and generalize to the diverse set
of long descriptions. Since the GPT-3 model is not publicly available, we opt for the Google BERT-
Base [43] model on HuggingFace, which has 110.1M parameters and outputs a 768-dimensional
vector representation for each description input. T-SNE analysis shown in Fig. 3 demonstrates that,
without any fine-tuning, the model already captures semantic meanings of the descriptions among
tools (e.g., hammer and mallet are close to each other).

Figure 3: T-SNE results of BERT output for
multiple language descriptions of each tool.

Fig. 2 shows the overall neural network architecture. We
first prompt GPT-3 to obtain a set Li of text descrip-
tions for tool τi via the procedure in Sec. 4.1. During
meta-training, we randomly sample lij from Li for each
episode to ensure that the policy sees a diverse set of de-
scriptions. We then freeze the BERT model during policy
training. The output from BERT is fed into a single fully-
connected layer with ReLU (language head, θl). The im-
age observations (possibly from two camera angles–one
from overhead and one from the wrist) are passed through
convolutional layers (image encoder, θo), whose output is
then concatenated with that from the language head. The
actor head (θa) and critic head (θc) then output the ac-
tion at and the corresponding value for the Q function
Q(ot, at). See Appendix A3 for more details of the neural network setup.

4.3 Meta-training and Testing Language-Conditioned Manipulation Policies

We hypothesize that additional language information of the tools promotes generalization. However,
zero-shot transfer to unseen tools can be difficult given the distinct geometries and affordances. Thus
we perform meta-training for explicitly training the policy to adapt to distinct tools within the same
task. Our algorithm (shown in Algorithm 1) is based on Reptile [5], a simple first-order gradient-
based meta-learning algorithm, but with an additional sampling strategy to prevent overfitting. At
each iteration of the meta-training, one tool τ is sampled from the training set T . At the base level
(line 5), we run the current policy with the language description lij sampled from Li. We then add
the collected experiences in a base replay buffer βbase, and performB iterations of off-policy updates
using Soft Actor Critic (SAC) [44] in order to obtain the final policy parameters θ′ = [θ′l, θ

′
o, θ
′
a, θ
′
c].

Then at the meta level (line 12), the network is updated with a gradient step towards θ′:

θnew ← θ + α(θ′ − θ), (1)
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where α is the meta-learning rate and θ is the collection of the old policy parameters θl, θo, θa, θc.
We also highlight the following remarks including differences to the Reptile algorithm:

• To reduce variance, the actor and critic share the parameters of language head θl and the image
encoder θo, and both modules are updated only with the critic objective.

• To prevent overfitting to language descriptions of one tool during training, experiences collected
from all tools are saved in a meta replay buffer βmeta (line 14), and βbase for each tool is initialized
with random samples from βmeta (line 3). During policy update at base training, 30% of the
experiences are sampled from βmeta. During test time, we do not use any experiences from βmeta.
We demonstrate the effectiveness in Sec. 6.

• In applications of Reptile in supervised learning, the meta update is often averaged over N sam-
pled environments: θnew ← θ+α

∑N
i (θ′i−θ). However, we find thatN = 1 trains faster and also

matches the test objective of adapting to a single tool. N > 1 does not offer better performance at
test time. See Appendix A6 for sensitivity analysis.

• Performing only a single meta update after B = 5 iterations of base update can be inefficient.
Instead of using a large learning rate α which causes unstable training, we perform M = 2 meta
updates for each adaptation to one tool, but collect experiences to βbase only at the first update.

Algorithm 2 shows the procedure of adaption at test time. First, the model is provided with a target
test tool τν and a set of language descriptions. With the adaptation budget Bν , we run the policy
with the language description lj sampled from Lν . The collected experiences are stored in the buffer
βbase and used to update the policy parameters.

Algorithm 1 ATLA: Meta-training, N = 1

Require: T = {τi}Ki=1: training set of tools; {Li}Ki=1: sets of language descriptions; θl, θo, θa, θc:
policy modules; βmeta: meta replay buffer.

1: while meta-training do
2: Sample τ from T # meta level
3: Reset βbase with samples from βmeta
4: for m = 1 to M do
5: for b = 1 to B do # base level
6: if m = 1 then
7: Collect episodes each with lij ∼ Li; add to βbase
8: end if
9: Sample from βbase and update θo, θl, θc with the critic objective

10: Sample from βbase and update θa with the actor objective
11: end for
12: Meta update θo, θl, θc, θa with Eq. 1
13: end for
14: Add βbase to βmeta
15: end while

Algorithm 2 Adaption at test time

Require: τν : test tool; Lν : set of language descriptions; θl, θo, θa, θc: policy modules; βbase ← ∅:
base replay buffer

1: for b = 1 to Bν do
2: Collect episodes each with lj ∼ Lν ; add to βbase
3: Sample from βbase and update θo, θl, θc with the critic objective
4: Sample from βbase and update θa with the actor objective
5: end for

5 Experiment Setup

Through different tool manipulation tasks in simulation, we aim to investigate the following ques-
tions: (1) Does language information help achieve better adaptation to new tools? (2) Does meta-
learning improve adaptation to new tools? (3) How does the choice of pre-trained LLMs affect policy
training? (4) Does language information help the policy utilize tools’ affordances effectively?

5



Tasks. Four different tool manipulation tasks are implemented (see bottom of Fig. 1): (1) pushing:
pushing the tool to a fixed location on the table; (2) lifting: reaching and lifting the tool up from
the table to some target height; (3) sweeping: using the tool to sweep a cylinder to a fixed location
on the table; (4) hammering: using the tool to hammer a peg further into a hole in a block. Solving
these tasks benefits from an understanding of the geometric affordances of the tools such as the grasp
location. See App. A2 for more details of the task setup including the reward functions.

Robot. We build custom simulation environments with a 7-DOF Franka Panda arm in the PyBullet
simulator [45]. We use RGB cameras with 128 × 128 image outputs, placed at different off-arm
locations and at the arm wrist depending on the needs of the tasks. For all tasks, we use 4-DOF
cartesian velocity (3D translation and yaw) as the action output from the policy. The arm joints are
then commanded with a jacobian-based velocity controller at 5Hz. The policy does not command
the gripper; instead, we use the heuristic that once the gripper is below some height, the gripper
closes to grasp the object. If the grasp fails, the gripper re-opens if it rises above the threshold.

Tools. We collect a total of 36 objects (See App. A1 for the full list) from open sources. Most of
the objects are common tools such as a hammer and an axe. Some of them are less used as tools
but have distinct geometry and affordances, such as a banana whose inner curvature may help push
other objects. We split the objects into a training set of 27 and a test set of 9 — we try to separate
objects with similar geometry or affordances (e.g., hammer and mallet) into different sets.

Baselines. We compare ATLA (ours) with the following (Fig. 4): (a) AT-TinyLA (ours): ATLA with
a smaller BERT encoder (BERT-Tiny [43] with 4.4 million parameters and 128-dimensional output).
(b) AT: ATLA without language information. (c) AT-XL: ATLA without language information but
larger networks for θa and θc (matching the number of parameters of ATLA). (d) SAC-LA: vanilla
multi-environment training with SAC and language information but without meta-training objective.
(e) SAC: SAC-LA but without language information. SAC-LA and SAC training follow Algorithm
3 in Appendix A4; they do not perform inner adaptation (B = 0) at training time, and the gradient
update is averaged over experiences sampled from any environment (N = ∞). All meta learning
baselines use B = 5 and N = 1. See Appendix A6 for sensitivity analyses on N and B.

Metric. For all experiments, we save the model checkpoint with the highest running-average reward
on the training dataset. After training, for each test tool we load the checkpoint and run a fixed
number of iterations of adaptation. In Fig. 4, we report the highest reward at adaptation, averaged
over 3 seeds for each test tool. See Appendix A6 for reward in numbers for each tool and task.

6 Results

Figure 4: Post-adaptation reward in mean and standard deviation over 3 seeds across 4 tasks and 9 test tools.
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Figure 5: Curves of adaptation iteration vs. reward of the test tools (columns) in the four tasks (rows).

Q1: Does language information help achieve better adaptation to new tools? Fig. 4 shows that
ATLA and AT-TinyLA perform better than AT and AT-XL among most tools in the 4 tasks. The
differences are more significant in sweeping and hammering, which are more difficult and language
information can better inform the affordances of the tools. Among the 9 tools, ATLA and AT-
TinyLA always perform better with crowbar, plier, hammer, scissors, faucet, and trowel. ATLA
and AT-TinyLA do not perform better mostly when low reward is achieved for all baselines for that
tool, such as wineglass in pushing and lifting and paint roller in sweeping. Fig. 5 also shows that
language helps faster learning in ATLA compared to AT in most cases, with the agent achieving
higher rewards with fewer episodes of adaptation.

We also find that different tools learn better for different tasks. For example, hammer is better in
sweeping than plier probably due to its long bar, but worse in pushing also due to the small inertia
along the long bar causing instability during pushing. As ATLA performs better among most tools,
language information can provide useful information about the tool affordances in different tasks.

Q2: Does meta-learning improve adaptation to new tools? Fig. 4 shows that with or with-
out language information (ATLA / AT-TinyLA vs. SAC-LA, or AT / AT-XL vs. SAC),
meta-learning improves final performance after adaptation. Without meta-learning, SAC-LA
shows smaller improvement over SAC (e.g., plier, hammer, scissors, and trowel). This
demonstrates that language information particularly helps when combined with meta-learning.
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Figure 6: Using meta replay buffer also acceler-
ates training.

Fig. 5 also compares the adaptation curves between
ATLA and SAC-LA: those of SAC-LA tend to stag-
nate or fluctuate while those of ATLA tend to rise
steadily. This indicates meta-learning trains the pol-
icy to better adapt to new tools after training. In Ap-
pendix A6 we also perform sensitivity analysis on
the number of inner adaptation during meta-training,
B, which highlights the effectiveness of performing
a few steps of inner adaptation.

Ablation: meta replay buffer. We inves-
tigate the effect of re-using experiences from
other tools (saved in βmeta during adaptation).
For this, we run ATLA without βmeta on the
pushing task. Across the 9 test tools, the post-adaptation reward is mostly lower
(−20%,−10%,−13%,−18%,+5%,−25%,−18%,−18%,−5%) compared to ATLA with βmeta.
Note that the effect is more prominent when the reward difference between ATLA and AT is larger
(e.g., 20% with crowbar and 25% with scissors), indicating that language information is more ef-
fective if βmeta is applied. We also find using βmeta accelerates the meta-learning process (Fig. 6) —
demonstrating that sharing experiences among tools makes training more efficient.

Q3: How does the choice of pre-trained LLMs affect policy training? Fig. 4 shows that ATLA
usually attains higher post-adaptation reward than AT-TinyLA, which uses a smaller pre-trained
BERT model, indicating that the policies benefit from the richer representation of the language
descriptions that the bigger BERT model offers.
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Q4: Does language information help the policy utilize tools’ affordances effectively? The results
above have shown that language descriptions of the geometric features and common use of the tools
help policies adapt to new tools for a given task. Fig. 7(a) visualizes the effect in the example of
using a crowbar for sweeping. Language descriptions of a crowbar often contain phrases including
“long and thin bar”, “curved”, “hook”, “used to leverage”, and “used to pry open things”. With
the descriptions, ATLA (orange curve in Fig. 7(a)) enables the policy to adapt quickly to this tool
unseen during meta-training — the policy learns to use the curved hook to better steer the cylinder
towards the target. As a comparison, we replace the descriptions with only the sentence “A crowbar
is a long and thin bar,” and the policy (green curve in Fig. 7(a)) does not adapt as well.

One common feature among tools is the handle. Language descriptions of a trowel includes phrases
like “flat, triangular blade”, “handle to be grasped”, and “used for scooping”. While ATLA learns
to grasp at the handle (Fig. 7(b) top), when we remove “handle” from all the descriptions, the robot
fails to grip firmly on the handle and loses the grip eventually (Fig. 7(b) bottom).

Figure 7: With language information, ATLA is able to adapt the
policy to utilize the affordances of the tools – (a) curved hook on a
crowbar; (b) handle on a trowel.

Figure 8: Policies may fail to cor-
rectly utilize affordances.

Limitations. In some cases, we observe that the policies can still fail to correctly utilize the tool
affordances with language information. In the sweeping task, the paint roller is the only tool that
ATLA fails to perform the best with. Fig. 8 (top) shows the grasp learned by the policy. It failed
to use the bigger opening between the roller and the handle on the other side to sweep the cylinder.
Fig. 8 (bottom) shows that in the hammering task, the policy fails to use the faucet, specifically,
its relatively flat head to push towards the nail. However, these affordances can be sensitive to the
initial pose of the tool and can be difficult to explore. This also highlights one of the limitations of
our work. We use a relatively simple task policy setup for tool manipulation tasks, which is directly
mapping image inputs to Cartesian velocity commands. This creates challenges in exploration and
learning the skills even with language information. One remedy is to combine with approaches like
keypoint-based methods [7] that inject additional domain knowledge into the policy. In addition, we
use a relatively small dataset of tools, which may limit the potential of using language information.
It would be particularly interesting to model revolute joints of the tools and perform more complex
tasks such as picking up objects with a pair of tongs. Furthermore, our current evaluation does not
consider real robot experiments, which is not the focus of this work.

7 Conclusion

In this work, we investigate using large language models (LLMs) to accelerate adaptation of poli-
cies to new tools in tool manipulation tasks. We use LLMs to both (1) generate diverse language
descriptions of the tool geometry and common use, and (2) obtain vector representations of the
descriptions. We then propose language-conditioned meta-learning that trains policies to quickly
adapt to new tools. The results demonstrate that combining language information and meta-learning
significantly improves the performance when adapting to unseen tools.
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Appendix

A1 Tool Information

Table A1 shows additional information about the tools used in the paper, including a sample view of
the object mesh, sample language descriptions, and the train-test split.

Tool Sample view Sample Language description Used for testing

axe An axe typically has a long, cylindrical handle with a
flared end. The head of the axe typically has a slightly
curved blade. An axe is often used for chopping wood.

No

chisel Chisel can make clean, precise cuts using the beleveled
edge. A chisel is a hand tool with a blade attached to a
handle.

No

crowbar A crowbar is used as a lever to pry things open. One
end of a crowbar is usually curved or hooked so that it
can be jammed under an object to apply leverage.

Yes

shovel A shovel has a long, cylindrical handle and a scoop-
shaped blade. The shovel typically has a curved part
for digging into and scooping up materials.

No

hacksaw A hacksaw is a hand saw with a thin blade attached to a
handle, used for cutting various such as metal, plastic,
or wood. A hacksaw is a saw with a thin, toothed blade
on a rigid frame, used for cutting wood or metal.

No

paintroller One common use of a paint roller is to apply paint
evenly to a surface such as walls or ceilings. A paint
roller consists of a long, cylindrical body with a handle
on one end.

Yes

tweezer A tweezer is a hand-held tool with two arms that meet
at a point. A tweezer is a small hand-held tool with two
pointed jaws that are used to pick up small objects or to
remove unwanted hair or debris from the body.

No

whisk A whisk typically has a long, thin handle with a series
of loops at the end. The loops are usually made of metal
and are arranged in a spiral pattern. A whisk is a com-
mon kitchen utensil that is used to mix ingredients to-
gether or to incorporate air into a mixture.

No

needlenose A needlenose plier has a long, tapered nose with a
small jaw, and is used for gripping and bending wire.
Needlenose pliers are a type of plier that has a long,
slender nose and is used for gripping small objects and
for working in tight spaces.

NO

plier A plier is a hand tool used for gripping objects. It con-
sists of a pair of metal jaws with teeth that open and
close when the handles are moved. Plier typically has
a long, narrow neck and a tapered head that becomes
progressively thinner as it extends from the neck to the
tip.

Yes

gooseneck A gooseneck plier is a type of plier that has a long,
narrow neck and a slightly curved head. The neck al-
lows the plier to reach into tight spaces, and the curved
head provides extra leverage. A gooseneck plier is com-
monly used to grip and bend small objects.

No

plier-open The shape of a plier is typically long and skinny with
a grip at the end. Plier is a hand tool used for various
purposes such as gripping, bending and cutting.

No

12



mallet A mallet is a tool that is used to strike another object. A
mallet is a type of hammer that usually has a large head
and a long handle.

No

hammer The purpose of a hammer is to strike or hit another ob-
ject. A hammer typically has a long, cylindrical handle
and a heavy head.

Yes

banana The shape of a banana is generally long and curved,
with a thin skin and fleshy inside. A banana is a curved,
yellow fruit with a thick peel.

No

fork A fork is long and thin, with three tines (prongs) at the
end. A fork is a utensil that consists of a handle with
several narrow tines on one end. The tines are used for
piercing food and then lifting it to the mouth.

No

spoon The purpose of a spoon is to transfer a liquid or semi-
solid food from a container to the mouth. A typical
spoon consists of a bowl-shaped container with a handle
extending from one side. The bowl is generally oval or
round, and the handle generally tapers towards the end.

Yes

knife A knife typically has a sharp, narrow blade with a
pointed tip. A knife is a common kitchen utensil used
for cutting and slicing food.

No

spatula A spatula is a kitchen utensil that is used to turn or lift
food that is being cooked. It has a flat, usually slightly
convex, blade that is attached to a handle. A spatula is
commonly used to mix, spread, and flip food items.

No

scissors A pair of scissors is a cutting tool that consists of two
metal blades that are connected at a pivot point. A pair
of scissors typically has two blades that are joined at a
pivot point.

Yes

wrench A wrench is a tool that is used to apply torque to an
object in order to loosen or tighten it. A wrench is typi-
cally long and slender with a small, metal handle.

No

screwdriver The geometry of a screwdriver can be described as a
cylindrical shape with a pointed end. A screwdriver is a
tool that is used to insert and remove screws.

No

clamp A clamp is a mechanical device that is used to temporar-
ily hold two or more objects together. The geometry of
a clamp is typically that of a rectangular or U-shaped
object with two handles.

No

wok The shape of a wok is a deep, round bowl with sloping
sides. A wok is a concave-shaped cooking utensil that
is most commonly used in Chinese cuisine.

No

pickaxe A pickaxe is used to break up rocks and other materials.
A pickaxe is a tool that has a handle attached to a head. No

faucet A faucet is typically a small, thin, spout-like fixture that
protrudes from a wall or sink. A faucet is a valve used
to release water from a plumbing fixture, such as a sink
or bathtub.

Yes

dustpan A dustpan is a tool used for sweeping up dust and small
debris from floors and other surfaces. It consists of a
small, shallow pan with a handle attached to one side.
A dustpan is a concave scoop with a flat bottom and
flared sides.

No
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trowel A trowel is generally a small hand tool with a pointed,
scoop-shaped blade on one end and a flat surface on the
other. A trowel is a small, hand-held gardening tool
with a curved, pointed blade that is used for digging,
planting, and transferring small amounts of soil or other
materials.

Yes

ladle A ladle is a tool used to transfer liquids from one con-
tainer to another. A ladle typically has a long, curved
handle and a large, deep, spoon-like bowl.

No

tongs A pair of tongs has a thin, curved metal shaft with two
flat metal paddles at the end. A pair of tongs is a device
used to grip and hold objects.

No

gavel A gavel is a small hammer that is used to strike a sound
block, typically made of wood. A gavel is a mallet used
to strike a block of wood, typically used by a presiding
officer or auctioneer to maintain order or to signal the
start and end of an auction.

No

squeegee The purpose of a squeegee is to remove water or other
liquid from a surface. A squeegee is a rod-shaped tool
with a flat, blunt edge, and a small handle.

No

powerdrill A powerdrill is typically cylindrical in shape, with a
handle attached to one side and a chuck on the other
side for holding drill bits. A power drill is a tool that
is used to create holes in various materials, or to fasten
screws or bolts.

No

wineglass A wineglass is a glass with a small bowl and a long
stem. They are used to serve wine and are often used
in restaurants. A wineglass is typically shaped with a
long, thin stem and a bowl that is larger at the bottom
than the top.

Yes

shoehorn A shoehorn is a curved, rod-shaped object used to assist
in putting on shoes. A shoehorn is a curved or stepped
tool designed to help slide a shoe onto the foot.

No

horseshoe A horseshoe is a U-shaped metal bar that is nailed to the
hooves of a horse. A horseshoe is typically U-shaped,
with two large curves and two smaller curves at either
end.

No

Table A1: Sample views, sample language descriptions, and the train-test split of the 36 tools considered in the
paper.

Fig. 3 shows the t-SNE analysis of the BERT embeddings of all the tools. First we use PCA to
project the 768-dimensional embeddings to 50-dimensional, and then perform t-SNE to project them
to 2-dimensional for visualization.

A2 Task Information

Table. A2 shows the episode length, reward function, and action space of the tasks. We find the
policy can explore well in pushing and lifting tasks with relatively simple reward functions; in
sweeping and hammering task, we tune the reward function carefully to guide the arm towards the
cylinder/nail. Fig. A1 shows the camera observations for the four tasks. We use a single view for
the pushing task as it is sufficient for the task, and dual views for other tasks. A wrist view is used
in the lifting task. Fig. A2 visualizes the workspace of the tasks including the initial position of the
tools and the target.

For the hammering task, we set the lateral and torsional friction coefficient of the nail to be high (1
and 0.1) in the simulator. We also make the gripper fingers longer to prevent the gripper hitting the
block when attempting to hammer the nail.
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Please see the included video for more visualization of the tasks.

Task Episode length Reward function Action space

Pushing 25 max(0, 1− distance-tool-target
[−0.05, 0.15]m/s in x
[−0.1, 0.1]m/s in y

[−π/4, π/4]rad/s in yaw

Lifting 25
0.1 ∗max(0, 1− distance-EE-tool)+
0.5 ∗max(0, 1− distance-tool-target)

[−0.1, 0.1]m/s in x, y, and z
[−π/4, π/4]rad/s in yaw

Sweeping 40
0.1 ∗max(0, 1− distance-EE-tool)+

0.1 ∗max(0, 1− distance-tool-cylinder)+
0.5 ∗max(0, 1− distance-cylinder-target)

[−0.2, 0.2]m/s in x, y, and z
[−π/4, π/4]rad/s in yaw

Hammering 40
0.1 ∗max(0, 1− distance-EE-tool)+
0.1 ∗max(0, 1− distance-tool-nail)+

0.5 ∗max(0, 1− distance-nail-hole end)

[−0.2, 0.2]m/s in x, y, and z
[−π/4, π/4]rad/s in yaw

Table A2: Episode length, reward function, and action space for the four tasks. Distance-{A}-{B} denotes
distance from A to B, normalized by the initial distance. EE denotes end-effector of the arm. See Fig. A2 for
visualization of the task space and target.

(a) (b) (c) (d)

Figure A1: Camera observations of the tasks: (a) pushing (single view only); (b) lifting (including a wrist
view); (c) sweeping; (d) hammering.

(a)

Target

Target

Initial position
Initial position

Initial position Initial position

Cylinder Nail

(b) (c) (d)

Figure A2: Top-down visualization of the workspace of the tasks: (a) pushing; (b) lifting; (c) sweeping; (d)
hammering.

A3 Model Architecture

For all policies, the image encoder πo contains three convolutional layers for either view of the
image input; the three layers have kernel size [7 × 7, 5 × 5, 3 × 3], stride size [4, 3, 2], no padding,
and channel size [4, 8, 16]. The language head πl contains a single fully-connected layers with
128-dimensional output. Both the actor head πa and critic head πc have two hidden layers of size
128 (except for AT-XL with hidden size 256). All convolutional layers and fully-connected layers
are followed with a ReLU activation. The first layer in πa and πc are additionally normalized by
Layernorm [46].
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A4 Multi-environment Training Algorithm

Algorithm 3 below shows the procedures of the SAC and SAC-LA baselines. Multi-environment
training does not involve any inner adaptation (B = 0). In the context of multi-environment training,
N means the number of environments where, experiences that each gradient update uses, belong.
N =∞ means experiences can come from any environment.

Algorithm 3 SAC, SAC-LA

Require: T = {τi}Ki=1: training set of tools; {Li}Ki=1: sets of language descriptions (for SAC-LA
only); θl (for SAC-LA only), θo, θa, θc: policy modules; β: replay buffer; N

1: while training do
2: Sample τi from T ; reset environment with τi
3: Collect episode (with lij ∼ Li for SAC-LA); add to β
4: if N =∞ then
5: Sample experiences from β that are from any environment
6: else
7: Sample experiences from β that are from N different environments
8: end if
9: Update θo, θl (only for SAC-LA), θc, θa with sampled experiences

10: end while

A5 Training Hyper-parameters

The hyper-parameters used for meta-learning (shared among AT-LA, AT-TinyLA, AT, AT-XL) and
multi-environment learning (shared between SAC-LA, SAC) are outlined in Table A3. We ensure
meta-learning and multi-environment learning sample the same amount of transitions from environ-
ments.

Setting Meta-learning Multi-environment learning

# training steps 1000 (iteration)
2.5e6 (pushing/lifting)

4e6 (sweeping/hammering)
Meta replay buffer size 30000 —
Base replay buffer size ∞ 100000

Replay ratio 16
N 1 ∞
M 2 —
B 5 0
Bν 10

Optimization
Optimizer Adam
Batch size 128

Discount factor 0.99
SAC entropy coefficient 0.01
SAC actor update period 1

Base learning rate 3e-4
Meta learning rate 1e-3 —

Hardware Resource
# CPU threads 20

GPU Nvidia RTX 2080Ti
# hours for runtime 6 (pushing/lifting), 10 (sweeping), 16 (hammering)

Table A3: Hyper-parameters used for meta-learning and multi-environment learning.
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A6 Results and Additional Studies

Table A4 below shows the results in Fig. 4 in numbers.

Pushing

Method Crowbar Paint Roller Plier Hammer Spoon Scissors Faucet Trowel Wineglass

ATLA 15.4± 0.6 19.9± 0.2 19.9± 0.4 11.1± 0.1 10.0± 0.3 18.2± 0.5 14.4± 0.5 16.9± 2.2 4.5± 0.3
AT-TinyLA 12.3± 1.8 19.2± 0.9 20.4± 0.2 10.7± 0.3 10.5± 0.8 17.0± 0.8 8.8± 0.9 12.5± 1.1 7.4± 1.6

AT 7.8± 0.3 17.4± 1.0 18.4± 0.5 10.0± 0.4 9.4± 0.2 15.6± 0.4 9.6± 1.2 15.8± 1.5 6.1± 0.9
AT-XL 12.2± 2.5 19.0± 0.8 19.6± 0.5 10.8± 0.1 11.3± 0.2 16.3± 1.4 14.1± 1.8 15.4± 0.7 7.1± 0.6

SAC-LA 13.4± 0.8 16.8± 0.6 18.4± 0.5 10.7± 1.0 7.8± 1.9 14.2± 1.3 10.1± 1.6 12.7± 2.5 7.8± 1.1
SAC-LA-N=1 13.8± 0.9 15.9± 0.3 17.8± 0.7 10.5± 1.1 8.2± 2.0 13.2± 1.0 10.3± 1.8 14.2± 3.0 7.9± 1.2

SAC 12.9± 1.1 12.2± 4.7 16.9± 1.5 10.6± 0.6 9.2± 1.5 12.0± 5.6 10.4± 3.8 11.2± 3.3 6.4± 0.2

Lifting

ATLA 7.4± 0.8 6.5± 0.8 9.0± 0.9 9.6± 1.3 5.5± 1.0 2.1± 0.0 3.5± 0.5 5.0± 0.5 2.3± 0.6
AT-TinyLA 2.6± 0.3 5.7± 0.8 9.0± 1.2 10.4± 0.3 5.0± 0.8 2.0± 0.4 2.3± 0.4 1.9± 0.2 2.4± 0.5

AT 5.0± 0.5 4.6± 0.8 7.7± 1.3 9.1± 2.3 3.7± 0.8 2.0± 0.3 1.8± 0.2 3.4± 0.9 2.5± 0.6
AT-XL 6.8± 1.0 5.7± 1.0 8.5± 0.3 9.0± 0.4 4.9± 0.8 1.8± 0.0 2.4± 0.2 4.2± 1.2 2.9± 0.7

SAC-LA 5.1± 0.1 4.4± 0.3 7.7± 0.2 8.3± 0.1 4.9± 0.1 1.8± 0.0 3.0± 0.1 3.8± 0.1 1.8± 0.1
SAC-LA-N=1 5.5± 0.3 4.2± 0.3 8.0± 0.5 8.1± 0.2 4.5± 0.1 1.8± 0.0 3.2± 0.1 3.6± 0.2 1.9± 0.2

SAC 6.6± 1.5 4.9± 1.1 6.9± 1.4 7.9± 1.5 4.2± 0.6 1.6± 0.6 3.0± 0.4 3.6± 0.6 2.2± 0.6

Sweeping

ATLA 25.5± 1.0 5.2± 2.4 18.4± 3.5 26.8± 2.6 22.5± 2.7 21.7± 2.0 20.9± 1.6 24.3± 2.2 14.4± 1.8
AT-TinyLA 21.2± 0.7 4.6± 0.2 16.5± 0.6 22.3± 0.8 18.0± 0.1 19.2± 1.0 15.2± 0.8 21.2± 0.6 12.5± 0.4

AT 20.0± 0.8 7.7± 3.7 17.4± 3.5 19.3± 1.5 18.4± 1.3 18.0± 3.0 18.0± 3.2 14.9± 2.9 12.0± 2.2
AT-XL 19.0± 3.0 6.1± 1.4 18.2± 2.8 21.0± 2.8 17.1± 2.4 16.8± 3.7 16.3± 3.4 15.1± 8.4 7.6± 3.6

SAC-LA 18.4± 4.0 9.0± 3.7 15.5± 3.2 20.7± 2.2 17.4± 3.0 18.4± 3.7 16.7± 2.9 18.6± 1.8 12.2± 1.1
SAC-LA-N=1 16.8± 3.2 7.5± 2.2 16.1± 3.5 21.9± 1.7 17.1± 2.8 17.9± 4.0 17.1± 2.6 18.1± 1.9 12.6± 1.6

SAC 17.6± 2.5 7.7± 2.1 12.4± 2.4 12.3± 4.7 17.3± 5.4 17.8± 2.4 15.9± 2.8 17.1± 0.2 10.6± 3.3

Hammering

ATLA 12.9± 1.0 12.5± 1.3 10.9± 1.7 14.4± 0.9 12.4± 1.3 3.9± 0.3 3.8± 0.6 11.7± 1.2 10.4± 1.5
AT-TinyLA 12.1± 1.9 12.0± 2.3 10.8± 1.5 16.8± 1.0 11.5± 1.4 4.4± 0.2 4.1± 0.8 10.3± 0.8 11.2± 0.8

AT 6.0± 0.9 9.7± 2.0 10.3± 2.6 12.4± 1.9 7.2± 1.7 3.7± 0.1 3.1± 0.1 9.0± 2.8 7.1± 2.0
AT-XL 6.5± 1.2 8.3± 1.5 11.3± 1.6 12.1± 1.7 7.2± 1.6 3.7± 0.1 3.1± 0.3 10.4± 3.4 8.2± 1.7

SAC-LA 4.3± 1.1 3.8± 1.3 9.0± 3.2 9.3± 2.0 7.8± 1.6 3.2± 0.5 3.3± 0.3 4.7± 1.3 3.0± 0.7
SAC-LA-N=1 5.3± 1.5 6.9± 1.1 10.0± 2.5 11.5± 1.5 9.8± 2.9 3.6± 0.7 3.8± 0.2 8.9± 1.6 6.8± 1.0

SAC 5.3± 3.1 5.1± 3.2 6.8± 4.2 7.4± 5.3 3.4± 1.1 3.0± 0.6 3.2± 0.6 3.5± 0.4 3.2± 1.0

Table A4: Post-adaptation reward in mean and standard deviation over 3 seeds across 4 tasks and 9 test tools.

Effect of B in meta-learning. The value of B determines the number of inner adaptation for each
tool during meta-training. To evaluate the effect of B, we perform sensitivity analysis varying B in
the sweeping task, and the results are shown in Table A5 (values for B = 5 are from Table A4).
With B = 1, the post-adaptation performance is generally worse than B > 1, and it is close to the
performance of multi-environment training (SAC-LA in Table A4). Higher value of B helps, but
there is no significant performance gain with B > 2. This highlights the importance of performing
a few steps of inner adaptation at training time for better adaptation to new tools.

Sweeping

B Crowbar Paint Roller Plier Hammer Spoon Scissors Faucet Trowel Wineglass

1 18.6± 1.1 7.2± 2.5 16.1± 2.2 20.9± 1.8 19.3± 1.8 18.2± 2.9 16.2± 0.8 19.3± 2.2 12.7± 1.1
2 21.2± 0.9 7.3± 2.0 17.2± 2.5 22.8± 2.1 22.1± 2.1 22.8± 2.3 18.9± 1.8 21.2± 2.8 13.8± 1.7
4 22.6± 0.8 5.9± 1.8 17.6± 2.3 27.8± 2.9 20.1± 3.0 20.2± 2.2 21.1± 1.9 23.2± 2.9 14.6± 1.9
5 25.5± 1.0 5.2± 2.4 18.4± 3.5 26.8± 2.6 22.5± 2.7 21.7± 2.0 20.9± 1.6 24.3± 2.2 14.4± 1.8

Table A5: Effect of B in meta-learning. The values are post-adaptation reward in mean and standard deviation
over 3 seeds across 9 test tools in the sweeping task.
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Effect of N in meta-learning. The value of N determines how many environments the meta
update gradient is averaged over in Eq. 1. To evaluate the effect of N , we perform sensitivity
analysis varying N in the hammering task, and the results are shown in Table A6 (values for N = 1
are from Table A4). Although typical Reptile-style meta learning in supervised learning usesN > 1
[5], the results here do not show the improvement with N > 1. N = 1 also matches our setup of
adapting to a single tool at test time. We also show the meta training reward curves in Fig. A3. The
final training rewards are similar for N = 1, 2, 5, but N = 1 trains slightly faster. Surprisingly we
also find N > 1 exhibits larger variances in reward at later iterations, which is contrary to the idea
that N > 1 stabilizes training. Thus we use N = 1 in our main experiments.

Hammering

N Crowbar Paint Roller Plier Hammer Spoon Scissors Faucet Trowel Wineglass

1 12.9± 1.0 12.5± 1.3 10.9± 1.7 14.4± 0.9 12.4± 1.3 3.9± 0.3 3.8± 0.6 11.7± 1.2 10.4± 1.5
2 12.2± 1.2 12.9± 1.5 9.7± 1.2 14.2± 1.1 12.9± 1.5 4.0± 0.2 3.6± 0.3 12.0± 1.6 10.1± 1.8
5 12.5± 1.0 12.5± 1.7 11.2± 1.3 11.5± 1.2 13.2± 1.1 4.2± 0.5 3.7± 0.6 12.0± 1.5 9.9± 1.3

Table A6: Effect of N in meta-learning. The values are post-adaptation reward in mean and standard deviation
over 3 seeds across 9 test tools in the hammering task.

Figure A3: Meta training reward for different values of N in the hammering task running ATLA.

SAC-LA with N = 1. Typically multi-environment training uses gradient update averaged over
a batch of experiences sampled from any environment (N = ∞); we perform the same setup in
our main experiments. It is also worth investigating N = 1, meaning each gradient update uses
experiences from only one environment, since we find N = 1 works for the meta learning setup
as shown above. In Table A4 we show the results for all four tasks (SAC-LA-N=1). In Pushing,
Lifting, and Sweeping tasks, the results are similar to SAC-LA with N = ∞. However, in the
hammering task, the results are improved from SAC-LA across all tools, although they are still
worse than meta-learning baselines. It is possible that N = 1 mitigates training instability of multi-
environment training. We use N = ∞ in our main experiments since it is a common setup for
multi-environment training.
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