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ABSTRACT

Quantifying the influence of individual training samples is essential for enhancing
the transparency and accountability of large language models (LLMs) and vision-
language models (VLMs). Existing data valuation methods rely on Hessian infor-
mation or model retraining, making them computationally prohibitive for billion-
parameter models. In this work, we introduce For-Value, a forward-only data
valuation framework that enables scalable and efficient influence estimation for
both LLMs and VLMs. By leveraging the rich representations of modern founda-
tion models, For-Value computes influence scores using a simple closed-form
expression based on a single forward pass, thereby eliminating the need for costly
gradient computations. Our theoretical analysis demonstrates that For-Value
accurately estimates per-sample influence by capturing alignment in hidden rep-
resentations and prediction errors between training and valuation samples. Exten-
sive experiments show that For-Value matches or outperforms gradient-based
baselines in identifying impactful fine-tuning examples and effectively detecting
mislabeled data.

1 INTRODUCTION

Figure 1: Comparison of data valuation
methods in terms of effectiveness and ef-
ficiency when selecting training data from
the Noise-Huatuo-Complex-CoT dataset for
fine-tuning.

Modern large language models (LLMs) and vision-
language models (VLMs) have achieved remarkable
success across a wide range of applications, driven
by the power of large-scale pretraining (Achiam
et al., 2023). These pretrained models are subse-
quently fine-tuned for tasks such as machine transla-
tion, dialogue systems, medical diagnosis, and mul-
timodal reasoning (Guo et al., 2025; Bai et al.,
2025b; Wu et al., 2025; Shao et al., 2024; Hao et al.,
2025). Despite their impressive performance, these
models remain prone to generating factually incor-
rect or biased outputs (Deng et al., 2023; Ferrara,
2023), often due to the presence of irrelevant, mis-
labeled, or unrepresentative training data. This high-
lights the need for scalable methods to quantify the
impact of each individual training data and select the
high-value samples that benefit the targeted tasks.
The data valuation task aims to assign scores to each
training sample based on their effect on model per-
formance on a valuation set (e.g., validation data) (Wang et al., 2024a), where performance is com-
monly assessed using loss, margin, or likelihood (Bae et al., 2024). Notable approaches include
influence functions (Kwon et al., 2024) and Shapley value-based methods (Ghorbani & Zou, 2019),
which provide frameworks for estimating how individual data points affect model predictions (Kwon
et al., 2024; Zhou et al., 2024). These methods have proven effective in downstream applications
such as detecting mislabeled data (Koh & Liang, 2017; Kwon et al., 2024), identifying influential
examples, diagnosing bias (Kong et al., 2021), and auditing datasets (Grosse et al., 2023). However,
influence function and Shapley value methods are computationally prohibitive for large models due
to their reliance on Hessians and repeated retraining.
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Figure 2: Pipeline of For-Value. Given a valuation sample and a training dataset, For-Value
performs a forward pass over all data to compute scores (Eq. (1)) for each training example, using
the last hidden embeddings and the prediction error α. The training samples are then ranked based
on these computed values.

To alleviate the high computational cost of influence estimation, several approximation techniques
have been introduced. TracIn (Pruthi et al., 2020) estimates data influence by tracking gradient sim-
ilarity across training checkpoints, while DataInf (Kwon et al., 2024) and HyperInf (Zhou et al.,
2024) focus on efficient Hessian approximations. These methods, however, involve notable trade-
offs: TracIn requires storing numerous model snapshots; DataInf suffers from approximation errors
that scale with model size; and HyperInf assumes gradient independence and incurs cubic com-
putational complexity. In parallel, for Shapley value approximation, Wang et al. (2024a) propose
an online method that measures gradient or Hessian similarity between valuation and training data
during training. However, applying this method to individual valuation samples remains impractical
due to the need to compute and store per-sample gradients at every training step. Crucially, all these
methods depend on access to model gradients and fine-tuned weights—resources that are often in-
accessible in practical LLM and VLM deployments. Alternative strategies, such as similarity-based
methods used in classification tasks (Just et al., 2023) and generative image models (Yang et al.,
2025), are less applicable to LLMs and VLMs, as their foundational assumptions conflict with the
training and inference processes of these models.
In this work, we introduce For-Value, a forward-only data valuation framework tailored for
LLMs and VLMs. Instead of relying on gradients or model retraining, which are computationally
expensive for evaluating data for LLMs and VLMs, we introduce a novel approach to analyzing
the influence of training samples on the change in valuation data’s likelihood, using only a forward
pass. Specifically, we focus on the rich and informative hidden representation (Mixon et al., 2022;
Deng et al., 2025; Zhao et al., 2024), and propose For-Value that unfolds the change in like-
lihood into a closed-form measure that captures both representation similarity and prediction error
alignment between training and valuation samples. This alignment measure enables For-Value to
identify influential or mislabeled data using only a single forward pass, making it highly scalable and
practical. As illustrated in Fig. 1, For-Value achieves both effectiveness and superior efficiency
compared to prior data valuation methods. Our contributions are as follows:

•We propose For-Value, a forward-only framework for identifying influential or noisy training
data when adapting pretrained LLMs and VLMs to downstream tasks.

• We establish a theoretical foundation showing that, under the standard next-token prediction ob-
jective (token-level cross-entropy), data valuation can be approximated by the alignment between
hidden representations and prediction errors.

•We show empirically that For-Value reliably equals or exceeds baseline performance in detect-
ing influential and mislabeled samples, enhances downstream fine-tuning, and achieves these gains
with vastly superior efficiency.

2 RELATED WORK

Pretrained LLMs and VLMs. In modern machine learning workflows, it is standard practice to
utilize pretrained foundation models (FMs) and adapt them to specific downstream tasks (Deng
et al., 2024a; Dettmers et al., 2023). Foundation models, such as large language models and vision-
language models, serve as powerful initialization points thanks to their extensive pretraining on
large-scale datasets. LLMs, including LLaMA (Touvron et al., 2023) and GPT-4 (Achiam et al.,
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2023), are trained on diverse textual data for language understanding and generation. VLMs, such
as Qwen2.5-VL (Bai et al., 2025a), LLaMA-VL (Meta, 2024), and GPT-4V (Yang et al., 2023), inte-
grate visual and textual inputs to perform tasks like image captioning and visual question answering.

Data Valuation. The goal of data valuation is to quantify the contribution of each training example
in Dtrain to the model’s performance on a targeted valuation set Dval (e.g., validation data) (Wang
et al., 2024a). With common metrics including loss, margin, or likelihood (Bae et al., 2024). Influ-
ence estimation is a widely adopted technique for quantifying the data value. The Hessian-based
method introduced by Koh & Liang (2017) leverages second-order derivatives to compute influ-
ence functions but becomes computationally prohibitive for large-scale models. More recently, Bae
et al. (2024) employed influence functions to evaluate data value across different training stages;
however, the computational cost grows with the number of stages considered, making the method
expensive in practice. To improve efficiency, methods such as DataInf (Kwon et al., 2024) and Hy-
perInf (Zhou et al., 2024) propose efficient approximations that bypass explicit Hessian inversion.
Nevertheless, all these influence function based methods require finetuning the model first. Simi-
larly, TracIn (Pruthi et al., 2020) adopts a Hessian-free approach by tracking first-order gradients
across training checkpoints to estimate data influence, but it requires storing and accessing many
checkpoints, which is impractical for large models. Beyond influence-based methods, Shapley value
based techniques (Ghorbani & Zou, 2019) assess data importance through marginal contributions.
While theoretically appealing, these methods are computationally expensive due to the need for
repeated model training. To mitigate this, Wang et al. (2024a) propose an online Shapley value ap-
proximation by measuring the similarity between valuation and training gradients during training.
However, extending this approach to individual data points remains impractical, as it necessitates
computing and storing per-sample gradients at every training step. In contrast to these methods, our
approach neither requires finetuning the model nor backpropagation.

3 PRELIMINARIES

Auto-Regressive Pretrained LLMs and VLMs. We examine a pretrained large language model
(LLM) or vision-language model (VLM) denoted as πθ, where θ represents its parameters. For
a given input x — which may consist of text tokens, image patches, or a combination of both
— the model defines a conditional probability distribution over an output text sequence y =
(y1, y2, . . . , y|y|), factorized as:

πθ(y|x) =
|y|∏
k=1

πθ(yk|x,y<k),

where y<k = (y1, . . . , yk−1). At each step, the model predicts the next token yk conditioned on
the input x and the prefix y<k. This auto-regressive structure underlies most modern LLMs and
VLMs, which are used in tasks such as text generation (Wu et al., 2025), image captioning (Bai
et al., 2025a), and multi-modal reasoning (Achiam et al., 2023).

4 METHOD

In this section, we provide a theoretical foundation for understanding how individual training ex-
amples influence the behavior of LLMs/VLMs on target valuation data. These insights motivate the
design of our proposed method For-Value.

4.1 FORWARD-ONLY DATA VALUATION

Notation: Let W , wz , and hz denote the token unembedding matrix, unembedding of a token z ∈ V
, where V is the vocabulary, and hidden embedding of generated tokens z ∈ V∗ with embedding
dimension d, respectively. Let zk be the k-th token in z and z<k be the first k−1 tokens in z. Lastly,
we denote by ez ∈ R|V| the standard basis vector corresponding to z ∈ V .
Formally, given a training dataset (xi,yi)

n
i=1 ∈ Dtrain and a valuation sample (xv,yv) ∈ Dval, we

define the notion of Data Value as follows:

Definition 1 (Data Value). At any training time t > 0, a training sample is considered more valuable
to a given data point (xv,yv) if it results in a greater likelihood change d

dt lnπθ(t)(yv|xv).
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This definition captures how much a training sample improves the model’s confidence in predicting
(xv,yv). A higher likelihood corresponds to a lower loss on the valuation data during LLM/VLM
fine-tuning. More broadly, our definition of data value is closely tied to the perplexity metric, which
inversely reflects the model’s uncertainty in text generation. We then analyze the learning dynamics
of the valuation log-likelihood, d

dt lnπθ(t)(yv | xv), which characterizes the objective of increasing
the probability of generating valuation outputs. In this work, we focus on the pretrained model
(t = 0) and, for brevity, omit the time index t in subsequent discussions. We begin with the following
assumption:
Assumption 1 (Unconstrained Features). Expressive (enough) neural networks (e.g., pretrained
LLMs/VLMs) can produce unconstrained embeddings hx ∈ Rd independent of the architecture’s
specific complexities (Mixon et al., 2022; Deng et al., 2025; Zhao et al., 2024). These embeddings
are subsequently transformed into logits by a token unembedding matrix W ∈ R|V|×d. The result-
ing logits are passed through a softmax function to yield a probability distribution over possible
next tokens. To assign probabilities to sequences y ∈ V∗, the language model πθ operates in an
autoregressive manner, i.e., πθ(y | x) =

∏|y|
k=1 Softmax(Whx,y<k

)yk
.

Notably, the unconstrained feature assumption has been widely adopted in the analysis of pretrained
LLMs (Mixon et al., 2022; Razin et al., 2024; Zhao et al., 2024). For example, it has been leveraged
in reinforcement learning studies (Deng et al., 2025; Razin et al., 2024) and in geometric analyses
of LLM representations (Zhao et al., 2024), reinforcing its role as a foundation for For-Value.
Under the unconstrained feature setting, the influence of a training sample on valuation sample is
represented as (detailed proof in Appendix):
Theorem 1. For a sample xv and its generation yv that await valuation, when fine-tuning a pre-
trained model using a training sample (xi,yi), i ∈ [n], when no training input xi is identical to the
valuation input xv

1, the training data exhibits larger value to the valuation data as the following
increases:

|yv|∑
k=1

|yi|∑
k′=1

αk,k′ ·
〈
hxv,yv,<k

,hxi,yi,<k′

〉
(1)

where αk,k′ =
〈
eyv,k

− πθ(· | xv,yv,<k), eyi,k′ − πθ(· | xi,yi,<k′)
〉

quantifies the similarity of
token-level prediction error across samples.
As established in the theorem, the data value arises from the alignment between hidden representa-
tions and prediction errors (effect of prediction error see Sec. 6.3). A larger score of Eq. (1) indicates
a greater increase in the likelihood of the valuation data, and hence a higher value. Since this score
can be computed with only a single forward pass, we refer to Eq. (1) as For-Value.

4.2 IMPLEMENTATION OF FOR-VALUE

Having introduced For-Value, we now describe its practical computation for scalable implemen-
tation. Fig. 2 illustrates the overall pipeline of our method, with further details provided below.
Matrix Similarity: First, we rewrite (1) into the form of a matrix inner product.〈|yv|∑

k=1

(
eyv,k

− πθ(·|x,yv,<k)
)
hT
xv,yv,<k

,

|yi|∑
k′=1

(
eyi,k′ − πθ(·|x,yi,<k′)

)
hT
xi,yi,<k′

〉
(2)

Importantly, our reformulation involves calculating the summations over k, k′ before taking the inner
product. This reformulation reduces the overall complexity to that of a single matrix inner product.
The formulation involves computing the outer product between the prediction error vector (e.g.,
eyi,k′ − πθ(·|x,yi,<k′)) and the hidden embedding, which incurs a computational complexity of
O(|V|d). Since the probability mass is primarily concentrated on samples’ words, we restrict the
computation to the vocabulary VD associated with samples’ words. Given that |VD| ≪ |V|, this
significantly reduces the overall cost to O(|VD|d) (see detailed efficiency comparison in Tab. 6).
Notably, when performing per-batch valuation calculations, the vocabulary size can be further de-
creased to the in-batch vocabulary size, as demonstrated in step 6 of Algorithm 1.

1This assumption is mild, as training inputs often differ from valuation inputs in practice. E.g., in vision
language tasks, images are often unique or paired with different questions. More discussion see Appendix.
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For-Value Algorithm: Algorithm 1 summarizes our efficient batch computation of
For-Value. We first extract hidden embeddings and prediction errors via a single forward pass
over the valuation and training batches. Restricting calculations to the in-batch vocabulary and batch-
ing the computations significantly reduces overhead while preserving accuracy. Finally, we sort the
scores to rank the training samples according to their estimated influence. Importantly, the algo-
rithm can be naturally extended to a group of valuation pairs by averaging their influence scores.
The complete pipeline is depicted in Fig. 2.

5 EXPERIMENT SETUP

Algorithm 1 For-Value: Forward-Only Data Valuation
Input: Training set {(xi,yi)}Ni=1; valuation pair
(xv,yv); model πθ; batch size B.
Output: Data valuation S.

1: Compute {hxv,yv,<k
}|yv|
k=1 and

{πθ(·|xv,yv,<k)}|yv|
k=1 by doing inference

πθ(xv,yv).
2: for each batch {(xj ,yj)}Bj=1 do
3: Compute {hxj ,yj,<k′}

|yj |
k′=1 and

4: {πθ(·|xj ,yj,<k′)}|yj |
k′=1 by running batch in-

ference.
5: V̂ ←

⋃B
j=1 Vxj ,yj

∪ Vxv,yv

6: Compute errors (e− π(·)) for tokens in V̂ .
7: For each in batch, compute Sv,j via Eq. (2).
8: end for
9: S ← {(xi,yi, Sv,i)}Ni=1.

10: Sort S by Sv,i (descending).
11: return S.

In this section, we describe the experi-
mental setup. More details please see Ap-
pendix.
Baseline Methods. We focus on the com-
parison with baseline methods designed
for efficiency: Hessian-free (Pruthi
et al., 2020; Charpiat et al., 2019) esti-
mates influence scores via the dot product
of first-order gradients, which is equiva-
lent to the Trace-Inf (Pruthi et al., 2020)
or the first-order in-run Shapley (Wang
et al., 2024a) at the last training iter-
ation. DataInf (Kwon et al., 2024)
uses a Hessian approximation tailored
for parameter-efficient fine-tuning, while
HyperINF (Zhou et al., 2024) employs
a low-rank Fisher approximation of the
Hessian. Finally, we include an embed-
ding similarity method (Yang et al., 2025),
originally proposed for image generation
models, denoted as Emb.
Models. Following Kwon et al. (2024), we evaluate LLMs using Llama-2-13B-chat (Touvron et al.,
2023) and Qwen-2.5-1.5B (Qwen et al., 2025) to cover a wider range of model sizes and families.
Moreover, thanks to the efficiency of our method, we are able to run For-Value on Qwen2.5 series
models from 7B up to 72B parameters. In contrast, baseline methods require extensive training and
prolonged runtimes, making them costly for these larger models. For VLMs, we adopt the widely
used Qwen-2.5-VL-3B-Instruct (Bai et al., 2025a) and Llama-3.2-11B-Vision (Meta, 2024).
Influential Data Identification Tasks. We evaluate all methods on influential data identification for
LLMs and VLMs, following Kwon et al. (2024). For LLMs, we use sentence transformation and
math word problem datasets (with and without reasoning). For VLMs, we adapt image-to-text tasks
from Kwon et al. (2024) to an image-to-text generation setting, including style generation (cartoons,
pixel art, line sketches) and subject generation using the DreamBooth dataset (Ruiz et al., 2023). We
adopt two evaluation metrics from Kwon et al. (2024): (i) AUC, measuring the correlation between
data values and pseudo-labels (1 if training and valuation samples share a class, 0 otherwise), av-
eraged over valuation points; and (ii) Recall, the proportion of top-ranked training samples sharing
the same class as the valuation point. More details and dataset examples see Appendix Sec. A.7.
Mislabeled Data Detection Tasks. We evaluate mislabeled data detection on VLMs using the Kag-
gle cat–dog dataset (kag, 2013), reformulated as a QA task with 50% label being flipped, and report
AUC and Recall; examples and further details are provided in the Appendix Sec. A.7.
Data Selection For Finetuning. We evaluate the practical utility of For-Value across two key
reasoning domains: mathematics and medicine. For mathematics, we use the GSM8K (Cobbe
et al., 2021) dataset to assess influential data identification, while for medicine, we employ the
Noise-Huatuo-Complex-CoT (Chen et al., 2024) dataset to examine robustness under noisy train-
ing. We further extend our study to vision–language models by applying For-Value to PMC-
Reasoning Huang et al. (2025). More details for each task are provided in Appendix Sec. A.5.
Efficiency Evaluation. For influential and mislabeled data detection with models under 32B, we
compute data values using a single A100 (80G) GPU with identical hardware settings. For fine-
tuning data selection, we use a single H100 (96G) GPU to calculate the data value for fair compari-
son. More details please see Appendix Sec. A.3.
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Method Qwen2.5-1.5B Llama-2-13B-chat
AUC ↑ Recall ↑ AUC ↑ Recall ↑

Sentence transformations
Hessian-free(Pruthi et al., 2020) 0.785± 0.096 0.370± 0.139 0.999± 0.002 0.985± 0.033
DataInf(Kwon et al., 2024) 0.981± 0.019 0.826± 0.121 1.000± 0.000 0.997± 0.010
HyperINF(Zhou et al., 2024) 0.993± 0.013 0.934± 0.063 1.000± 0.000 0.998± 0.011
Emb(Yang et al., 2025) 0.546± 0.306 0.148± 0.205 0.854± 0.192 0.563± 0.412
For-Value (ours) 1.000± 0.001 0.989± 0.025 1.000± 0.000 1.000± 0.001

Math Problem (w/o reasoning)
Hessian-free(Pruthi et al., 2020) 0.835± 0.235 0.592± 0.291 0.770± 0.174 0.258± 0.388
DataInf(Kwon et al., 2024) 0.985± 0.032 0.878± 0.154 1.000± 0.000 0.999± 0.006
HyperINF(Zhou et al., 2024) 0.986± 0.024 0.942± 0.080 0.995± 0.018 0.967± 0.057
Emb(Yang et al., 2025) 0.555± 0.298 0.146± 0.295 0.762± 0.239 0.389± 0.477
For-Value (ours) 1.000± 0.000 0.998± 0.011 1.000± 0.000 1.000± 0.002 2

Math Problem (w/ reasoning)
Hessian-free(Pruthi et al., 2020) 0.829± 0.172 0.524± 0.350 0.772± 0.173 0.258± 0.388
DataInf(Kwon et al., 2024) 0.987± 0.030 0.892± 0.155 1.000± 0.001 0.996± 0.025
HyperINF(Zhou et al., 2024) 0.988± 0.023 0.950± 0.060 0.994± 0.018 0.961± 0.074
Emb(Yang et al., 2025) 0.560± 0.310 0.198± 0.311 0.725± 0.217 0.270± 0.420
For-Value (ours) 1.000± 0.000 0.998± 0.008 1.000± 0.000 1.000± 0.000

Table 1: Influential data identification results on LLMs. For-Value consistently achieves compa-
rable or superior performance. Results are reported as Mean ± Standard Deviation (std).

6 RESULTS

In this section, we detail the results of For-Value and baselines on LLMs and VLMs.

6.1 INFLUENTIAL & MISLABELED DATA IDENTIFICATION

Influential data identification Results on LLM. We first present the results for text generation
tasks in Tab. 1, where For-Value consistently matches or outperforms all baseline methods across
the evaluated LLM benchmarks:

Figure 3: For-Value performance across model
sizes and tasks (Mean±std).

(1) Sentence Transformation: As shown in
Tab. 1, for the sentence transformation task,
For-Value achieves perfect or near-perfect
AUC and recall scores for both models. No-
tably, on Qwen2.5-1.5B, For-Value sur-
passes the strongest baseline, HyperINF, by
0.7% in AUC and by 6.5% in recall.
(2) Math Problems (w/&w/o reasoning): A sim-
ilar pattern holds for the math problem tasks,
both with and without reasoning (data samples
in Tab. 9). As shown in Tab. 1, For-Value
delivers higher-quality influence identification
with just a single forward pass, improving recall by about 6% over the best-performing baseline
HyperINF on both math datasets with Qwen model.
These results demonstrate that For-Value reliably identifies influential data points across differ-
ent tasks and model scales, combining strong accuracy with practical efficiency.
Influential data identification Results on VLM. We next report the results on VLMs in Tab. 2. (1)
For subject generation, For-Value achieves the highest AUC and recall scores for both Qwen-2.5-
VL-3B-Instruct and Llama-3.2-11B-Vision, consistently outperforming all baselines. Specifically,
For-Value exceeds the strongest baseline, HyperINF, by more than 7% in recall for both mod-
els for the 11B model. (2) In the more challenging style generation task, For-Value demonstrates
a clear advantage, with AUC improvements of over 0.35 compared to the baselines, and even larger
gains over the Emb method. Notably, the performance of baselines drops more sharply on this task,
raising concerns on their robustness on complex dataset. These findings confirm that For-Value

2AUC and Recall values reported as 1.0 may still include a non-zero std due to rounding. The large std arise
because the underlying value distribution is highly polarized, clustering near either 1 or 0.
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effectively identifies influential data points for VLMs across diverse tasks and model sizes.

Method Qwen2.5-VL-3B-Instruct Llama-3.2-11B-vision
AUC ↑ Recall ↑ AUC ↑ Recall ↑

Image-to-text subject generation
Hessian-free(Pruthi et al., 2020) 0.979± 0.038 0.738± 0.399 0.961± 0.093 0.765± 0.365
DataInf(Kwon et al., 2024) 0.989± 0.024 0.836± 0.318 0.958± 0.119 0.797± 0.323
HyperINF(Zhou et al., 2024) 0.988± 0.047 0.902± 0.220 0.993± 0.025 0.919± 0.186
Emb(Yang et al., 2025) 0.841± 0.189 0.206± 0.458 0.841± 0.189 0.206± 0.379
For-Value (ours) 0.994± 0.018 0.897± 0.287 0.995± 0.040 0.985± 0.068

Image-to-text style generation
Hessian-free(Pruthi et al., 2020) 0.515± 0.096 0.799± 0.162 0.515± 0.079 0.824± 0.145
DataInf(Kwon et al., 2024) 0.520± 0.094 0.760± 0.181 0.515± 0.174 0.785± 0.164
HyperINF(Zhou et al., 2024) 0.516± 0.055 0.860± 0.103 0.490± 0.090 0.821± 0.137
Emb(Yang et al., 2025) 0.560± 0.310 0.198± 0.311 0.553± 0.294 0.340± 0.467
For-Value (ours) 0.895± 0.138 0.916± 0.153 0.974± 0.059 0.997± 0.013

Mislabeled Data Detection
Hessian-free(Pruthi et al., 2020) 0.719± 0.098 0.760± 0.088 0.962± 0.019 0.955± 0.068
DataInf(Kwon et al., 2024) 0.760± 0.088 0.901± 0.147 1.000± 0.000 1.000± 0.003
HyperINF(Zhou et al., 2024) 0.770± 0.077 0.916± 0.128 1.000± 0.001 1.000± 0.006
Emb(Yang et al., 2025) 0.741± 0.061 0.533± 0.075 0.933± 0.044 0.996± 0.015
For-Value (ours) 0.885± 0.055 0.999± 0.010 0.995± 0.008 1.000± 0.000

Table 2: Influential data identification and mislabeled data detection performance for different VLM
tasks. For-Value consistently delivers comparable or superior performance in identifying influ-
ential data and detecting mislabeled data across various VLM tasks compared to baseline methods.

Mislabeled Data Detection. Our mislabeled data detection results in Tab. 2 demonstrate
For-Value’s strong performance across model scales. On the Qwen-VL-3B model, For-Value
achieves an 11.5% higher AUC and an 8.3% higher Recall compared to the best baseline
(HyperINF), showing significant improvements in identifying mislabeled examples. The method
performs equally well on the larger Llama-3.2-11B model, matching the near-perfect detection rates
(AUC > 0.99, Recall = 1.0) of gradient-based approaches. This consistent performance across both
small (3B) and large (11B) VLMs highlights For-Value’s scalability and effectiveness. Notably,
For-Value achieves these results using just a single forward pass, requiring seconds rather than
the hours needed by baseline methods.

6.2 DATA SELECTION FOR FINETUNING

Having established the strong performance of For-Value in identifying both influential
and noisy data, we next assess its practical utility on mathematics and medicine. Given
poor performance of Emb in prior experiments, we excluded it from these evaluations.

Llama-3.1-8B GSM8K (1%) ↑ GSM8K (5%) ↑ Time ↓
Full (100%) 47.8 –

Hessian-free 41.5 41.8 1.4 h
HyperINF 41.9 42.8 2.4 h
DataInf 41.7 42.0 1.9 h
For-Value (ours) 45.2 48.3 0.3 h

Table 3: GSM8K greedy decoding accuracy of Llama-3.1-
8B. Best results are in bold.

Mathematics: GSM8K. We begin by
examining influential data identifica-
tion on the GSM8K (Cobbe et al.,
2021) dataset, which provides ground-
truth training and test reasoning pairs.
This setup enables us to select high-
value training samples and measure
their effect on test accuracy. Follow-
ing (Deng et al., 2024b), we report
greedy performance in Tab. 3, where
fine-tuning on the top 5% most influential samples selected by For-Value achieves the high-
est accuracy of 48.3%, surpassing the strongest baseline, HyperINF, by 5.5% and even slightly
outperforming training on the full dataset. When the selection rate is further reduced to 1%, perfor-
mance decreases as expected, but For-Value still exceeds all baselines by up to 3.3%. Crucially,
For-Value also provides the most efficient valuation, requiring only 0.3 hours, more than 5×
faster than baselines.
Medicine: Noise-Huatuo-Complex-CoT. To examine robustness under noisy training conditions,
we construct a corrupted version of the Huatuo-Complex-CoT dataset (Chen et al., 2024). We ran-
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domly sample 5,000 examples without replacement and inject noise into 40% of them by inserting
or removing irrelevant words (examples see Fig. 7 in Appendix), resulting in the Noise-Huatuo-
Complex-CoT dataset. Another 5,000 clean examples are reserved for valuation, and models are
evaluated on five held-out medical QA test sets. Within this setting, we apply For-Value and
competing methods to select high-quality training subsets for fine-tuning. As shown in Tab. 4,
For-Value consistently delivers the strongest results. With only 5% data, it reaches an average ac-
curacy of 60.31%, outperforming the best baseline (DataInf) by 3%. At 10%, For-Value shows
an even clearer advantage, achieving the best score across all tasks with an average of 62.35%, ex-
ceeding the strongest baseline HyperINF by 2.1%. Crucially, For-Value also provides the most
efficient valuation, requiring only 0.8h, up to 6× faster than baselines. These results underscore the
effectiveness of For-Value in identifying valuable data even when training data is noisy. More
analysis are provided in Appendix Sec. A.6.

Method (Llama-3.1-8B-Ins) MedQA MedMCQA PubMedQA MMLU-Pro-med GPQA-med Average ↑ Time ↓
Base 56.84 61.90 77.00 59.02 44.35 59.82 –

5% Data

Hessian-free 55.41 58.05 73.40 54.53 38.46 55.97 2.0 (h)
HyperINF 55.15 57.58 71.50 54.14 43.08 56.29 5.3 (h)
DataInf 55.39 57.74 73.30 54.07 45.13 57.13 4.1 (h)
For-Value (ours) 56.80 62.92 77.60 58.31 45.90 60.31 0.8 (h)

10% Data

Hessian-free 57.02 59.15 72.30 57.13 47.69 58.66 2.0 (h)
HyperINF 56.94 62.76 77.40 57.85 48.46 60.28 5.3 (h)
DataInf 56.61 61.74 75.60 56.81 43.85 58.92 4.1 (h)
For-Value (ours) 57.61 67.16 78.30 58.18 50.51 62.35 0.8 (h)

Table 4: Results of data selection for fine-tuning on the Noise Huatuo-Complex-CoT (Llama-3.1-
8B-Ins).

Medical VQA. To evaluate the effectiveness of For-Value on vision–language models, we con-
duct experiments on the PMC-Reasoning dataset (Huang et al., 2025; Zhang et al., 2023). We ran-
domly sample 10,000 examples for training and 5,000 for valuation without replacement. Fine-
tuning subsets are then selected from the training pool using For-Value as well as baseline
methods, and the resulting models are fine-tuned and evaluated on six held-out test sets. As shown
in Tab. 5, For-Value delivers the strongest overall performance. With 10% data, it achieves the
highest average accuracy (52.23%), exceeding the base model by over 3% and the best-performing
baseline, HyperINF, by 0.6%. At 20% data, For-Value maintains competitive performance
(52.67%), ranking second only to HyperINF. Importantly, For-Value consistently achieves
these results with the lowest computational cost (0.4h vs. 1.6–1.7h for baseline methods). Notably,
all data valuation methods surpass full fine-tuning, highlighting the benefit of selecting high-value
subsets for training. Overall, these results demonstrate that For-Value reliably identifies influen-
tial data for medical VQA while offering significant efficiency gains.

Method (Qwen2.5-VL-3B) MMMU MedX-M PathVQA PMC SLAKE VQA-Rad Average ↑ Time ↓
Base 44.12 20.69 61.96 44.77 61.30 62.01 49.14 –
Full (Huang et al., 2025) 47.84 21.46 52.76 54.55 65.79 58.58 50.16 –

10% Data
Hessian-free 48.82 20.65 61.18 49.60 61.78 63.60 50.94 1.3 (h)
HyperINF 50.00 21.60 61.10 50.45 62.50 63.97 51.60 1.7 (h)
DataInf 49.41 21.10 62.64 50.55 59.38 65.81 51.48 1.6 (h)
For-Value (ours) 47.06 23.05 62.93 49.55 67.55 63.24 52.23 0.4 (h)

20% Data
Hessian-free 52.94 21.40 61.81 52.05 63.46 62.50 52.36 1.3 (h)
HyperINF 56.47 20.50 62.14 51.45 62.98 64.71 53.04 1.7 (h)
DataInf 48.82 21.25 62.58 51.35 63.46 63.24 51.78 1.6 (h)
For-Value (ours) 54.12 22.45 60.26 50.45 65.14 63.60 52.67 0.4 (h)

Table 5: Results of data selection for fine-tuning on the PMC-Reasoning dataset. Best results are in
bold, and second-best are underlined.
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6.3 ABLATION STUDY & EFFICIENCY

In this section, we present ablation and efficiency studies based on influential and mislabeled data
identification tasks in Sec. 6.1.

Effect of prediction error similarity α. We perform an ablation study to evaluate the role of the
α term by setting α to 1 in the computation of Eq. (2). This simplification reduces the score to〈∑|yv|

k=1 hxv,yv,<k
,
∑|yi|

k′=1 hxi,yi,<k′

〉
, which measures contextualized text embedding similarity

between two data samples’ y (context is the input x and notably, in practice, in text generation it is
the whole text and text part for image-to-text generation.). This is equivalent to the Emb baseline.
As shown in Tab. 1 and Tab. 2, For-Value consistently and significantly outperforms Emb across
both LLM and VLM tasks. This highlights the importance of including α in the calculation. Intu-
itively, the prediction error in α term acts as a token-level weight: when the model’s confidence for
a token in the training data is already high, its prediction error is small and contributes little gradient
signal (loss is small); similarly, when the valuation token is predicted with high confidence, any
further increase in its probability is limited, implying that it is less influenced by the training data.
While Emb performs well for data valuation in generative image models, its degraded performance
shows that directly applying it to LLMs/VLMs is ineffective due to a different training objective.
For-Value Performance across model sizes. Fig. 3 shows that For-Value maintains
consistently high performance across different model sizes and tasks. Both AUC and Recall
stay close to 1.0 for all tasks, indicating that scaling up the model does not degrade ef-
fectiveness. This stability confirms that For-Value generalizes well to larger models while
preserving accuracy, making it reliable for practical deployment on a range of LLM tasks.

(a) For-Value. (b) Baseline Methods

Figure 4: Time cost analysis: (a) Time cost of For-Value
across different model sizes and tasks. (b) Time cost of base-
line methods on sentence transformation task across differ-
ent model sizes. Notably, For-Value is significantly more
efficient than the baselines, with time costs measured in sec-
onds, whereas the baselines require up to several hours.

Time Cost Analysis. To further
demonstrate efficiency, we compare
the time cost of For-Value with
that of the baselines across dif-
ferent model sizes and tasks. As
shown in Fig. 4a, For-Valuemain-
tains consistently low runtime, even
as model size increases from 1.5B
to 72B parameters. For all tasks,
the runtime remains within a few
hundred seconds, highlighting its
practical scalability. In contrast, as
shown in Fig. 4b, baseline meth-
ods for the sentence transforma-
tion task require significantly more
time—measured in hours rather than
seconds. The best-performing base-
line, HyperINF, becomes especially
costly for larger models, taking up to 6 hours for the 32B model. This underscores the efficiency
advantage of For-Value, which delivers competitive or superior performance with minimal com-
putational cost. More discuss on efficiency please see Appendix Sec. A.4.

7 CONCLUSION

In this work, we presented For-Value, a forward-only data valuation framework specifically de-
signed for pretrained LLMs and VLMs. By relying solely on a single forward pass to estimate
per-sample influence, For-Value removes the computational bottlenecks associated with gradient
and Hessian calculations. Our theoretical analysis grounds For-Value in the learning dynamics of
autoregressive modeling, providing a solid foundation for its effectiveness. Extensive experiments
across tasks and model scales show that For-Value matches or surpasses state-of-the-art base-
lines in identifying mislabeled and influential samples. It also selects higher-value subsets for fine-
tuning, yielding a better performance in mathematical and medical domains. Crucially, these gains
are achieved with substantial improvements in computational efficiency, highlighting For-Value
as a practical and scalable solution for data valuation in large foundation models.
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A APPENDIX

A.1 TRAINING LOSS OF LLMS AND VLMS

To adapt a pretrained LLM or VLM to a specific domain or task, models are typically trained on a
supervised dataset D = (xi,yi)

n
i=1 of input-output pairs. Training is commonly performed using

the standard teacher-forcing objective, which minimizes the negative log-likelihood of the target
sequence:

LSFT(θ) = −
1

n

n∑
i=1

lnπθ(yi|xi)−
1

n

n∑
i=1

|yi|∑
k=1

lnπθ(yi,k|xi,yi,<k).

This objective maximizes the likelihood that the model generates the correct output sequence con-
ditioned on the input and the ground-truth prefix at each step. The parameters are updated using
gradient descent or its variants:

θ ← θ − η∇θ LSFT(θ), with θt=0 = θ0,

where η > 0 is the learning rate. Teacher forcing stabilizes fine-tuning by supplying the true prefix
y<k during training, enabling the model to align its predictions closely with the target data distribu-
tion in the new domain.

A.2 PROOF OF THEOREM 1

In this section, we give the detailed proof of our Theorem 1, we start by proving the following
theorem:

Theorem 2. For a data xv and its generation yv that await valuation, at any time t ≥ 0 of training
using a training data (xi,yi), i ∈ [n], the training data exhibits larger value to the valuation data
as the following increases:

|yv|∑
k=1

|yi|∑
k′=1

αk,k′(t) ·
〈
hxv,yv,<k

(t),hxi,yi,<k′ (t)
〉
+

|yv|∑
k=1

〈
wyv,k

(t)−
∑
z∈V

πθ(t)(z|xv) ·wz(t), (wyi,k
−
∑
z∈V

πθ(t)(z|xv) ·wz(t))

〉
(3)

Proof.

d

dt
lnπθ(t)(yv|xv) =

〈
∇ lnπθ(t)(yv|xv),

d

dt
θ(t)

〉
=
〈
∇ lnπθ(t)(yv|xv),−η∇LD(θ)

〉
=

〈
∇ lnπθ(t)(yv|xv), η

n∑
i=1

∇ lnπθ(t)(yi|xi)

〉

As per the unconstrained features Assumption, the model’s trainable parameters are

θ =
(
W ,hxv

,
{
hxv,yv,<k

}
k∈{2,...,|yv|}

,
{
hxi,yi,<k′

}
i∈[n],k′∈{1,...,|yi|}

)
.
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Unfolding the gradients with respect to these parameters yields:

d

dt
lnπθ(t)(yv|xv) =

〈
∇W lnπθ(t)(yv|xv),

n∑
i

∇W lnπθ(t)(yi|xi)

〉

+

|yv|∑
k=1

〈
∇hxv,yv,<k

lnπθ(t)(yv,k|xv,yv,<k),

nk∑
i′=1

∇hxv,yv,<k
lnπθ(t)(yi′,k|yv,<k)

〉
︸ ︷︷ ︸

(II) Training data have the same (xv,yv,<k)

.

(4)

where nk is the number of training data whose input and prediction before token k are the same as
valuation data (xv,yv,<k). Since we have

∇W lnπθ(t)(z|x) =

(
ez −

∑
z′∈V

πθ(t)(z
′|x) · ez′

)
h⊤
x (t),

∇hx lnπθ(t)(z|x) = Wz(t)−
∑
z′∈V

πθ(t)(z
′|x) ·Wz′(t).

Putting this back in (4) together with a few algebra steps, yields

d

dt
lnπθ(t)(yv|xv) = (I) + (II) (5)

where:

(I) =
|yv|∑
k=1

n∑
i=1

|yi|∑
k′=1

αk,k′(t) ·
〈
hxv,yv,<k

(t),hxi,yi,<k′ (t)
〉

(6)

(II) =
|yv|∑
k=1

〈
wyv,k

(t)−
∑
z∈V

πθ(t)(z|xv) ·wz(t),

nk∑
i′=1

(wyi′,k −
∑
z∈V

πθ(t)(z|xv) ·wz(t))

〉
(7)

where αk,k′(t) =
〈
eyv,k

− πθ(t)(·|x,yv,<k), eyi,k′ − πθ(t)(·|x,yi,<k′)
〉

. By taking the i-th sam-
ple, we can obtain Theorem 2.

We observe the following:

(1) When the training input xi differs from the valuation input xv , its influence on the valuation
target arises solely through Term (I), which captures the contribution of the token embeddings and
all network parameters except the token unembedding layer.

(2) The effect of the token unembeddings is concentrated in cases where the training and valuation
data share the same input x and exhibit overlapping output predictions y.
To eliminate this dependence on token unembeddings, we impose the following assumption:
Assumption 2 (Distinct Input). The training dataset satisfies that no training input xi is identical
to the valuation input xv .

Under the Assumption 2, the contribution from token unembeddings (Term (II)) vanishes, so that
the influence of the training data on the valuation data arises entirely through the shared representa-
tion features captured in Term (I). This assumption is mild, as training inputs typically differ from
valuation inputs in practice — especially in vision-language datasets, where the input images are
almost always distinct. Extending this result to cases where training examples share the same input
but differ in their outputs y is straightforward: the output prefix y<k can be incorporated into the
input x, treating each unique pair (x,y<k) as a distinct input, where k − 1 indicates the point at
which the outputs begin to differ. Combining Theorem 2 and Assumption 2 then yields Theorem 1.

A.3 ADDITIONAL DETAILS OF INFLUENTIAL AND MISLABELED DATA DETECTION

Training setting for baselines. While For-Value requires only a single forward pass, the influ-
ence function-based baselines Hessian-free and DataInf require fine-tuning the models to
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convergence. For text generation tasks, we follow the training setup in Kwon et al. (2024), except
to llama-2-13B, we use float16 weights instead of 8-bit quantization. For image-to-text generation
tasks, we apply LoRA to every query and value matrix within the model’s attention layers. To fine-
tune VLMs, we use a learning rate of 2× 10−4, LoRA hyperparameters r = 8 and α = 32, float16
model weights, a batch size of 32, and train for 20 epochs.

Efficiency details. For larger 32B and 72B models in Fig. 4, we employ 4 A100 GPUs for inference
and a single A100 for value computation. Baseline methods requiring training are fine-tuned on
up to 8 GPUs, with the 32B model quantized to 8-bit to enable valuation on a single A100. Due
to their long runtime, we restrict baselines to the sentence transformation task and, for 14B/32B
models, sample 10% of valuation data—scaling time by a factor of 10 to estimate totals. Despite
these adjustments, For-Value achieves substantially lower runtime without quantization and with
fewer GPUs.

A.4 ADDITIONAL RESULTS

Complexity Analysis. Tab. 6 compares the training, computational, and memory costs of different
methods. Traditional approaches such as IF, Hessian-free, HyperINF, and DataInf rely on
gradient traces or Hessian computations, resulting in high costs that scale poorly with model size.
In contrast, Emb and For-Value are training-free and algorithm-agnostic, which significantly
reduces overhead. Although HyperINF is the strongest baseline in terms of accuracy, its cubic
complexity makes it impractical for large LLMs—requiring about 6 hours for a Qwen-32B model
(Fig. 4b). Although Emb achieves the best runtime efficiency, its performance lags behind other
methods, as demonstrated in Tab. 1 and Tab. 2. Our method, For-Value, maintains strong perfor-
mance while remaining highly efficient. Since |V̂| is typically small (often under 2k), For-Value
achieves much lower computational and memory costs than baselines.

Method Training Free Algorithm Agnostic Training Complexity Computational Complexity Memory Complexity
Original IF ✗ - O(nEdindL) O(nd2ind

2L+ d3ind
3L) O(D2L+ nDL)

Hessian-free ✗ ✗ O(nEdindL) O(ndindL) O(ndindL)
DataInf ✗ ✗ O(nEdindL) O(ndindL) O(ndindL)
HyperINF ✗ ✗ O(nEdindL) O(nd3L) O(nd2L)

Emb ✓ ✓ 0 O(nd) O(nd)

For-Value (ours) ✓ ✓ 0 O(nd|V̂|) O(nd|V̂|)

Table 6: Comparison on complexity of the Influence Function (IF), Hessian-free, DataInf,
Emb, and For-Value. Complexities are given assuming a multilayer perceptron (MLP) with L
layers, each containing din×d neurons where din is input dimension and d is the output embedding
dimension, trained for E epochs on n training samples. The parameter count is identical across
layers (D ∈ N), and the in-batch volcabulary size is |V̂|. Overall, For-Value achieves higher
computational and memory efficiency than baseline methods.

Discussion on Parallel Computing: While previous studies focus on using a single GPU for fair
comparison, we would like to highlight that For-Value can further improve efficiency through
parallel computing with a large batch size, as it only requires forward calculations. In contrast, base-
line methods require computing the gradient for each individual data sample, which restricts them
to a batch size of one and makes scaling up challenging.

Qualitative Demonstration. Beyond quantitative results, we present qualitative examples identified
by For-Value. Fig. 5 shows a target valuation sample alongside its most and least influential train-
ing samples as ranked by For-Value. Specifically, For-Value successfully identifies highly
relevant training points — for example, selecting samples from the same reverse order of words task
for sentence transformation, or matching the same subject or artistic style in image-to-text tasks.
In contrast, the least influential samples are clearly less relevant and often differ entirely in task or
content from the target valuation data.

A.5 ADDITIONAL DETAILS OF SELECT DATA FOR FINETUNING

Mathematics: GSM8K As the baseline methods require LoRA, we begin with a one-epoch warmup
training on Llama3-8B Meta (2024) using the whole training set to avoid utilizing gradients from
randomly initialized LoRA modules (with a rank of r = 32). Next, we calculate influence scores

17
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Valuation Sample

A: This an image in a specific pixelart 
style. a gauguinesque, impressionist 
painting of flowers and fruit on a table 
cloth on a cloth, by alexej von 
jawlensky, trending on flickr, fauvism, 
fauvism, picasso, painterly.

A: This an image in a specific pixelart 
style. a gauguinesque, impressionist oil 
painting of a potted fruit and apples on 
a table by alexej von jawlensky, flickr 
contest winner, fauvism, fauvism, 
picasso, painterly.

Most Influencial Sample Least Influencial Sample

A: This an image in a specific black 
and white line sketch style. Man on 
horse in desert.

Q: Describe this image. Q: Describe this image. Q: Describe this image.

Solve the following math problem. Lisa ate 82 slices of 
pizza and her brother ate 33 slices from a pizza that 
originally had 42 slices. How many slices of the pizza 
are left? -> Reason: Combined slices eaten = 82 + 33. 
Left = 42 - (82 + 33). Answer: -73</s>

Solve the following math problem. Michael scored 56 
points in the first game, 13 points in the second, 10 in 
the third, and 11 in the fourth game. What is his total 
points? -> Reason: Total points = 56 + 13 + 10 + 11. 
Answer: 90</s>

Solve the following math problem. Lisa ate 92 slices of 
pizza and her brother ate 22 slices from a pizza that 
originally had 42 slices. How many slices of the pizza 
are left? -> Reason: Combined slices eaten = 92 + 22. 
Left = 42 - (92 + 22). Answer: -72</s>

Task: Math Problem with reasoning (Qwen-2.5-1.5B)

Task: Sentence Transformation (Qwen-2.5-1.5B)

Task: Style Generation (Llama-3.2-11B-Vision)

Task: Subject Generation (Llama-3.2-11B-Vision)
Q: Describe this image.

Cempoi is a chatbot that performs a specific 
transformation on : 
Reverse Order of Words
For example: Feeathers float on dreams. -> dreams. on 
float Feathers</s>

Cempoi is a chatbot that performs a specific 
transformation on sentences: 
Reverse Order of Words
For example:\n Children chase fleeting dreams. -> 
dreams. fleeting chase Children</s>

Ojzlq is a chatbot that performs a specific 
transformation on sentences: 
Remove All Vowels
For example:\n Moonlight serenades the night. -> 
Mnlght srnds th nght.</s>

A: It is a backpack.
Q: Describe this image.

A: It is a backpack.
Q: Describe this image.

A: It is a vase.

Figure 5: Qualitative examples of data influence identified by For-Value. For each target valua-
tion sample (left column), the most influential (middle column) and least influential (right column)
training samples are shown. For-Value correctly retrieves training samples that share relevant
task characteristics (e.g., same reasoning type, sentence transformation rule, subject, or style) and
filters out unrelated or mismatched examples.

for both the baselines and For-Value. To ensure consistency and performance, we also perform
a one-epoch warm-up but with full-parameter finetuning on the entire dataset. Finally, we select the
top 5% of data based on these influence scores to further finetune the model with learning rate 1e−5
and batch size 64 on 4 H100 GPU for 4 epochs.
Medicine: Noise-Huatuo-Complex-CoT As the baseline methods utilize LoRA, we begin with
a one-epoch training on Llama3-8B-Instruction Meta (2024) using the whole training set to avoid
using gradients from randomly initialized LoRA modules (with a rank of r = 16). Next, we calculate
influence scores for both the baselines and our approach. Considering the training data is noisy, we
select the top 5% high value training data based on these scores and finetune the original pretrained
model using full-parameter finetuning for 5 epochs, with a learning rate of 1× 10−6, a batch size of
16 and gradient accumulation 8 on 8 H100 GPUs. We follow Wu et al. (2025) using greedy decoding
to evaluate the model on 5 held out datasets MedQA Jin et al. (2021), MedMCQA Pal et al. (2022),
PubMedQA Jin et al. (2019), MMLU-Pro-Med Wang et al. (2024b), GPQA-Med Rein et al. (2024).

Medicine: Noise-Huatuo-Complex-CoT Similarly, we start with a one-epoch warm-up on the en-
tire training set to prevent using gradients from randomly initialized LoRA modules (with a rank
of r = 16). Then, we compute influence scores for the baseline methods. For our method, since
the pretrained model already demonstrates sufficient medical knowledge (as shown by adequate test
accuracy in Table 2), we directly use the original pretrained model to assess data value. Finally, we
finetune the pretrained Qwen2.5-3B-VL model Bai et al. (2025a) with full-parameter finetuning for
3 epochs, using a learning rate of 1 × 10−5, a batch size of 16, and gradient accumulation of 8 on
8 H100 GPUs. We evaluate the model with greedy decoding on 6 held out datasets: PMC Zhang
et al. (2023), MMMU Yue et al. (2024), MedX-M Zuo et al. (2025), PathVQA He et al. (2020),
SLAKE Liu et al. (2021), VQA-Rad Lau et al. (2018).

A.6 ADDITIONAL ANALYSIS ON SELECT DATA FOR FINETUNING

Medicine: Noise-Huatuo-Complex-CoT. As indicated in Tab. 4, baseline methods struggle to ef-
fectively select high-quality data from noisy training datasets. This is primarily because these meth-
ods rely on assumptions of uniqueness or convergence to an optimal solution Bae et al. (2024), which
are difficult to satisfy in the presence of noisy data. To illustrate this, we evaluated the proportion
of high-quality data within the top 10% of high-value data, as shown in Tab. 7. The results reveal
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Llama-3.1-8B Detection Accuracy
Hessian-free 48.2
HyperINF 15.1
DataInf 33.2
For-Value 84.4

Table 7: High quality data detection accuracy

that baseline methods generally lack the capability to accurately identify noisy data, whereas our
proposed method (For-Value) achieves significantly higher accuracy in detecting clean data.

Table 8: Description of the sentence transformation task templates. We consider 10 different types
of sentence transformations. For each sentence transformation, unique identifying “chatbot” names
were additionally prepended to the task prompt to assist the model in training.

Sentence transformations Example transformation of “Sunrises herald hopeful tomorrows”:
Reverse Order of Words tomorrows. hopeful herald Sunrises
Capitalize Every Other Letter sUnRiSeS hErAlD hOpEfUl tOmOrRoWs.
Insert Number 1 Between Every Word Sunrises 1herald 1hopeful 1tomorrows.
Replace Vowels with * S*nr*s*s h*r*ld h*p*f*l t*m*rr*ws.
Double Every Consonant SSunrriisseess hheraldd hhopefull ttomorrows.
Capitalize Every Word Sunrises Herald Hopeful Tomorrows.
Remove All Vowels Snrss hrld hpfl tmrrws.
Add ’ly’ To End of Each Word Sunrisesly heraldly hopefully tomorrows.ly
Remove All Consonants uie ea oeu ooo.
Repeat Each Word Twice Sunrises Sunrises herald herald hopeful hopeful tomorrows. tomorrows.

A.7 DETAILED TASK DESCRIPTION

A.7.1 LLM INFLUENCE EVALUATION TASKS

Following (Kwon et al., 2024), we evaluate the performance of For-Value on three text generation
tasks for large language models (LLMs) to identify influential data points:

• Sentence Transformations: This task requires transforming input sentences into alterna-
tive forms while preserving meaning (e.g., active to passive voice). The dataset comprises
10 distinct classes (e.g., declarative to interrogative), each with 100 examples, split into 90
training and 10 test examples per class. Data examples see Tab. 8.

• Math Word Problems (Without Reasoning): These problems involve direct numerical
computation from textual descriptions (e.g., basic arithmetic). The dataset has 10 classes
based on operation types, with 100 examples per class (90 training, 10 test). Data examples
see Tab. 9.

• Math Word Problems (With Reasoning): These require multi-step reasoning (e.g., solv-
ing word problems involving algebra or logic). Similar to the previous task, the dataset
includes 10 classes with 100 examples each (90 training, 10). Data examples see Tab. 9.

A.7.2 VLM INFLUENCE EVALUATION TASKS

For VLMs, we adapt text-to-image generation tasks from (Kwon et al., 2024) into image-to-text
(captioning) tasks to evaluate influence:

• Style Generation: This task involves generating captions for images in specific styles:
cartoons (Norod78, 2023), pixel art (Jainr3, 2023), and line sketches (Zoheb, 2023). Each
style dataset contains 200 training and 50 test image-text pairs, totaling 600 training and
150 test samples across three styles. Data examples see Fig. 5.

• Subject Generation: Using the DreamBooth dataset (Ruiz et al., 2023), this task generates
captions for images of 30 distinct subjects (e.g., specific objects or animals). Each subject
provides 3 training samples, with the remaining samples used for valuation. Data examples
see Fig. 5.
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Table 9: Description of the math problem task templates. We consider 10 different types of math
word problems.

Math Word Problems Template prompt question
Remaining pizza slices Lisa ate A slices of pizza and her brother ate B slices from a

pizza that originally had C slices. How many slices of the pizza
are left? Reason: Combined slices eaten = A + B. Left = C - (A
+ B).

Chaperones needed for trip For every A students going on a field trip, there are B adults
needed as chaperones. If C students are attending, how many
adults are needed? Reason: Adults needed = (B * C) // A.

Total number after purchase In an aquarium, there are A sharks and B dolphins. If they bought
C more sharks, how many sharks would be there in total? Rea-
son: Total sharks = A + C.

Total game points Michael scored A points in the first game, B points in the second,
C in the third, and D in the fourth game. What is his total points?
Reason: Total points = A + B + C + D.

Total reading hours Emily reads for A hours each day. How many hours does she
read in total in B days? Reason: Total hours read = A * B.

Shirt cost after discount A shirt costs A. There’s a B-dollar off sale. How much does the
shirt cost after the discount? Reason: Cost after discount = A -
B.

Area of a garden A rectangular garden has a length of A meters and a width of B
meters. What is its area? Reason: Area = A * B.

Total savings If Jake saves A each week, how much will he save after B weeks?
Reason: Total savings = A * B.

Number of cupcake boxes A bakery sells cupcakes in boxes of A. If they have B cupcakes,
how many boxes can they fill? Reason: Boxes filled = B // A.

Interest earned John invests A at an annual interest rate of B%. How much in-
terest will he earn after C years? Reason: Interest = (A * B * C)
// 100.

A.7.3 INFLUENTIAL DATA DETECTION METRICS

We adopt two metrics from (Kwon et al., 2024) to assess influence:

• AUC Score: For each test data point, we assign pseudo labels to training points (1 if the
training point’s label matches the test point’s, 0 otherwise). We compute the Area Under the
Curve (AUC) between data values (influence scores) and pseudo labels, averaging across
all test points. A higher AUC indicates better identification of influential points.

• Recall: For each test point, we calculate the percentage of influential training points (top-
ranked by influence score) that share the same class as the test point. This measures the
relevance of identified influential points.

A.7.4 MISLABELED DATA DETECTION DATA & METRICS

Figure 6: Description of the mislabeled data detection task. We utilize a cat versus dog classification
dataset and intentionally introduce noise by randomly swapping the labels of 50% of the data.
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For mislabeled detection, we transform the dataset into a visual-language question answering task
with the template ”What is the animal in the image? It is a [label]” with demonstration3 in Fig. 6.
We then select the first 400 images for both dogs and cats, flipping 50% of the labels to introduce
noise. For valuation, we use 200 images, with each class containing 100 images. For evaluation, we
also calculate the AUC and Recall but with the pseudo labels to training points being 1 if the training
point’s label matches the test point’s and it is clean data, 0 otherwise.

A.8 NOISE-HUATUO-COT DATA EXAMPLE

We construct the Noise-Huatuo-Complex-CoT dataset by randomly sampling 5,000 examples with-
out replacement and injecting noise into 40% of them through random insertion or deletion of irrel-
evant words, as illustrated in Fig. 7.

Figure 7: Examples of two types of noisy data. (Left) Random word deletion, where tokens are
dropped from the reasoning, for instance, ‘Thinking’ is removed after ##. (Right) Random word
insertion, where irrelevant tokens such as ‘bar,’ ‘foo,’ and ‘baz’ are injected into the reasoning. Red
dashes means omitted reasoning.

A.8.1 BASELINE CHECKPOINTS SELECTION

For baseline methods, we select the model checkpoint with the highest test AUC, as influence
function-based methods exhibit significant performance variability across training checkpoints. No-
tably, this variability does not correlate with validation loss, posing challenges for practical deploy-
ment. We compare For-Value against these baselines to ensure robust evaluation.

A.8.2 DATASET STATISTICS

We present dataset statistics in Tab. 10

A.9 USAGE OF LARGE LANGUAGE MODEL

In preparing this paper, we made limited use of ChatGPT to support writing and editing. Specifi-
cally, LLMs were employed for language polishing, grammar refinement, and rephrasing sentences
to improve clarity and readability. Importantly, all technical content, including theoretical analy-
sis, algorithm design, and experimental results, was conceived, implemented, and validated by the

3To prevent any licensing issues, the images shown are not from the original dataset; they were personally
captured for demonstration purposes.
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Table 10: Dataset statistics for LLM and VLM tasks.

Task Training Samples Valuation Samples
Sentence Transformations 900 (90 × 10 classes) 100 (10 × 10 classes)
Math Word Problems (No Reasoning) 900 (90 × 10 classes) 100 (10 × 10 classes)
Math Word Problems (With Reasoning) 900 (90 × 10 classes) 100 (10 × 10 classes)
Style Generation 600 (200 × 3 styles) 150 (50 × 3 styles)
Subject Generation 90 (3 × 30 subjects) Variable (1-3) per subject
Mislabel Detection 800 (400 × 2 subjects 50% noise) 200 (100 × 2 subjects)
GSM8K 7470 1319
Noise-Huatuo-Complex-CoT 5000 (2981 clean, 2019 noise) 5000 (clean)
PMC-Reasoning (subset) 10000 5000

authors. LLM outputs were always critically reviewed, verified, and revised before inclusion. No
LLM-generated text, figures, or tables were incorporated without careful human oversight.

A.10 LICENSE CLARIFICATION

The Dreambooth images have been either taken by the authors of the paper or obtained from Un-
splash4. The file located at this link5 includes a list of all reference links to the images on Unsplash,
along with the photographers’ attributions and the image licenses. The sketch images are sourced
from FS-COCO Chowdhury et al. (2022). Data attributions and image licenses can be found in the
file provided at the following link6.

4https://www.unsplash.com/
5https://huggingface.co/datasets/google/dreambooth/blob/main/dataset/references and licenses.txt
6https://github.com/pinakinathc/fscoco
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