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Abstract

Social media rumours, a form of misinforma-001
tion, can mislead the public and cause signif-002
icant economic and social disruption. Moti-003
vated by the observation that the user network004
— which captures who engage with a story005
— and the comment network — which cap-006
tures how they react to it — provide comple-007
mentary signals for rumour detection, in this008
paper, we propose DUCK (rumour detection009
with user and comment networks) for rumour010
detection on social media. We study how to011
leverage transformers and graph attention net-012
works to jointly model the contents and struc-013
ture of social media conversations, as well as014
the network of users who engaged in these015
conversations. Over four widely used bench-016
mark rumour datasets in English and Chinese,017
we show that DUCK produces superior perfor-018
mance for detecting rumours, creating a new019
state-of-the-art. Source code for DUCK is020
available at: ANONYMISED.021

1 Introduction022

Social media platforms bring easy access to the023

wealth of information. On the flip side, social024

media has also accelerated the spread of misin-025

formation (Starbird et al., 2014; Jin et al., 2017).026

Rumours, a form of misinformation typically de-027

fined as stories or statements with unverified truth028

value (Allport and Postman, 1947), can mislead the029

public and cause significant economic and social030

disruption.031

Since the seminal work on prediction of infor-032

mation credibility on social media by Castillo et al.033

(2011), automatic rumour detection on social me-034

dia has attracted significant research, which aims to035

detect rumorous posts (in contrast to news articles036

by credible news sources) or determine the veracity037

— true, false or unverified — of rumours. Although038

the task is related to fake news detection, the use039

of social media for propagation means that various040

social context features can be leveraged for detec- 041

tion. This is a contrast to FEVER-style fake news 042

detection (Thorne et al., 2018) which relies mainly 043

on a source of world knowledge (e.g. Wikipedia) 044

to fact-check stories. 045

Early studies of rumour detection focus on su- 046

pervised learning algorithms incorporating features 047

manually engineered from post contents, user pro- 048

files as well as information propagation patterns 049

(Castillo et al., 2011; Liu et al., 2015; Kwon et al., 050

2013; Ma et al., 2015; Rath et al., 2017). Re- 051

cent neural approaches typically explore fusing 052

different feature representations for rumour detec- 053

tion. Sequence processing models such as BERT 054

are used to encode the contents of social media 055

conversations, e.g. source posts and the stream 056

of comments (Kochkina et al., 2017; Tian et al., 057

2020), while graph models have been experimented 058

to model the structure of social media conversa- 059

tions (Bian et al., 2020; Ma et al., 2018; Lu and 060

Li, 2020). Although some approaches use a com- 061

bination of content and user features for rumour 062

detection, how to leverage pretrained sequence 063

models and graph models to effectively model them 064

remains under-explored. 065

In this paper we propose DUCK (rumour 066

detection with user and comment networks), a 067

framework that jointly models the user and com- 068

ment propagation networks. Our study presents an 069

extensive exploration on how we can best model 070

these networks, and compared to previous studies, 071

there are several key differences: (1) we model 072

comments both as a: (i) stream to capture the 073

temporal nature of evolving comments; and (ii) 074

network by following the conversational structure 075

(see Figure 1 for an illustration); (2) our comment 076

network uses sequence model to encode a pair of 077

comments before feeding them to a graph network, 078

allowing our model to capture the nuanced charac- 079

teristics (e.g. agreement or rebuttal) exhibited by 080

a reply; and (3) when modelling the users who en- 081
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gage with a story via graph networks, we initialise082

the user nodes with encodings learned from their083

profiles and characteristics of their “friends” based084

on their social networks.085

We conduct experiments on four widely used086

benchmark rumour datasets in English and Chi-087

nese, and show that DUCK produces superior per-088

formance, creating a new state-of-the-art. Although089

both users and comments provide complementary090

signals for our task, the comments have a stronger091

impact. Also, when modelling the network of users092

who engage with a story, incorporating the social re-093

lations of users proves to be very beneficial. Source094

code for DUCK is available at: ANONYMISED.095

2 Related Work096

Early studies of rumour detection focus on super-097

vised learning algorithms incorporating engineered098

features from post contents, user profiles as well099

as information propagation patterns (Castillo et al.,100

2011; Liu et al., 2015; Kwon et al., 2013; Ma et al.,101

2015; Rath et al., 2017).102

Recent research focus on neural models to au-103

tomatically generate various features for rumour104

detection. Sequence processing models leverage105

the textual contents from the source posts and user106

reply comments for rumour detection. Signals such107

as writing style, stance and opinions as well as108

emotions are extracted from the text for rumour109

detection. Shu et al. (2017) introduce linguistic110

features to represent writing styles and other fea-111

tures based on sensational headlines from Twitter112

to detect misinformation. To detect rumours as113

early as possible, Zhou et al. (2019) incorporate114

reinforcement learning to dynamically decide how115

many responses are needed to classify a rumour.116

Tian et al. (2020) explore the relationship between117

a source tweet and its comments by transferring118

stance prediction model to classify rumours. Most119

of these approaches model user comments as a120

sequence of posts and ignore the conversational121

structure among the comments.122

Graph neural models leverage information prop-123

agation patterns for rumour detection. Liu and Wu124

(2018) experiment with using convolutional and125

recurrent neural networks to process user features126

in the retweet propagation path of stories, and Ma127

et al. (2018) present a tree-structure recursive neu-128

ral network to model information propagation for129

rumour detection. Bian et al. (2020) proposed a130

bi-directional graph network to model the upward131

and downward information propagation structure 132

among user comments to distinguish false from 133

true rumours. 134

There are also studies combining signals from 135

contents, users and propagation networks for ru- 136

mour and fake news detection (Lu and Li, 2020; 137

Nguyen et al., 2020). An ensemble deep learn- 138

ing architecture is presented in Lu and Li (2020), 139

which incorporates source post content and retweet 140

network. Nguyen et al. (2020) propose to learn 141

representations for misinformation detection based 142

on the heterogeneous graph of news, news sources, 143

users and their stances in comments. All these 144

studies largely model the superficial characteristics 145

of comments and users, e.g. comments are repre- 146

sented using static features such as bag-of-words 147

(Bian et al., 2020; Nguyen et al., 2020) and users 148

with simple features extracted from their profiles 149

(Liu and Wu, 2018; Lu and Li, 2020). Deeper inter- 150

actions, such as the relation between a post and its 151

reply and the social relations (e.g. “following”) of 152

users, remain under-explored. Table 1 summarises 153

the differences between previous studies and our 154

work. 155

Beyond rumour detection, recent studies explore 156

combining modern pretrained language models and 157

graph models for modelling texts and their inter- 158

actions. Using the FEVER dataset, Zhong et al. 159

(2020) explore pretrained models to perform se- 160

mantic role labelling to understand the relation be- 161

tween clauses in evidence passages and then en- 162

code the network with graph models to detect fake 163

news. Liu et al. (2020) use BERT to encode a pair 164

of claim and evidence passage and then propose a 165

kernel graph network to model the fully connected 166

network of evidence passages. Although these two 167

studies combine sequence and graph models, their 168

task has a different data structure and hence their 169

methods cannot be trivially adapted to the rumour 170

detection task. 171

3 Problem Statement 172

Let X = {x0, x1, x2, ..., xn} be a set of sto- 173

ries, where a story xi consists of a source 174

post and its reply comments, defined as xi = 175

{(c0, u0, p0, t0), ..., (cm, um, pm, tm)}, where c 176

refers to the textual content of the post (empty 177

string if it’s a repost/retweet), u the user ID who 178

made the post, p the parent post ID that the current 179

post replies to (null if it’s a source post, e.g. p0 = 180

null), and t the timestamp of the post. Each story 181
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Figure 1: Overall architecture of DUCK. The structure of user tree differs from that of comment tree, as the former
captures both comments ( ) and reposts/retweets ( ), while the latter considers only comments.

S C CN UF UN

RvNN (Ma et al., 2018) X X X
RNN+CNN (Liu and Wu, 2018) p rt
Multitask (Li et al., 2019) X X X p
stance-BERT (Tian et al., 2020) X X
Bi-GCN (Bian et al., 2020) X X X
GCAN (Lu and Li, 2020) X p rt

DUCK (our work) X X X p+s rt+rp

Table 1: Information used in various studies. S: source
post, C: comments, CN: comment network, UF: user
features, UN: user network, p: user profile, s: social
relations, rt: repost/retweet, and rp: reply.

xi is associated with a ground-truth label yi ∈ Y ,182

where Y represents the label set (binary or 4 classes183

depending on the rumour dataset). Our goal is to184

learn a classifier from the labelled rumour dataset,185

that is f : X → Y .186

4 Methodology187

The overall architecture of our rumour detection188

approach is presented in Figure 1. It consists of189

four modules: (1) comment tree: models the com-190

ment network by following the reply-to structure191

using a combination of BERT (Devlin et al., 2019)192

and graph attentional networks (Veličković et al.,193

2017); (2) comment chain: models the comments194

as a stream using transformer-based sequence mod-195

els; (3) user tree: incorporates social relations to196

model the user network using graph attentional net-197

works; (4) rumour classifier: combines the output198

from comment tree, comment chain and user tree199

to classify the source post. Note that the network200

structure of the user tree differs from that of the 201

comment tree as the former captures both com- 202

ments and reposts/retweets but the latter considers 203

only comments (Figure 1). 204

4.1 Comment Tree 205

Here we aim to model the conversational structure 206

of the comments that a source post generates. Previ- 207

ous studies typically model this via graph networks, 208

but most use simple features (e.g. bag-of-words) to 209

represent the text (Bian et al., 2020), which fail to 210

capture the nuanced relationships (e.g. agreement) 211

between a parent post and its child/reply post. 212

To capture the relations of crowd opinions in 213

the comment tree, we propose to use a pretrained 214

language model (BERT; (Devlin et al., 2019)) 215

and graph attention network (GAT; (Vieweg et al., 216

2010)) to model comment tree; see Figure 2 for 217

an illustration. We first process the set of parent- 218

child posts with BERT (Devlin et al., 2019) before 219

feeding them to a graph network to model the full 220

conversational structure. The self-attention mech- 221

anism between the words in the parent and child 222

posts would produce a more fine-grained analysis 223

of their relationship, which representations such as 224

bag-of-words cannot model. Using the comment 225

tree in Figure 2 as an example, this means we would 226

first process the following pairs of posts using 227

BERT: {(0, 0), (0, 1), (0, 2), (2, 6), (2, 7), (6, 9)}, 228

where (0, 0) is a pseudo pair created for the source 229
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post.1 Formally:230

hp+q = BERT(emb([CLS], cp, [SEP ], cq)) (1)231

where c represents the text, emb() the embedding232

function and h the contextual representation of the233

[CLS] token produced by BERT.234

To model the conversational network struc-235

ture, we use graph attentional networks (GAT;236

(Veličković et al., 2017)). Different to graph convo-237

lutional networks (Kipf and Welling, 2016a), GAT238

iteratively learns node encodings via multi-head239

attention with neighbouring nodes, and has the ad-240

vantage to infer encodings for new nodes after it’s241

trained. To compute h(l+1)
i , the encoding for node242

i at iteration l + 1:243

e
(l)
ij = LR

(
a(l)

T
(
W (l)h

(l)
i ⊕W

(l)h
(l)
j

))
h
(l+1)
i = σ

 ∑
j∈N (i)

softmax
(
e
(l)
ij

)
z
(l)
j


(2)244

where LR denotes the LeakyReLU activation func-245

tion, ⊕ the concatenation operation, N (i) the246

neighbours of node i, e(l)ij the unnormalised atten-247

tion score between node i and j, and a and W are248

learnable parameters. Note that h(0)i represents the249

encodings produced by BERT (Equation 1).250

To aggregate the node encodings to get a graph251

representation (zct), we explore four methods:252

root: Uses the root encoding to represent the253

graph as the source post is ultimately what we are254

classifying:255

zct = hL0 (3)256

where L is the number of GAT iterations.257

¬root: Mean-pooling over all nodes except the258

root:259

zct =
1

m

m∑
i=1

hLi (4)260

where m is the number of replies/comments.261

N: Mean-pooling of the root node and its imme-262

diate neighbours:263

zct =
1

|N (0)|
∑

i∈N (0)

hLi (5)264

all: Mean-pooling of all nodes:265

zct =
1

m+ 1

m∑
i=0

hLi (6)266

1Preliminary experiments found that the pseudo pair is
important because it allows us to maintain the original network
structure.

BERT h0+0[CLS]

GAT

Graph Structure

Graph 
Representation 

Learning

Zct

Dynamic Node Encoding

BERT

BERT

BERT

BERT

BERT

h0+1[CLS]

h0+2[CLS]

h2+6[CLS]

h2+7[CLS]

h6+9[CLS]

Figure 2: The architecture of BERT+GAT.

4.2 Comment Chain 267

Here we model the posts as a stream in the order 268

they are posted. As such, we have a chain or list 269

structure (rather than a tree structure); see “com- 270

ment chain” in Figure 1. 271

We explore three ways to model the comment 272

chain, using: (1) one-tier transformer; (2) long- 273

former (Beltagy et al., 2020); and (3) two-tier trans- 274

former. 275

One-tier transformer: Given a source post (c0) 276

and the comments ({c1, ..., cm}), we simply con- 277

catenate them into a long string and feed it to BERT 278

and use the contextual representation of the [CLS] 279

token as the final representation: 280

zcc = BERT(emb([CLS], c0, [SEP ], c1, ..., cm′)) 281

wherem′ (< m) is the number of comments we can 282

incorporate without exceeding BERT’s maximum 283

sequence length (384 in our experiments). 284

Longformer: To circumvent the sequence 285

length limit, we experiment with using a long- 286

former, which can process up to 4,096 subwords, 287

allowing us to use most if not all the comments. 288

Longformer has a similar architecture as the one- 289

tier transformer, but uses a sparser attention pat- 290

tern to process longer sequences more efficiently. 291

We use a pretrained longformer2, and follow the 292

same approach as before for modelling the com- 293

ment chain: 294

zcc = LF(emb([CLS], c0, [SEP ], c1, ..., cm′′)) 295

where m′′ ≈ m. 296

Two-tier transformer: An alternative approach 297

to tackling the sequence length limit is to model the 298

comment chain using two tiers of transformers: one 299

for processing the posts independently, and another 300

for processing the sequence of posts using repre- 301

sentations from the first transformer. Formally: 302

hi = BERT(emb1([CLS], ci)) 303

zcc = transformer(emb2([CLS]), h0, h1, ..., hm) 304

2https://huggingface.co/transformers/
model_doc/longformer.html
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where BERT and transformer denote the first- and305

second-tier transformers respectively. The second-306

tier transformer has a similar architecture to BERT,307

but has only 2 layers and its parameters are ini-308

tialised randomly.309

4.3 User Tree310

Moving away from the post content, here we model311

the network of users that interact with a source312

post (“user tree” in Figure 1). Previous studies313

found that the user characteristics are different for314

those that engage with rumours vs. those who don’t315

(Vosoughi et al., 2018; Shu et al., 2018), motivating316

us to model the user network. Note that unlike pre-317

vious studies, our user network captures all users318

who reply to or repost the source post (previous319

studies use only the reposts, see Table 1).320

We explore three methods to model the user net-321

work. All methods use a GAT (Veličković et al.,322

2017) to model the network (following Equation323

2), and we aggregate the node encodings by mean-324

pooling over all nodes to produce the graph repre-325

sentation:326

zut =
1

m+ 1

m∑
i=0

hLi327

where L is number of GAT iterations.328

The main difference between the three methods329

is in how they initialise the user nodes (h(0)i ):330

GATrnd: This is the base method where we ini-331

tialise the user nodes with random vectors.332

GATprf: Following Liu and Wu (2018), this333

method initialises the user nodes based on features334

derived from their user profiles: username, user335

screen name, user description, user account age,336

number of followers and following users, number337

of posts and favourite posts, whether the profile338

is protected, whether the account is GPS-enabled,339

and the time difference with the source post.3340

GATprf+rel: This method initialises the user341

nodes with representations learned by a varia-342

tional graph autoencoder (GAE; Kipf and Welling343

(2016b)) based on the user features (defined above)344

and their social relations (based on “follow” rela-345

tions).4 Intuitively, GAE is an unsupervised graph346

3The last feature is technically not user profile information,
but it is a form of user characteristic as it captures how quickly
they engage with a post.

4For the unseen or isolated users, we initialise them based
on their user features (used in GATprf), and project them via
a learned matrix into the same space as the GAE-initialised
user nodes.

Twitter15 Twitter16 WEIBO CoAID

#source nodes 1,490 818 4,664 143,009
#users 276,663 173,487 2,746,818 114,484

Comment graph

#nodes 331,612 204,820 3,805,656 248,742
Avg. # of nodes/s 223 251 816 7
Max. # of nodes/s 1,768 2,765 1,768 228
Min. # of nodes/s 55 81 10 1
Avg. time delay/s 1,337 848 2460.7 15.4

User social network

#nodes 39,869 19,211 2,746,818 1,601
#connections 3,086,741 1,232,100 – 25,605

Table 2: Statistics of rumour datasets. “s” denotes an
story (source post and its comments).

learning algorithm that takes in an adjacency ma- 347

trix as input, and learns node representations that 348

can reconstruct the adjacency matrix in the output. 349

Note that the network structure of the GAT and 350

GAE is intrinsically different — the former cap- 351

tures the users that engage with a source post while 352

the latter the network of users who follow one an- 353

other. The idea for using GAE-learned encodings 354

to initialise user nodes is that they are more infor- 355

mative, since they capture information about a user 356

and their peers. 357

4.4 Rumour Classifier 358

In each module (comment tree, comment chain 359

and user tree), we explore a number of approaches 360

to model its structure (e.g. there are several ways 361

to aggregate the node encodings to produce zct 362

for the comment tree and 3 different methods to 363

produce zcc for the comment chain). Given an 364

optimal approach for each module (discussed in the 365

Experiments and Results section), DUCK (Figure 366

1) combines the output from all modules to classify 367

a source post and is trained using standard cross- 368

entropy loss. Formally: 369

z = zct ⊕ zcc ⊕ zut 370

ŷ = softmax(Wcz + bc) 371

L = −
n∑

i=1

yilog(ŷi) 372

where n denotes the number of instances. 373

5 Experiments and Results 374

5.1 Datasets and models 375

We evaluate our method on four widely used ru- 376

mour datasets: Twitter15 (Ma et al., 2017); Twit- 377

ter16 (Ma et al., 2017); CoAID (Cui and Lee, 378
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2020); and WEIBO (Ma et al., 2016). Twitter15379

and Twitter16 are Twitter datasets with four rumour380

classes: true rumour, false rumour, non-rumour and381

unverified rumour. CoAID (Cui and Lee, 2020) col-382

lects of a set of COVID-19 news articles shared on383

Twitter, and they are annotated with two classes384

(true or fake). WEIBO (Ma et al., 2016) contains385

a collection of stories from Sina Weibo, a Chi-386

nese social media platform, and is annotated with387

two classes (rumour and non-rumour). Table 2388

shows statistics of these datasets. For Twitter-based389

datasets (Twitter15/16 and CoAID), we crawl the390

tweets and additional user information (e.g. user391

profile metadata and followers) via the official Twit-392

ter API.5 For WEIBO, the platform does not pro-393

vide a means to crawl social relations them and so394

the user tree uses GATprf.395

In terms of data partitioning, for Twitter15 and396

Twitter16 we follow previous studies (Ma et al.,397

2015, 2016) and report the average performance398

based on 5-fold cross-validation. For CoAID and399

WEIBO, we reserve 20% data as test and split400

the rest in a ratio of 4:1 for training and devel-401

opment partitions and report the average test per-402

formance over 5 runs (initialised with different ran-403

dom seeds). We use the development set of each404

dataset for tuning hyper-parameters.6405

Implementation details for all models are given406

in the Appendix.407

5.2 Results408

In this section, we first present results for each409

of the modules (comment tree, comment chain410

and user tree) separately to understand the best411

approach for modelling them, and then present412

the final results where we compare our full model413

DUCK (Figure 1) to a number of benchmark sys-414

tems. For the first set of results where we evaluate415

each module independently, we feed their represen-416

tations (i.e. zct, zcc and zut) to an MLP layer to do417

classification. Specifically, we are interested in the418

following questions:419

• Q1 [Comment tree]: Does incorporating420

BERT to analyse the relation between parent421

and child posts help modelling the comment422

network, and what is the best way to aggre-423

5https://developer.twitter.com/en/doc
s/twitter-api/v1

6For Twitter15/16 during tuning we use only one of the
folds and reserve 1/4 of the training data as development set
and train the model using the rest (3/4) of the training data.

gate comment-pair encodings to represent the 424

comment graph? 425

• Q2 [Comment chain]: Does incorporating 426

more comments help rumour detection when 427

modelling them as a stream of posts? 428

• Q3 [User tree]: Can social relations help mod- 429

elling the user network? 430

• Q4 [Overall performance]: Do the three differ- 431

ent components complement each other and 432

how does a combined approach compared to 433

existing rumour detection systems? 434

For the first three questions, we present develop- 435

ment performance using Twitter16 and CoAID as 436

the representative datasets (as the trends are largely 437

the same for the other datasets), while for the fi- 438

nal question we report the test performance for all 439

datasets. In terms of evaluation metrics, we present 440

F1 scores for each class and macro-averaged F1 441

scores as the aggregate performance. All results are 442

an average over 5 runs (5-fold cross-validation for 443

Twitter15/16 and 5 independent runs with different 444

random seeds for WEIBO and CoAID following 445

Ma et al. (2016, 2017); Cui and Lee (2020)). 446

5.2.1 Comment Tree 447

To understand the impact of using BERT for pro- 448

cessing a pair of parent-child posts, we present 449

an alternative method (“unpaired”) where we use 450

BERT to process each post independently before 451

feeding their [CLS] representation to the GAT. 452

That is, Equation 1 is now modified to: 453

hp = BERT(emb([CLS], cp)) 454

where h will be used as the initial node representa- 455

tion (h(0)) in the GAT (Equation 2). We report 456

the performance of this alternative model (“un- 457

paired”)7 and the different aggregation methods 458

(“root”, “¬root”, “N” and “all”; equations 3, 4, 5 459

and 6 respectively) in Table 3. 460

Comparing the aggregation methods, “all” per- 461

forms the best, followed by “N” and “root” (0.88 vs. 462

0.87 vs. 0.86 in Twitter16; 0.87 vs. 0.86 vs. 0.85 in 463

CoAID in terms of Macro-F1). We can see that the 464

root and its immediate neighbours contain most of 465

the information, and not including the root node im- 466

pacts the performance severely (both Twitter16 and 467

CoAID drops to 0.80 with ¬root). Does processing 468

7The “unpaired” approach uses “all” as the aggregation
method.
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Variants
Twitter16 CoAID

F1 FR TR NR UR F1 T F

unpaired 0.83 0.92 0.87 0.73 0.82 0.83 0.98 0.67

root 0.86 0.85 0.92 0.85 0.83 0.85 0.98 0.71
¬root 0.80 0.82 0.91 0.77 0.79 0.80 0.97 0.64

N 0.87 0.89 0.95 0.74 0.88 0.86 0.99 0.74
all 0.88 0.89 0.94 0.79 0.90 0.87 0.98 0.75

Table 3: Results for the comment tree. “FR”, “TR”,
“NR” and “UR” in Twitter16 denote false, true, non-
and unverified rumours respectively; and “T” and “F”
in CoAID means true and fake classes.
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Figure 3: Results (macro-F1) for the comment chain
over varying number of comments.

the parent-child posts together with BERT help?469

The answer is evidently yes, as we see a substantial470

drop in performance when we process the posts471

independently: “unpaired” produces a macro-F1472

of only 0.83 in both Twitter16 and CoAID. Given473

these results, our full model (DUCK) will be using474

“all” as the aggregation method for computing the475

comment graph representation.476

5.2.2 Comment Chain477

Recall that we explore using transformer models –478

one-tier transformer, longformer and two-tier trans-479

former – for modelling the comments of a story480

as a sequence. Fig. 3 plots the results where we481

vary the number of included comments to answer482

Q2.8 Note that for longformer we always use all483

the comments, since it is designed to process long484

sequences.485

Both one-tier and two-tier transformers see a486

performance gain when the number of comments487

increases and a drop when there are too many com-488

ments (noting that the trend is flatter in CoAID).489

However, due to one-tier transformer’s sequence490

8For one-tier and two-tier transformers, if the number of
comments is set to 10, that means we will concatenate 10
comments (with the source post) into a long string, and any
text that exceeds BERT’s maximum sequence length will be
truncated (and so for some stories the models may use less
than 10 comments, if earlier comments are very long).

Variants
Twitter16 CoAID

F1 FR TR NR UR F1 T F

GATrnd 0.47 0.57 0.38 0.48 0.47 0.61 0.59 0.46
GATprf 0.63 0.64 0.67 0.56 0.60 0.80 0.97 0.62

GATprf+rel 0.69 0.74 0.72 0.64 0.68 0.85 0.98 0.71

Table 4: Results for the user tree.

length limit, it can take no more than 60 comments 491

on average. Two-tier transformer is able to pro- 492

cess more comments, and produces the best perfor- 493

mance. Interestingly, even though longformer is 494

able to include most of the comments, it performs 495

worse than both one-tier and two-tier transformer, 496

suggesting that the sparser attention pattern that 497

longformer introduces has a negative impact. With 498

these results, we will use the two-tier transformer 499

to model the comment chain in DUCK. 500

5.2.3 User Tree 501

Recall that we use GAT to represent the reply 502

and repost user network, and we investigate differ- 503

ent node encodings to initialise GAT: (1) random 504

initialisation (GATrnd); (2) user profile metadata 505

(GATprf); and (3) user profile metadata and social 506

relations (GATprf+rel). Results are shown in Table 4. 507

Unsurprisingly, random initialisation performs the 508

worse, and we see a substantial improvement when 509

user profile information is incorporated, and again 510

an improvement when we incorporate user social 511

relations (6% and 5% increase in macro-F1 for 512

Twitter16 and CoAID). Our results highlight the 513

importance of incorporating social relations, and 514

DUCK therefore uses GATprf+rel for modelling the 515

reply and retweet user network.9 516

5.2.4 Overall Rumour Detection 517

Performance 518

We next compare the rumour detection perfor- 519

mance of DUCK that combines comment tree, com- 520

ment chain and user tree models (Figure 1) to the 521

following state-of-the-art methods: (1) RvNN (Ma 522

et al., 2018)10: uses a GRU to process text content 523

and recursive networks to model the comment net- 524

work; (2) RNN+CNN (Liu and Wu, 2018): uses 525

CNN and RNN to model the retweet user net- 526

work where user representations are initialised with 527

user profile features; (3) stance-BERT (Tian et al., 528

9With the exception of WEIBO where we can’t crawl users’
followers, and so it uses GATprf.

10https://github.com/majingCUHK/Rumor_R
vNN
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Twitter15 Twitter16 CoAID WEIBO

Model F1 FR TR NR UR F1 FR TR NR UR F1 T F F1 NR R

RvNN 0.72 0.76 0.82 0.68 0.65 0.74 0.74 0.84 0.66 0.71 0.78 0.98 0.57 0.91 0.91 0.91
RNN+CNN 0.53 0.51 0.30 0.36 0.64 0.56 0.54 0.40 0.59 0.67 – – – 0.92 0.91 0.92
stance-BERT 0.82 0.82 0.85 0.87 0.71 0.83 0.82 0.88 0.83 0.77 0.90 0.99 0.81 – – –
Bi-GCN 0.86 0.85 0.91 0.84 0.82 0.86 0.86 0.93 0.79 0.86 0.83 0.99 0.68 0.96 0.96 0.96
GCAN 0.69 0.75 0.75 0.63 0.68 0.72 0.73 0.78 0.67 0.72 – – – 0.92 0.92 0.92

DUCK¬CT 0.82 0.72 0.91 0.82 0.85 0.84 0.88 0.81 0.88 0.79 0.91 0.99 0.82 0.93 0.93 0.93
DUCK¬CC 0.85 0.91 0.86 0.81 0.82 0.85 0.84 0.91 0.78 0.87 0.87 0.98 0.75 0.94 0.94 0.94
DUCK¬UT 0.88 0.92 0.84 0.91 0.85 0.89 0.91 0.91 0.87 0.88 0.91 0.99 0.83 0.97 0.97 0.97
DUCK 0.90 0.91 0.93 0.88 0.88 0.91 0.89 0.93 0.93 0.91 0.92 0.99 0.85 0.98 0.98 0.98

Table 5: Overall rumour detection results. “CT”, “CC” and “UT” denote comment tree, comment chain and user
tree respectively, and “R” and “NR” in WEIBO denote rumour and non-rumour.

2020): fine-tunes a BERT pretrained with stance529

annotations for rumour detection and comments are530

modelled as a chain (similar to our one-tier trans-531

former model); (4) Bi-GCN (Bian et al., 2020)11:532

uses a bidirectional graph convolutional network533

to model the comment network in a top-down (i.e.534

nodes are combined starting from the leaf com-535

ments) and bottom-up manner (i.e. nodes are com-536

bined starting from the root); and (5) GCAN (Lu537

and Li, 2020)12: uses graph networks to model538

the retweet user network and a CNN to model the539

source post with co-attention between the two net-540

works. For a summary of the different features541

used by these benchmark systems and our model,542

see Table Table 1.543

All benchmark results are produced using544

the author-provided code, with the exception of545

RNN+CNN and stance-BERT where we imple-546

ment ourselves. Note that we only have English re-547

sults (Twitter15, Twitter16 and CoAID) for stance-548

BERT as it uses stance annotations from SemEval-549

2016 (Mohammad et al., 2016), and GCAN and550

RNN+CNN do not have results for CoAID as it551

does not contain retweets.552

We present the results in Table 5. DUCK (our553

model) performs very strongly, outperforming all554

benchmark systems consistently over all datasets,555

creating a new state-of-the-art for rumour detec-556

tion. In terms of datasets, WEIBO appears to be557

the “easier” dataset, where most systems produce558

a macro-F1 over 90%. We also observe that mod-559

els that use the comment texts (stance-BERT and560

Bi-GCN) tend to do better than those that only561

use the user network (RNN+CNN and GCAN), al-562

11https://github.com/TianBian95/BiGCN
12https://github.com/l852888/GCAN

though the strong performance of DUCK indicates 563

that combining both types of information works 564

best, suggesting that they complement each other. 565

Another thing of note is CoAID, the only dataset 566

where the class distribution is heavily imbalanced. 567

Here we see that most systems struggle with the 568

minority class (“F”), but our combined approach 569

appears to handle this well. 570

To understand the impact of each module in 571

DUCK, we present variants where we remove one 572

module, e.g. DUCK¬CT means comment tree re- 573

moved. Results suggest that comment tree has 574

the largest impact, followed by comment chain as 575

they produce the largest performance drop when 576

removed. This finding is similar to what we saw 577

earlier, where systems like stance-BERT and Bi- 578

GCN that use comments tend to perform better. 579

6 Conclusion 580

We presented DUCK, a social media rumour de- 581

tection approach that models both the network of 582

users who interact with a story as well as their com- 583

ments/opinions. Our approach is unique in how 584

we model the comment as a graph (with BERT 585

and GAT) and also as a stream (with transform- 586

ers) and the user networks together with their peer 587

relations (with GAT and GAE). We conduct exten- 588

sive experiments over four popular rumour bench- 589

mark datasets to evaluate DUCK. We found that 590

the comment network contains the strongest sig- 591

nal for predicting rumours, and social relations are 592

important for modelling the user network. DUCK 593

substantially outperforms all benchmark methods 594

consistently, creating a new state-of-the-art. 595
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A Implementation Details 762

We implement our models in PyTorch using 763

the HuggingFace library13 and their pretrained 764

BERT14 and Chinese-BERT15. Graph neural net- 765

works are implemented with the Geometric16 pack- 766

age. 767

For the comment tree, we set maximum token 768

length=40 and dropout rate = [0.5, 0.6] for GAT 769

and 0.2 for BERT embeddings. Learning rate is 770

tuned in the range between [1e−5, 5e−5] for BERT 771

and [1e−4, 5e−4] for GAT based on the develop- 772

ment set. For comment chain, the learning rate for 773

two-tier transformer (comment chain) is tuned in 774

between [2e−5, 5e−5] with maximum token length 775

as 40. For user tree, we set the dimension of 776

each node hidden features as 256. All models use 777

the Adam optimiser (Kingma and Ba, 2014), and 778

our experiments are run using 4×A100 GPU with 779

40GB Memory. 780

13https://github.com/huggingface
14https://huggingface.co/bert-base-cas

ed
15https://huggingface.co/bert-base-chi

nese
16https://pytorch-geometric.readthedocs.

io/en/latest/.
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