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Abstract

In the IoT era, information is more and more frequently picked up by connected smart
sensors with increasing, though limited, storage, communication and computation abili-
ties. Whether due to privacy constraints or to the structure of the distributed system, the
development of statistical learning methods dedicated to data that are shared over a net-
work is now a major issue. Gossip-based algorithms have been developed for the purpose
of solving a wide variety of statistical learning tasks, ranging from data aggregation over
sensor networks to decentralized multi-agent optimization. Whereas the vast majority of
contributions consider situations where the function to be estimated or optimized is a basic
average of individual observations, it is the goal of this article to investigate the case where
the latter is of pairwise nature, taking the form of a U -statistic of degree two. Motivated
by various problems such as similarity learning, ranking or clustering for instance, we re-
visit gossip algorithms specifically designed for pairwise objective functions and provide a
comprehensive theoretical framework for their convergence. This analysis fills a gap in the
literature by establishing conditions under which these methods succeed, and by identifying
the graph properties that critically affect their efficiency. In particular, a refined analysis of
the convergence upper and lower bounds is performed.

1 Introduction

The era of Big Data and widespread artificial intelligence has begun. It uses technological building blocks
to automatically collect, store and process massive data of different types and formats in a short space
of time. The machine learning craze is spreading to almost every field, as the Internet of Things (IoT)
and the widespread use of technology for analysis make ever more data available, at ever finer granularity.
Expectations are immense. However, whether for predictive or interpretative purposes, the statistical analysis
of data collected using modern technologies still raises a wide variety of methodological questions in order
to design smarter devices. The abundance of new applications, such as monitoring the state of health of
complex infrastructures, the availability of massive data samples and the technological constraints inherent
in acquiring and accessing information (e.g. sensor networks) and computing, have pushed the scientific
community to develop new algorithms, beyond the example of successful applications such as computer
vision, machine-listening or automatic language translation. In the IoT era, information can be collected
by connected smart sensors, shared across the network they form, and sometimes needs to be analyzed
in a distributed way, due to systemic or privacy constraints for example. Gossip algorithms have been
designed to solve various statistical tasks in this context, such as data aggregation or decentralized multi-
agent optimization, see e.g., Loizou & Richtárik (2016), Zantedeschi et al. (2020), Xin et al. (2020a) or
Hendrikx et al. (2020). While the situation where the functional of interest is a basic average of individual
observations has received much attention in the literature, see e.g., Agarwal et al. (2010), Boyd et al. (2011),
Bianchi & Jakubowicz (2013), Xin et al. (2020a) or Scaman et al. (2018), the present article focuses on the
case where the function to be estimated or to be optimized in a distributive manner is of pairwise nature,
taking the form of a U -statistic of degree two (i.e., an average over all pairs of individual observations), see
Clémençon et al. (2008), Clémençon et al. (2016) or Laforgue et al. (2019). Indeed, many criteria that are
relevant for evaluating the performance of decision rules in complex problems such as clustering, ranking,
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metric and similarity learning or graph reconstruction involve statistical quantities that are precisely of this
form, see e.g., Clémençon (2014), Clémençon & Vayatis (2010), Vogel et al. (2018) and Papa et al. (2016).

This structural difference prevents the direct application of standard decentralized averaging techniques, and
calls for dedicated algorithmic and theoretical tools.

Unlike local learning tasks such as classification or regression, these global problems require the computation
of pairwise interactions. The main motivation of this paper is to propose and analyze gossip algorithms
adapted to pairwise objectives.

Classically, it is assumed that agents can exchange a limited amount of information per unit of time, via a
communication infrastructure modeled by a connected graph whose nodes they constitute. Merging all the
data at a given node is not always possible, due to memory capacity constraints for example, nor necessarily
desirable, for security and confidentiality reasons. It is therefore necessary to implement a distributed
estimation or optimization strategy, based solely on the local calculations performed by the agents and on
the communication enabled by the network structure.

Beyond communication constraints, gossip-based strategies are particularly well suited to realistic distributed
settings such as IoT or edge networks, where each device has limited memory and computational resources. In
such scenarios, storing or transmitting the entire dataset to a central node is often infeasible, and sometimes
undesirable for privacy or security reasons. Gossip protocols also naturally tolerate temporary node failures,
communication delays, and asynchronous operation, since information continues to propagate through al-
ternative paths without requiring global synchronization. These properties make gossip-based algorithms a
natural candidate for decentralized learning with pairwise objectives.

The assumption that all local data processing and communication can be synchronized by means of a global
clock, to which all agents have access, can greatly simplify the analysis of distributed algorithms. However,
the asynchronous framework, in which each node processes local data and manages its information transfer to
its neighbors in the communication network according to its own clock (modeled as a homogeneous Poisson
process) only, is also considered in the Appendix (the extension requires only minor adjustments).

In this article, we first investigate the issue of computing a U -statistic in a decentralized setting, i.e., from
a sample of observations that is partitioned and distributed over a network. Whereas much attention has
been paid to the standard distributed averaging problem, in both synchronous and asynchronous cases, refer
to Boyd et al. (2006) (see also Karp et al. (2000), Kempe et al. (2003), Silvestre et al. (2018) and Wang
et al. (2017)), few methods have been proposed in the case of pairwise averages. A fundamental difficulty in
the pairwise setting is that, unlike classical averaging, the observations required to form pairwise estimates
are not initially available at all nodes. Instead, auxiliary data must be progressively disseminated across
the communication graph by gossip interactions, inducing a transient and non-uniform sampling of pairs.
Understanding how this non-uniformity impacts the bias and variance of local estimates over time is a central
challenge addressed in this paper. A dedicated algorithm for both synchronous and asynchronous settings
is introduced in Colin et al. (2015), referred to as GoSta. This estimation procedure can be viewed as
a mixture of local estimation of partial estimates and standard averaging method, cf Boyd et al. (2006),
and attains a convergence rate of order O(1/t) after t ≥ 1 iterations. Although a theoretical analysis was
provided in Colin et al. (2015), it focused solely on the bias of the estimator.

In this article, we examine the expected error, thereby proposing the first theoretical guarantee of convergence
for the procedure, as well as a variance result that can be used for concentration analyses or robust estimation
applications.

We also address the problem of decentralized optimization in the case where the objective function is of the
form of a U -statistic of degree two. Following in the footsteps of Duchi et al. (2012a), Colin et al. (2016)
introduced and analyzed distributed synchronous and asynchronous optimization algorithms relying on the
dual averaging of subgradients for pairwise functions. Beyond the rate bounds established, highlighting in
particular the impact of the network’s communication structure, the experimental results provided empirical
evidence of the performance of the approach. However, the upper bound presented depends on a bias term
related to the propagation of observations on the graph. Although numerical experiments suggested that
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this bias disappears quickly, its dependence on the optimization process did not allow one to draw firm
conclusions about the convergence of the procedure.

We propose to extend gossip algorithms from single-observation objectives to pairwise objectives, and analyze
their statistical and optimization properties. Our main contributions are threefold: (i) for estimation,
we provide the first complete non-asymptotic analysis of the GoSta algorithm, including expectation and
variance bounds; (ii) for optimization, we establish convergence guarantees and show that the bias present in
previous works vanishes; (iii) we derive a novel lower bound tailored to the pairwise setting. In addition, we
include numerical experiments illustrating the predicted convergence behavior, the decay of the bias induced
by pairwise gossip sampling, and the role of the communication graph topology.

The article is organized as follows. In Section 2, the essential concepts of decentralized data processing are
briefly reviewed, along with standard approaches to distributed estimation and optimization. The state of
the art in the case of U -statistics is also presented for comparison with the results obtained in the following
sections. Decentralized estimation of a U -statistic is addressed in Section 3. In Section 4, distributed
optimization of a pairwise objective is considered, rate bounds are stated for both the error upperbound and
lowerbound. Section 5 reports numerical experiments conducted on a real-world dataset, illustrating the
practical behavior of the proposed algorithms. Some concluding remarks are collected and lines of further
research are sketched in Section 6. Technical details and extension to the asynchronous setting are deferred
to the Appendix section.

2 Background and Preliminaries

First, we describe the main features of decentralized systems in this section and then summarize the es-
sential ideas underlying the gossip approach to distributed estimation and optimization. For the sake of
completeness, we also briefly recall the basic notions of U -statistics theory and review the state of the art in
distributed learning with pairwise objectives.

Here and throughout, the Euclidean norm of any vector z ∈ Rn with n ≥ 1, viewed as a n×1 column vector,
is denoted by ||z|| = (

∑n
k=1 z

2
k)1/2. By 1n = (1, . . . , 1) is meant the vector in Rn whose coordinates are all

equal to one, and by B(0, D) = {z ∈ Rn : ||z|| < D} the ball centered at 0n = (0, . . . , 0) ∈ Rn with radius
D > 0. The cardinality of any finite set A is denoted by |A|.

2.1 Decentralized Setup - Motivation and Framework

A variety of modern applications, among which statistical estimation and signal processing in sensor networks
(Zhao & Guibas, 2004), coordination in multi-agent systems, distributed localization and federated learning
(Kairouz et al., 2021), require solving tasks across datasets that are naturally distributed across a large
number of nodes. The design of efficient algorithmic solutions must take into account the many constraints
that arise from this context. Depending on the use case, these constraints may include the following:

C1 There is no central server to centralize data or orchestrate calculations (or such centralization is
deemed too costly);

C2 Node-to-node communication over the network is costly;
C3 The computing and storage capacities of each node are severely limited;
C4 Network-wide synchronization of nodes significantly degrades performance.

In this paper, we will consider decentralized problems in which at least constraint C1 holds. Federated
learning is therefore outside the scope of our analysis, although we do analyze synchronous contexts where a
central controller orchestrates the learning process. Both decentralized and federated learning offer ways of
mitigating the privacy risks and costs of centralized learning. Decentralized computing has traditionally been
studied in the context of sensor networks (Zhao & Guibas, 2004). However, recent large-scale deployments of
connected smart devices have also made the decentralized framework relevant to a variety of use cases in which
nodes communicate with only a small subset of other peers, due to physical and/or efficiency constraints.
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It is worth pointing out that the relevance of decentralized computing has recently been demonstrated even
in tightly-coupled systems (e.g., data centers). A striking example is the distributed training of machine
learning models across a large number of compute nodes (CPUs or GPUs) in a computing cluster, where
using a ’master node’ to aggregate intermediate computations quickly becomes a performance bottleneck, as
it has to collect results from all the other nodes (see for instance Lian et al., 2017; Daily et al., 2018).

Formal setup. We now formally describe the framework considered here and introduce some key notations
that will be used throughout the paper. We consider a set of n ≥ 1 nodes (e.g., agents, sensors, connected
objects) indexed by i ∈ {1, . . . , n}. Each node i holds a local data sample Xi from the data set Dn =
{X1, . . . , Xn}. The network topology is modeled as an undirected connected graph G = (V, E), where the
vertex set V is the set of nodes [n] := {1, . . . , n}. The edge set E consists of unordered pairs of vertices from
the set V and describes the communication constraints: for all i ̸= j, (i, j) ∈ E if and only if nodes i and j
can communicate directly with each other. Denoting A as the adjacency matrix (i.e., [A]ij = 1 if and only
if (i, j) ∈ E , and [A]ij = 0 otherwise), the degree of node i ∈ V is given by di =

∑
j ̸=i[A]ij and represents

the number of neighbors of i in G. In practice, keeping the maximum degree small, ideally independent of n,
ensures that nodes do not have to communicate with a large number of peers, thereby taking into account
constraints C2 and C3. The communication properties of the network, i.e., the connectivity of the graph
G, plays a crucial role in the performance of decentralized algorithms. They are generally described by the
eigenvalues of the graph Laplacian, see e.g., Chung (1997). This symmetric and positive semi-definite n× n
matrix is defined by L = D − A, where D = diag(d1, . . . , dn) is the degree matrix. Remarkably, up to
a renormalization, the matrix L is the transition matrix of a random walk on the connected graph G. Its
smallest non-zero eigenvalue, the spectral gap, characterizes the stochastic stability of the random walk on
G: if the connected graph G is non-bipartite, this specific finite-state Markov chain is aperiodic, irreducible
and geometrically ergodic, with the uniform distribution on G as limit distribution. The convergence occurs
at a geometric rate that depends on the spectral gap in an explicit fashion, see Chung (1997).

Gossip algorithms. The general idea behind decentralized algorithms is that each node alternates between
two stages: a local update stage and a communication stage with its neighbors. In this paper, we focus on a
certain type of decentralized algorithms, namely gossip protocols (Shah, 2009; Dimakis et al., 2008). Rather
than requiring communication with all neighbors, we consider a randomized gossip protocol in which each
node exchanges information with only one random neighbor at each stage. Such randomized peer-to-peer
communication makes gossip naturally resilient to temporary node failures or intermittent connectivity: if
some devices disconnect or pause, information can still propagate along alternative paths without requiring
global synchronization. Decentralized algorithms can be synchronous or asynchronous. In the synchronous
setting, nodes have access to a global clock. At each time step t (tick of the clock), all nodes perform a local
update and a communication step, and the next step only begins when all nodes have finished. Although
this assumption is not always realistic, and significant slowdowns can occur, we first focus our analysis on
the synchronous framework, as it allows for more explicable rates. The asynchronous framework, where
communication occurs randomly on the network and without a global clock, is next considered. One may
refer to Boyd et al. (2006) for more details about synchronous and asynchronous time models. Two classes of
decentralized problems have been widely studied: estimation and optimization. Let f(θ;X1, . . . , Xn) be some
function of the data set Dn parameterized by θ ∈ Rd. Broadly speaking, estimation refers to the problem
of computing (or approximating) the value of f for a known value of θ, while optimization aims at finding
the parameters θ that minimize f . Clearly, optimization appears more challenging than estimation, and the
difficulty of solving these problems efficiently under the decentralized constraints described in Section 2.1
strongly depends on the structure of the function f . In fact, the vast majority of existing work has focused
on decentralized estimation and optimization problems where f is separable across nodes. Namely:

f(θ;X1, . . . , Xn) = 1
n

n∑
i=1

fi(θ;Xi) . (1)

For estimation purposes, the case (1) encompasses many interesting statistics, particularly those in the form
of sums and averages of quantities calculated from each data point. The thesis of Tsitsiklis (1984) is one
of the earliest references on decentralized averaging, followed by a large number of more recent works (see
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e.g., Gupta et al., 2001; Kempe & Kleinberg, 2002; Kempe et al., 2003; Xiao & Boyd, 2004; Boyd et al.,
2006; Mosk-Aoyama & Shah, 2008, and references therein). More specifically, gossip algorithms have been
studied for this problem in (Kempe et al., 2003; Boyd et al., 2006). Here we briefly describe the main ideas
behind Boyd et al. (2006)’s classic gossip averaging algorithm. The algorithm operates in an asynchronous
framework: nodes wake up asynchronously and average their local estimate with that of a randomly chosen
neighbor. As long as the network graph is connected and non-bipartite, the local estimates converge to (1)
at a rate O(e−ct) where the constant c can be related to the spectral gap of the network graph, showing
faster convergence for well-connected networks.

The optimization of separable functions has attracted a great deal of interest in recent decades, mainly,
but not exclusively, in the context of federated learning (Kairouz et al., 2021). Several methods have been
proposed to improve the convergence rate by extending Nesterov’s acceleration (Even et al., 2021) or by
using a more specific approach (Hendrikx et al., 2019), by optimizing the balance between communication
and local computation (Scaman et al., 2018), or by means of variance reduction techniques (Xin et al.,
2020b;a). Other approaches have tackled the non-i.i.d. framework, either for personalization or for multitask
learning (Zantedeschi et al., 2020; Li et al., 2022b; Vanhaesebrouck et al., 2017; Dai et al., 2022). Another
way of improving the convergence properties of decentralized and federated optimization is to tackle the
communication bottleneck: quantization techniques developed for compressed sensing have been extended
to the decentralized case to improve communication efficiency during the optimization process (Haddadpour
et al., 2021; Albasyoni et al., 2020; Hamer et al., 2020; Li et al., 2022c).

Although privacy is one of the constraints motivating decentralized and federated learning, these designs
remain vulnerable to various privacy attacks. However, local data storage allows communication to be
modified through noise or encryption to provide satisfactory privacy guarantees, at the cost of slower learning
(Kasyap & Tripathy, 2021; Ji et al., 2024; Jeon et al., 2021). Similar approaches have been adopted for
robustness, where adapting communication rules can lead to robust optimization processes (Li et al., 2022a;
Raynal et al., 2023; Zecchin et al., 2022). Finally, fairness in distributed learning is also an active research
topic, as preserving fairness while limiting user information leakage – in the case of inter-device learning –
leads to significantly lower learning rates (Biswas et al., 2024; Du et al., 2021; Jiang & Lu, 2019).

We point out that all the above approaches are restricted to functions that are separable across agents, as in
(1). seen in the next section, many interesting estimation and optimization problems are only separable across
pairs of agents, thus motivating the design of the algorithms described and analyzed in Section 4, tailored
to pairwise objectives. A key aspect of pairwise objectives in decentralized settings is that, unlike separable
averaging, the information required to form pairwise interactions is not initially available at every node:
nodes start with one local observation and must progressively acquire additional (auxiliary) observations
through gossip exchanges. As a consequence, pairwise estimates and gradients are formed from a transiently
non-uniform sampling of pairs, which only approaches the uniform distribution after sufficient mixing of the
auxiliary variables. Quantifying the effect of this progressive dissemination on bias and variance is one of
the main technical challenges addressed in our analysis.

2.2 Pairwise Averages and U-statistics: Definition and Examples

In many situations, the quantity of interest is not a simple mean E[f(θ;X)] taken w.r.t. the distribution of
a r.v. X but takes the form µ(h) = E[h(θ;X,X ′)], where X and X ′ are two independent and identically
distributed random vectors, taking their values in some measurable space X with probability distribution
F (dx) and h : X ×X → R is a symmetric measurable mapping, square integrable w.r.t. the product measure
F ⊗ F .

A natural estimator of µ(h) based on an i.i.d. sample Dn = {X1, . . . , Xn} drawn from F is the average
over all pairs

Ûn(h) = 2
n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj) . (2)

The quantity (2) is known as the U -statistic of degree two with kernel h based on the sample Dn. For
U -statistics of degree higher than two, we refer the reader to Appendix B. As may be shown by a classic
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Lehmann-Scheffé argument, it is the unbiased estimator of µ(h) with minimum variance. However, the
reduced variance property has a price when it comes to analyzing the fluctuations of such a functional
(uniformly over a class of kernels possibly), the terms averaged in (2) exhibiting a complex dependence
structure. This technical difficulty can be overcome in order to prove limit theorems (e.g., SLLN, CLT, LIL)
for such statistics by means of linearization techniques (i.e., Hoeffding decomposition, Hajek projection),
see e.g., Lee (1990) for an account of the asymptotic theory of U -statistics. Similar approaches can also
be used to establish concentration bounds for U -statistics; see Clémençon et al. (2008) and the references
therein for further details. See also Clémençon et al. (2016) for scalability challenges tackled by means
of sampling schemes and Laforgue et al. (2019) for robustness issues. Many commonly used statistics
measuring dispersion, such as empirical variance and the Gini mean difference, take the form of a U -statistic
(2). Similarly, in various statistical learning problems – whether supervised or unsupervised – the empirical
risk criterion can also be expressed as a U -statistic.

Metric learning. Numerous machine learning methods involve a metric between data points. The perfor-
mance of such techniques is crucially determined by the choice of an adequate metric. It is precisely the goal
of metric learning to adapt the metric to the data analyzed. Motivated by many applications (e.g., computer
vision, information retrieval), this problem has been recently the subject of much attention in the literature,
see for instance Bellet et al. (2013) and the references therein. Inspired by biometric identification problems,
it is formulated in Vogel et al. (2018) in the framework of supervised multi-class classification: a random label
Y , taking values in a finite set [K] with K ≥ 2, is assigned to a random observation X valued in a feature
space X . Given independent copies (X1, Y1), . . . , (Xn, Yn) of the random couple (X,Y ), the learning task
consists in finding a metric D : X × X → R+ such that pairs of points with the same label are close, while
pairs with different labels are distant from each other. The risk of a metric candidate D can be formulated
as follows:

R(D) = E [ϕ ((1 −D(X,X ′)) · (2I{Y = Y ′} − 1))] ,

where (X ′, Y ′) is an independent copy of (X,Y ) and ϕ(u) is a convex loss function upper bounding the
indicator function I{u ≥ 0} (e.g., the hinge loss ϕ(u) = max(0, 1 − u)). Its empirical version is the U -
statistic of degree two:

Rn(D) = 2
n(n− 1)

∑
1≤i<j≤n

ϕ ((1 −D(Xi, Xj)) · (2I{Yi = Yj} − 1)) .

Ranking. Given objects described by a random vector of features X ∈ X and the (temporarily hidden)
ordinal and real valued labels Y assigned to them, the goal of supervised ranking is to rank them in the
same order as that induced by the labels, on the basis of a training set of labeled examples. This statistical
learning problem finds its motivation in a wide variety of applications, e.g. medical diagnosis support, search
engines, credit-risk screening, e-commerce. Rankings are generally defined by means of a scoring function
s : X → R, transporting the natural order on the real line onto the feature space. Ideally, the larger s(X),
the larger the label Y with overwhelming probability. Learning such a scoring function s from independent
labeled data (X1, Y1), . . . , (Xn, Yn) drawn as the generic random pair (X,Y ) can be formulated as the
problem of minimizing the U -statistic known as the empirical ranking risk, refer to Clémençon et al. (2005):

Ln(s) = 2
n(n− 1)

∑
1≤i<j≤n

ℓ (−(s(Xi) − s(Xj)) · (Yi − Yj)) , (3)

where ℓ : R → R+ is a given loss function, e.g., ℓ(u) = I{u > 0}. The quantity (3) is a U -statistic of degree
two with kernel hs ((x, y), (x′, y′)) = ℓ (−(s(x) − s(x′)) · (y − y′)) for (x, y) and (x′, y′) in X × R. Observe
incidentally that, in the case where the label Y is binary (i.e., bipartite ranking), the ranking risk is equal
to the popular AUC criterion, up to an affine transform.

Clustering. The unsupervised learning task one completes when segmenting a dataset X1, . . . , Xn in a
feature space X into finite subgroups depending on their similarity is referred to as clustering: observations
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in the same segment should be more similar to each other than to those lying in other segments. See e.g.
Chapter 14 in Friedman et al. (2009) for a review of popular clustering methods. More precisely, consider a
symmetric function D : X × X → R+ such that D(x, x) = 0 for any x ∈ X . D measures the dissimilarity
between pairs of observations (x, x′) ∈ X 2: the smaller the quantity D(x, x′), the more similar x and x′. Fix
also the number of desired clusters M ≥ 2. It is the objective of clustering methods to find a partition P
of the feature space X in a class Π of partition candidates that minimizes the following empirical clustering
risk:

Rn(P) = 2
n(n− 1)

∑
1≤i<j≤n

D(Xi, Xj) · ΦP(Xi, Xj) , (4)

where ΦP(x, x′) =
∑

C∈P I{(x, x′) ∈ C2} indicates whether two points x and x′ belongs to the same cell of
the partition or not. When the Xi’s are i.i.d. realizations of a generic r.v. X with distribution F (dx),
the quantity (4), usually referred to as the intra-cluster similarity or within cluster point scatter, is a
U -statistic of degree two with kernel hP(x, x′) = D(x, x′) · ΦP(x, x′) for all (x, x′) ∈ X 2, provided that∫∫

(x,x′)∈X 2 D
2(x, x′)ΦP(x, x′)F (dx)F (dx′) < +∞. The statistical analysis of the clustering performance of

minimizers of (4) over a class Π of appropriate complexity can be found in Clémençon (2014).
Remark. (U-statistics vs V -statistics) When the symmetric kernel function h : X × X → R is such
that h(x, x) = 0 for all x ∈ X (which is the case for most kernels used in the problems mentioned above),
we naturally have:

∑
i ̸=j h(Xi, Xj) =

∑
i,j h(Xi, Xj). However, when this is not the case, the quantity∑

i,j h(Xi, Xj) is classically referred to as a V -statistic—when divided by n2—and is obviously obtained by
adding to the pairwise summation

∑
i̸=j h(Xi, Xj) the basic i.i.d. sum

∑
i h(Xi, Xi). For simplicity, with a

slight abuse of language, (1/n2)
∑
i,j h(Xi, Xj) will be called a U -statistic throughout the article, the possible

presence of diagonal terms in the functional of interest having no impact on the algorithms proposed and
their analysis.

Although the field of decentralized learning has received a lot of attention, especially since the advent of
federated learning, work on pairwise decentralized learning remains scarce. This problem was first inves-
tigated in Pelckmans & Suykens (2009), where a method for estimating partial sums of a U -statistic was
proposed and then extended to full estimation by requiring two gossip protocols to run in parallel. This
method was further refined in Colin et al. (2015), using only one gossip protocol in contrast, along with
refined convergence rates for both synchronous and asynchronous settings. To the best of our knowledge,
the pairwise optimization problem has only been tackled in Colin et al. (2016), using an algorithm that com-
bines distributed dual averaging (Duchi et al., 2010b) with pairwise estimation (Colin et al., 2015). The rates
derived in Colin et al. (2016) provide some intuition about the problem characteristics, but do not guarantee
convergence of the method, as they only show convergence in the case where the gradient biased estimates
actually converge to the true gradient. Our new analysis shows that this is true without any additional
assumption, and provides a better understanding of the impact of bias on the optimization process. A key
element in our analysis is to show that the gradient bias induced by the auxiliary-observation propagation
decays at a rate controlled by the mixing properties of the communication graph (in particular, through its
spectral gap), which leads to explicit non-asymptotic convergence guarantees.

3 Decentralized Estimation of a Pairwise Functional

To begin with, we consider the decentralized estimation problem for a pairwise functional. Formally, let
(x1, . . . ,xn) ∈ Xn be a sample of n ≥ 2 points in a feature space X ⊆ Rd with d ≥ 1 and let h : X × X → R
be a measurable function, symmetric in its two arguments. The goal pursued here is to estimate, in the
decentralized framework described in Section 2.1 and with non-asymptotic guarantees, the following quantity:

Ûn(h) = 1
n2

n∑
i,j=1

h(xi,xj) . (5)

Let F be a probability distribution on X . As pointed out in Remark 2.2, the statistic (5) slightly dif-
fers from the U -statistic (2), which forms an unbiased estimator with minimum variance of the parameter
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Algorithm 1 GoSta-sync
Require: Each node k ∈ [n] holds observation xk

1: Each node k ∈ [n] initializes its auxiliary observation yk = xk and its estimate zk = 0
2: for t = 1, 2, . . . do
3: for p = 1, . . . , n do
4: zp ← t−1

t
zp + 1

t
h(xp, yp)

5: end for
6: Draw (i, j) uniformly at random in E
7: zi, zj ← 1

2 (zi + zj)
8: Swap auxiliary observations of nodes i and j: yi ↔ yj

9: end for
10: return Each node k ∈ [n] has the estimate zk at disposal

E[h(X,X ′)] =
∫ ∫

h(x, x′)F (dx)F (dx′) as soon as h is square integrable w.r.t. F ⊗ F and the xi’s are inde-
pendent realizations of the distribution F : their difference is of order OP(n−3/2) and (2) differs from (5) by
a factor of n/(n − 1) when h(x, x) = 0 for all x ∈ X . When clear from context, we will omit to index the
functional (5) by h and will use the notation Ûn. We define H ∈ Rn×n such that [H]kl := h(xk,xl) for all
1 ≤ k, l ≤ n and h = H1n/n as the vector of partial sums. Observe that Ûn = 1⊤

nh/n.

3.1 GoSta Algorithm

In Boyd et al. (2006) and other related papers, the gossip averaging methods rely on activated neighbors
averaging their local estimates in order to converge to the network mean. Such algorithms cannot be extended
to efficiently compute (5) as it depends on pairs of observations. Indeed, in the separable averaging case,
the values to be averaged are already locally available from the start, whereas in the pairwise case each node
must progressively acquire auxiliary observations from other nodes in order to form pairwise evaluations
h(xi,xj). As a consequence, the pairs effectively used in local updates are non-uniform until the auxiliary
observations have sufficiently mixed over the graph. This problem is investigated in Pelckmans & Suykens
(2009) with U1-gossip and U2-gossip algorithms. In U1-gossip, each node i ∈ [n] estimates its partial
U -statistic:

Û (i)
n := 1

n

n∑
j=1

h(xi,xj) . (6)

The spirit of the algorithm is a bit different from the standard gossip case. For each node k ∈ [n], an
estimator zk(t) is initialized to zero and an auxiliary observation yk(t) is initialized to xk. At each iteration
t ≥ 1, if a communication is initiated between nodes i and j, they swap their auxiliary observations:

yi(t) = yj(t− 1) and yj(t) = yi(t− 1) .

Then, every node updates its estimator using its (local) pair of observations:

∀k ∈ [n], zk(t) = t− 1
t

zk(t− 1) + 1
t
h(xk,yk(t)) .

Both algorithms are detailed in Appendix C.3 and C.4. Introduced in Colin et al. (2015), GoSta algorithm
is based on the observation that Ûn = n−1∑n

i=1 Û
(i)
n , where Û (i)

n are the partial sums defined in (6). The
goal is thus similar to the usual gossip averaging problem, with the key difference that each local value Û (i)

n

is itself an average depending on the entire data sample. Consequently, our algorithm combines two steps at
each iteration: a data propagation step to allow each node i to estimate Û (i)

n , and an averaging step to ensure
convergence to the desired value Ûn. Here, we only present the algorithm for the—simpler—synchronous
setting in Algorithm 1, the asynchronous version being detailed in the optimization case.

3.2 Non-asymptotic Estimation Bounds

We now carry out a non-asymptotic analysis of the GoSta-sync algorithm presented in Section 3.1. The
following result is originally stated in Colin et al. (2015) and provides a bound in expectation taken w.r.t.

8
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the random edge activations for the deviation between the estimate produced by Algorithm 1 and the target
Ûn. More precisely, the expectation in Proposition 1 is taken with respect to the algorithmic randomness
(random edge activations and auxiliary-observation swaps), for a fixed dataset (x1, . . . ,xn).
Proposition 1 (Convergence in expectation). Let G = ([n], E) be a connected and non-bipartite graph,
(x1, . . . ,xn) a sample of n ≥ 2 points in X ⊂ Rd and (z(t))t≥1 the sequence of estimates generated by
Algorithm 1. For all k ∈ [n] and any t ≥ 1, we have:∥∥∥E[z(t)] − Ûn1n

∥∥∥ ≤ |E|
tλn−1

D(h) ,

where λn−1 is the second smallest eigenvalue of the graph Laplacian L and

D(h) :=
∥∥∥h − Ûn1n

∥∥∥+ 2
∥∥H − h1⊤

n

∥∥
F .

Proposition 1 shows that all the local estimates generated by Algorithm 1 converge in expectation to Ûn
at a rate of order O(1/t). In addition, the constants involves in the rate bound above reveal the impact of
graph structure and of the distribution of the data points on it on convergence. Indeed, the quantity D(h)
is data-dependent and reflects the difficulty of the estimation problem itself through a measure of dispersion.
In contrast, |E|/λ2 is a network-dependent term since λn−1 is the second smallest eigenvalue of the graph
Laplacian L. The value λn−1 is also known as the spectral gap of G and graphs with a larger spectral
gap typically have better connectivity, see Chung (1997) for a detailed analysis of the graph Laplacian
notion. It should be noticed that pairwise estimation rates are slower than those in mean estimation, which
are geometric (Boyd et al., 2006). This is due to the fact that mean estimation relies on values already
computed by the nodes, whereas pairwise estimation requires the nodes to estimate these quantities while
averaging them.

In the separable averaging setting, each node starts with a locally available value and the only source of error
is the mixing of the averaging dynamics, which yields geometric convergence. In contrast, in the pairwise
setting each node must first estimate its partial sum by exchanging auxiliary observations. At early times,
the auxiliary observations have not mixed yet, so the pairs (xk,yk(t)) used in the updates are drawn from
a non-uniform distribution over the dataset, which induces bias. Although Proposition 1 guarantees that
the bias of the estimate decreases in O(1/t), it does not ensure that the (random) estimate converges to the
target (5). In particular, controlling ∥E[z(t)] − Ûn1n∥ alone does not prevent fluctuations of z(t) around
its mean. In the following theorem, we state an upper bound on the expected gap, therefore providing
such a guarantee. This result is also helpful when considering robustness constraints or guarantees in high
probability.
Theorem 1 (Expected deviation). Let G = ([n], E) be a connected and non-bipartite graph, (x1, . . . ,xn) a
sample of n ≥ 2 points in X ⊂ Rd and (z(t))t≥1 the sequence of estimates generated by Algorithm 1. For all
k ∈ [n] and any t ≥ 1, we have:

E
∥∥∥z(t) − Ûn1n

∥∥∥ ≤ 1√
t

·

√(
1 + 2|E|

λn−1

)∥∥H − h1⊤
n

∥∥2
F + 4|E|

λn−1

(
1 + 1

2t

)
∥H∥2

F ,

where λn−1 is the second smallest eigenvalue of the graph Laplacian L.

We almost recover a convergence rate of order O(1/
√
t), up to a factor of

√
2 + 1/t. As can be seen by

examining the technical proof given in Appendix C.2, this term is a consequence of the bias of the early
estimates propagating through the network, but it quickly vanishes.

4 Decentralized Optimization of a Pairwise Objective Function

Motivated by the statistical learning problems mentioned in Section 2.2, we now tackle the problem of
minimizing an objective function of the form of a pairwise average of the network agents’ data, such as (5),

9
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with respect to a parameter θ on which it depends:

F (θ) := 1
n2

∑
1≤i,j≤n

f(θ; xi,xj) , (7)

where Θ ⊆ B(0d, D) ⊆ Rd is the parameter space with D > 0 and, for 1 ≤ i, j ≤ n, the function fij :=
f(·; xi,xj) : Θ ⊂ Rd → R is L-Lipschitz with L > 0, convex and possibly non-smooth. Finally, for 1 ≤ i ≤ n,
we denote fi := (1/n)

∑n
j=1 fij the partial objectives. In general, we will use ·̂ notation for network

averages, and ·̄ notation for temporal averages.

Again, the main difficulty in solving the optimization problem

min
θ∈Θ

F (θ) (8)

arises from the fact that each term of the sum depends on two agents i and j, making standard local update
schemes impossible unless data is exchanged between nodes. In contrast to separable objectives, where each
node can compute (unbiased) gradients of its local loss immediately, the pairwise setting requires each node
to progressively acquire auxiliary observations from other nodes. As a result, the pairs used in early iterations
are non-uniform over the dataset, and the corresponding gradient estimates are biased until sufficient mixing
has occurred on the communication network. To the best of our knowledge, efficient search of a solution θ⋆

of (8) in a decentralized setting has only been tackled in Colin et al. (2016).

The methods of Colin et al. (2016) rely on dual averaging (Nesterov, 2009; Agarwal et al., 2010)1. This choice
is guided by the fact that dual averaging is often easier to analyze than subgradient descent in constrained
or regularized settings, because it maintains a linear accumulator of (sub)gradients while the (non-linear)
smoothing/projection operator is applied separately:

πt :
{

Rd → Θ
z 7→ arg maxθ∈Θ

{
γ(t)θ⊤z − ∥θ∥2/2

} (9)

This work builds upon the analysis carried out in Duchi et al. (2012a), where a distributed dual av-
eraging algorithm is proposed to optimize an average of separable functions f(·; xi). In that setting,
each node i can compute unbiased estimates of its local (sub)gradient ∇f(·; xi) that are iteratively av-
eraged over the network—see Appendix D.1.3 for details. Unfortunately, there is a major difference with
the optimization problem considered here. In our setting, node i cannot compute unbiased estimates of
∇fi(·) = ∇(1/n)

∑n
j=1 f(·; xi,xj) because the latter depends on all data points, while each node i ∈ [n]

only holds xi. To circumvent this, the algorithm relies on a gossip data propagation step similar to that
introduced in Section 3 so that nodes can compute biased estimates of ∇fi(·) while keeping communication
and memory overheads low for each node.

We first recall the pairwise optimization algorithm in the synchronous context in Section 4.1. We then
provide a refined analysis of the gradient bias via an ergodic argument in Section 4.2. Finally, we prove a
lower-bound result for pairwise decentralized optimization procedures in Section 4.3.

4.1 Decentralized Pairwise Function Optimization

In the synchronous framework, we assume that each node has access to a global clock, so that each node
can be updated simultaneously with each clock tick. We assume that the scaling sequence (γ(t))t≥1 is the
same for every node. At any time t ≥ 1, each node i ∈ [n] stores: a gradient accumulator zi, its original
observation xi, and an auxiliary observation yi, initialized at xi and evolving through data propagation.
The algorithm is summarized in Algorithm 2. At each iteration, an edge (i, j) ∈ E is drawn uniformly at
random. Nodes i and j average their accumulators and swap their auxiliary observations. Finally, all nodes
perform a dual averaging step, using their local pair (xk,yk) to form a (biased) partial gradient estimate.

1For completeness, background on (distributed) dual averaging is provided in Appendix D.1.1.
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Algorithm 2 Gossip dual averaging for pairwise function in the synchronous case
Require: Step size (γ(t))t≥1 > 0

1: Each node i ∈ [n] initializes yi = xi, zi = θi = θ̄i = 0
2: for t = 1, . . . , T do
3: Draw (i, j) uniformly at random in E
4: zi, zj ← zi+zj

2
5: Swap auxiliary observations: yi ↔ yj

6: for k = 1, . . . , n do
7: zk ← zk +∇θf(θk; xk, yk)
8: θk ← πt(zk)
9: θ̄k ←

(
1− 1

t

)
θ̄k + 1

t
θk

10: end for
11: end forreturn Each node k ∈ [n] has θ̄k

Average iterate and gradient bias. For any t > 0, define the average accumulator ẑ(t) := 1
n

∑n
i=1 zi(t)

and the corresponding average iterate

ω̂(t) := πt(ẑ(t)) .

Then, we denote by ϵ̂(t) the average gradient bias across the network:

ϵ̂(t) := 1
n

n∑
i=1

∇f(θi(t); xi,yi(t)) − 1
n

n∑
j=1

∇f(θi(t); xi,xj)

 .

Equipped with these notations, we can state the following result (initially stated in Colin et al. (2016)),
which adapts the convergence rate of centralized dual averaging under a term capturing the contribution of
the bias.
Proposition 1. Let G = ([n], E) be a connected and non-bipartite graph, and let θ⋆ ∈ arg minθ∈Θ F (θ). Let
(γ(t))t≥1 be a non-increasing and non-negative sequence. For any i ∈ [n] and any t ≥ 0, let zi(t) ∈ Rd and
θ̄i(t) ∈ Rd be generated according to Algorithm 2. Then, for any i ∈ [n] and T > 1, we have:

E
[
F (θ̄i(T )) − F (θ⋆)

]
≤ C1(T ) + C2(T ) + C3(T ) ,

where 

C1(T ) = 1
2Tγ(T )∥θ⋆∥2 + L2

2T

T−1∑
t=1

γ(t)

C2(T ) = 3L2

T
(

1 −
√

1 − λn−1/|E|
) T−1∑
t=1

γ(t)

C3(T ) = 1
T

T−1∑
t=1

Et[(ω̂(t) − θ⋆)⊤ϵ̂(t)]

,

and λn−1 is the second smallest eigenvalue of the graph Laplacian L.

We refer the reader to Appendix D.2 for a detailed proof. As in the estimation case, the bound in Propo-
sition 1 decomposes into: a centralized term C1(T ), a network disagreement term C2(T ) depending on the
spectral gap, and a pairwise-specific term C3(T ) coming from the gradient bias induced by auxiliary-data
propagation.

Importantly, Proposition 1 by itself does not guarantee convergence unless one controls C3(T ). While Colin
et al. (2016) observed empirically that the bias term vanishes quickly, the upper bound does not provide
an explicit non-asymptotic guarantee that C3(T ) vanishes. In the next section, we refine the analysis by
explicitly quantifying the bias decay in terms of the mixing properties of the auxiliary-observation process
on the graph.

11
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4.2 Pairwise Ergodic Dual Averaging - Gradient Bias Convergence Analysis

We now focus on a slightly different objective from that in (8). For i ∈ [n], define F̃i : Θ × ∆n as follows:

F̃i :
{

Θ × ∆n → R
(θ, ξ) 7→

∑n
j=1 ξjfij(θ)

,

where ∆n = {ξ ∈ Rn+ : ∥ξ∥1 = 1} is the simplex in Rn. Note that

F (θ) = 1
n

n∑
i=1

F̃i

(
θ,

1n
n

)
= 1
n

n∑
i=1

fi(θ) .

Let Sn = {e1, . . . , en} be the canonical basis of Rn and let (ξi(t))t≥0 be a sequence of (not necessarily
independent) random variables over Sn identified with [n]. For t ≥ 0, denote by Pi(t) the distribution of
ξi(t) and assume

lim
t→+∞

∥Pi(t) − 1n/n∥TV = 0 ,

where ∥ · ∥TV is the total variation norm and 1n/n is the uniform distribution on [n].

This abstraction captures the auxiliary-observation mechanism in gossip pairwise optimization: at time
t, node i can only pair xi with a single auxiliary sample (encoded by ξi(t)), whose distribution becomes
approximately uniform only after sufficient mixing on the graph.

We make the additional assumption that one cannot access ∇θF̃i
(
·,1n/n

)
directly. Instead, at iteration

t ≥ 1, one can compute ∇θF̃i
(
·, ξi(t)

)
, yielding the noisy update{

zi(t+ 1) = zi(t) + ∇θF̃i(θ(t), ξi(t))
θi(t+ 1) = πt(zi(t+ 1)) . (10)

For any ϵ > 0, define the mixing time τi(ϵ):

τi(ϵ) := sup
t≥0

inf {s ≥ 0 : ∥Pi(t+ s|t) − 1n/n∥TV ≤ ϵ} ,

where Pi(t+ s|t) is the conditional distribution of ξi(t+ s) given the filtration F (i)
t := σ(ξi(1), . . . , ξi(t)).

We are now ready to quantify explicitly the impact of the gradient bias and state the following refined rate
bound.
Theorem 2 (Pairwise ergodic dual averaging). Let G = ([n], E) be a connected and non-bipartite graph, and
let θ⋆ ∈ arg minθ∈Θ F (θ). Let (γ(t))t≥1 be a non-increasing, non-negative sequence such that γ(t) ∝ tα for
some α ∈ (−1, 0). For any i ∈ [n] and any t ≥ 0, let zi(t) ∈ Rd and θ̄i(t) ∈ Rd be generated according to
Algorithm 2. Then, for any ε > 0,

E
[
F (θ̄i(T )) − F (θ⋆)

]
≤ C1(T, ε) + C2(T ) + C3(T, ε) ,

where 

C1(T, ε) = D2

2Tγ(T ) +
(
1 + 12τ(ε)

)
L2

2T

T∑
t=1

γ(t)

C2(T ) = 3L2

T
(

1 −
√

1 − λn−1/|E|
) T−1∑
t=1

γ(t)

C3(T, ε) = 2LD
(
ε+ τ(ε)

T

)
,

and
τ(ε) = log(

√
n/ε)

log(c(G)) with c(G) := λn−1

|E|

(
1 − λn−1

2|E|

)
.

12
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Sketch of proof. In the centralized setting, the convergence analysis relies on the regret decomposition of
Duchi et al. (2012b): for any 0 ≤ τ < T ,

T∑
t=1

(f(θ(t)) − f(θ⋆)) =
T−τ∑
t=1

f(θ(t)) − f(θ⋆) − F (θ(t), ξ(t+ τ)) + F (θ⋆, ξ(t+ τ)) (11)

+
T−τ∑
t=1

(F (θ(t), ξ(t+ τ)) − F (θ(t+ τ), ξ(t+ τ))) (12)

+
T∑

t=τ+1
(F (θ(t), ξ(t)) − F (θ⋆, ξ(t))) (13)

+
T∑

t=T−τ+1
(f(θ(t)) − f(θ⋆)) . (14)

The key point is that each term isolates variations of either θ or ξ but never both simultaneously, which
allows one to handle the dependence induced by the evolving sampling distribution. Including the network
disagreement contribution in the noiseless term (13) yields the stated bound; see Appendix D.2 for details.

Theorem 2 makes the bias mechanism explicit through τ(ε) and the residual term C3(T, ε). In gossip settings,
the auxiliary process mixes geometrically, hence τ(ε) grows only logarithmically in 1/ε.
Corollary 1 (Corrected and refined rate for γ(t) = a/

√
t). Let G = ([n], E) be a connected and non-bipartite

graph, and let θ⋆ ∈ arg minθ∈Θ F (θ). Let a > 0 and γ(t) = a/
√
t. For any i ∈ [n], let θ̄i(T ) be generated by

Algorithm 2. Then, for any T ≥ 1,

E
[
F (θ̄i(T )) − F (θ⋆)

]
≤ 1√

T

[
∥θ0 − θ⋆∥2

2a + aL2 + 6aL2

1 −
√

1 − λn−1/|E|
+ 12aL2

| log(c(G))| log(T )
]

+ 2L∥θ0 − θ⋆∥
T

(1 + | log(c(G))| log(T )) ,

which corresponds to the choice εT = 1/T in Theorem 2.

In particular, the term appearing in the second line of the bound above is precisely the explicit remainder
term that was previously hidden in o(1/

√
T ) when εT was not specified. Choosing a = ∥θ0 −θ⋆∥/L minimizes

the leading constant in the 1/
√
T term, yielding the equivalent (but more interpretable) form:

E
[
F (θ̄i(T )) − F (θ⋆)

]
≤ L∥θ0 − θ⋆∥√

T

(
3
2 + 6

1 −
√

1 − λn−1/|E|
+ 12 log(T )

| log(c(G))|

)

+ 2L∥θ0 − θ⋆∥
T

(1 + | log(c(G))| log(T )) .

Remark. The asynchronous setting requires time estimators, inducing additional variance and a slower
overall convergence rate. For completeness, the asynchronous implementation and associated rate are pro-
vided in Appendix D.2.3.

4.3 A Lower Bound Result for Pairwise Decentralized Optimization

We derive a lower bound related to the synchronous decentralized optimization problem considered in Sec-
tion 4.1 by extending the argument of Scaman et al. (2018) to the pairwise case. The lower bound is closely
related to the distance induced by graph G, which is why we introduce it here. Given a connected graph
G = ([n], E), the distance dG(i, j) between nodes i and j is the minimum length of a path between them.
Theorem 3 (Lower bound). Let n > 2 and let G = ([n], E) be a connected graph. Let (i, j) ∈ [n]2 be two
nodes of G that are at maximum distance, that is dG(i, j) ∈ arg max(k,l) dG(k, l) and let

∆̃ = 1
n− 2

∑
k ̸∈{i,j}

dG(i, k) + dG(k, j) .
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There exist n2 functions fij : Rd → R such that F = n−2∑
i,j fij is L-Lipschitz and for any k ∈ [n], any

R > 0, any t < (d− 2) min{∆̄, 1} and any synchronous black-box procedure (θk(t)),

F (θk(t)) − min
∥θ∥≤R

F (θ) ≥ RL

36

√
1(

1 + t/∆̃
)2 + 1

1 + t
.

Theorem 3 extends the construction of Scaman et al. (2018) from separable objectives to pairwise objectives.
The proof is provided in Appendix D.3. The lower bound for decentralized pairwise optimization is similar to
known lower bounds for separable objectives; the main difference lies in the appearance of ∆̃. For separable
objectives, the lower bound typically depends on the diameter (distance between two farthest nodes). In the
pairwise case, information must effectively propagate from i to j through intermediate nodes k, which leads
to the averaged two-hop distance quantity ∆̃.

5 Numerical Experiments

In this section, we report numerical experiments illustrating the behavior of the proposed decentralized
algorithms for the maximization of the Area Under the ROC Curve (AUC). This criterion is a standard
performance measure in binary classification and ranking problems, see Section 2.2. Our experiments aim at
assessing both the convergence properties of the decentralized pairwise optimization scheme and the practical
impact of the bias induced by local information exchanges. In particular, we observe that the algorithms
converge reliably and that the bias term rapidly becomes negligible as iterations progress.

Given a collection of feature vectors x1, . . . ,xn ∈ Rd with associated binary labels ℓ1, . . . , ℓn ∈ {−1, 1},
we consider linear scoring functions of the form x 7→ x⊤θ, parameterized by θ ∈ Rd. The AUC criterion
measures the proportion of correctly ordered positive–negative pairs and can be written as

AUC(θ) =
∑

1≤i,j≤n 1{ℓi>ℓj}1{x⊤
i

θ>x⊤
j

θ}∑
1≤i,j≤n 1{ℓi>ℓj}

.

This quantity corresponds to the probability that the scoring function assigns a higher value to a positively
labeled observation than to a negatively labeled one. Since the resulting optimization problem is non-smooth
and non-convex, it is common to replace it with a convex surrogate. In our experiments, we rely on the
logistic pairwise loss and consider the following empirical risk:

Rn(θ) = 1
n2

∑
1≤i,j≤n

1{ℓi>ℓj} log
(
1 + exp

(
(xj − xi)⊤θ

))
.

No explicit regularization is added in these experiments. All experiments are conducted on the Breast
Cancer Wisconsin dataset,2 which contains n = 699 samples in dimension d = 11. In the decentralized
setting considered here, each node of the network stores exactly one observation.

Network topologies. To investigate the influence of communication constraints, we consider three net-
work structures with markedly different connectivity properties:

• Complete graph. Every pair of nodes can communicate directly. This topology represents an idealized
scenario, as information mixing is immediate and gradient estimates are expected to exhibit minimal
bias. For a fixed number of nodes, the complete graph maximizes the spectral gap, see Chung (1997,
Ch. 1). In our setting with n = 699, we obtain λn−1/|E| = 2.86 · 10−3.

• 2D grid. Each node has exactly four neighbors, leading to poor connectivity and a large graph
diameter. This topology represents a challenging regime for decentralized optimization. In this case,
the normalized spectral gap is λn−1/|E| = 4.30 · 10−5.

2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
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(a) Loss evolution (asynchronous setting). (b) Bias term (asynchronous setting).

Figure 1: Logistic AUC. Solid lines are averages and filled area are standard deviations.

• Watts–Strogatz graph. Following Watts & Strogatz (1998), this random graph model interpolates
between regular lattices and well-connected networks. It is controlled by the average degree k and
a rewiring probability p ∈ (0, 1). We choose k = 5 and p = 0.3, yielding intermediate connectivity
properties with λn−1/|E| = 1.82 · 10−4.

Experimental setup. For each network topology, we initialize all local parameters θi to zero and run
Algorithms 2 and 7 for 50 independent trials. The stepsize sequence is chosen as γ(t) = 10−3/

√
t.

Figure 1a reports the evolution of the objective value in the asynchronous regime, together with the standard
deviation of the local objectives across nodes. As expected, better-connected networks exhibit faster conver-
gence. In particular, the complete and Watts–Strogatz graphs outperform the grid topology. In addition,
the dispersion of the local estimates decreases as network connectivity improves.

Finally, Figure 1b illustrates the behavior of the bias term ϵ̂(t)⊤ω̂(t). In all considered networks, this quantity
rapidly converges to zero and remains several orders of magnitude smaller than the objective value throughout
the optimization process. This empirical observation supports the theoretical analysis and explains the good
practical performance of the proposed decentralized algorithm.

6 Concluding Remarks and Future Work

In this final section, we summarize the main contributions of our study and outline promising directions
for extending our results. Beyond the theoretical guarantees established for decentralized estimation and
optimization with pairwise objectives, we discuss potential adaptations of our methods to broader and more
demanding learning scenarios.

6.1 Multiple Points per Node

For ease of presentation, we have assumed throughout the paper that each node i holds a single data point
xi. We now consider the case where each node holds the same number of points k ≥ 2. First, it is easy to
see that our results still hold if nodes swap their entire set of k points (essentially viewing the set of k points
as a single one). However, depending on the network bandwidth, this solution may be undesirable. We thus
propose another strategy where only two data points are exchanged at each iteration, as in the algorithms
proposed in the main text. The idea is to view each “physical” node i ∈ [n] as a set of k “virtual” nodes, each
holding a single observation. These k nodes are all connected to each other as well as to the neighbors of i in
the initial graph G and their virtual nodes. Formally, this new graph G⊗ = ([n]⊗, E⊗) is given by G× Kk,
the tensor product between G and the k-node complete graph Kk. It is easy to see that |[n]⊗| = kn and
|E⊗| = k2|E|. We can then run our algorithms on G⊗ (each physical node i ∈ [n] simulating the behavior of
its corresponding k virtual nodes) and the convergence results hold, replacing 1 − λGn−1 by 1 − λG

⊗

n−1 in the
bounds. The following result gives the relationship between both gaps.
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Proposition 2. Let G = ([n], E) be a connected, non-bipartite and non-complete graph. Let k ≥ 2 and let
G⊗ be the tensor product graph of G and Kk. We have that

λG
⊗

n−1 = kλn−1 ,

where λn−1 and λG⊗

kn−1 are the second smallest eigenvalues of LG and LG⊗ respectively.

The proof is stated in the Appendix. Proposition 2 shows that the network-dependent term in our conver-
gence bounds is only affected by a factor k. Furthermore, note that iterations involving two virtual nodes
corresponding to the same physical node will not require actual network communication, which somewhat
attenuates this effect in practice.

6.2 Differential Privacy

In many decentralized applications, privacy is a major concern: raw data is sensitive and agents may not
be willing to share it with other peers in the network. To accommodate such privacy constraints into our
algorithms, which are based on exchanging data points across the network, one can rely on the local model of
differential privacy (Dwork & Roth, 2014; Duchi et al., 2013). In this model, agents randomize their inputs
locally before sharing them. The simplest example of locally differentially private protocol in the case of
data in a discrete domain is randomized response, in which each agent either shares its true value (with
some probability p) or a randomly selected one (with probability 1−p). This gives rise to a natural trade-off
between privacy and utility. Bell et al. (2020) recently proposed protocols to compute pairwise U -statistics
under local differential privacy. Their first protocol based on randomized response can be easily combined
with our decentralized algorithms since it allows to compute unbiased estimates of the pairwise function
of interest. They also provide error bounds with respect to the non-private setting. The protocol can be
extended to continuous data through quantization, see (Bell et al., 2020) for details.

6.3 Conclusion

In this work, we provided a comprehensive theoretical analysis of decentralized estimation and optimization of
pairwise objectives, filling key gaps left by existing methods. We established new non-asymptotic guarantees
for both the estimation of U -statistics and the convergence of decentralized pairwise optimization under gossip
protocols, highlighting the role of network topology and gradient bias. These results lay the groundwork
for extending our framework to more challenging scenarios. In particular, future research could integrate
robustness and fairness constraints, which are often naturally formulated as U-statistics, thereby enabling
principled decentralized learning under realistic and socially responsible requirements.
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A Additional notation

We here introduce notation that will be useful for the various proofs. Let G = ([n], E) be a connected graph.
We denote as L ∈ Rn×n its Laplacian, that is, L := D − A, and we denote as λ1 ≥ . . . ≥ λn its eigenvalues,
sorted in decreasing order. For α ≥ 1, let Wα be the symmetric matrix in Rn×n defined as:

Wα := 1
|E|

∑
(i,j)∈E

(
In − 1

α
(ei − ej)(ei − ej)⊤

)
= In − L

α|E|
.

In particular, W2 is the transition corresponding to gossip averaging and W1 is the transition of auxiliary
observations. We also denote as λ1(α) ≥ . . . ≥ λn(α) the corresponding eigenvalues, sorted in decreasing
order. We denote as Jn := n−11n1⊤

n ∈ Rn×n and for any α ≥ 1,

W̃α := Wα − Jn .

For t > s ≥ 0 and a sequence of matrices M(0), . . . ,M(t) ∈ Rn×n, we denote as M(t : s) the product

M(t : s) := M(t)M(t− 1) . . .M(s+ 1) .

Additionally, M(t :) := M(t) . . .M(0) and we use the convention M(t : t) = In.

B U-statistic of degree r

In this section, we present the more general definition of a U -statistic (Van der Vaart, 2000).
Definition 1 (U -statistic). Denote r ≥ 1 as the degree of a U -statistic and let (x1, . . . , xn) ∈ Xn be a
sample of n ≥ r points in a feature space X . Let h : X r → R be a measurable function that is permutation
symmetric in its r arguments. The U -statistic of degree r is defined as:

Ûr,n(h) = 1(
n
r

) ∑
(i1,...,ir)∈Ir,n

h(xi1 , . . . , xir ),

where Ir,n is the set of all unordered tuples of r different integers from {1, . . . , n}.

For r = 2, we obtain the classical U -statistic:

Ûn(h) = 2
n(n− 1)

∑
1≤i<j≤n

h(xi, xj).

C Pairwise estimation

C.1 Preliminary Results

Here, we state preliminary results on the matrices Wα that will be useful for deriving convergence proofs
and compare the algorithms. First, we characterize the eigenvalues of Wα in terms of those of the graph
Laplacian.
Lemma 1. Let G = ([n], E) be an undirected graph and let (λi)1≤i≤n be the eigenvalues of its Laplacian
L, sorted in decreasing order. For any α ≥ 1, we denote as (λi(α))1≤i≤n the eigenvalues of Wα, sorted in
decreasing order. Then, for any 1 ≤ i ≤ n,

λi(α) = 1 − λn−i+1

α|E|
.

Proof. Let α ≥ 1 and let ϕi ∈ Rn be an eigenvector of L corresponding to the eigenvalue λi, then we have:

Wαϕi =
(

In − 1
α|E|

L
)
ϕi =

(
1 − 1

α|E|
λi

)
ϕi .

Thus, ϕi is also an eigenvector of Wα for the eigenvalue 1 − 1
α|E|λi and the result holds.
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The following lemmata provide essential properties on Wα eigenvalues.
Lemma 2. Let n > 0 and let G = ([n], E) be an undirected graph. If G is connected and non-bipartite, then
for any α ≥ 1, Wα is primitive, i.e., there exists k > 0 such that Wk

α > 0.

Proof. Let α ≥ 1. For every (i, j) ∈ E, In − 1
α (ei − ej)(ei − ej)⊤ is nonnegative. Therefore Wα is also

nonnegative. For any 1 ≤ k < l ≤ n, by definition of Wα, one has the following equivalence:

([A]kl > 0) ⇔ ([Wα]kl > 0) .

By hypothesis, G is connected. Therefore, for any pair of nodes (k, l) ∈ [n]2 there exists an integer skl > 0
such that [(A)skl ]kl > 0 so Wα is irreducible. Also, G is non-bipartite so similar reasoning can be used to
show that Wα is aperiodic.

By the Lattice Theorem (see (Brémaud, 1999, Th. 4.3, p.75)), for any 1 ≤ k, l ≤ n there exists an integer
mkl such that, for any m ≥ mkl:

[Wm
α ]kl > 0 .

Finally, we can define m̄ = supk,lmkl and observe that Wm̄
α > 0.

Lemma 3. Let G = ([n], E) be a connected and non bipartite graph. Then for any α ≥ 1,

1 = λ1(α) > λ2(α),

where λ1(α), λ2(α) are respectively the largest and the second largest eigenvalue of Wα.

Proof. Let α ≥ 1. The matrix Wα is bistochastic, so λ1(α) = 1. By Lemma 2, Wα is primitive. Therefore,
by the Perron-Frobenius Theorem (see (Brémaud, 1999, Th. 1.1, p.197)), we can conclude that λ1(α) >
λ2(α).

Now that we have a relation between the graph structure and the eigenvalues of Wα, we are ready to prove
our main results.

C.2 Decentralized pairwise estimation

C.2.1 Proof of Theorem 1 (Synchronous Setting)

Let h := vec (H) ∈ Rn2 . For t ≥ 1, one has

z(t) = t− 1
t

· W2(t)z(t− 1) + 1
t
B (In ⊗ W1(t)) h

= 1
t

t∑
s=1

W2(t :s)B (In ⊗ W1(s :)) h .

Using spectral theorem, we decompose the mixing matrices as Wα = W̃α + Jn. The above expression can
thus be expanded as follows:

z(t) = 1
t

t∑
s=1

(
W̃2(t :s) + Jn

)
B
(
In ⊗

(
W̃1(s :) + Jn

))
h

= Ûn1n + 1
t

t∑
s=1

W̃2(t :s)B
(
In ⊗ W̃1(s :)

)
h̃ + JnB

(
In ⊗ W̃1(s :)

)
h̃ + W̃2(t :s)Bh̄ ,
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where h̃ := h − In ⊗ Jnh. Taking the squared norm and using the orthogonality of eigenspaces yields∥∥∥z(t) − Ûn1n
∥∥∥2

=
∥∥∥∥∥1
t

t∑
s=1

W2(t :s)B
(
In ⊗ W̃1(s :)

)
h̃ + JnB

(
In ⊗ W̃1(s :)

)
h̃

∥∥∥∥∥
2

=
∥∥∥∥∥1
t

t∑
s=1

W̃2(t :s)B (In ⊗ W1(s :)) h

∥∥∥∥∥
2

(A)

+
∥∥∥∥∥1
t

t∑
s=1

JnB
(
In ⊗ W̃1(s :)

)
h̃

∥∥∥∥∥
2

. (B)

Let us start by analyzing the first term (A); one has

(A) = 1
t2

t∑
s=1

t∑
r=1

h⊤ (In ⊗ W1(r :))⊤ B⊤W̃2(t :r)⊤W̃2(t :s)B (In ⊗ W1(s :)) h

= 1
t2

t∑
s=1

h⊤ (In ⊗ W1(s :))⊤ B⊤W̃2(t :s)⊤W̃2(t :s)B (In ⊗ W1(s :)) h (A.1)

+ 2
t2

t−1∑
s=1

t∑
r=s+1

h⊤ (In ⊗ W1(r :))⊤ B⊤W̃2(t :r)⊤W̃2(t :s)B (In ⊗ W1(s :)) h . (A.2)

For any t ≥ s > 0 and any x ∈ Rn, one has

E
[
x⊤W̃2(t :s)⊤W̃2(t :s)x|Ft−1

]
= x⊤W̃2(t− 1:s)⊤E

[
W̃2(t)2]W̃2(t :s)x

≤ λ2(2)x⊤W̃2(t− 1:s)⊤W̃2(t− 1:s)x . (15)

Using (15) on (A.1) yields the following result

(A.1) ≤ 1
t2

t∑
s=1

λ2(2)t−s ∥B (In ⊗ W1(s :)) h∥2 ≤ 1
t2

· ∥h∥
1 − λ2(2) .

The second part (A.2) can be bounded in a similar fashion, using the above reasoning up to index r:

(A.2) ≤ 2
t2

t−1∑
s=1

t∑
r=s+1

λ2(2)t−rh⊤ (In ⊗ W1(r :))⊤ B⊤W̃2(r :s)B (In ⊗ W1(s :)) h

≤ 2 ∥h∥2

t2

t−1∑
s=1

t∑
r=s+1

λ2(2)t−r

≤ 2 ∥h∥2

t (1 − λ2(2)) .

This concludes the analysis of the first term:

(A) ≤ ∥h∥2

1 − λ2(2)

(
1
t2

+ 2
t

)
.

Let us now focus on the second term. It can be split in a similar way:

(B) = 1
t2

t∑
s=1

t∑
r=1

h̃⊤ (In ⊗ W̃1(s :)
)⊤ B⊤J⊤

n JnB
(
In ⊗ W̃1(s :)

)
h̃

= 1
t2

t∑
s=1

h̃⊤ (In ⊗ W̃1(s :)
)⊤ B⊤JnB

(
In ⊗ W̃1(s :)

)
h̃ (B.1)

+ 2
t2

t−1∑
s=1

t∑
r=s+1

h̃⊤ (In ⊗ W̃1(r :)
)⊤ B⊤JnB

(
In ⊗ W̃1(s :)

)
h̃ . (B.2)
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Algorithm 3 U1-gossip algorithm for computing (6)
Require: Each node k holds observation xk

1: yk ← xk (Each node initializes its auxiliary observation)
2: zk ← 0 (Each node initializes its estimator)
3: for t = 1, 2, . . . do
4: Draw (i, j) uniformly at random from E
5: Nodes i and j swap their auxiliary observations: yi ↔ yj

6: for k = 1, . . . , n do
7: zk ← t−1

t
zk + 1

t
h(xk, yk)

8: end for
9: end for

10: return Each node k has zk

The first term (B.1) can be simply bounded by

(B.1) ≤
∥∥h̃
∥∥2

t
.

Regarding the second term, one has

(B.2) ≤ 2
t2

t−1∑
s=1

t∑
r=s+1

λ2(1)r−s ∥∥h̃
∥∥2

≤
2
∥∥h̃
∥∥2

t (1 − λ2(1)) .

Combining our bounds on (A) and (B) yields

E
∥∥∥z(t) − Ûn1n

∥∥∥2
≤ 1
t

((
1 + 2|E|

λn−1

)∥∥h̃
∥∥2 + 2|E|

λn−1

(
2 + 1

t

)
∥h∥2

)
.

The result holds by using the Cauchy-Schwarz inequality on the above result.

C.3 U1-gossip algorithm

The goal of the U1-gossip algorithm is for each node to compute an estimate of its respective partial U-
statistic. This process is summarized in Algorithm 3. Using reasoning similar to that for GoSta, one can
derive a convergence rate for the expected estimates, as stated in the following theorem.
Theorem 4. Let us assume that G = (V,E) is connected and non bipartite. Then, for z(t) =
(z1(t), . . . , zn(t))⊤ defined in Algorithm 3, we have that for all k ∈ [n] and any t > 0,∣∣∣E[zk(t)] − Û (k)

n

∣∣∣ ≤ |E|∥Hek∥
2λn−1t

,

where λn−1 is the second smallest eigenvalue of the graph Laplacian L.

C.4 U2-gossip algorithm

U2-gossip Pelckmans & Suykens (2009) is an alternative to GoSta for computing U -statistics. In this
algorithm, each node stores two auxiliary observations that are propagated using independent random walks.
These two auxiliary observations will be used for estimating the U -statistic—see Algorithm 4 for details.

We can now state a convergence result for Algorithm 4.
Theorem 5. Let us assume that G is connected and non-bipartite. Then, for z(t) defined in Algorithm 4,
we have that for all k ∈ [n]:

lim
t→+∞

E[zk(t)] = Ûn(h) .
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Algorithm 4 U2-gossip Pelckmans & Suykens (2009)
Require: Each node k holds observation Xk

1: Y
(1)

k ← Xk, Y
(2)

k ← Xk, Zk ← 0
2: for t = 1, 2, . . . do
3: for p = 1, . . . , n do
4: Zp ← t−1

t
Zp + 1

t
H(Y (1)

p , Y (2)
p )

5: end for
6: Draw (i, j) uniformly at random from E

7: Nodes i and j swap their first auxiliary observations: Y
(1)

i ↔ Y
(1)

j

8: Draw (k, l) uniformly at random from E

9: Nodes k and l swap their second auxiliary observations: Y
(2)

k ↔ Y
(2)

l

10: end for

Moreover, for any t > 0,∥∥∥E[z(t)] − Ûn(h)1n
∥∥∥ ≤ |E|

tλn−1

(
3 − λn−1/|E|
2 − λn−1/|E|

∥H − h1⊤
n ∥F + ∥h − Ûn(h)1n∥

)
,

where λn−1 is the second smallest eigenvalue of L.

Proof of Theorem 5. Let t > 0, one can adapt GoSta analysis and write

z(t) = 1
t

t∑
s=1

W′
1(s :)Bn (In ⊗ W1(s :)) h ,

where for any 1 ≤ s ≤ t, W′
1(s) is an independent copy of W1(s). Therefore, one has

E[z(t)] = Ûn(h) + 1
t

t∑
s=1

JnBn

(
In ⊗ W̃s

1
)

h̃ + W̃s
1h̄ + W̃s

1Bn

(
In ⊗ W̃s

1
)

h̃ .

Using the eigenvalues properties of W1, one can write∥∥∥E[z(t)] − Ûn(h)1n
∥∥∥ ≤ 1

t

t∑
s=1

λ2(1)s∥h̃∥ + λ2(1)s∥h̄∥ + λ2(1)2s∥h̃∥ .

Rearranging the terms yields∥∥∥E[z(t)] − Ûn(h)1n
∥∥∥ ≤ 2 + λ2(1)

1 − λ2(1)2 ∥h̃∥ + 1
1 − λ2(1)∥h̃∥ ,

and the result holds.

D Dual averaging

In this section, we focus on the dual averaging algorithm. First, Section D.1 introduces some centralized
approaches for dual averaging and the key theoretical guarantees associated. Then, Section D.2 develops the
proofs for such guarantees, alongside the proofs of the convergence rates presented in Section 4.

D.1 Centralized dual averaging

D.1.1 Deterministic Setting

In this section, we review the dual averaging optimization algorithm (Nesterov, 2009; Xiao, 2010) to solve
Problem (7) in the centralized setting (where all data lie on the same machine). To explain the main idea
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behind dual averaging, let us first consider the iterations of Stochastic Gradient Descent (SGD), assuming
ψ ≡ 0 for simplicity:

θ(t+ 1) = θ(t) − γ(t)g(t) ,

where E[g(t)|θ(t)] = ∇f(θ(t)), and (γ(t))t≥0 is a non-negative and non-increasing step size sequence. This
update rule can be rewritten equivalently as follows:

θ(t+ 1) = arg min
θ∈Rd

{
f(θ(t)) + (θ − θ(t))⊤g(t) + ∥θ − θ(t)∥2

2γ(t)

}
,

meaning that θ(t+ 1) is the minimizer of some quadratic approximation of f around θ(t). Recursively and
assuming that θ(0) = 0, one can obtain:

θ(t+ 1) = arg min
θ∈Rd

{
θ⊤

(
t∑

s=0
γ(s)g(s)

)
+ ∥θ∥

2

}
. (16)

For SGD to converge to an optimal solution, the step size sequence must satisfy limt→+∞ γ(t) = 0 and∑∞
t=0 γ(t) = ∞. As noticed by Nesterov (2009), an undesirable consequence is that new gradient estimates

are given smaller weights than old ones in (16). Dual averaging aims at integrating all gradient estimates
with the same weight.

Let (γ(t))t≥0 be a positive and non-increasing step size sequence. The dual averaging algorithm maintains
a sequence of primal iterates (θ(t))t>0, and a sequence (z(t))t≥0 of dual variables which collects the sum of
the unbiased gradient estimates seen up to time t. We initialize to θ(1) = z(0) = 0. At each step t > 0, we
compute an unbiased estimate g(t) of ∇f(θ(t)). The most common choice is to take g(t) = ∇f(θ; xIt ,xJt)
where It and Jt are drawn uniformly at random from [n]. We then set z(t + 1) = z(t) + g(t) and generate
the next iterate with the following rule:

θ(t+ 1) = πψt (z(t+ 1)),

πψt (z) := arg min
θ∈Rd

{
−z⊤θ + ∥θ∥2

2γ(t) + tψ(θ)
}

.

This particular formulation was introduced in (Xiao, 2009; 2010), extending the method introduced by
Nesterov (2009) in the specific case of indicator functions. In this work, we borrow the notation from Xiao
(2010). When it is clear from the context, we will drop the dependence in ψ and simply write πt(z) = πψt (z).

Note that πt(·) is related to the proximal operator of a function ϕ : Rd → R defined by

proxϕ(x) = arg min
z∈Rd

{
∥z − x∥2

2 + ϕ(x)
}

.

Indeed, one can write:
πt(z) = proxtγ(t)ψ (γ(t)z) .

For many functions ψ of practical interest, πt(·) has a closed form solution. For instance, when ψ = ∥ · ∥2,
πt(·) corresponds to a simple scaling, and when ψ = ∥ · ∥1 it is a soft-thresholding operator. If ψ is the
indicator function of a closed convex set C, then πt(·) is the projection operator onto C.

The dual averaging method is summarized in Algorithm 5. In order to perform a theoretical analysis of this
algorithm, we introduce the following function. Let us define, for t ≥ 0

Vt(z) := max
θ∈Rd

{
z⊤θ − ∥θ∥2

2γ(t) − tψ(θ)
}

.

Remark that with the assumption that ψ(0) = 0, then Vt(0) = 0. Strong convexity in θ of the objective
function, ensures that the solution of the optimization problem is unique. The following lemma links the
function Vt and the algorithm update and is a simple application of the results from (Xiao, 2009, Lemma
10):
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Algorithm 5 Centralized dual averaging
Require: Step size (γ(t))t≥1 > 0

1: θ ← 0, θ̄ ← 0, z← 0
2: for t = 1, . . . , T do
3: z← z +∇f(θ)
4: θ ← πt(z)
5: θ̄ ←

(
1− 1

t

)
θ̄ + 1

t
θ

6: end forreturn θ̄

Lemma 4. For any z ∈ Rd, one has:
πt(z) = ∇Vt(z) ,

and the following statements hold true: for any z1, z2 ∈ Rd

∥πt(z1) − πt(z2)∥ ≤ γ(t)∥z1 − z2∥ ,

and for any g, z ∈ Rd,

Vt(z + g) ≤ Vt(z) + g⊤∇Vt(z) + γ(t)
2 ∥g∥2 . (17)

Moreover, adapting (Xiao, 2009, Lemma 11) we can state:
Lemma 5. For any t ≥ 1 and any non-increasing sequence (γ(t))t≥1, we have

Vt (−z(t+ 1)) + ψ(θ(t+ 1)) ≤ Vt−1 (−z(t+ 1)) .

We also need a last technical result that we will use several times in the following:
Lemma 6. Let θ(t) = πt(

∑t−1
s=1 g(s)), and let (γ(t))t≥1 be a non-increasing and non-negative sequence

sequence (with the convention γ(0) = 0), then for any θ ∈ Rd:

1
T

T∑
t=1

g(t)⊤(θ(t) − θ) + 1
T

T∑
t=1

(ψ(θ(t)) − ψ(θ)) ≤ 1
T

T∑
t=1

γ(t− 1)
2 ∥g(t)∥2 + ∥θ∥2

2Tγ(T ) . (18)

Proof. Using the definition of VT , one can get the following upper bound:

T∑
t=1

(
g(t)⊤θ + ψ(θ)

)
= z(T + 1)⊤θ + Tψ(θ)

= z(T + 1)⊤θ + Tψ(θ) + ∥θ∥2

2γ(T ) − ∥θ∥2

2γ(T )

≤ ∥θ∥2

2γ(T ) + VT (−z(T + 1)) . (19)

Then, one can check that with (17) and Lemma 5 that, for any 1 ≤ t ≤ T :

Vt(−z(t+ 1)) + ψ(θ(t+ 1)) ≤ Vt−1(−z(t+ 1)) = Vt−1(−z(t) − g(t))

≤ Vt−1(−z(t)) − g(t)⊤θ(t) + γ(t− 1)
2 ∥g(t)∥2 .

From the last display, the following holds:

g(t)⊤θ(t) + ψ(θ(t+ 1)) ≤ Vt−1(−z(t)) − Vt(−z(t+ 1)) + γ(t− 1)
2 ∥g(t)∥2 .
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Summing the former for t = 1, . . . , T yields

T∑
t=1

g(t)⊤θ(t) + ψ(θ(t+ 1)) ≤ V0(−z0) − VT (−zT ) +
T∑
t=1

γ(t− 1)
2 ∥gt∥2 .

Remark that V0(0) = 0 and ψ(θ(1)) − ψ(θ(T + 1)) = −ψ(θ(T + 1)) ≤ 0, so the previous display can be
reduced to:

T∑
t=1

g(t)⊤θ(t) + ψ(θ(t)) + VT (−z(T + 1)) ≤
T∑
t=1

γ(t− 1)
2 ∥g(t)∥2 . (20)

Combining with (19), the lemma holds true.

Bounding the error of the dual averaging is provided in the next theorem, where we remind that Rn = f+ψ:
Theorem 6 (Dual averaging). Let (γ(t))t≥1 be a non increasing sequence. Let (z(t))t≥1, (θ(t))t≥1, (θ̄(t))t≥1
and (g(t))t≥1 be generated according to Algorithm 5. Assume that the function f is Lf -Lipschitz and let
θ∗ ∈ Rd be a minimizer of Rn, i.e., θ∗ ∈ arg minθ′∈Rd Rn(θ′). Then for any T ≥ 2, one has:

Rn(θ̄(T )) −Rn(θ∗) ≤ ∥θ∗∥2

2Tγ(T ) +
L2
f

2T

T−1∑
t=1

γ(t) . (21)

Moreover, with D > 0 such that ∥θ∗∥ ≤ D, and choosing γ(t) = D
Lf

√
2t yields:

Rn(θ̄(T )) −Rn(θ∗) ≤
√

2DLf√
T

.

Proof. Let T ≥ 2. Using the convexity of f and ψ, we can get:

Rn(θ̄(T )) −Rn(θ∗) ≤ 1
T

T∑
t=1

f(θ(t)) − f(θ∗) + ψ(θ̄) − ψ(θ∗)

≤ 1
T

T∑
t=1

g(t)⊤(θ(t) − θ∗) + 1
T

T∑
t=1

(ψ(θ(t)) − ψ(θ∗))

≤ 1
T

T∑
t=1

γ(t− 1)
2 ∥g(t)∥2 + ∥θ∥2

2Tγ(T ) .

where the second inequality holds since g(t) = ∇f(θ(t)), and the third one is from an application of Lemma 6
with the choice θ = θ∗. We can conclude the proof provided that ∥g(t)∥ ≤ Lf , which is true whenever f is
Lf -Lipschitz.

D.1.2 Stochastic Dual Averaging

Similarly to sub-gradient descent algorithms, one can adapt dual averaging algorithm to a stochastic setting;
this was studied extensively by Xiao (2009). Instead of updating the dual variable z(t) with the (full)
gradient of f at θ(t), one now only requires the expected value of the update to be the gradient, that is:

z(t+ 1) = z(t) + g(t) ,

with E[g(t)|θ(t)] = ∇f(θ(t)). As in the gradient descent case, convergence results still hold in expectation,
as stated in Theorem 7.
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Theorem 7 (Stochastic dual averaging). Let (γ(t))t≥1 be a non increasing sequence. Let (z(t))t≥1, (θ(t))t≥1
and (g(t))t≥1 be generated according to stochastic dual averaging rules. Assume that the function f is Lf -
Lipschitz and that θ∗ ∈ arg minθ′∈Rd Rn(θ′), then for any T ≥ 2, one has:

ET
[
Rn(θ̄(T )) −Rn(θ∗)

]
≤ ∥θ∗∥2

2Tγ(T ) +
L2
f

2T

T−1∑
t=1

γ(t) , (22)

where ET is the expectation over all possible sequence (g(t))1≤t≤T .

Moreover, if one knows that D > 0 such that ∥θ∗∥ ≤ D, then for γ(t) = D
Lf

√
2t , one has:

ET
[
Rn(θ̄(T )) −Rn(θ∗)

]
≤

√
2DLf√
T

.

Proof. One only has to prove that the convexity inequality in Lemma 6 holds in expectation. The rest of
the proof can be directly adapted from Theorem 6.

Let T ≥ 2; using the convexity of f , one obtains:

ET [f(θ̄(T )) − f(θ∗)] ≤ 1
T

T∑
t=1

ET [f(θ(t)) − f(θ∗)] .

For any 0 < t ≤ T , E[θ(t)|g(0), . . . ,g(t− 1)] = θ(t). Therefore, we have:

ET [f(θ(t)) − f(θ∗)] = Et−1[f(θ(t)) − f(θ∗)] .

The vector Et[g(t)|θ(t)] is the gradient of f at θ(t), we can then use f convexity to write:

Et−1[f(θ(t)) − f(θ∗)] ≤ Et−1

[
(θ(t) − θ∗)⊤Et[g(t)|θ(t)]

]
.

Using properties of conditional expectation, we obtain:

Et−1

[
(θ(t) − θ∗)⊤Et[g(t)|θ(t)]

]
= Et−1

[
Et[(θ(t) − θ∗)⊤g(t)|θ(t)]

]
= Et[(θ(t) − θ∗)⊤g(t)] .

Finally, we can write:

ET [f(θ̄(T ) − f(θ∗)] ≤ 1
T

T∑
t=1

Et[(θ(t) − θ∗)⊤g(t)] = ET

[
1
T

T∑
t=1

(θ(t) − θ∗)⊤g(t)
]
,

Therefore, the convexity inequality holds in expectation and one can adapt the proof of Theorem 6 to
conclude.

D.1.3 Distributed dual averaging

Let x1, . . . ,xn ∈ Rd. We consider functions f of the form f := (1/n)
∑n
i=1 f(·; xi). In addition, we now focus

on a distributed setting, where each node i ∈ [n] holds one observation xi for simplicity. The distributed dual
averaging algorithm for solving (7) was first introduced by Duchi et al. (2010a) and consists in the following:
each node i ∈ [n] stores its own primal and dual sequences (θi(t), zi(t))1≤i≤n. We denote as Z(t) the matrix
of dual variables Z(t) = (z1(t), . . . , zn(t))⊤ . At iteration t+ 1, a node i will perform the following update:{

zi(t+ 1) = gi(t) +
∑n
j=1 Wijzj(t)

θi(t+ 1) = πt(zi(t+ 1)) ,
(23)

where W is a doubly stochastic matrix such that

(i, j) /∈ E ⇒ Wij = 0 .
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Algorithm 6 Distributed dual averaging
Require: Step size (γ(t))t≥1 > 0, weight matrix W

1: θi(0)← 0, zi(0) ← 0 for each node i
2: for t = 1, . . . , T do
3: Z(t + 1)←WZ(t) + G(t)
4: for i = 1, . . . , n do
5: θi(t + 1)← πt(zi(t + 1))
6: end for
7: end forreturn (θ̄i(T ))1≤i≤n

Update (23) only differs in the dual update: gradients are now added to an average of neighbors dual
variables. Let us point out that the dual update can be reformulated as follows:

Z(t+ 1) = G(t) + WZ(t) ,

where G(t) = (g1(t), . . . ,gn(t))⊤.

This is detailed in Algorithm 6. The main convergence results of this method can be stated as follows: given
a sequence of step sizes (γ(t))t≥0, for any i ∈ [n] and any T > 0, one has

f(θ̄i(T )) − f⋆ ≤ ∥θ⋆∥2

2TγT + L2

2T

T−1∑
t=1

γ(t) + 3L
T

max
1≤j≤n

T∑
t=1

γ(t)∥zj(t) − z̄(t)∥ , (24)

where z̄(t) := (1/n)
∑n
j=1 zj(t) is the average dual variable over the network. The first two terms are related

to the dual averaging method and the last one depends on the graph topology. Establishing convergence of a
distributed version of dual averaging thus relies on finding a communication scheme such that the rightmost
quantity in (24) is decreasing.

D.1.4 Ergodic dual averaging

The previous analysis is sufficient for providing convergence rate of a decentralized optimization when the
objective is separable in the observations. For pairwise objectives however, an additional look at the dual
averaging is needed. Indeed, one key insight to the method we describe later on is that biased estimates
of gradients are computed in opposition to unbiased estimates of the stochastic dual averaging. However,
estimate bias decreases exponentially fast, so it should not penalize heavily the convergence rate. We thus
study the bias influence using an ergodic analysis.

Problem setting We define F : X × ∆n as follows:

F̃ :
{

X × ∆n → R
(θ, ξ) 7→

∑n
i=1 ξifi(θ)

,

where ∆n is the simplex in Rn, i.e.,

∆n = {ξ ∈ Rn+, ∥ξ∥1 = 1} .

Our goal is to solve the following optimization problem:

min
θ∈X

f(θ) = F

(
θ,

1n
n

)
= 1
n

n∑
i=1

fi(θ) . (25)

Throughout this section, we make the assumption that there exists D > 0, such that if θ ∈ X then ∥θ∥ ≤ D.
Using the dual averaging approach, one aims at finding an algorithm for solving problem (25) with “noisy”
information, in a way to be defined later. In the dual averaging method with true gradient information,
variables are updated as follows: {

z(t+ 1) = z(t) + ∇f(θ(t))
θ(t+ 1) = πt(z(t+ 1)) . (26)
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As mentioned previously, we focus here on a noisy setting, similar to ergodic mirror descent introduced
in Duchi et al. (2012b). Let (ξ(t))t≥0 be a sequence of—non necessarily independent—random variables over
∆n. For t ≥ 0, we denote as P (t) the distribution of ξ(t) and we assume that there exists P∞ such that
limt→+∞ ∥P (t) − P∞∥TV = 0 and

EP∞ [F (·, ξ)] = f .

We make the additional assumption that one may not access the true value of ∇θF (.,1n/n). Instead, at
iteration t, one can only compute an estimate ∇θF (., ξ(t)). The iterative process described in (26) can then
be reformulated: {

z(t+ 1) = z(t) + ∇θF (θ(t), ξ(t))
θ(t+ 1) = πt(z(t+ 1)) . (27)

Recall that, for any t > 0, the mixing time of the distribution P (t) towards its limit P∞ is defined as follows:

τ(t, ·) : ϵ 7→ inf {s ≥ 0, ||P (t+ s|t) − P∞||TV ≤ ϵ} ,

where || · ||TV is the total variation distance between two distributions and P (t + s|t) is the distribution of
ξ(t+ s) conditioned on the natural filtration Ft := σ(ξ(1), . . . , ξ(t)).

Convergence analysis As mentioned in Section 4.2, the convergence analysis of such a setting relies on
one key observation, described in Duchi et al. (2012b): for any 0 ≤ τ < T and any θ∗ ∈ X , the regret can
be decomposed as follows

T∑
t=1

(f(θ(t)) − f(θ∗)) =
T−τ∑
t=1

(f(θ(t)) − f(θ∗) + F (θ(t), ξ(t+ τ)) − F (θ∗, ξ(t+ τ))) (28)

+
T−τ∑
t=1

(F (θ(t), ξ(t+ τ)) − F (θ(t+ τ), ξ(t+ τ))) (29)

+
T∑

t=τ+1
(F (θ(t), ξ(t)) − F (θ∗, ξ(t))) (30)

+
T∑

t=T−τ+1
(f(θ(t)) − f(θ∗)) . (31)

Following the reasoning of Duchi et al. (2012b), we will provide a bound on each term of the decomposition—
some bounds actually being expected bounds (see Section D.2 for detailed proofs).
Lemma 7 (Error after mixing). Let θ be a Ft-mesurable variable. Then for any θ∗ ∈ X and any τ > 0, one
has:

E[f(θ) − f(θ∗) + F (θ, ξ(t+ τ)) − F (θ∗, ξ(t+ τ))|Ft] ≤ 2LD∥P (t+ τ |t) − P∞∥TV .

Lemma 8 (Consecutive iterates bound). Let (θ(t))t≥0 be generated according to (10). Then, for any t ≥ 0:

∥θ(t+ 1) − θ(t)∥ ≤ 3Lf
(

1 + 1
2t+ 1

)(
Γ(t+ 1) − Γ(t)

)
,

where for t ≥ 0, Γ(t) = tγ(t). In addition, if γ(t) ∝ tα for some α ∈ (−1, 0), then for any t ≥ 0:

∥θ(t+ 1) − θ(t)∥ ≤ 3Lf
(

1 + 1
2t+ 1

)
(α+ 1)γ(t) ≤ 6Lfγ(t) .

When α = 1/2, the bound is equivalent to 3
2Lfγ(t) when t goes to infinity. This is similar to the Lfγ(t)

bound of other first order methods (gradient descent, mirror descent, etc.).

Lemma 8 provides a bound over the distance of two consecutive iterates. We now use this result to control
term (29) in the regret decomposition.
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Lemma 9 (Gap with noisy objectives). Let τ ≥ 0. If (θ(t))t≥0 is generated according to (10), then for any
t ≥ 0:

F (θ(t), ξ(t+ τ)) − F (θ(t+ τ), ξ(t+ τ)) ≤ 3L2
(

1 + 1
2t+ 1

)(
Γ(t+ τ) − Γ(t)

)
.

Moreover, if γ(t) ∝ tα for some α ∈ (−1, 0), one has:

F (θ(t), ξ(t+ τ)) − F (θ(t+ τ), ξ(t+ τ)) ≤ 3L2τ

(
1 + 1

2t+ 1

)
(1 + α)γ(t) ≤ 6L2τγ(t) .

Finally, we bound the term (30), which corresponds to the optimization regret. This bound is a quite
straightforward adpatation from the regular dual averaging algorithm bound in Nesterov (2009).
Lemma 10 (Optimization error). For any θ∗ ∈ X , one has:

T∑
t=τ+1

F (θ(t), ξ(t)) − F (θ∗, ξ(t)) ≤ ∥θ∗∥2

2γ(T ) + L2

2

T∑
t=τ+1

γ(t) .

Proof. For any ξ ∈ ∆n, F (·, ξ) is convex. Therefore, one has for any θ∗ ∈ X :

T∑
t=τ+1

F (θ(t), ξ(t)) − F (θ∗, ξ(t)) ≤
T∑

t=τ+1
∇θF (θ(t), ξ(t))⊤(θ(t) − θ∗) .

One can then conclude using the definition of (θ(t))t≥0 and the proof of dual averaging convergence in a
standard setting—see (Nesterov, 2009, Theorem 1) for instance.

From now on, we assume that there exists α ∈ (−1, 0) such that γ(t) ∝ α. This allows for easier convergence
analysis but a more general analysis can still be performed using the bound provided in Lemma 9. We can
now apply previous results to the expected regret; for any τ ≥ 0, one has:

t∑
t=1

E[(f(θ(t)) − f(θ∗))] ≤2LD
T−τ∑
t=1

∥P (t+ τ |t) − P∞∥TV

+ 3L2
T−τ∑
t=1

(
1 + 1

2t+ 1

)
(1 + α)γ(t)

+ ∥θ∗∥2

2γ(T ) + L2

2

T∑
t=τ+1

γ(t)

+
T∑

t=T−τ+1
E[(f(θ(t)) − f(θ∗))] .

We made the assumption θ ≤ D, so f(θ(t)) − f(θ∗) ≤ 2LD, and one has the following bound:

t∑
t=1

E[(f(θ(t)) − f(θ∗))] ≤2LD
T−τ∑
t=1

∥P (t+ τ |t) − P∞∥TV

+ 6L2
T−τ∑
t=1

γ(t) + ∥θ∗∥2

2γ(T ) + L2

2

T∑
t=τ+1

γ(t) + τLD .

Let us assume that the mixing times are uniform, that is for any ϵ > 0, there exists τ(ϵ) such that:

∀t ≥ 0, τ(t, ϵ) ≤ τ(ϵ) .
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Therefore, one has for any ϵ > 0:

t∑
t=1

E[(f(θ(t)) − f(θ∗))] ≤ 2LD(Tϵ+ τ(ϵ)) + L2

2
(
1 + 12τ(ϵ)

) T∑
t=1

γ(t) + ∥θ∗∥2

2γ(T ) ,

and we can write the following theorem.
Theorem 8 (Ergodic dual averaging). Let (θ(t))t≥0 be generated according to (10) and let θ∗ ∈ X be a
minimizer of the problem (25). We make the following assumptions:

1. There exists α ∈ (−1, 0) such that γ(t) ∝ tα.

2. There exists D > 0 such that for any θ ∈ X , ∥θ∥ ≤ D.

3. For any ϵ > 0, there exists τ(ϵ) such that for any t ≥ 0, τ(t, ϵ) ≤ τ(ϵ).

Then, for any ϵ > 0:

E[(f(θ̄(T ))] − f(θ∗)] ≤ 2LD
(
ϵ+ τ(ϵ)

T

)
+ L2

2T
(
1 + 12τ(ϵ)

) T∑
t=1

γ(t) + ∥θ∗∥2

2Tγ(T ) , (32)

where θ̄(T ) = 1
T

∑T
t=1 θ(t) is the iterates average at time T .

Note that if one is able to compute ∇F (·,1n/n) at every iteration, then τ(ϵ) = 0 for any ϵ > 0 and one can
recover the dual averaging convergence rate when ϵ → 0 in (32). This upper-bound evidences the need to
compare the mixing time to the optimization rate: if τ(ϵ) ≪

√
T then similar bounds are preserved.

D.2 Proofs

This section is organized as follows. First, we establish proofs in Section D.2.1 for each lemma involved in the
ergodic dual averaging analysis. Then, we perform the analysis of the pairwise decentralized dual averaging
in the synchronous case. Finally, we tackle the proof of convergence in the fully asynchronous setting.

D.2.1 Ergodic dual averaging

Error after mixing (Lemma 7)

Proof. Let θ be a Ft-mesurable variable, θ∗ ∈ X and τ ≥ 0. By definition of P (t + τ |t) and P∞, the LHS
can be rewritten as follows:∫

ξ∈∆n

(
F (θ, ξ) − F (θ∗, ξ)

)
dP∞(ξ) −

∫
ξ∈∆n

(
F (θ, ξ) − F (θ∗, ξ)

)
dP (t+ τ |t)(ξ) . (33)

Both expectations in (33) only differ from the probability measures involved; the above quantity can thus
be bounded by: ∫

ξ∈∆n

(
F (θ, ξ) − F (θ∗, ξ)

)
|dP∞(ξ) − dP (t+ τ |t)(ξ)| .

Using the fact that for any ξ ∈ ∆n, F (·, ξ) is Lf -Lipschitz, one has, for any θ,θ∗ ∈ X :

|F (θ, ξ) − F (θ∗, ξ)| ≤ Lf∥θ − θ∗∥ ≤ LfD ,

the last inequality deriving from the definition of D. Then the result holds using the definition of the total
variation norm.
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Consecutive iterates bound (Lemma 8)

Proof. Let (z(t),θ(t))t≥0 be generated according to (10) for some positive, non-increasing sequence (γ(t))t≥0.
For any t ≥ 0, we aim at bounding ∥θ(t+ 1) − θ(t)∥. Let s(t) ∈ ∂ψ(θ(t)) and s(t+ 1) ∈ ∂ψ(θ(t+ 1)). The
respective optimality conditions on θ(t) and θ(t+ 1) lead to the following inequalities:{ (

γ(t)z(t) − θ(t) − Γ(t)s(t)
)⊤(

θ(t+ 1) − θ(t)
)

≤ 0(
γ(t+ 1)z(t+ 1) − θ(t+ 1) − Γ(t+ 1)s(t+ 1)

)⊤(
θ(t) − θ(t+ 1)

)
≤ 0

. (34)

Then, using convexity of ψ and the property of the subgradient leads to:{
s(t+ 1)⊤(θ(t+ 1) − θ(t)) ≥ ψ(θ(t+ 1)) − ψ(θ(t))

s(t)⊤(θ(t) − θ(t+ 1)) ≥ ψ(θ(t)) − ψ(θ(t+ 1)) . (35)

Summing both inequalities in (34) and using (35), one obtains:

∥θ(t+ 1) − θ(t)∥2 ≤
(
γ(t+ 1)z(t+ 1) − γ(t)z(t)

)⊤(
θ(t+ 1) − θ(t)

)
+
(
Γ(t+ 1) − Γ(t)

)(
ψ(θ(t+ 1)) − ψ(θ(t))

)
. (36)

The optimality of θ(t+ 1) ensures the following relation:

θ(t+ 1)⊤ z(t+ 1)
t+ 1 − ∥θ(t+ 1)∥2

2Γ(t+ 1) − ψ(θ(t+ 1)) ≥ θ(t)⊤ z(t+ 1)
t+ 1 − ∥θ(t)∥2

2Γ(t+ 1) − ψ(θ(t)) .

We can reformulate this last inequality to provide an upper bound on ψ(θ(t+ 1)) − ψ(θ(t)):

ψ(θ(t+ 1)) − ψ(θ(t)) ≤ (θ(t+ 1) − θ(t))⊤
(

z(t+ 1)
t+ 1 + θ(t) − θ(t+ 1)

2Γ(t+ 1)

)
+ (θ(t+ 1) − θ(t))⊤ θ(t+ 1)

Γ(t+ 1)

≤ ∥θ(t+ 1) − θ(t)∥
(

∥z(t+ 1)∥
t+ 1 + ∥θ(t) − θ(t+ 1)∥

2Γ(t+ 1)

)
+ ∥θ(t+ 1) − θ(t)∥∥θ(t+ 1)∥

Γ(t+ 1) ,

where the last inequality is derived from Cauchy-Schwarz relation. Since πt+1 is γ(t + 1)-Lipschitz and
πt+1(0) = 0, one has ∥θ(t+ 1)∥ ≤ γ(t+ 1)∥z(t+ 1)∥. Moreover, by definition of z(t+ 1) and since all fi are
L-Lipschitz, one has ∥z(t+ 1)∥ ≤ (t+ 1)L. These two last results lead the following bound:

ψ(θ(t+ 1)) − ψ(θ(t)) ≤ 2L∥θ(t+ 1) − θ(t)∥ + ∥θ(t) − θ(t+ 1)∥2

2Γ(t+ 1) .

Now, we can use this bound in inequality (36):(
1 − Γ(t+ 1) − Γ(t)

2Γ(t+ 1)

)
∥θ(t+ 1) − θ(t)∥ ≤ ∥γ(t+ 1)z(t+ 1) − γ(t)z(t)∥ + 2(Γ(t+ 1) − Γ(t))L .

The first term in the RHS can be simply bounded as follows:

∥γ(t+ 1)z(t+ 1) − γ(t)z(t)∥ ≤ γ(t+ 1)∥z(t+ 1) − z(t)∥ + (γ(t+ 1) − γ(t))∥z(t)∥
≤ (Γ(t+ 1) − Γ(t))L .

Since Γ(t+ 1) and Γ(t) are both positive, one has:

1 − Γ(t+ 1) − Γ(t)
2Γ(t+ 1) = Γ(t+ 1) + Γ(t)

2Γ(t+ 1) ≥ 0 ,
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which finally leads to:

∥θ(t+ 1) − θ(t)∥ ≤ 3L
(
Γ(t+ 1) − Γ(t)

) 2Γ(t+ 1)
Γ(t+ 1) + Γ(t) ≤ 3L

(
Γ(t+ 1) − Γ(t)

)(
1 + 1

2t+ 1

)
.

We make the additional assumption that γ(t) ∝ tα for some α ∈ (−1, 0). This is not a particularly restrictive
assumption since the dual averaging algorithm imposes that:

1. limt→∞ γ(t) = 0, hence α < 0.

2. limt→∞ tγ(t) = +∞, hence α+ 1 > 0.

With this assumption and Taylor-Lagrange formula yields:

Γ(t+ 1) − Γ(t) ≤ (α+ 1)γ(t) ,

and the final result holds.

Gap with noisy objectives (Lemma 9)

Proof. Let τ, t ≥ 0. One has:

F (θ(t), ξ(t+ τ)) − F (θ(t+ τ), ξ(t+ τ)) ≤ L∥θ(t) − θ(t+ τ)∥

≤ L

τ−1∑
s=0

∥θ(t+ s) − θ(t+ s+ 1)∥ .

Using Lemma 8, one has for any 0 ≤ s ≤ τ − 1:

∥θ(t+ s) − θ(t+ s+ 1)∥ ≤3L
(

1 + 1
2(t+ s) + 1

)(
Γ(t+ s+ 1) − Γ(t+ s)

)
≤3L

(
1 + 1

2t+ 1

)(
Γ(t+ s+ 1) − Γ(t+ s)

)
.

Summing over s leads to:
τ−1∑
s=0

∥θ(t+ s) − θ(t+ s+ 1)∥ ≤ 3L
(

1 + 1
2t+ 1

)(
Γ(t+ τ) − Γ(t)

)
,

and the first claim holds. We now make the assumption that γ(t) ∝ tα, with α ∈ (−1, 0). As denoted in the
proof of Lemma 8, one has:

Γ(t+ τ) − Γ(t) ≤ τ(1 + α)γ(t) ,

so the second claim also holds.

D.2.2 Synchronous Pairwise Gossip Dual Averaging

In this section, we focus on the synchronous setting. First, we establish a result on the expected dispersion
of the dual variables over the network. We then use this result to detail the rate of the decentralized dual
averaging, both for separable and pairwise objectives. Finally, we use the ergodic dual averaging to provide
an explicit rate of convergence.

In Duchi et al. (2012a), the following convergence rate for distributed dual averaging is established:

E[Rn(θ̄i(T ))] −Rn(θ∗) ≤ 1
2Tγ(T )∥θ∗∥2 +

L2
f

2T

T∑
t=2

γ(t− 1)

+ Lf
nT

T∑
t=2

γ(t− 1)
n∑
j=1

(
∥zi(t) − zj(t)∥ + ∥z̄(t) − zj(t)∥

)
.
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The first part is an optimization term, which is exactly the same as in the centralized setting. Then, the
second part is a network-dependent term which depends on the global variation of the dual variables; the
following lemma provides an explicit dependence between this term and the topology of the network.
Lemma 11. Let (G(t))t≥1 and (Z(t))t≥1 respectively be the gradients and the gradients cummulative sums
of the distributed dual averaging algorithm. If G is connected and non bipartite, then one has for t ≥ 1:

1
n

n∑
i=1

E∥zi(t) − z(t)∥ ≤ L

1 −
√

1 − λn−1/|E|
,

where λn−1 is the second smallest eigenvalue of the graph Laplacian L.

Proof. For t ≥ 1, let W(t) be the random matrix such that if (i, j) ∈ E is picked at t, then

W(t) = In − 1
2(ei − ej)(ei − ej)⊤ .

As denoted in Duchi et al. (2012a), the update rule for Z can be expressed as follows:

Z(t+ 1) = G(t) + W(t)Z(t),

for any t ≥ 1, reminding that G(0) = 0,Z(1) = 0. Therefore, one can obtain recursively

Z(t) =
t∑

s=0
W(t : s)G(s),

where W(t : s) = W(t) . . .W(s+ 1), with the convention W(t : t) = In. For any t ≥ 1, let W̃(t) be defined
as follows:

W̃(t) := W(t) − Jn .

One can notice that for any 0 ≤ s ≤ t, W̃(t : s) = W(t : s) − Jn and write:

Z(t) − 1nẑ(t)⊤ =
t∑

s=0
W̃(t : s)G(s).

We now take the expected value of the Frobenius norm:

E
[∥∥Z(t) − 1nẑ(t)⊤∥∥

F

]
≤

t∑
s=0

E [∥W(t : s)G(s)∥F ] ≤
t∑

s=0

√
E
[
∥W(t : s)G(s)∥2

F

]
=

n∑
i=1

t∑
s=0

√
E
[
g(i)(s)⊤W̃(t : s)⊤W̃(t : s)g(i)(s)

]
,

where g(i)(s) is the i-th column of matrix G(s). Conditioning over Ft−1 leads to:

E
[
g(i)(s)⊤W̃(t : s)⊤W̃(t : s)g(i)(s)

]
≤ λ2(2)E

[
g(i)(s)⊤W̃(t− 1 : s)g(i)(s)

]
.

where λ2(2) is defined in Section A. Using the fact that for any s ≥ 0, ∥G(s)∥2
F ≤ nL2, one has:

E
[∥∥Z(t) − 1nẑ(t)⊤∥∥

F

]
≤

√
nL

t∑
s=0

λ2(2)
t−s

2 ≤
√
nL

1 −
√
λ2(2)

.

Finally, using the bounds between ℓ1 and ℓ2-norms yields:

1
n

n∑
i=1

E∥zi(t) − ẑ(t)∥ ≤ 1√
n
E
∥∥Z(t) − 1nẑ(t)⊤∥∥

F ≤ L

1 −
√
λ2(2)

.
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With this bound on dual variables, the convergence rate can be reformulated as follows.
Corollary 2. Let G = ([n], E) be a connected and non bipartite graph. Let (γ(t))t≥1 be a non-increasing
and non-negative sequence. For i ∈ [n], let (gi(t))t≥1, (zi(t))t≥1 and (θi(t))t≥1 be generated according to the
distributed dual averaging algorithm. For θ∗ ∈ arg minθ′∈Rd Rn(θ′), i ∈ [n] and T ≥ 2, one has:

E[Rn(θ̄i(T ))] −Rn(θ∗) ≤ 1
2Tγ(T )∥θ∗∥2 + L2

2T

T−1∑
t=1

γ(t) + 3L2

T
(

1 −
√
λ2(2)

) T−1∑
t=1

γ(t),

where λ2(2) < 1 is the second largest eigenvalue of W2.

We now focus on gossip dual averaging for pairwise functions, as shown in Algorithm 2. The key observation
is that, at each iteration, the descent direction is stochastic but also a biased estimate of the gradient. That
is, instead of updating a dual variable zi(t) with gi(t) such that E[gi(t)|θi(t)] = ∇fi(θi(t)), we perform some
update di(t), and we denote by ϵi(t) the quantity such that E[di(t)−ϵi(t)|θi(t)] = E[gi(t)|θi(t)] = ∇fi(θi(t)).
We now prove Proposition 1, which upper-bound the error with an additional bias-dependent term.

Proof. We can apply the same arguments as in the proofs of centralized and distributed dual averaging, so
for T > 0 and i ∈ [n]:

ET [Rn(θ̄i(T ))] −Rn(θ∗) ≤ L
nT

T∑
t=2

γ(t− 1)
n∑
j=1

E
[
∥zi(t) − zj(t)∥

]

+ L
nT

T∑
t=2

γ(t− 1)
n∑
j=1

∥ẑ(t) − zj(t)∥
]

+ 1
T

T∑
t=2

E[(ω̂(t) − θ∗)⊤ĝ(t)]

≤ 3L
nT

T∑
t=2

γ(t− 1)
n∑
j=1

∥ẑ(t) − zj(t)∥
]

+ 1
T

T∑
t=2

E[(ω̂(t) − θ∗)⊤ĝ(t)] .

The first term can be bound using Lemma 11. The second term however can no longer be bound using
Lemma 6, since the updates are performed with dj(t) and not gj(t) = dj(t) − ϵj(t). With the definition of
dj(t), the former yields:

1
T

T∑
t=2

E[ω̂(t) − θ∗)⊤ĝ(t)] = 1
T

T∑
t=2

E[(ω̂(t) − θ∗)⊤(d̂(t) − ϵ̂(t))] .

Now Lemma 6 can be applied to the first term in the right hand side and the result holds.

We now focus on the proof of 2. This results is based both on Proposition 1 and ergodic dual averaging
presented in Section D.1.4.

Proof. Throughout this proof, we assume ψ ≡ 0 for simplicity; similar results can however be obtained in
the case ψ ̸≡ 0. Let i ∈ [n] and T ≥ 1. One has:

Rn(θ̄i(T )) −Rn(θ∗) ≤ 1
nT

T∑
t=1

n∑
j=1

Lγ(t)∥zi(t) − zj(t)∥ + 1
nT

T∑
t=1

n∑
j=1

(
fj(θj(t)) − fj(θ∗)

)
≤ 2L
nT

T∑
t=1

n∑
j=1

γ(t)∥zi(t) − ẑ(t)∥ + 1
nT

T∑
t=1

n∑
j=1

(
fj(θj(t)) − fj(θ∗)

)
.

The first term in the right hand side can be bounded using Lemma 11, so we only need to handle the last
term. To do so, we adapt the proof of convergence for the ergodic dual averaging to the partial objectives.
For j ∈ [n], let us define Fj : Rd × ∆n → R such that for any (θ, ξ) ∈ Rd × ∆n:

Fj(θ, ξ) =
n∑
k=1

ξkf(θ; xj ,xk).
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Moreover, for t ≥ 1, we define ξj(t) ∈ {0, 1}n ∩ ∆n such that for k ∈ [n], ξj(t)⊤ek = 1 if and only if
yj(t) = xk. Deriving the decomposition of the ergodic dual averaging proof yields:

T∑
t=1

(fj(θj(t)) − fj(θ∗)) =

T−τ∑
t=1

(fj(θj(t)) − fj(θ∗) + Fj(θj(t), ξj(t+ τ)) − Fj(θ∗, ξj(t+ τ))) (37)

+
T−τ∑
t=1

(Fj(θj(t), ξj(t+ τ)) − Fj(θj(t+ τ), ξj(t+ τ))) (38)

+
T∑

t=τ+1
(Fj(θj(t), ξj(t)) − Fj(θ∗, ξj(t))) (39)

+
T∑

t=T−τ+1
(fj(θj(t)) − fj(θ∗)). (40)

Bounding the term (37) requires the knowledge of the total variation distance between the random walk
associated to j after τ algorithm steps and the uniform. (Chung, 1997, Theorem 1.18) states that such norm
for one random walk is upper-bounded as follows:

∥P (t+ τ |t) − P∞∥TV ≤ |E|λ̃2(2)τ
2 mink∈[n] dk

,

where λ̃2(2) is such that λ̃2(2) ≤ 1 − λn−1
maxk∈[n] dk

. However, in this case, the random walk associated to the
j-th auxiliary observation will not necessarily be propagated τ times during τ algorithm steps. Since we are
interested in expected bound, we bound the expected total variation norm as follows:

E∥Pj(t+ τ |t) − P∞∥TV ≤
τ∑
s=0

P

(
t+τ∑
r=t

δj(r) = s

)
|E|λ̃2(2)s

2 mink∈[n] dk

≤ |E|
2 mink∈[n] dk

τ∑
s=0

(
τ

s

)
psj(1 − pj)τ−sλ̃2(2)s

= |E|
2 mink∈[n] dk

(
(1 − pj) + pj λ̃2(2)

)τ ≤ c(G) · c′(G)τ ,

where c(G) := |E|
2 mink∈[n] dk

and c′(G) := maxk∈[n]
{

(1 − pk) + pkλ̃2(2)
}

.

The term (38) provides an upper-bound similar to the centralized ergodic case, as it only depends on the
Lipschitz constant L and the step size sequence. When averaging over all j ∈ [n], the term (39) can be
upper-bounded as follows:

1
n

n∑
j=1

T∑
t=τ+1

(Fj(θj(t), ξj(t)) − Fj(θ∗, ξj(t)))

≤ 1
n

n∑
j=1

T∑
t=τ+1

(Fj(θj(t), ξj(t)) − Fj(ω̂(t), ξj(t))) +
T∑
t=1

(ω̂(t) − θ∗)⊤d̂(t)

≤L

n

n∑
j=1

T∑
t=τ+1

γ(t)∥zj(t) − ẑ(t)∥ +
T∑
t=1

(ω̂(t) − θ∗)⊤d̂(t),

which can then be bounded similarly to Proposition 1. Finally, the last term (40) is bounded by 2τLD, as
in the centralized case.
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Algorithm 7 Gossip dual averaging for pairwise function in asynchronous setting
Require: Step size (γ(t))t≥0 > 0, probabilities (pk)k∈[n]

1: yi ← xi, zi ← 0, θi ← 0, θ̄i ← 0, mi ← 0 for each node i ∈ [n]
2: for t = 1, . . . , T do
3: Draw (i, j) uniformly at random in E
4: Swap auxiliary observations: yi ↔ yj

5: for k ∈ {i, j} do
6: zk ←

zi+zj

2
7: zk ← 1

pk
∇θf(θk; xk, yk)

8: mk ← mk + 1
pk

9: θk ← πmk (zk)

10: θ̄k ←
(

1− 1
mkpk

)
θ̄k

11: end for
12: end for
13: return Each node k ∈ [n] has θ̄k

D.2.3 Asynchronous Pairwise Dual Averaging

For any variant of gradient descent over a network with a decreasing step size, there is a need for a common
time scale to perform the suitable decrease. In the synchronous setting, this time scale information can be
shared easily among nodes by assuming the availability of a global clock. This is convenient for theoretical
considerations, but is unrealistic in many practical (asynchronous) scenarios. As in the decentralized esti-
mation framework considered in the appendix, we place ourselves here in a fully asynchronous setting where
each node has a local clock, ticking at a Poisson rate of 1, independently from the others and we use the
time estimators (mk)1≤k≤n defined as follows:

mk(t) =
{
mk(t− 1) + p−1

k if k is picked at iteration t
mk(t− 1) otherwise

Using these estimators, we can now adapt Algorithm 2 to the fully asynchronous case, as shown in Algo-
rithm 7. The update step slightly differs from the synchronous case: the partial gradient has a weight 1/pk
instead of 1 so that all partial functions asymptotically count in equal way in every gradient accumulator.
In contrast, uniform weights would penalize partial gradients from low degree nodes since the probability of
being drawn is proportional to the degree. This weighting scheme is essential to ensure the convergence to
the global solution. The model averaging step also needs to be altered: in absence of any global clock, the
weight 1/t cannot be used and is replaced by 1/(mkpk), where mkpk corresponds to the average number of
times that node k has been selected so far.

The following result is the analogue of Proposition 1 in the asynchronous framework.
Proposition 3. Let G = ([n], E) be a connected and non bipartite graph. Let (γ(t))t≥1 be defined as γ(t) =
c/t1/2+α for some constant c > 0 and α ∈ (0, 1/2). For i ∈ [n], let (zi(t))t≥1 and (θi(t))t≥1 be generated as
described in Algorithm 7. Then, there exists some constant C < +∞ such that, for θ∗ ∈ arg minθ′∈Rd F (θ′),
i ∈ [n] and T > 0,

F (θ̄i(T )) − F (θ∗) ≤C max(T−α/2, Tα−1/2) + 1
T

T∑
t=2

E[(ω̂(t) − θ∗)⊤ϵ̂(t)] .

The main difficulty in the asynchronous setting is that each node i has to use a time estimate mi instead
of the global clock reference (that is no longer available in such a context). Even if the time estimate is
unbiased, its variance puts an additional error term in the convergence rate. However, for an iteration T
large enough, one can bound these estimates as stated bellow.
Lemma 12. There exists T1 > 0 such that for any t ≥ T1, any k ∈ [n] and any q > 0,

t− := t− t
1
2 +q ≤ mk(t) ≤ t+ t

1
2 +q =: t+ a.s.
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Proof. Let k ∈ [n]. For t ≥ 1, let us define δk(t) such that δk(t) = 1 if k is picked at iteration t and δk(t) = 0
otherwise. Then one has mk(t) = (1/pk)

∑t
s=1 δk(t). Since (δk(t))t≥1 is a Bernoulli process of parameter

1/pk, by the law of iterative logarithms Dudley (2010), (Nedić, 2011, Lemma 3) one has with probability 1
and for any q > 0, limt→+∞

|mk(t)−t|
t

1
2 +q

= 0, and the result holds.

Theorem 9. Let G = ([n], E) be a connected and non bipartite graph. Let (γ(t))t≥1 be defined as γ(t) =
c/t1/2+α for some constant c > 0 and α ∈ (0, 1/2). For i ∈ [n], let (zi(t))t≥1 and (θi(t))t≥1 be generated as
stated previously. For θ∗ ∈ arg minθ′∈Rd Rn(θ′), i ∈ [n] and T > 0, one has for some C:

Rn(θ̄i(T )) −Rn(θ∗) ≤ C max(T−α/2, Tα−1/2) + 1
T

T∑
t=1

E[ϵ̂(t)⊤ω̂(t)] .

Proof. In the asynchronous case, for i ∈ [n] and t ≥ 1, one has

θ̄i(T ) = 1
mi(T )

T∑
t=1

δi(t)
pi

θi(t) .

Then, using the convexity of Rn, one has:

ET [Rn(θ̄i(T )] −Rn(θ∗) ≤ E

[
1

mi(T )

T∑
t=1

δi(t)
pi

Rn(θi(t))
]

−Rn(θ∗) . (41)

By Lemma 12, one has for q > 0

E[Rn(θ̄i(T )] −Rn(θ∗) ≤ 1
T−

T∑
t=1

E
[
δi(t)
pi

Rn(θi(t))
]

−Rn(θ∗) .

Similarly to the synchronous case, one can write

E
[
δi(t)
pi

f(θi(t))
]

=
n∑
j=1

1
n
E
[
δi(t)
pi

fj(θi(t))
]

= 1
n

n∑
j=1

E
[
δi(t)
pi

(fj(θi(t)) − fj(θj(t))
]

+ 1
n

n∑
j=1

E
[
δi(t)
pi

fj(θj(t))
]
.

In order to use the gradient inequality, we need to introduce δj(t)fj(θj(t)) instead of δi(t)fj(θj(t)). For
j ∈ [n], one has:

1
T−

T∑
t=1

E
[
δi(t)
pi

fj(θj(t))
]

= 1
T−

T∑
t=1

E
[(

δi(t)
pi

− δj(t)
pj

)
fj(θj(t)) + δj(t)

pj
fj(θj(t))

]
.

Let Nj =
∑T
t=1 δj(t) and 1 ≤ t1 < . . . < tNj ≤ T be such that δj(tk) = 1 for k ∈ [Nj ]. One can write

1
T−

T∑
t=1

E
[(

δi(t)
pi

− δj(t)
pj

)
fj(θj(t))

]
(42)

= 1
T−E

Nj−1∑
k=1

((
tk+1−1∑
t=tk

δi(t)
pi

)
− 1
pj

)
fj(θj(tk))

+ 1
T−E

[(
t1∑
t=0

δi(t)
pi

)
fj(θj(0))

]

+ 1
T−E

 T∑
t=tNj

δi(t)
pi

− 1
pj

 fj(θj(tNj
))


≤ 1
T−E

Nj−1∑
k=1

((
tk+1−1∑
t=tk

δi(t)
pi

)
− 1
pj

)
fj(θj(tk))

+ fj(0)
pipjT− +

L2
fE[γ(tNj − 1)]

pipj
.
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We need to study the behavior of δi and δj in the first term of the r.h.s. :

E

[
Nj−1∑
k=1

(
tk+1−1∑
t=tk

δi(t)
pi

− 1
pj

)
fj(θj(tk))

]

= E

Nj−1∑
k=1

(
E

[
tk+1−1∑
t=tk

δi(t)
pi

∣∣∣∣∣tk, tk+1

]
− 1

pj

)
fj(θj(tk))

 .

δi(t) will not have the same dependency in tk whether i and j are connected or not. Let us first assume that
(i, j) ∈ E. Then,

E[δi(tk)|tk] = E[δi(t)|δj(t) = 1] = 1
dj

.

Also, for tk < t < tk+1, we get:

E[δi(t)|tk] = E[δi(t)|δj(t) = 0] = pi − 2/|E|
1 − pj

.

Finally, if (i, j) ∈ E, we obtain

E

[
tk+1−1∑
t=tk

δi(t)
pi

∣∣∣∣∣tk, tk+1

]
=
(

1
dj

+ (tk+1 − tk − 1)pi − 2/|E|
1 − pj

)
1
pi

.

Before using this relation in the full expectation, let us denote that since tk+1 − tk is independent from tk,
one can write

E

[(
1
dj

+ (tk+1 − tk − 1)pi − 2/|E|
1 − pj

)
1
pi

| tk

]
=
(

1
dj

+
(

1 − pj
pj

)
pi − 2/|E|

1 − pj

)
1
pi

= 1
pj

.

We can now use this relation in the full expectation

ET
[(

δi(t)
pi

− δj(t)
pj

)
fj(θj(t))

]

= E

Nj−1∑
k=1

(
E

[
E

[
tk+1−1∑
t=tk

δi(t)
pi

∣∣∣∣∣tk+1 − tk

] ∣∣∣∣∣tk
]

− 1
pj

)
fj(θj(tk))

 = 0 . (43)

Similarly if (i, j) ̸∈ E, one has
E[δi(tk)|tk] = E[δi(t)|δj(t) = 1] = 0 ,

and for tk < t < tk+1,
E[δi(t)|tk] = E[δi(t)|δj(t) = 0] = pi

1 − pj
,

so the result of Equation (43) holds in this case. We have just shown that for every j ∈ [n], we can use
δj(t)fj(θj(t))/pj instead of δi(t)fj(θj(t))/pi . Combining (41) and (42) yields:

E[Rn(θ̄i(T ))] −Rn(θ∗) ≤ 1
nT−

T∑
t=2

n∑
j=1

E
[
δi(t)
pi

(fj(θi(t)) − fj(θj(t))
]

+ 1
nT−

T∑
t=2

n∑
j=1

E
[
δj(t)
pj

(fj(θj(t)) − fj(θ∗))
]

+ 1
T−

T∑
t=2

E
[
δi(t)
pi

(ψ(θi(t)) − ψ(θ∗))
]

+ fj(0)
pipjT− +

L2
fE[γ(tNj − 1)]

pipj
.
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Let us focus on the second term of the right hand side. For t ≥ 2, one can write

1
n

n∑
j=1

E
[
δj(t)
pj

(fj(θj(t)) − fj(θ∗))
]

≤ 1
n

n∑
j=1

E
[
δj(t)
pj

gj(t)⊤(θj(t) − θ∗)
]

= 1
n

n∑
j=1

E
[
δj(t)
pj

gj(t)⊤(θj(t) − ω̂(t))
]

+ 1
n

n∑
j=1

E
[
δj(t)
pj

gj(t)⊤(ω̂(t) − θ∗)
]
. (44)

Here we control the term from (44) using ω̂(t) := πmi(t)(ẑ(t))

1
n

n∑
j=1

E
[
δj(t)
pj

gj(t)⊤(ω̂(t) − θ∗)
]

= E


 1
n

n∑
j=1

δj(t)
pj

gj(t)

⊤

(ω̂(t) − θ∗)


= E

[
ĝ(t)⊤(ω̂(t) − θ∗)

]
,

and the reasoning of the synchronous case can be applied to obtain

1
nT−

T∑
t=2

n∑
j=1

E
[
δj(t)
pj

gj(t)⊤(ω̂(t) − θ∗)
]

≤ L2

2T−

T∑
t=2

γ(t− 1) + ∥θ∗∥2

2γ(T ) + 1
T

T∑
t=2

E[ϵ̂(t)⊤ω̂(t)] + 1
T−

T∑
t=2

(ψ(θ∗) − E[ψ(ω̂(t))]) . (45)

We have:

1
T−

T∑
t=2

E
[
δi(t)
pi

(ψ(θi(t)) − ψ(θ∗))
]

+ 1
T−

T∑
t=2

(ψ(θ∗) − E[ψ(ω̂(t))])

= 1
T−

T∑
t=2

E
[
δi(t)
pi

ψ(θi(t)) − ψ(ω̂(t))
]

= 1
T−

T∑
t=2

E
[
δi(t)
pi

(ψ(θi(t)) − ψ(ω̂(t)))
]

+ 1
T−

T∑
t=2

E
[
(δi(t)
pi

− 1)ψ(ω̂(t))
]

= 1
T−

T∑
t=2

E
[
δi(t)
pi

(ψ(θi(t)) − ψ(ω̂(t)))
]
,

where we have used for the last term the same arguments as in (43) to state 1
T−

∑T
t=2 E

[
( δi(t)
pi

− 1)ψ(ω̂(t))
]

=
0. Then, one can use the fact that πt is γ(t)-Lipschitz to write:

1
piT−

T∑
t=2

E
[
2Lγ(mi(t− 1))∥ẑ(t) − zi(t)∥ + γ(mi(t− 1))∥ẑ(t) − zi(t)∥2

2(mi(t− 1))

]
.
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Provided that γ(t) ≤ C/
√
t for some constant C, then using Lemma 12 we can bound this term by C ′/

√
T .

Let us now control the following term:

1
n

n∑
j=1

E
[
δj(t)
pj

gj(t)⊤(θj(t) − ω̂(t))
]

≤ L

npj

n∑
j=1

E [∥θj(t) − ω̂(t)∥] (46)

≤ L

npj

n∑
j=1

E
[
∥θj(t) − θ̃j(t)∥ + ∥θ̃j(t) − ω̂(t)∥

]
≤ L

npj

n∑
j=1

E
[
γ(mj(t− 1))∥zj(t) − ẑ(t)∥ + ∥θ̃j(t) − ω̂(t)∥

]
.

where θ̃j(t) = πmj(t−1)(−z̄(t)). We can apply Lemma 13 with the choice θ1 = θ̃j(t), θ2 = ω̂(t), t1 = mj(t),
t2 = mi(t) and z = ẑ(t):

∥ω̂(t) − θ̃j(t)∥
≤ ∥ẑ(t)∥|γ(mi(t)) − γ(mj(t))|

+ ∥ẑ(t)∥
(

3
2 + max

(
γ(mj(t))
γ(mi(t))

,
γ(mi(t))
γ(mj(t))

)) ∣∣∣∣γ(mj(t)) − mi(t)
mj(t)

γ(mi(t))
∣∣∣∣
)

+ ∥ẑ(t)∥
(

3
2 + max

(
γ(mj(t))
γ(mi(t))

,
γ(mi(t))
γ(mj(t))

)) ∣∣∣∣γ(mi(t)) − mj(t)
mi(t)

γ(mj(t))
∣∣∣∣
)
.

We use Lemma 12 with the choice q = α/2, so we can bound for t large enough the former expression by a
term of order ∥ẑ(t)∥|γ(mi(t)) −γ(mj(t))|. Note also that ∥ẑ(t)∥ ≤ Lmaxk=1,...,nmk(t), so for t large enough
we obtain:

∥ω̂(t) − θ̃j(t)∥ ≤ Lt+|γ(t−) − γ(t+)| .
With the additional constraint that the step size is of the form γ(t) = Ct−1/2−α, the term ∥ω̂(t) − θ̃j(t)∥ is
bounded by C ′t−α/2 for t large enough, and so is (1/n)

∑n
j=1 E

[
δj(t)
pj

gj(t)⊤(θj(t) − ω̂(t))
]
.

To control the objectives, we use that fj is L-Lipschitz

|fj(θi(t)) − fj(θj(t)| ≤ L∥θi(t) − θj(t)∥ ≤ L(∥θi(t) − ω̂(t)∥ + ∥ω̂(t) − θj(t)∥) ,

and we use now the same control as for (46), hence the result.

Lemma 13. Let γ : R+ → R+ be a non-increasing positive function and let z ∈ Rd. For any t1, t2 > 0, one
has

∥θ2 − θ1∥ ≤∥z∥|γ(t2) − γ(t1)| + ∥z∥
(

3
2 + max(γ(t1)

γ(t2) ,
γ(t2)
γ(t1) )

)(
1
t1

+ 1
t2

)
|t1γ(t1) − t2γ(t2)| ,

where, for i ∈ {1, 2},

θi = πti(z) := arg max
θ∈Rd

{
z⊤θ − ∥θ∥2

2γ(ti)
− tiψ(θ)

}
.

Proof. Using the optimality of the minimizer, for any s1 ∈ ∂ψ(θ1) (resp. s2 ∈ ∂ψ(θ2)):

(γ(t1)z − t1γ(t1)s1 − θ1)⊤(θ2 − θ1) ≤ 0
(γ(t2)z − t2γ(t2)s2 − θ2)⊤(θ1 − θ2) ≤ 0
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Re-arranging the terms, and using properties of sub-gradients yields:

∥θ2 − θ1∥2 ≤(γ(t2) − γ(t1))z⊤(θ2 − θ1) + (t1γ(t1)s1 − t2γ(t2)s2)⊤(θ2 − θ1) (47)
≤(γ(t2) − γ(t1))z⊤(θ2 − θ1) + (t1γ(t1) − t2γ(t2))(ψ(θ2) − ψ(θ1))

Also, using the definition of θ1 and θ2, one has:

|ψ(θ1) − ψ(θ1)| ≤ ∥z∥∥θ1 − θ2∥
(

3
2 + max(γ(t1)

γ(t2) ,
γ(t2)
γ(t1) )

)(
1
t1

+ 1
t2

)
. (48)

With relations (47) and (48) we bound the distance between θ1 and θ2 as follows:

∥θ2 − θ1∥ ≤∥z∥|γ(t2) − γ(t1)| + ∥z∥
(

3
2 + max(γ(t1)

γ(t2) ,
γ(t2)
γ(t1) )

)(
1
t1

+ 1
t2

)
|t1γ(t1) − t2γ(t2)|

D.3 Proof of Theorem 3

In this section, we state the proof of Theorem 3.

Proof. Let G = ([n], E) be a connected graph. We consider decentralized first-order methods that, at each
iteration, can query local (sub)gradients and exchange messages along E . For simplicity, we assume unit
per-hop latency τ = 1; heterogeneous latencies only change the bound by a multiplicative factor.

Following Scaman et al. (2018), the idea is to construct an objective function whose coordinates must be
activated sequentially, forcing information to alternate between two distant nodes of the network. Fix two
nodes i0, i1 ∈ V. Consider the local functions

fj(θ) =


α
2 ∥θ∥2 + n

[
γ
∑k
r=1 |θ2r+1 − θ2r| − β θ1

]
if j = i0,

α
2 ∥θ∥2 + n

[
γ
∑k
r=1 |θ2r − θ2r−1| + δ θ2k+1

]
if j = i1,

α
2 ∥θ∥2 otherwise.

Here α > 0 controls strong convexity, while γ, β, δ > 0 control the nonsmooth zero-preserving terms. The
overall objective F (θ) = 1

n

∑
j fj(θ) is convex, nonsmooth, and designed so that each gap |θ2r+1 − θ2r| is

controlled by i0, and each gap |θ2r−θ2r−1| by i1. Starting from θ(0) = 0, a first-order algorithm can activate
at most one new coordinate per communication round between i0 and i1.

In the centralized setting, the nonsmooth lower bound is obtained by considering the family of functions
(Bubeck et al., 2015, see Lemma 3.1):

f(θ) = α

2 ∥θ∥2 + max
1≤i≤t

θi .

This function is convex and 1-Lipschitz on the ℓ2 ball of radius R =
√
t, and is α-strongly convex. For any

deterministic first-order algorithm, after s oracle calls the error satisfies

f(θ(T )) − f⋆ ≥ c
RL√
T + 1

,

for some universal constant c > 0. This lower bound relies on the fact that each oracle query can reveal
information about at most one active coordinate in the max-term, hence the suboptimality decays only as
1/

√
T .

In the decentralized setting, each activation requires a communication round-trip between i0 and i1, of
length at least 2dG(i0, i1), where dG(·, ·) is the graph distance. This dilates the effective time parameter by
2dG(i0, i1), and the careful analysis in Scaman et al. (2018) yields, for any i ∈ [n]:

F (θi(t)) − min
∥θ∥≤R

F (θ) ≥ RL

36

√
1

(1 + t/(2dG(i0, i1)))2 + 1
t+ 1 ,
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where dG(i0, i1) is the distance between nodes i0 and i1. Selecting i0 and i1 as to maximize this distance
yield a bound where dG(i0, i1) can be replaced by the graph diameter ∆.

In our setting, each local function fi decomposes as a sum of pairwise terms

fi(θ) =
∑
j∈[n]

fij(θ),

where each fij is stored jointly at the pair (i, j) and depends on both nodes. We can therefore split the
nonsmooth chain terms of the previous construction across the network.

Specifically, let j0,1, . . . , j0,k ∈ [n] and j1,1, . . . , j1,k ∈ [n] be two sets of distinct, intermediary nodes. We
then define pairwise functions fuv as follows:

fuv(θ) =



α
2 ∥θ∥2 − nβ θ1 if u = v = i0,

α
2 ∥θ∥2 + nδ θ2k+1 if u = v = i1,

α
2 ∥θ∥2 + nγ |θ2r+1 − θ2r| if (u, v) = (i0, j0,r),
α
2 ∥θ∥2 + nγ |θ2r − θ2r−1| if (u, v) = (i1, j1,r),
α
2 ∥θ∥2 otherwise.

The global objective F (θ) remains unchanged, but now, computing the gradient of fi0,j0,r
(resp. fi1,j1,r

)
requires routing information from j0,r to i0 (resp. j1,r to i1). This effectively replaces each occurrence of
dG(i0, i1) in the activation time by the length of the path from i0 to j0,r and from j0,r to i1 as well as from
i1 to j1,r and from j1,r to i0.

Let d̃G(i0, i1) be the average effective communication length between i0, i1 and intermediary nodes, that is

d̃G(i0, i1) := 1
2k

k∑
r=1

dG(i0, j0,r) + dG(j0,r, i1) + dG(i1, j1,r) + dG(j1,r, i0) .

This quantity represents the average communication length per coordinate activation, i.e., the effective dis-
tance that must be covered by each new gradient piece, on average. Repeating the same zero-preserving
argument as in Scaman et al. (2018) and optimizing over (i0, i1) then gives the lower bound:

F (θi(t)) − min
∥θ∥≤R

F (θ) ≥ RL

36

√
1

(1 + t/∆̃)2
+ 1
t+ 1 .

E Multiple points per node

Proof. Denoting the Kronecker product by ⊗, we can write:

AG⊗
= 1k1Tk ⊗ AG and DG⊗

= kIk ⊗ DG.

Recall that LG = DG − AG and LG⊗ = DG⊗ − AG⊗ . Let (ϕ, λ) ∈ Rnk × R be an eigenpair of LG⊗ , i.e.,
(DG⊗ − AG⊗)ϕ = λϕ and ϕ ̸= 0. Let us write ϕ = [ϕ⊤

1 . . .ϕ
⊤
k ]⊤ where ϕ1, . . . ,ϕk ∈ Rn. Exploiting the

structure of AG⊗ and DG⊗ , we have:

kDGϕi −
k∑
j=1

AGϕj = λϕi, for all i ∈ [k]. (49)

Summing up (49) over all i ∈ [k] gives

DG
k∑
i=1

ϕi − AG
k∑
i=1

ϕi = λ

k

k∑
i=1

ϕi ,
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which shows that if (ϕ, λ) is an eigenpair of LG⊗ with
∑k
i=1 ϕi ̸= 0, then (

∑k
i=1 ϕi, λ/k) is an eigenpair of

LG. In the case where
∑k
i=1 ϕi = 0, then there exists an index j ∈ [k] such that ϕj = −

∑
i ̸=j ϕj ̸= 0. Hence

(49) gives
DGϕj = λ

k
ϕj ,

which shows that (ϕj , λ/k) is an eigenpair of LG. Observe that λ = kdi for some i ∈ [n].

We have thus shown that any eigenvalue λG⊗ of LG⊗ is either of the form λG
⊗ = kλG, where λG is an

eigenvalue of LG, or of the form λG
⊗ = kdi for some i ∈ [n].

Since LG⊗ is a Laplacian matrix, its smallest eigenvalue is 0. Let λG⊗

nk−1 be the second smallest eigenvalue
of LG⊗ . Note that G⊗ is not a complete graph since G is not complete. Therefore, λG⊗

nk−1 is bounded above
by the vertex connectivity of G⊗ (Fiedler, 1973), which is itself trivially bounded above by the minimum
degree d⊗

min = mini∈[kn][DG⊗ ]ii of G⊗. This implies that λG⊗

nk−1 = kλGn−1, and hence

1 − λG
⊗

2 (2) =
λG

⊗

kn−1
|E⊗|

=
kλGn−1
k2|E|

= 1 − λG2 (2)
k

.
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