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Exploring in Extremely Dark: Low-Light Video Enhancement
with Real Events

Anonymous Authors

(a) Low-light Frames (b) Events (c) CLIP-LIT [17] (d) LAN [4] (e) REN

Figure 1: Given inputs of (a) low-light frames and (b) events, the normal-light frames can be enhanced using different methods
shown in (c) CLIP-LIT (ICCV2023) [17], (d) LAN (ICCV2023) [4] and (e) the Real-Event Embedded Network (REN). These
examples are tested on real data containing extremely dark regions. The REN is able to generate normal-light frames with
more details and improved brightness.

ABSTRACT
Due to the limitations of sensor, traditional cameras struggle to
capture details within extremely dark areas of videos. The absence
of such details can significantly impact the effectiveness of low-
light video enhancement. In contrast, event cameras offer a visual
representation with higher dynamic range, facilitating the capture
of motion information even in exceptionally dark conditions. Mo-
tivated by this advantage, we propose the Real-Event Embedded
Network for low-light video enhancement. To better utilize events
for enhancing extremely dark regions, we propose an Event-Image
Fusion module, which can identify these dark regions and enhance
them significantly. To ensure temporal stability of the video and
restore details within extremely dark areas, we design unsuper-
vised temporal consistency loss and detail contrast loss. Alongside
the supervised loss, these loss functions collectively contribute to
the semi-supervised training of the network on unpaired real data.
Experimental results on synthetic and real data demonstrate the su-
periority of the proposed method compared to the state-of-the-art
methods. Our codes will be publicly available.
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1 INTRODUCTION
Low-light video enhancement is a critical task in the field of com-
puter vision, which aims to enhance the visibility and visual quality
of videos captured under low-light conditions. Due to the con-
straints of low-light environments and the limitations of camera
sensor, these videos often suffer from noticeable noise, insufficient
information and blurriness, leading to the loss of details and a de-
crease in the overall quality. Despite significant progress in this
field, low-light video enhancement remains a formidable challenge.

Many deep learning methods [1, 4, 11, 21, 34, 43] have been
proposed to enhance low-light videos. However, most of these
approaches rely on mining information directly from a video to
enhance it. Due to the limitations of cameras, details in extremely
dark areas of the videos are inevitably lost and remain missing even
after the enhancement.

Event camera is an emerging sensor characterized by its large
dynamic range and rapid response. Events recorded alongside low-
light videos, even in extremely dark areas, can fully capture motion
information, which is lacking in traditional cameras. This feature
makes event cameras highly suitable for low-light video enhance-
ment.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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However, employing event cameras for low-light video enhance-
ment faces several distinct challenges: 1) Fusion complexities: The
information in the extremely dark regions of the video is limited,
making it challenging to fuse event data with these areas and
achieve effective enhancement. 2) Data acquisition difficulties: Con-
structing a dataset consisting of paired real events, normal-light
videos and low-light videos is difficult. Most existing video-event
paired datasets [6, 14] only consist one type of videos while also
suffering from alignment issues. While event simulators [10, 27]
can be used to generate synthetic events, the inherent disparities
between synthetic and genuine data can compromise the inferential
performance on real data.

In this paper, we propose the Real-Event Embedded Network
(REN), a low-light video enhancement model that integrates event
data based on the Retinex [13] theory. We tackle the challenges by
the following strategies: To effectively fuse misaligned real events
and images, we present Event-Image Fusion (EIF) module. It can
adaptively identify extremely dark regions and utilize event in-
formation to enhance them. Furthermore, EIF module establishes
spatial alignment between misaligned image and event features. To
address the challenge of lacking genuine paired data, we propose
unsupervised temporal consistency loss and detail contrast loss,
which offer supervision at both temporal and spatial levels. They
ensure the temporal consistency of input and output sequence, and
spatially supervise detail reconstruction in extremely dark regions
respectively. Together with the supervised loss, these loss functions
collectively contribute to the semi-supervised training of the REN.
The overall network is trained end-to-end with partially labeled
datasets, which consist of paired low-light and normal-light videos
with synthetic events, as well as solely low-light videos alongside
real events.

In summary, the contributions of our work are as follows:

• We propose the Real-Event Embedded Network to leverage
real events for addressing low-light enhancement challenges.
To the best of our knowledge, it is the first exploration of
real events in this field.

• We propose the Event-Image Fusion module, which can iden-
tify extremely dark regions and utilize event to enhance
them.

• We design unsupervised temporal consistency loss and detail
contrast loss, aiming to maintain temporal stability of videos
and restore details in extremely dark regions.

• Extensive experiments on both real and synthetic datasets
demonstrate that our approach outperforms state-of-the-art
methods in low-light video and image enhancement.

2 RELATEDWORK
Low-Light Video Enhancement This line of work primarily in-
cludes direct enhancement and Retinex-based enhancement. In the
former, Liu et al. [18] employ neural networks to simulate event
information from videos and fuse them. Zhang et al. [40] extract
optical flow from individual images to enforce the temporal stability.
Chhirolya et al. [2] propose a self-cross dilated attention module
to learn inter-frame relationships in static videos. SGLLIE [43]
extracts enhancement factors and recursively enhances videos.
MBLLEN [21] and SMOID [11] employ 3D convolutions to harness

the temporal information within videos. As for the Retinex-based
enhancement, LAN [4] and SDSDNet [34] extract illumination from
videos and enhance them, with LAN designing an adaptive bright-
ness enhancement method capable of achieving one-to-multiple
enhancement. In contrast to previous Retinex-based approaches,
our focus lies on the reflectance, using event data to complement
missing information in extremely dark regions.

Event-BasedVideoReconstruction Event cameras have found
widespread applications in the field of image and video reconstruc-
tion, including super-resolution [8, 20], high dynamic range [25, 39],
deblurring [30, 36] and video frame interpolation [12, 31]. Consid-
ering the distinct modalities of image and event features, these
works primarily focus on the fusion. In addition to simply sum-
ming or concatenating events and images [26, 33], HDRev [39]
propose a multimodal representation alignment strategy to learn
a shared latent space and a fusion module tailored to complement
two types of signals in different regions. EvIntSR [8] constructs
latent frames separately from events and images, followed by their
fusion. EFNet [29] propose an Event-Image Cross-modal Attention
fusion module, which allows attending to the event features via a
channel-level attention mechanism. Very recently, Liang et al. [16]
propose a low-light video enhancement method with hybrid inputs
of events and frames, using synthetic events to train their network.
The differences between these methods and our work are: 1) We
employ real event for low-light video enhancement; 2) Our work
focuses on enhancing extremely dark regions using event data,
while other approaches treat all regions uniformly; 3) Our approach
can deal with the misalignment image and event features through
spatial-level attention.

3 PROPOSED METHOD
3.1 Formulation
Event Representation An event data 𝑒 = (𝑝, 𝑡, 𝜎) is triggered
at time 𝑡 and at pixel 𝑝 = (𝑥,𝑦) when the log intensity change
Δ𝐿 between 𝑡 and 𝑡 − 𝛿𝑡 exceeds the dispatched threshold 𝜃 , 𝜎 ∈
{+1,−1} is the polarity that indicates the increase or decrease of
intensity changes.

Δ𝐿 =∥ log𝑅 (𝑝 )𝑡 − log𝑅 (𝑝 )
𝑡−𝛿𝑡 ∥ (1)

where 𝑅 (𝑝 )𝑡 denotes the instantaneous intensity at time 𝑡 and pixel
𝑝 .

As event streams are sparse points and can not input into net-
work, we represent the events as 3D voxel grid [44]. By discretizing
duration Δ𝑡 = 𝑡𝐾−1 − 𝑡0 spanned by 𝐾 events into 𝐶 temporal bins,
each event 𝑒𝑘 = (𝑝𝑘 , 𝑡𝑘 , 𝜎𝑘 ) distributes its polarity 𝜎𝑘 to the two
closest voxels:

𝐸
(𝑝 )
𝑡 =

∑︁
𝑝𝑘=𝑝

𝜎𝑘 max(0, 1− | 𝑡 − 𝑡𝑘 |) (2)

where 𝑡𝑘 = 𝐶−1
Δ𝑡 (𝑡𝑘 − 𝑡0) is the normalized timestamp.

Problem Statement Classic Retinex-based model assumes that
image can be decomposed into reflectance and illumination, similar
to [3], we employ a regularization-free method to represent the
image 𝐼 :

𝐼 = 𝜙𝑠 (𝜙𝑅 (𝐼 ), 𝜙𝐿 (𝐼 )) (3)
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Figure 2: An overview of the proposed REN. Based on the Retinex theory, estimate the illumination and reflection of input
frames. Generate Dark Region Mask to identify the extremely dark regions, then fuse event and image features to enhance the
reflection in these regions using the Event-Image Attention module. Finally, merge the illumination and reflection to obtain
the enhanced frame.

where 𝜙𝑅 , 𝜙𝐿 denote the modules used to estimate reflectance and
illumination respectively, and 𝜙𝑠 denotes the module used to syn-
thesize the reflectance and illumination.

Previous methods primarily focus on accurately estimating these
two components and their fusion, often directly assuming the esti-
mated reflectance is same as the ground truth [3, 4]. However, in
extremely dark regions, the reflectance tends to lack fine details,
owing to the limitations of conventional camera sensors. Different
from prior work, our approach enhances the reflectance using event
data, the enhanced image 𝑌𝑡 can be defined as:

𝑌𝑡 = 𝜙𝑠 (𝜙𝐸 (𝐼𝑙 , 𝐸), 𝜙𝐿 (𝐼𝑙 )) (4)

and the objective function is as follows:

min
𝜙𝑠 ,𝜙𝐿,𝜙𝐸

∥ 𝐼𝑛 − 𝜙𝑠 (𝜙𝐸 (𝐼𝑙 , 𝐸), 𝜙𝐿 (𝐼𝑙 )) ∥2𝐹+

∥ 𝜙𝑅 (𝐼𝑛) − 𝜙𝐸 (𝐼𝑙 , 𝐸) ∥2𝐹
(5)

where 𝐼𝑛 , 𝐼𝑙 and 𝐸 denote normal-light image, low-light image and
event respectively;𝜙𝐸 denotes the reflectance estimated from events
and images; and ∥ · ∥𝐹 represents the Frobenius norm.

3.2 General Architecture of REN
Fig. 2 illustrates the overall architecture of the proposed REN. Given
input video frames 𝐼𝑡+𝑗, 𝑗∈[−𝑘,𝑘 ] and an event sequence 𝐸𝑡−𝑘∼𝑡+𝑘 ,
we first concatenate and project them as embedding 𝐹 (0)

𝐼
∈ 𝑅𝐻×𝑊 ×𝐶

and 𝐹 (0)
𝐸

∈ 𝑅𝐻×𝑊 ×𝐶 respectively through a Residual Block [9].
Then we estimate the reflectance 𝜙𝐸 (𝐼𝑡 , 𝐸) and illumination 𝜙𝐿 (𝐼𝑡 )
from them, and finally synthesize them into normal light frames 𝑌𝑡 .

We use a dual-branch structure to estimate the reflectance𝜙𝐸 (𝐼𝑡 , 𝐸),
with a branch dedicated to extract image features and the other
to extract the event features respectively. Every branch is struc-
tured as a hierarchy with four stages. Each stage of the image
branch consists of an image encoder Γ𝑖

𝐼
and an Event-Image Fu-

sion module (EIF, will be detailed in Sec. 3.3). Each stage of event
branch only consists of an event encoder Γ𝑖

𝐸
. For the 𝑖-th stage, the

image feature 𝐹 𝑖−1
𝐼

∈ 𝑅
𝐻

2𝑖−1 ×
𝑊

2𝑖−1 ×2
𝑖−1𝐶 and event feature 𝐹 𝑖−1

𝐸
∈

(a) Low-light Frame 𝐼 (b) Luminance𝐺 (c) SNRmap 𝑆

(d) Event 𝐸 (e) 𝑀𝑎𝑠𝑘 (f) Our result

Figure 3: Visualization of the Luminance (b) and SNRmap (c)
extracted from input frame (a). The extremely dark regions
mask is (e), the input events is (d) and our result is (f).

𝑅
𝐻

2𝑖−1 ×
𝑊

2𝑖−1 ×2
𝑖−1𝐶 will first be processed as 𝐹 𝑖

𝐼
∈ 𝑅

𝐻

2𝑖
×𝑊

2𝑖
×2𝑖𝐶 and

𝐹 𝑖
𝐸
∈ 𝑅

𝐻

2𝑖
×𝑊

2𝑖
×2𝑖𝐶 through image encoder Γ𝑖

𝐼
and event encoder Γ𝑖

𝐸
respectively. Then these features are jointly fed into the EIF module
to obtain the fused features 𝐹 𝑖

𝑓
∈ 𝑅

𝐻

2𝑖
×𝑊

2𝑖
×2𝑖𝐶 , we set 𝐹 𝑖

𝐼
= 𝐹 𝑖

𝑓
as

the input for the next stage. 𝐹 4
𝑓
will be considered as the reflectance

𝜙𝐸 (𝐼𝑡 , 𝐸).
Considering that the illumination requires more global features,

we first encode 𝐹 (0)
𝐼

into the latent space, followed by a U-Net [28]
to estimate the Illumination 𝜙𝐿 (𝐼𝑡 ).

The estimated illumination 𝜙𝐿 (𝐼𝑡 ) and reflectance 𝜙𝐸 (𝐼𝑡 , 𝐸) are
first aligned by convolutional layers, after which the aligned fea-
tures are fed into the decoder 𝜙𝑠 to synthesize them. In addition,
we also employ residual connections between image encoders and
the decoder to improve the performance. In the end, the output of
the decoder is processed through a convolutional layer to obtain
the enhanced frame 𝑌𝑡 .
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3.3 Event-Image Fusion
The fusion of image features and event features is the key to event-
based low-light enhancement, requiring the matching of relevant
features from both the image and the event. Due to the limited
information in the ultra-dark regions and interference from other
areas, matching is very challenging.

Generate Dark Region Mask We design a patch-based ex-
tremely dark region mask to identify these regions, so the con-
straints imposed by the two conditions mentioned above can be
relaxed when matching with events. As the extremely dark regions
are included in the patch, information within the patch can be used
for matching with event features, reducing the difficulty of match-
ing, meanwhile avoiding interference from information outside the
patch.

Due to the extremely low brightness and Signal-to-Noise Ratio
(SNR) in the ultra-dark regions, we use SNR distribution and lumi-
nance distribution to generate the mask. We calculate the SNR map
using the method similar to [37], and regard the grayscale image
as luminance map. Specifically, given the frames 𝐼𝑡+𝑗, 𝑗∈[−𝑘,𝑘 ] , we
calculate the luminance map𝐺 and SNR map 𝑆 of 𝐼𝑡 , and then count
their distribution.

𝐺 = 𝐺𝑟𝑎𝑦 (𝐼𝑡 )

𝐼
𝑔
𝑡 = 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 (𝐺𝑟𝑎𝑦 (𝐼𝑡 ))

𝑆 =
𝐼
𝑔
𝑡

𝑎𝑏𝑠 (𝐼𝑔𝑡 − 𝐼𝑔𝑡 )

(6)

where 𝐺𝑟𝑎𝑦 denotes the process of obtaining a grayscale image,
𝑑𝑒𝑛𝑜𝑖𝑠𝑒 represents a non-learning-based denoising operation. For
the 𝑖-th stage, 𝐹 𝑖

𝐼
∈ 𝑅ℎ×𝑤×𝑐 , we first resize 𝐺 and 𝑆 to (ℎ,𝑤),

then divide them into non-overlapping patches 𝐺 𝑗, 𝑗∈[1,2,...,𝑚] and
𝑆 𝑗, 𝑗∈[1,2,...,𝑚] , using a window of size (𝑤𝑠,𝑤𝑠). Then𝑚𝑎𝑠𝑘𝑖 is get
through:

𝑚𝑎𝑠𝑘𝑖𝑗 =

{1, 𝑚𝑒𝑎𝑛(𝐺 𝑗 ) < 𝜃𝑙&𝑚𝑒𝑎𝑛(𝑆 𝑗 ) < 𝜃𝑠
0, 𝑒𝑙𝑠𝑒

(7)

where𝑚𝑒𝑎𝑛 denotes taking the average value,𝑚𝑎𝑠𝑘𝑖
𝑗
denotes the

𝑗-th patch of𝑚𝑎𝑠𝑘𝑖 , 𝜃𝑙 and 𝜃𝑠 are thresholds based on luminance
distribution and SNR distribution respectively. We set 𝜃𝑙 and 𝜃𝑠 as
the last 10% of luminance distribution and the last 30% of SNR dis-
tribution respectively. The extremely dark region feature of images
can be defined as 𝐹 𝑖

𝐼𝑑
= 𝐹 𝑖

𝐼
×𝑚𝑎𝑠𝑘𝑖 .

Difference from previous mask-based method [37], we integrate
both luminance and SNR rather than solely focusing on one, and
employ adaptive thresholds, which grant it superior generalization
capability. Additionally, our mask operates at the patch level rather
than the pixel level, which contributes more effectively to the fusion
of images and events.

Event-Image AttentionMost real datasets suffer from align-
ment issues between videos and events, we utilize a novel Event-
Image Attention fusion to fuse them, and establish spatial mapping
relationships to faciliate the alignment. Specifically, given the image
feature 𝐹 𝑖

𝐼
∈ 𝑅ℎ×𝑤×𝑐 , dark regions feature 𝐹 𝑖

𝐼𝑑
∈ 𝑅ℎ×𝑤×𝑐 and event

feature 𝐹 𝑖
𝐸
∈ 𝑅ℎ×𝑤×𝑐 , we use 1×1 conv to get queries𝑄𝑖𝑑 from 𝐹 𝑖

𝐼𝑑
,

𝑄𝑖 from 𝐹 𝑖
𝐼
, keys 𝐾𝑒 and values𝑉𝑒 from 𝐹 𝑖

𝐸
respectively. Then we di-

vide them into patches using a window of size (𝑤𝑠,𝑤𝑠). The shape
of features are changed from (𝑐, ℎ,𝑤) to (ℎ/𝑤𝑠×𝑤/𝑤𝑠,𝑤𝑠×𝑤𝑠×𝑐),
where each patch represents features from different spatial posi-
tions. The aggregated event feature 𝐹 𝑖

𝐸𝑓
is written as:

𝐹 𝑖
𝐸𝑓

= Φ(𝑄𝑖𝑑 , 𝐾𝑒 ,𝑉𝑒 ) = 𝑉𝑒𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑇
𝑖𝑑
𝐾𝑒√︁
𝑑𝑘

), (8)

𝑑𝑘 denotes the dimension of the features. It makes event feature
focusing on extremely dark areas. To establish the spatial mapping
relationship, we calculate an attention similarity between 𝐹 𝑖

𝐼
and

𝐹 𝑖
𝐸
:

𝑊𝑝 = 𝑄𝑇𝑖 𝐾𝑒 (9)
which serves as a measure of the similarity between every image
patch and event patch. For misaligned image and event features,
we consider an event patch with the highest similarity to an image
patch to be one that matches the image patch. Consequently, we
set the maximum value of each row in𝑊𝑝 to 1 while the remaining
values to 0, and utilize it to establish a spatial mapping between
two types of patches via:

𝐹 𝑖
𝐸𝑓

=𝑊𝑇
𝑝 𝐹

𝑖
𝐸𝑓

(10)

where 𝐹 𝑖
𝐸𝑓

represents the event features aligned with the image
features. Finally, the output of EIF is:

𝐹 𝑖
𝑓
= 𝐹 𝑖

𝐸𝑓
+ 𝐹 𝑖𝐼 (11)

3.4 Temporal Consistency Loss
An event stream 𝐸𝑡−Δ𝑡∼𝑡+Δ𝑡 records dynamic information between
𝑡−Δ𝑡 and 𝑡 +Δ𝑡 . When Δ𝑡 → 0, it indicates a very small motion and
reflects the motion trend. To better keep the temporal stability of
output frames, we design the temporal consistency Loss 𝐿𝑡 , which
estimates the motion trend at time 𝑡 from frame 𝐼𝑡 and compares it
with the input. For the synthetic data, the input events are aligned
with the frames, and the temporal consistency loss is:

𝐿𝑠𝑡 =∥ 𝑣 (𝑌𝑡 ) − 𝐸𝑡−Δ𝑡∼𝑡+Δ𝑡 ∥2𝐹 ,Δ𝑡 → 0 (12)

For the real data, the input events and the frames are misaligned,
the temporal consistency loss is:

𝐿𝑟𝑡 =∥ 𝑣 (𝐼𝑡 ) − 𝑣 (𝑌𝑡 ) ∥2𝐹 (13)

where v denotes a U-Net [28] structure used to extract motion trend
from frames.

3.5 Detail Contrast Loss
The detailed information in extremely dark areas is lost while rela-
tively complete in other areas. To restore complete details in the
enhanced frame, we encourage greater discrepancies between input
frames and output frames in extremely dark regions, while reducing
discrepancies in other areas. The loss function is defined as follows:

𝐿𝑐𝑜𝑛 =
∥ (𝐼𝑡 − 𝑌𝑡 ) (1 −𝑚𝑎𝑠𝑘) ∥2𝐹

∥ (𝐼𝑡 − 𝑌𝑡 ) (1 −𝑚𝑎𝑠𝑘) ∥2𝐹 + ∥ (𝐼𝑡 − 𝑌𝑡 )𝑚𝑎𝑠𝑘 ∥2
𝐹

(14)

where𝑚𝑎𝑠𝑘 identifies the extremely dark region.
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Furthermore, we also employ the 𝐿𝑐𝑙𝑖𝑝 in [17] to preserve the
semantic integrity of the enhanced results.

𝐿𝑐𝑙𝑖𝑝 =
𝑒𝑐𝑜𝑠 (Φ𝑖𝑚𝑎𝑔𝑒 (𝑌𝑡 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑛 ) )∑

𝑖∈{𝑛,𝑝 } 𝑒
𝑐𝑜𝑠 (Φ𝑖𝑚𝑎𝑔𝑒 (𝑌𝑡 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑖 ) )

+𝑤 · ∥ Φ𝑖𝑚𝑎𝑔𝑒 (𝑌𝑡 ) − Φ𝑙𝑖𝑚𝑎𝑔𝑒 (𝐼𝑡 ) ∥2 (15)

where Φ𝑖𝑚𝑎𝑔𝑒 and Φ𝑡𝑒𝑥𝑡 denote the image encoder and text encoder
in CLIP model respectively,𝑤 is the weight. We set 𝑇𝑛 = "normal
light image" and 𝑇𝑝 = "low light image".

3.6 Optimization
We propose to train the REN over a partially labeled dataset, com-
posed of the synthetic dataset 𝐷𝑠 with groundtruth and the real
dataset 𝐷𝑟 without groundtruth. We employ 𝐿𝑠𝑡 , 𝐿𝑒𝑟𝑟𝑜𝑟 for 𝐷𝑠 , and
𝐿𝑟𝑡 , 𝐿𝑐𝑜𝑛 , 𝐿𝑐𝑙𝑖𝑝 for 𝐷𝑟 . 𝐿𝑒𝑟𝑟𝑜𝑟 is the reconstruction loss according to
Eq. 5:

𝐿𝑒𝑟𝑟𝑜𝑟 =∥ 𝑌𝑡 − 𝐼𝑛 ∥2𝐹 + ∥ 𝜙𝐸 (𝐼𝑛, 𝐸) − 𝜙𝐸 (𝑌𝑡 , 𝐸) ∥2𝐹 (16)

Thus the overall function is as follows:

𝐿 = 𝐿𝑒𝑟𝑟𝑜𝑟 + 𝛼𝐿𝑠𝑡 + 𝛽𝐿𝑟𝑡 + 𝛾𝐿𝑐𝑜𝑛 + 𝛿𝐿𝑐𝑙𝑖𝑝 (17)

where 𝛼 , 𝛽 , 𝛾 and 𝛿 denote the balancing parameters.

4 EXPERIMENTS
4.1 Experimental Settings
Dataset The proposed Real-Event Embedded Network is trained
in a semi-supervised strategy, where one synthetic dataset (SDSD
dataset [34]) is provided for training with the groundtruth and
one real dataset (DSEC dataset [6]) for unsupervised training. In
addition, we use the ViViD++ dataset [14, 15] for cross-dataset
evaluation.

SDSD: Based on the SDSD dataset [34], we build a syntheic
dataset composed of synthetic events as well as real low-light videos
and normal-light videos. We employ V2E [10] to simulate events
from low-light videos. The detailed configuration of V2E can be
found in the supplementary material.

DSEC: DSEC dataset [6] consists of real videos and events cap-
tured by Prophesee Gen3.1M camera. We select low-light videos
along with events from it to train and test our method. We choose
10 training videos with a total of 2948 frames, along with 19 test
videos totaling 570 frames.

ViViD++: Similar to the DSEC dataset, ViViD++ dataset consists
of real videos and events captured by DVXplorer camera. We select
low-light videos along with events from it for cross-dataset eval-
uation. Due to ViViD++ is collected from real-world scenarios, it
reflects the effectiveness of the method in real-world settings.

Implementation Details Our network is implemented using
Pytorch on NVIDIA Geforce RTX 3090. During training, we ran-
domly crop the samples into 320 × 320 patches and augment the
data using rotation and horizontal flipping. We optimize the net-
work by AdamW optimizer [19] with the momentum terms of (0.9,
0.999). We set the learning rate to 4e-4 and use the cosine decay
strategy to decrease it. The total epoch of training is set to 100
and the balancing parameters 𝛼 , 𝛽 , 𝛾 , 𝛿 and 𝑤 are all set to 1. To
validate the effectiveness of exploiting real event, REN is trained

respectively over two different datasets: SDSD and SDSD + DSEC,
and final networks are respectively denoted as REN𝑠𝑑 and REN.
Specifically, REN𝑠𝑑 is trained only over syntheic SDSD dataset,
while REN is trained over syntheic SDSD dataset and real DSEC
dataset.
4.2 Quantitative Evaluation
To comprehensively evaluate the effectiveness of our proposed
method, we compare REN with SOTA methods using the SDSD
dataset and DSEC dataset.

Evaluation on SDSD dataset. We train and test the SOTA
methods on SDSD dataset for quantitative evaluations, the testset
of SDSD dataset includes 12 indoor video pairs and 13 outdoor
video pairs.

We adopt three evaluation metrics: Peak Singal-to-Noise Ratio
(PSNR), Structural Similarity (SSIM) [35] and Learned Perceptual
Image Patch Similarity (LPIPS) [42]. PSNR quantifies image qual-
ity by comparing signal power to noise. SSIM assesses the image
similarity by considering luminance, contrast and structure. LPIPS
measures the perceptual image patch similarity using deep learning.

The results are shown in Table 1, the ∗ in table means unsuper-
vised methods. As these methods can be trained on SDSD dataset or
SDSD+DSEC datasets, which is similar to ours, we only present the
best results of these methods in the table, and the full results are
presented in the supplementarymaterials. As shown in the table,
REN𝑠𝑑 outperforms all supervised methods and REN achieves the
best performance. Furthermore, the application of real events and
our semi-supervised training strategy is shown to be very effective
in improving the performance of the model.

Evaluation on DSEC dataset.We also compare different meth-
ods on the DSEC real dataset. For supervised methods, due to the
lack of groundtruth in the DSEC dataset, it is not feasible to them.
Therefore, to compare them with our method, we generate results
using models trained on the SDSD dataset, which is consistent with
the REN𝑠𝑑 . For the unsupervised methods (marked with ∗), we train
them on SDSD+DSEC datasets and compare them with REN.

We employ four no-reference evaluation metrics: Natural Image
Quality Evaluator (NIQE) [24], Integrated Local NIQE (ILNIQE)
[41], Perceptual Index (PI) [22] and Perception based Image Quality
Evaluator (PIQE) [32]. NIQE assesses the image naturalness based
on statistical properties. ILNIQE is an opinion-unaware blind image
quality assessment method. PI evaluates the image quality based
on human perceptual assessment. PIQE is based on the perceptual
characteristics of the human visual system. The evaluation results
are shown in Table 2, under the same training dataset conditions,
REN𝑠𝑑 outperforms all supervisedmethods, while REN outperforms
all unsupervised methods among all the metrics.

We also integrate event to two recently best low-light video
enhancement methods, SDSDNet [34] and LAN [4], for a more fair
comparison. They are represented as SDSDNet + Event and LAN +
Event respectively. Specifically, we incorporate the EIF module into
them and train them on SDSD dataset. As shown in Table 3, both
methods improve the performance after integrated with events, and
our method achieves the best results.

4.3 Qualitative Evaluation
Weperform qualitative assessments on the SDSD andDSEC datasets,
and cross-dataset evaluations on ViViD++ dataset. Fig. 4 presents
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(a) Low-light Frame (b) Event (c) SCI [23] (d) NeRCo [38] (e) PairLIE [5]

(f) CLIP-LIT [17] (g) LAN [4] (h) REN𝑠𝑑 (i) REN (j) GroundTruth

Figure 4: Visual quality comparison of enhancement results on SDSD synthetic dataset.

Table 1: Quantitative results of different methods on SDSD
dataset, ∗ means unsupervised methods.

Methods Learning PSNR↑ SSIM↑ LPIPS↓
PairLIE [5] Image 13.37 0.54 0.22
SCI∗ [7] Image 19.67 0.69 0.29

SNR-Aware [37] Image 25.28 0.82 0.13
NeRCo∗ [38] Image 20.07 0.66 0.21
CLIP-LIT∗ [17] Image 22.29 0.72 0.16
MBLLEN [21] Video 21.79 0.65 0.19
SGLLIE∗ [43] Video 23.89 0.70 0.31
SMID [1] Video 24.09 0.69 0.21

SDSDNet [34] Video 24.92 0.73 0.14
LAN [4] Video 27.25 0.85 0.12
REN𝑠𝑑 Video 28.45 0.88 0.09
REN Video 29.03 0.88 0.09

Table 2: Quantitative results of different unsupervised meth-
ods on DSEC dataset, ∗ means unsupervised methods.

Methods NIQE↓ ILNIQE↓ PI↓ PIQE↓
PairLIE [5] 12.08 33.66 3.80 20.59

SNR-Aware [37] 11.58 23.53 3.52 8.16
MBLLEN [21] 13.07 23.07 3.32 19.18
SMID [1] 20.89 26.88 9.10 13.22

SDSDNet [34] 14.16 34.93 5.64 15.47
LAN [4] 22.30 33.66 3.80 23.59
REN𝑠𝑑 10.84 20.76 3.26 15.65

SCI∗ [23] 11.70 21.30 3.41 8.35
NeRCo∗ [38] 13.64 22.63 2.71 14.70
CLIP-LIT∗ [17] 10.42 22.89 3.43 9.64
SGLLIE∗ [43] 11.07 24.11 3.77 8.57

REN 10.28 20.69 2.69 8.01

the results obtained on the SDSD dataset, similar to Table 1, we
present the best results of unsupervised methods. In comparison
to the groundtruth, the CLIP-LIT produces results with weak en-
hancement and low brightness. The PairLIE generates unrealistic
outcomes. NeRCo, SCI and LAN suffer from significant color devia-
tion, which adversely impairs the visual quality of the images.

Fig. 5 presents the visual results obtained on the DSEC dataset,
which comprises low-quality videos with numerous extremely dark

Table 3: Quantitative results of two recently best low-light
video enhancement methods integrated with event on SDSD
dataset.

Methods PSNR↑ SSIM↑ LPIPS↓
SDSDNet [34] 24.92 0.73 0.14

SDSDNet + Event 25.81 0.85 0.11
LAN [4] 27.25 0.85 0.12

LAN + Event 28.20 0.87 0.10
REN𝑠𝑑 28.45 0.88 0.09

regions, posing a considerable challenge for enhancement. All the
method are trained on SDSD+DSEC datasets. The SCI and CLIP-LIT
result in significantly reduced brightness and severe noise, they are
unable to effectively recover details in extremely dark areas. The
result generated by NeRCo exhibits noticeable striping artifacts.
The SGLLIE exhibits severe white noise and generates unrealistic
results. Due to training exclusively on synthetic dataset, REN𝑠𝑑
exhibits issues of insufficient brightness and unclear details on real
data. In contrast, REN is trained on real data and demonstrates
favorable results in enhancing details, improving brightness, and
mitigating noise in extremely dark regions.

Fig. 6 shows the visual results obtained on the ViViD++ dataset.
These results are generated using the models presented in Table
2. The PairLIE enhances the brightness but generates unrealistic
color tones. The images enhanced by NeRCo and SDSDNet exhibit
noticeable artifacts. CLIP-LIT and SCI fail to enhance the brightness
adequately, while the result enhanced by LAN appears relatively
blurry. The image enhanced by REN𝑠𝑑 lacks sufficient clarity and
exhibits blurriness in the details. In contrast, REN generates more
realistic and clearer result.

Fig. 7 shows the visual results of SDSDNet and LAN as well as
their integration with event, it also shows the result of our method.
Upon the integrationwith event, both SDSDNet and LAN exhibit no-
ticeable improvements in detail recovery and visual effects, demon-
strating the efficacy of event and EIF module. Meanwhile, REN𝑠𝑑
and REN achieve the most favorable visual results.

After a comprehensive evaluation of the comparative results of
various methods across the three datasets, our proposed approach
demonstrates outstanding visual performance in global brightness
and detail restoration. More experimental results can be found in
the supplementary material.
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(a) Low-light Frame (b) Event (c) SCI [23] (d) SGLLIE [43]

(e) CLIP-LIT [17] (f) NeRCo [38] (g) REN𝑠𝑑 (h) REN

Figure 5: Visual quality comparison of enhancement results on DSEC real dataset.

(a) Low-light Frame (b) Event (c) SCI [23] (d) NeRCo [38] (e) PairLIE [5]

(f) CLIP-LIT [17] (g) SDSDNet [34] (h) LAN [4] (i) REN𝑠𝑑 (j) REN

Figure 6: Visual quality comparison of enhancement results on ViViD++ real dataset.

4.4 Ablation Study
The proposed REN improves the performance of low-light video
enhancement. To find out what contributes to the remarkable ef-
fectiveness of our approach, we do an ablation study and show the
results in Table 4 and Fig. 8.

The effectiveness of Events. To validate the effectiveness of
events, we train the model only using videos (Only Video). The
PSNR value of this model decreases sharply by 2.91dB, which indi-
cates the significant impact of events. As shown in Fig. 8, events
significantly contribute to the recovery of details. The effectiveness
of real events (REN𝑠𝑑 , W/o Real Events) is already demonstrated in
Table 1 and Table 2, where REN outperforms REN𝑠𝑑 on all datasets,
and as shown in Fig. 8, REN achieves superio results on real data
compared to REN𝑠𝑑 (W/o Real Events).

The effectiveness of EIF Module. The EIF module consists of
two parts, and concurrently establishes the mapping relationship
between images and events, so we build three modified models
for ablation study. 1) W/o Dark Region Mask (W/o DRM), which
means we remove Dark Region Mask from the model. 2) W/o Event

Table 4: Quantitative results of ablation study on SDSD test-
set.

Model PSNR↑ SSIM↑ LPIPS↓
Only Video 26.12 0.86 0.10

REN𝑠𝑑 (W/o Real Events) 28.45 0.88 0.09
W/o DRM 27.15 0.87 0.11
W/o EIA 26.29 0.87 0.09
W/o𝑊𝑝 27.63 0.87 0.09

W/o 𝐿𝑡 and 𝐿𝑐𝑜𝑛 28.61 0.88 0.09
W/o 𝐿𝑡 28.80 0.88 0.09
W/o 𝐿𝑐𝑜𝑛 28.91 0.88 0.09

REN 29.03 0.88 0.09

Image Attention (W/o EIA), which means we replace the Event
Image Attention with a U-Net, as Dark Region Mask is designed to
complement Event Image Attention, we also remove it. 3) W/o𝑊𝑝 ,
which means we remove𝑊𝑝 and Eq. 10 from EIF Module, rendering
it incapable of establishing spatial alignment between images and
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(a) Low-light Frame (b) LAN [4] (c) LAN + Event (d) SDSDNet [34]

(e) SDSDNet + Event (f) REN𝑠𝑑 (g) REN (h) GroundTruth

Figure 7: Visual results of SDSDNet [34] and LAN [4] as well as their integration with event.

(a) Low-light Frames (b) Only Video (c) W/o EIA (d) W/o DRM (e) W/o𝑊𝑝 (f) REN𝑠𝑑 (g) REN

Figure 8: Visual result of our ablation study. The top row is synthetic data from SDSD dataset and the bottom row is real data
from DSEC dataset.

Table 5: The results of the user study. “REN” means that our
result is preferred, “Other” means some other approach is
preferred, “Same” means that the users have no preference.

Methods Other Same REN
MBLLEN [21] 15% 5% 80%
SGLLIE [43] 5% 0% 95%
SMID [1] 0% 0% 100%

SDSDNet [34] 5% 5% 90%
LAN [4] 15% 25% 60%

events. The PSNR value of these models drop 1.88dB, 2.74dB and
1.4dB respectively. As shown in Fig. 8, the models W/o DRM and
W/o EIA demonstrate unsatisfactory performance in the recovery
of details within extremely dark regions. Due to the inability to
align with real events and images, the model W/o𝑊𝑝 fails to fully
leverage event information and recover details on real data. The
result shows the effectiveness of our EIF module. More detailed
discussions regarding the network architecture can be found in the
supplementary material.

The effectiveness of temporal consistency loss and detail
contrast loss. To validate the effectiveness of the proposed 𝐿𝑡 and
𝐿𝑐𝑜𝑛 , we build three modified strategies: 1) W/o 𝐿𝑡 and 𝐿𝑐𝑜𝑛 , which
means training the model only using 𝐿𝑐𝑙𝑖𝑝 and 𝐿𝑒𝑟𝑟𝑜𝑟 . 2) W/o 𝐿𝑡 ,
which means training the model without 𝐿𝑡 . 3) W/o 𝐿𝑐𝑜𝑛 , which
means training the model without 𝐿𝑐𝑜𝑛 . The PSNR value of these
models drop 0.42dB, 0.23dB, 0.12dB respectively, which shows the
effectiveness of our proposed 𝐿𝑡 and 𝐿𝑐𝑜𝑛 .

4.5 User Study
We conduct user studies with 20 participants to compare the subjec-
tive visual quality of REN and other low-light video enhancement
methods, including MBLLEN [21], SGLLIE [43], SMID [1], SDSD-
Net [34], LAN [4]. We randomly select 10 enhanced videos from
the enhancement results of ViViD++ [14, 15] dataset to compare
the performance of different models.

Each participant underwent five sets of test. In each set, partic-
ipants are required to randomly select one method from the five
options excluding REN and then choose a video randomly. They
are instructed to compare the enhancement results of the selected
method with REN on that particular video, and then they should
decide which is better. The quantitative results of the user studies
are shown in Table 5, indicating that our method is more appealing
to users compared to other approaches.

5 CONCLUSION
In this work, to address the issue of information loss in extremely
dark regions on low-light video enhancement, we propose the Real-
Event Embedded Network, which leverages events to enhance such
regions in low-light videos. We also design unsupervised temporal
consistency loss and detail contrast loss, aiming to maintain tempo-
ral stability of videos and restore details in extremely dark regions
respectively. These two loss functions, along with the supervised
loss, are jointly employed in a semi-supervised manner to train the
network on real data. Extensive experiments demonstrate that our
method achieves SOTA performance.
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