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Abstract

Recently there has been a surge of interest in
extending the success of large language models
(LLMs) to graph modality, such as social net-
works and molecules. As LLMs are predomi-
nantly trained with 1D text data, most existing
approaches adopt a graph neural network to rep-
resent a graph as a series of node tokens and
feed these tokens to LLMs for graph-language
alignment. Despite achieving some successes,
existing approaches have overlooked the hierar-
chical structures that are inherent in graph data.
Especially, in molecular graphs, the high-order
structural information contains rich semantics of
molecular functional groups, which encode cru-
cial biochemical functionalities of the molecules.
We establish a simple benchmark showing that ne-
glecting the hierarchical information in graph tok-
enization will lead to subpar graph-language align-
ment and severe hallucination in generated out-
puts. To address this problem, we propose a novel
strategy called HIerarchical GrapH Tokenization
(HIGHT). HIGHT employs a hierarchical graph
tokenizer that extracts and encodes the hierar-
chy of node, motif, and graph levels of informa-
tive tokens to improve the graph perception of
LLMs. HIGHT also adopts an augmented graph-
language supervised fine-tuning dataset, enriched
with the hierarchical graph information, to further
enhance the graph-language alignment. Exten-
sive experiments on 7 molecule-centric bench-
marks confirm the effectiveness of HIGHT in re-
ducing hallucination by 40%, as well as signifi-
cant improvements in various molecule-language
downstream tasks. The website of this project is
https://higraphllm.github.io.
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1. Introduction
Large language models (LLMs) have demonstrated impres-
sive capabilities in understanding and processing natural
languages (Radford et al., 2019; OpenAI, 2022; Touvron
et al., 2023a; Bubeck et al., 2023). Recently, there has been
a surge of interest in extending the capabilities of LLMs
to graph modality (Jin et al., 2023; Li et al., 2023d; Wei
et al., 2024; Mao et al., 2024; Fan et al., 2024) such as
social networks (Tang et al., 2023; Chen et al., 2024) and
molecular graphs (Liu et al., 2023d; Zhao et al., 2023; Cao
et al., 2023; Li et al., 2024). Inspired by the success of
large vision-language models (Zhang et al., 2024; Zhu et al.,
2023; Liu et al., 2023b), existing large graph-language mod-
els (LGLMs) predominantly adopt a graph neural network
(GNN) (Kipf and Welling, 2017; Hamilton et al., 2017; Xu
et al., 2019) to tokenize graph information as a series of
node embeddings (or node tokens), and then leverage an
adapter such as a Multi-layer perceptron (MLP) or a Q-
former (Li et al., 2023a) to transform the node tokens into
those compatible with LLMs (Fan et al., 2024). To facilitate
the alignment of graph and language modalities, LGLMs
will undergo a graph-language instruction tuning stage with
the graph and the corresponding caption data, so as to real-
ize the graph-language alignment (Jin et al., 2023; Li et al.,
2023d; Fan et al., 2024).

Despite achieving certain success, the graph tokenization in
existing LGLMs neglects the essential hierarchical struc-
tures that are inherent in graph data (Ying et al., 2018).
Especially, in molecular graphs, the high-order structural in-
formation, such as motifs or functional groups, contains
rich semantics of the biochemical functionalities of the
molecules (Milo et al., 2002; Bohacek et al., 1996; Sterling
and Irwin, 2015). For example, the existence of the hy-
droxide functional group (“-OH”) in small molecules often
indicates a higher water solubility. Therefore, the perception
of functional groups in a molecule is essential for LLMs to
understand the molecules. Intuitively, feeding LLMs with
only node tokens makes the molecule understanding harder
as LLMs have to learn to combine atoms in a functional
group. However, atoms are usually treated as separate to-
kens in LGLMs and there is often a lack of supervision
signal to prompt about the combinations of specific motifs.
Consequently, neglecting the hierarchical information will
lead to subpar graph-language alignment and severe hallu-
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Figure 1. Illustration of HIGHT. (a) Given a molecule (i.e., PubChem ID 3, 2,3-dihydroxy-2,3-dihydrobenzoic acid), HIGHT detects the
motifs and incorporates the “supernodes” for each motif (The whole graph is also considered as a “super motif”.). Then, HIGHT tokenizes
the molecule into both node-level (i.e., atoms) and motif-level (i.e., functional groups) tokens. The hierarchical view enables LLMs
to align the molecular structures and the language descriptions of the molecule better. (b) Therefore, HIGHT significantly reduces the
hallucination of LGLMs and improves the downstream performance across various molecule-centric tasks. All metrics are transformed a
bit such that a higher number means a better downstream task performance.

cination. To demonstrate the issue, we construct a simple
benchmark called MotifHallu that asks LLMs about the
existence of common functional groups. Surprisingly, we
find that existing LGLMs consistently answer “Yes” for any
functional groups (Sec. 3.2). It then raises a challenging
research question:

Is there a way to incorporate the intrinsic hierarchical
graph information into LLMs?

In this paper, we study the problem with a focus on molec-
ular data, and introduce a new graph-language alignment
strategy called HIerarchical GrapH Tokenization (HIGHT).
As shown in Fig. 1, HIGHT includes a hierarchical graph
tokenizer, as well as a hierarchical molecular instruction tun-
ing dataset to facilitate a better alignment of molecule and
language modalities. Inspired by the success of hierarchical
GNNs in molecular representation learning (ZHANG et al.,
2021; Zang et al., 2023; Inae et al., 2023; Luong and Singh,
2023), we transform the original molecular graph into a hi-
erarchical graph with motif and graph nodes added in. Then,
we employ a Vector Quantized-Variational AutoEncoder
(VQVAE) to obtain atom-level, motif-level, and graph-level
tokens separately with the self-supervised tasks (Zang et al.,
2023). To retain more original structural information, we
further attach Laplacian positional encodings to the tokens.
After that, we adopt a multi-level adapter consisting of three
adapters processing atom-level, motif-level, and graph-level
tokens, respectively, before feeding them into the LLMs.
In addition, to facilitate the use of hierarchical information
encoded by the tokens, we augment the original molecu-
lar instruction tuning dataset with motif descriptions. Our
contributions can be summarized as follows:

• To the best of our knowledge, we are the first to add
the hierarchical graph information into LGLMs with new

architectures and instruction tuning dataset HiPubChem.

• To facilitate the graph-language alignment study, we also
propose the first hallucination benchmark MotifHallu
based on the existence of common functional groups.

• We conduct extensive experiments with 7 real-world
molecular and reaction comprehension benchmarks. The
results show that HIGHT significantly reduces the halluci-
nation on MotifHallu by up to 40% and consistently
improves the downstream task performances.

2. Preliminaries
We begin by introducing preliminary concepts and related
works of LGLMs.

Large Graph-Language Models. As LLMs have demon-
strated great capabilities across a wide range of natural
language tasks, there has been an increasing interest in
extending LLMs to broader applications where the text
data are associated with the structure information (i.e.,
graphs) (Jin et al., 2023; Li et al., 2023d; Wei et al., 2024;
Mao et al., 2024; Fan et al., 2024). A graph can be de-
noted as G = (V, E) with a set of n nodes v ∈ V and
a set of m edges (u, v) ∈ E . Each node u has node at-
tributes as xu ∈ Rd and each edge (u, v) has edge attributes
eu,v ∈ Rde . A number of LGLMs have been developed to
process graph-text associated dataset D = {G, c}, where
c = [c1, ..., clc ] refers to the caption of the graph G. For
node-centric tasks, ci will associate with the nodes (Tang
et al., 2023), while in this paper we focus on graph-centric
tasks, i.e., molecules and molecular captions (Liu et al.,
2023d). Usually, an l-layer GNN encodes a graph as:

h(l)
u = C(h(l−1)

u ,A({(h(l−1)
u ,h(l−1)

v , euv)|v ∈ N (u)})),
(1)
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where h
(l)
u ∈ Rh refers to the node embedding of node u

after l layers of GNN, A(·) is the aggregation function (e.g.,
mean) among the information from neighbors of node u,
and C is the operator for combining information of node u
with its neighbors N (u) (e.g., concatenation). Then, after l
iterations, the graph-level embedding can be obtained as:

hG = READOUT
(
{h(l)

u |u ∈ V}
)
, (2)

where READOUT(·) is a pooling operator (e.g., mean
pooling) among all the node embeddings. With the rep-
resentations of the nodes and graphs, LGLMs can fuse
the graph and language information in various ways, such
as transforming into natural languages describing the
graphs (Fatemi et al., 2024), or neural prompts within the
LLMs (Tian et al., 2024). In addition, the embeddings can
also be leveraged to postprocess the LLM outputs (Liu et al.,
2024a). Orthogonal to different fusion mechanisms, in this
work, we will focus on transforming graph embeddings into
input tokens of LLMs to demonstrate the benefits of hierar-
chical graph modeling, which can be formulated as (Tang
et al., 2023; Chen et al., 2024; Liu et al., 2023d; Zhao et al.,
2023; Cao et al., 2023; Li et al., 2024):

pθ(a|q,h) = Πla
i=1pθ(ai|q, fn(h),a<i), (3)

where the LGLM is required to approximate pθ to output the
desired answer a given the question q, and the graph tokens
h adapted with adapter fn : Rh → Rhe that projects the
graph tokens to the embedding space of LLMs. In addition,
one could also incorporate the 1D sequence of molecules
such as SMILES (Weininger, 1988) and SELFIES (Krenn
et al., 2019) into q and a to facilitate the alignment.

Molecular Foundation Models. More specifically, this
work focuses on one of the most popular graph-language
alignment tasks, i.e., molecule-language alignment (Liu
et al., 2024c; Pei et al., 2024). In fact, there is a separate line
of works aiming to develop language models for molecules
and proteins – the language of lives, from 1D sequences such
as SMILES (Irwin et al., 2022), 2D molecular graphs (Wang
et al., 2022), 3D geometric conformations (Liu et al., 2022;
Zhou et al., 2023), to scientific text (Beltagy et al., 2019)
and multimodal molecule-text data (Liu et al., 2023c; Luo
et al., 2023a; Christofidellis et al., 2023; Liu et al., 2024b;
Su et al., 2022; Zeng et al., 2022). The adopted back-
bones range from encoder-decoder architectures such as
MolT5 (Edwards et al., 2022) and Galactica (Taylor et al.,
2022), to auto-regressive language modeling (Luo et al.,
2023b; Liu et al., 2023f). Inspired by the success of large
vision-language models (Li et al., 2023a; Zhu et al., 2023;
Liu et al., 2023b), the community further seeks to develop
molecular foundation models built upon existing molecular
language models with more sophisticated graph informa-
tion fusion modules. For example, Liu et al. (2023d); Zhao

et al. (2023) develop advanced cross-modal adapters and
generalized position embeddings to promote a better graph-
language alignment of encoder-decoder based molecular
foundation models. Liang et al. (2023); Cao et al. (2023);
Li et al. (2024) develop cross-modal adapters for decoder
only language models such as Llama (Touvron et al., 2023a).
Orthogonal to the aforementioned works, we focus more on
what information one shall extract from the graph for better
graph-language alignment. We choose to build our methods
upon decoder only language models, with the hope of build-
ing a versatile agent that can perceive graph information
beyond the language, image, and audio modalities (Xi et al.,
2023).

Hierarchical Graph Representation Learning. The hi-
erarchical nature has been widely and explicitly incorpo-
rated in learning high-quality graph representations (Ying
et al., 2018). Especially in molecular graphs, the high-order
structural information naturally captures the existence of
motifs and functional groups. Therefore, the hierarchy of
node-motif-graph has been widely applied in self-supervised
molecular representation learning (ZHANG et al., 2021;
Zang et al., 2023; Inae et al., 2023; Luong and Singh, 2023).
Yet, it remains unclear how to properly incorporate the hier-
archical information in graph instruction tuning with LLMs.

3. Graph Tokenization
Existing LGLMs predominantly tokenize a graph into a
series of node embeddings (or node tokens).

3.1. Node-Centric Tokenization

Specifically, most existing LGLMs directly take the node
tokens from GNNs as inputs to LLMs (Cao et al., 2023):

pθ(a|q,h) = Πla
i=1pθ(ai|q, fn(h1), ..., fn(hn),a<i),

(4)
where h1, ...,hn are node embeddings from a GNN typi-
cally pretrained through self-supervised learning on large-
scale molecular datasets such as ZINC250k (Sterling and
Irwin, 2015), fn is the corresponding adapter to align the
node tokens to the LLM tokens. There are various options
for tokenizing a molecule (Liu et al., 2023e). We consider a
state-of-the-art node-centric tokenizer from Xia et al. (2023)
that pretrains a VQVAE (van den Oord et al., 2017) with
masked atoms modeling.

Intuitively, the trained atom tokens encode some contextual
information, such as the neighbors of the atoms. However,
node-centric tokenization makes the molecule-language
alignment more challenging, as LLMs have to addition-
ally find the specific nodes to align the corresponding texts
during the instruction tuning process. It often encounters the
underspecification issue during the alignment. For example,
in molecules, motifs or functional groups usually capture
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Large Language Model
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(a) Node-centric tokenization.
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in this molecule?"
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(b) HIGHT tokenization.

Figure 2. Illustration of hallucination caused by node-centric tokenization. With only node-level tokens (i.e., discrete atom embeddings),
LLMs have to identify and connect the nodes within a specific functional group in order to align useful molecular structures in a molecule
to the corresponding language descriptions. Yet, due to the arbitrary order of atoms and position biases in LLMs, it is harder to distinguish
each functional group, which further leads to hallucination and subpar alignment.

rich semantics, and often share many common atoms such
as carbon, nitrogen, and oxygen (Bohacek et al., 1996). As
shown in Fig. 2, both the carboxylic acid (“R-COOH”) and
the hydroperoxide (“R-OOH”) functional groups all contain
two oxygen atoms and a hydrogen atom. For a molecule
with hydroperoxide attached to a scaffold with carbon atoms,
it would be hard for LLMs to distinguish which functional
group is present in the molecule. Furthermore, due to the
loss of positional information in the node-centric tokeniza-
tion (Liang et al., 2023; Cao et al., 2023), the limited expres-
sivity of GNNs (Xu et al., 2019) and the positional biases of
auto-regressive LLMs (Lu et al., 2022), it is more challeng-
ing for the inner LLM to relate the node-level information
within a motif, which will lead to more serious performance
degeneration of the graph-language alignment.

3.2. Motif Hallucination

To understand the issue of node-centric tokenization
more clearly, we construct a simple benchmark called
MotifHallu, which measures the hallucination of com-
mon functional groups by LGLMs. Specifically, we con-
sider the 38 common functional groups in RDKit and
leverage RDKit (Landrum, 2016) to detect the existence
of the functional groups within a molecule. We lever-
age 3, 300 molecules from ChEBI-20 test split (Ed-
wards et al., 2021), and adopt the query style as for
large vision-language models (Li et al., 2023c), which
queries the existence of the specific functional group
in the molecule “Is there a <functional group
name> in the molecule?” Then, we detect whether
the LGLM gives outputs meaning “Yes” or “No” following
the practice in (Li et al., 2023c). For each molecule, we
construct questions with positive answers for all kinds of
functional groups detected in the molecule, and questions
with negative answers for randomly sampled 6 functional

groups from the 38 common functional groups in RDKit.

4. Hierarchical Graph Tokenization
To mitigate the aforementioned issue, we propose a new
strategy called HIerarchical GrapH Tokenization (HIGHT),
which contains a hierarchical graph tokenizer and a hierar-
chical molecular instruction tuning dataset.

4.1. Hierarchical Graph Tokenizer

Inspired by the success of hierarchical GNNs in self-
supervised molecular representation learning (ZHANG
et al., 2021; Zang et al., 2023), we transform the origi-
nal molecular graph G into a hierarchical graph G′ with
motif and graph nodes added in. Specifically, we lever-
age the Breaking of Retrosynthetically Interesting Chemi-
cal Substructures (BRICS) algorithm (Degen et al., 2008)
to detect a set of k motifs in G, denoted as M =
{M(1), ...,M(k),M(k+1)}, where M(k+1) = G is the
original molecule, without loss of generality. Furthermore,
we denote the set of nodes and edges in M(i) as V(i)

m and
E(i)
m , respectively. Then, we augment the original molecular

graph G as G′ with augmented nodes V ′ and edges E ′:

V ′ = V ∪ {v(1)m , ..., v(k+1)
m }, E ′ = E ∪ (∪k+1

i=1 E
(i)
ma), (5)

where v
(i)
m is the motif super nodes added to the original

molecule, and E(i)
ma = ∪

u∈V(i)
m
{(u, v(i)m )} are the augmented

edges connecting to the motif super node from nodes within
the corresponding motif. We employ separate VQVAEs for
atoms and motifs to learn meaningful code embeddings with
several self-supervised learning tasks in (Zang et al., 2023).

Meanwhile, merely feeding the motif tokens with node to-
kens to LLMs still can not help distinguish the motifs from
nodes properly. Therefore, we propose to further attach
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positional encodings p to all of the tokens. We choose to
use Laplacian positional embeddings (Dwivedi et al., 2020)
while one could easily extend it with other variants (Ying
et al., 2021). Meanwhile, as motif (and graph) tokens pose
different semantic meanings from atom tokens, we adopt
separate adapters for different types of tokens. Denote the
motif tokens as h(i)

m for motif M(i), HIGHT tokenizer im-
proves the LLM generation as:

pθ(a|q,h,hm) =

la∏
i=1

pθ(ai|q, fn(h1), ..., fn(hn),

fm(h(1)
m ), ..., fm(h(k)

m ), fg(h
(k+1)
m ),a<i),

(6)

where fm(·) and fg(·) are the adapters for BRICS motifs
and the original molecules, respectively.

4.2. Hierarchical Graph Instruction Tuning Dataset

Although HIGHT tokenizer properly extracts the hierarchi-
cal information from the input graph modality, it remains
challenging to properly align the language information to
the corresponding graph information, without the appear-
ance of the respective captions in the texts. For example,
if the caption does not contain any information about the
water solubility of the hydroxide functional group (“-OH”),
LGLMs will never know that “-OH” motif corresponds to
the water solubility of the molecule, despite that HIGHT tok-
enizer extracts the “-OH” token. In fact, the commonly used
molecular instruction tuning curated from PubChem (Kim
et al., 2022) in existing LGLMs (Liu et al., 2023d; Cao et al.,
2023; Li et al., 2024), contains surprisingly little information
about motifs. Some samples are given in Appendix A.2.

To this end, we propose HiPubChem, which augments
the molecular instruction tuning dataset with captions of
the functional groups. We consider both the positive
and negative appearances of motifs when augmenting the
instructions. For the positive case, we directly append
the caption of all functional groups detected with RD-
Kit “This molecule has <#> of <functional
group name> groups.”, where <#> refers to the de-
tected number of the functional group in the molecule, and
<functional group name> refers to the name of the
functional group as listed in Appendix A.2. For the negative
case, we randomly sample kneg that do not appear in the
molecule “This molecule has no <functional
group name> groups.”. Despite the simple augmen-
tation strategy, we find that HiPubChem significantly re-
duces the hallucination issue.

5. Experiments
In this section, we mainly evaluate motif hallucination re-
sults of the LGLMs with node-centric and with HIGHT to-
kenization with MotifHallu. We also benchmark broad

METHOD F1 (pos) ↑ F1 (neg) ↑ Acc ↑ Yes Ratio

Node-centric Tokenization
InstructMol-G 95.7 9.5 19.9 94.5
InstructMol-GS 97.1 10.6 20.9 94.4

Hierarchical Tokenization
HIGHT-G 85.5 48.2 39.1 74.7
HIGHT-GS 84.5 42.7 35.1 73.1

Ablation variants of HIGHT
G w/o HiPubChem 96.6 12.5 21.6 96.6
GS w/o HiPubChem 98.2 6.5 19.4 93.3

Table 1. Results of motif hallucinations on MotifHallu.

downstream task performances. The overview of results
across all tasks is given in Fig. 1(b). The detailed experi-
mental setups and evaluations are given in Appendix B.

When evaluating the motif hallucination performances, all
the evaluated models only undergo the stage 1 instruction
tuning to ensure a fair comparison. We have not included
the other generalist baselines as we find they consistently
answer “Yes”. In addition, in order to avoid the drawbacks
that LGLMs may output answers that do not follow the
instructions, we compare the loss values by feeding the an-
swers of “Yes” and “No”, and take the one with a lower
autoregressive language modeling loss as the answer. Fol-
lowing the practice in LVLMs, we present the F1 scores,
accuracies, and the ratio that the model answers “Yes” (Li
et al., 2023c). Given the severe imbalance of positive and
negative samples in natural molecules, we separately report
the F1 scores for positive and negative classes.

The results are given in Table 11, which show that the
LGLMs with node-centric tokenization consistently answer
with “Yes” despite the absence of the corresponding func-
tional groups. In contrast, HIGHT significantly improves the
worst class hallucinations up to 40% in terms of F1 scores,
and the overall accuracies up to 30%, thereby reducing the
hallucination of LGLMs to nonexisting motifs.

We also evaluate HIGHT without the tuning of
HiPubChem. Aligned with our discussion in Sec. 3.2,
HIGHT without HiPubChem will still suffer the hallu-
cination, due to the low quality of the instruction tuning
data. Interestingly, simply incorporating the hierarchical
information at the architecture level can already help with
the perception of graph information in LGLMs, aligned
with our discussion as in Sec. 4.1.

6. Conclusions
This paper presents HIGHT, a novel hierarchical graph tok-
enization technique, which enhances the synergy between
graph data, especially in molecular structures, and language
models. By incorporating hierarchical information, HIGHT
improves the graph-language alignment performance, reduc-
ing hallucinations and boosting accuracy in molecular tasks,
as validated by comprehensive experiments.
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A. Details of Instruction Tuning Datasets
We provide a summary of the datasets for instruction tuning and evaluation in this paper as in Table 2. Meanwhile, we also
list the data sources and the corresponding licenses of the sources for each task and dataset. Then, we will elaborate more on
the details of the datasets in the following subsections.

Table 2. Summary of datasets involved in our paper.

Datasets Train Test Content

PubChem 295,228 N/A Molecules and the associated descriptions from PubChem.
HiPubChem 295,228 N/A Molecules and the associated descriptions from PubChem

and about functional groups in the molecule.
MoleculeNet-HIV 32,901 4,113 Question answering about the ability of the molecule to

inhibit HIV replication.
MoleculeNet-BACE 1,210 152 Question answering about the ability of the molecule to

bind to the BACE1 protein
MoleculeNet-BBBP 1,631 204 Question answering about the ability of the molecule to

diffuse across the brain blood barrier.
Property Prediction (Regres-
sion)

360,113 1,987 Question answering about the quantum mechanics proper-
ties of the molecule.

Forward Reaction Prediction 124,384 1,000 Question answering about the products of a chemical re-
action, given specific reactants and reagents.

Reagent Prediction 124,384 1,000 Question answering about suitable catalysts, solvents, or
ancillary substances required for a specific chemical reac-
tion.

Retrosynthesis Prediction 128,684 1,000 Question answering about the reactants and reagents of a
chemical reaction, given specific products.

ChEBI-20 26,407 3,300 Molecules and the associated Chemical Entities of Biolog-
ical Interest (ChEBI) (Hastings et al., 2015) annotations.

MotifHallu N/A 23,924 Question answering about existing functional groups in
the molecule.

A.1. Details of the PubChem Dataset

PubChem1 is one of the largest public molecule database (Kim et al., 2022), and has been widely adopted by the alignment
training of LGLMs (Liu et al., 2023d;c; Cao et al., 2023). Our construction of PubChem predominantly follows Liu et al.
(2023c). We will briefly describe the main steps and interested readers may refer the details to (Liu et al., 2023c):

• We curate the data from PubChem using the official API and set the data cutoff date as 12 Jan. 2024. It downloads both
the molecular structure (e.g., SMILES, 2D molecular graphs) in SDF format, and the text descriptions.

• Then, we will filter out molecules that do not have descriptions or can not match via the PubChem ID. In the descriptions,
the molecule names are replaced with “This molecule”, in order to facilitate LLMs to understand the instructions.

Finally, the curation generates 295k molecule-text pairs that we term as PubChem-295k. PubChem-295k will be mainly
used for the stage 1 alignment training.

1https://pubchem.ncbi.nlm.nih.gov
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Table 3. Summary of data resources and licenses of datasets involved in our paper.
Tasks/Datasets Data Sources License URL License Note

PubChem, HiPubChem PubChem https://www.nlm.nih.
gov/web_policies.html

Works produced by the U.S. gov-
ernment are not subject to copyright
protection in the United States. Any
such works found on National Li-
brary of Medicine (NLM) Web sites
may be freely used or reproduced
without permission in the U.S.

Reaction Prediction USPTO https://www.uspto.gov/
learning-and-resources/
open-data-and-mobility

It can be freely used, reused, and
redistributed by anyone.

Property Prediction MoleculeNet https://opensource.org/
license/mit/

Permission is hereby granted, free
of charge, to any person obtaining
a copy of this software and associ-
ated documentation files (the “Soft-
ware”), to deal in the Software with-
out restriction, including without
limitation the rights to use, copy,
modify, merge, publish, distribute,
sublicense, and/or sell copies of the
Software, and to permit persons to
whom the Software is furnished to
do so.

Molecular Description,
MotifHallu

ChEBI https://creativecommons.
org/licenses/by/4.0/

You are free to: Share — copy
and redistribute the material in any
medium or format. Adapt — remix,
transform, and build upon the mate-
rial for any purpose, even commer-
cially.

Table 4. Examples of PubChem and HiPubChem datasets.
PubChem HiPubChem

SMILES: CC(=O)OC(CC(=O)[O-])C[N+](C)(C)C
This molecule is an O-acylcarnitine having acetyl as the acyl substituent.
It has a role as a human metabolite. It is functionally related to an acetic
acid. It is a conjugate base of an O-acetylcarnitinium.

This molecule has 1 carboxylic acids functional group. This molecule
has no methyl amide, or amide, or nitro or thiols groups. This molecule
is an O-acylcarnitine having acetyl as the acyl substituent. It has a role
as a human metabolite. It is functionally related to an acetic acid. It is a
conjugate base of an O-acetylcarnitinium.

SMILES: CCN(CC)CCOC(=O)C(Cc1cccc2ccccc12)CC1CCCO1
This molecule is a member of naphthalenes. This molecule has 0 functional groups. This molecule is a member of

naphthalenes.
SMILES: Cc1c2[nH]c(c1CCC(=O)O)Cc1[nH]c(c(CCC(=O)O)c1C)Cc1[nH]c(c(CCC(=O)O)c1C)Cc1[nH]c(c(C)c1CCC(=O)O)C2
This molecule is a coproporphyrinogen. It has a role as an Escherichia
coli metabolite and a mouse metabolite. It is a conjugate acid of a
coproporphyrinogen III(4-).

This molecule has 1 carboxylic acids functional groups. This molecule
has no methyl amide, or diazo, or cyano or thiols groups. This molecule
is a coproporphyrinogen. It has a role as an Escherichia coli metabolite
and a mouse metabolite. It is a conjugate acid of a coproporphyrinogen
III(4-).

A.2. Details of HiPubChem Dataset

HiPubChem augments the molecular instruction tuning dataset with captions of the functional groups. We consider both
the positive and negative appearances of motifs when augmenting the instructions. For the positive case, we directly append
the caption of all functional groups detected with RDKit:

This molecule has <#> of <functional group name> groups.

For the negative case, we randomly sample kneg that do not appear in the molecule:

This molecule has no <functional group name> groups.

Despite the simple augmentation strategy, we find that HiPubChem significantly reduces the hallucination issue, and
improves the molecule-language alignment performance.

For comparison, we provide examples of PubChem and HiPubChem in Table 4.
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A.3. Details of Property Prediction Dataset

The task of molecular property prediction mainly aims to predict certain biochemical or physical properties of molecules.
Usually, these properties have a close relation with the molecular substructures (i.e., functional groups) (Bohacek et al.,
1996). In this work, we consider the scenarios of both binary classification based and the regression based molecular
property prediction, and the datasets are mainly derived from MoleculeNet (Wu et al., 2017).

For the classification, we consider three subtasks, HIV, BACE, and BBBP. The HIV subtask mainly evaluates whether the
molecule is able to impede the replication of the HIV virus. The BACE subtask mainly evaluates the binding capability of
a molecule to the BACE1 protein. The BBBP subtask mainly evaluates the capability of a molecule to passively diffuse
across the human brain blood barrier. For task-specific instruction tuning, we convert those classification based datasets into
instructions. Examples are given in Table 5.

Table 5. Examples of the property prediction (classification) datasets.
Dataset Question Answer

HIV SMILES: N=C1OC2(c3ccccc3)C3=C(OC(=NC)N2C)C(=O)OC3(c2ccccc2)N1C
Please help me evaluate whether the given molecule can impede the replication of the HIV virus. No

BACE SMILES: CN(C(=O)CCc1cc2ccccc2nc1N)C1CCCCC1
Can the given molecule bind to the BACE1 protein? Yes

BBBP SMILES: Cc1c[nH+][o+]c(C([NH])CC(C)C(C)(C)N(C(C)(C)C)C(C)(N)N)c1[O-]
Can the given molecule passively diffuse across the brain blood barrier? Yes

Table 6. Examples of the property prediction (regression) datasets.

Question Answer

SELFIES: [O][=C][O][C][C][C][C][Ring1][=Branch1][C][Ring1][Ring2]
Can you give me the energy difference between the HOMO and LUMO orbitals of this molecule? 0.2756
SELFIES: [C][C][C][=Branch1][C][=O][N][Branch1][C][C][C][=Branch1][C][=O][N]
What is the lowest unoccupied molecular orbital (LUMO) energy of this molecule? -0.0064
SELFIES: [C][C][=C][O][C][=C][Ring1][Branch1][C][Branch1][C][C][C]
Please provide the highest occupied molecular orbital (HOMO) energy of this molecule. -0.2132

For regression, we adopt the instruction tuning data from Mol-Instructions (Fang et al., 2024). The regression
based property prediction focuses on predicting the quantum mechanics properties of the molecules. The 1D sequence
information in this task is given by SELFIES (Krenn et al., 2019). The original data is sourced from the QM9 subset of the
MolculeNet (Wu et al., 2017). There are three subtasks: (i) Highest occupied molecular orbital (HOMO) energy prediction;
(ii) Lowest occupied molecular orbital (LUMO) energy prediction; (iii) and HUMO-LUMO gap energy prediction. Some
examples of the regression based property prediction dataset are given in Table 6.

A.4. Details of Reaction Prediction Dataset

We adopt three chemical reaction related tasks from Mol-Instructions (Fang et al., 2024): Forward reaction predic-
tion, reagent prediction, and retrosynthesis prediction. The input and output contain 1D sequence information given by
SELFIES (Krenn et al., 2019). Some examples of the Mol-Instructions datasets are given in Table 7, where the
SELFIES represented molecules are denoted as “<SELFIES>” for clarity.

The task of forward reaction prediction aims to predict the possible products of a chemical reaction. The input includes the
SELFIES sequences of the reactant and reagent of the chemical reaction. And the model needs to predict the SELFIES
of the products. The original data is sourced from USPTO 2, which consists of chemical reactions of organic molecules
extracted from American patents and patent applications.

The task of reagent reaction prediction aims to predict the suitable catalysts, solvents, and ancillary substances with respect
to a chemical reaction. The input includes the SELFIES sequences of the chemical reaction. The original data is sourced

2https://developer.uspto.gov/data
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Table 7. Examples of the chemical reaction datasets.
Task Examples

Forward Reaction Prediction Question: With the provided reactants and reagents, propose a potential product.<SELFIES>
Answer: <SELFIES>

Reagent Prediction Question: Please suggest some possible reagents that could have been used in the following chemical
reaction. The reaction is <SELFIES>
Answer: <SELFIES>

Retrosynthesis Prediction Question: Please suggest potential reactants for the given product. The product is: <SELFIES>
Answer: <SELFIES>

from USPTO 3, as the other tasks.

The task of retrosynthesis prediction aims to reverse engineer a particular compound by predicting the potential reactants or
reagents that are required to synthesis the compound. The input includes the SELFIES sequences of the target product. The
original data is sourced from USPTO 4, similar to the other tasks.

A.5. Details of Molecular Description Dataset

For the molecular description task, we adopt a widely used dataset ChEBI-20 (Edwards et al., 2021). Based on the
molecules from PubChem, Edwards et al. (2021) collected the Chemical Entities of Biological Interest (ChEBI) (Hastings
et al., 2015) annotations of the molecules, which are the descriptions of molecules. We transform the task into the instructions,
and present some samples in Table 8. The authors collect 33, 010 molecule-text pairs and split them into training (80%),
validation (10%), and testing (10%) subsets. We mainly adopt the original training split to tune the model and evaluate the
tuned model on the original test split.

Table 8. Examples of the molecular descrioption datasets.

Question Answer

SMILES: C1=CC=C(C=C1)[As](=O)(O)[O-]
Could you give me a brief overview of this molecule? The molecule is the organoarsonic acid anion formed by

loss of a single proton from the arsonic acid grouping in
phenylarsonic acid. It is a conjugate base of a phenylar-
sonic acid.

SMILES: CCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCC
Could you provide a description of this molecule? The molecule is an acyclic carboxylic anhydride resulting

from the formal condensation of the carboxy groups of
two molecules of dodecanoic acid. It derives from a dode-
canoic acid.

SMILES: CCCCNC=O
Please give me some details about this molecule. The molecule is a member of the class of formamides that

is formamide substituted by a butyl group at the N atom.
It has a role as a human metabolite. It derives from a
formamide.

A.6. Details of MotifHallu Dataset

The MotifHallu is mainly used to measure the hallucination of common functional groups by LGLMs. For the
construction of MotifHallu, we consider the common functional groups in RDKit5 as shown in Table 9. There are 39
common functional groups, while we neglect the one with the name of “???”.

Then, we leverage RDKit (Landrum, 2016) to detect the existence of the left 38 valid functional groups within a molecule.
We consider 3, 300 molecules from ChEBI-20 test split (Edwards et al., 2021), and adopt the query style as for large
vision-language models (Li et al., 2023c) that queries the existence of specific functional group one by one:

3https://developer.uspto.gov/data
4https://developer.uspto.gov/data
5https://github.com/rdkit/rdkit/blob/master/Data/FunctionalGroups.txt
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Is there a <functional group name> in the molecule?

Examples of MotifHallu are given in Table 10.

During the evaluation, we detect whether the LGLM gives outputs meaning “Yes” or “No” following the practice in (Li et al.,
2023c). For each molecule, we construct questions with positive answers for all kinds of functional groups detected in the
molecule, and questions with negative answers for randomly sampled 6 functional groups from the 38 common functional
groups in RDKit. The construction finally yields 23, 924 query answer pairs about the existence of functional groups in the
molecule. While it is easy to scale up MotifHallu by automatically considering more molecules and a broader scope of
functional groups, we find that the current scale is already sufficient to demonstrate the hallucination phenomena in LGLMs.

B. Experimental Evaluation
We conducted extensive experiments to evaluate HIGHT, comparing with previous node-centric tokenization, across 7
real-world tasks including property prediction, molecular description, and chemical reaction prediction. We will briefly
introduce the experimental setups, and leave more details in Appendix C.

B.1. Hierarchical Graph Instruction Tuning

For the training of LGLM with HIGHT, we consider a simple two-stage instruction tuning as (Liu et al., 2023b; Cao et al.,
2023). Detailed training setup is given in Appendix C.

Stage 1 Alignment Pretraining. We curate a new molecule-text paired dataset from PubChem following the pipeline of (Liu
et al., 2023c). We set the cutoff date by Jan. 2024, and filter out unmatched pairs and low-quality data, which results in 295k
molecule-text pairs. Furthermore, we construct the HiPubChem-295k dataset based on the curated PubChem-295k dataset.
The alignment pretraining stage mainly warms up the adapter to properly project the graph tokens with the LLM embedding
space. To avoid feature distortion, both the LLM and the GNN encoder are frozen during the alignment pretraining at stage
1.

Stage 2 Task-specific Instruction Tunning. With a properly trained adapter, we further leverage the task-
specific instruction tuning datasets from MoleculeNet (Wu et al., 2017), ChEBI-20 (Mendez et al., 2019), and
Mol-Instructions (Fang et al., 2024). More details of the instruction tuning datasets are given in Appendix A. In
Stage 2, we still keep the GNN encoder frozen, while tuning both the adapter and the LLM. The LLM is tuned using
low-rank adaptation (i.e., LoRA) (Hu et al., 2022) following the common practice (Liu et al., 2023b; Cao et al., 2023).

B.2. Experimental settings

Basically, we follow the common practice in the literature (Cao et al., 2023; Fang et al., 2024) to conduct our experiments.

Architecture. The GNN backbone used for producing graph tokens is a 5-layer GIN (Xu et al., 2019) with a hidden dimension
of 300. The adapter is implemented as a single-layer MLP. The base LLM adopts the vicuna-v-1.3-7B (Chiang et al.,
2023). The overall scale of parameters is around 6.9B.

Baselines. We incorporate both the specialist molecular foundation/pretrained models, as well as LLM-based generalist
models. The specialist models include expert models pretrained on large-scale molecular datasets and then finetuned on
task-specific datasets such as KV-PLM (Zeng et al., 2022), GraphCL (You et al., 2020) and GraphMVP (Liu et al., 2022). The
specialist models also include molecule-specialized foundation models that are trained with tremendous molecule-centric
datasets such as MolT5-based methods (Edwards et al., 2022), Galactica (Taylor et al., 2022), MoMu (Su et al., 2022),
MolFM (Luo et al., 2023a), Uni-Mol (Zhou et al., 2023), MolXPT (Liu et al., 2023f), GIT-Mol (Liu et al., 2024b), and
BioMedGPT (Luo et al., 2023b). We adopt the results from previous works (Fang et al., 2024; Cao et al., 2023) when
available.

For LLM-based generalist models, we consider LLMs such as ChatGPT (OpenAI, 2022), Llama (Touvron et al., 2023a) as
well as instruction tuned LLMs such as Alpaca (Dubois et al., 2023), Baize (Xu et al., 2023), ChatGLM (Zeng et al., 2023) and
Vicuna (Chiang et al., 2023). We also consider parameter-efficient finetuned LLMs using the backbone of llama2 (Touvron
et al., 2023b) as done by Mol-Instructions (Fang et al., 2024). For the node-centric based tokenization, we implement
the baseline mainly based on InstructMol (Cao et al., 2023) with a VQVAE tokenizer from Mole-BERT (Xia et al., 2023).
HIGHT is implemented based on the same architecture with only the tokenizer replaced. We use the suffix “-G” to refer to
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LLMs with only 2D graph input while using “-GS” to refer to LLMs with both 2D graph and 1D selfies input (Krenn et al.,
2019; Fang et al., 2024; Cao et al., 2023). We do not include the baselines with “-GS” for tasks other than MotifHallu as
we find that incorporating the 1D input does not always bring improvements in the experiments.

Training and evaluation. We apply the same optimization protocol to tune LGLMs with node-centric and HIGHT tokenizers
for fair comparisons. We train both models with stage 1 by 5 epochs and stage 2 by 5 to 50 epochs as recommended by (Cao
et al., 2023).

B.3. Motif Hallucination

We first evaluate motif hallucination results of the LGLMs with node-centric and with HIGHT tokenization with
MotifHallu. All the evaluated models only undergo the stage 1 instruction tuning to ensure a fair comparison. We have
not included the other generalist baselines as we find they consistently answer “Yes”. In addition, in order to avoid the
drawbacks that LGLMs may output answers that do not follow the instructions, we compare the loss values by feeding the
answers of “Yes” and “No”, and take the one with a lower autoregressive language modeling loss as the answer. Following
the practice in LVLMs, we present the F1 scores, accuracies, and the ratio that the model answers “Yes” (Li et al., 2023c).
Given the severe imbalance of positive and negative samples in natural molecules, we separately report the F1 scores for
positive and negative classes.

The results are given in Table 11, which show that the LGLMs with node-centric tokenization consistently answer with
“Yes” despite the absence of the corresponding functional groups. In contrast, HIGHT significantly improves the worst class
hallucinations up to 40% in terms of F1 scores, and the overall accuracies up to 30%, thereby reducing the hallucination of
LGLMs to the functional groups that do not exist in the molecule.

METHOD BACE ↑ BBBP ↑ HIV ↑
# MOLECULES 1513 2039 41127

Specialist Models
KV-PLM (Zeng et al., 2022) 78.5 70.5 71.8
GraphCL (You et al., 2020) 75.3 69.7 78.5
GraphMVP-C (Liu et al., 2022) 81.2 72.4 77.0
MoMu (Su et al., 2022) 76.7 70.5 75.9
MolFM (Luo et al., 2023a) 83.9 72.9 78.8
Uni-Mol (Zhou et al., 2023) 85.7 72.9 80.8
Galactica-6.7B (Taylor et al., 2022) 58.4 53.5 72.2
Galactica-30B (Taylor et al., 2022) 72.7 59.6 75.9
Galactica-120B (Taylor et al., 2022) 61.7 66.1 74.5

LLM Based Generalist Models
Vicuna-v1.5-13b-16k (4-shot) (Chiang et al., 2023) 49.2 52.7 50.5
InstructMol-G 63.2 55.4 57.5
HIGHT-G 69.0 56.8 58.1

Table 12. ROC-AUC Results of molecular property prediction tasks (classi-
fication) on MoleculeNet (Wu et al., 2017).

We also conduct simple ablation studies by addi-
tionally incorporating the 1D sequence inputs with
SELFIES following the literature (Fang et al., 2024;
Cao et al., 2023). Contrary to previous results that
additionally feeding the 1D sequence always im-
proves the performance of LGLMs, We find that
the additional 1D sequence may increase the de-
gree of the hallucination. We suspect that it could
be caused by the extremely long sequences of the
SELFIES (Krenn et al., 2019) that may distract the
attention signals of LLMs. Nevertheless, HIGHT
suffers less from the distraction and maintains a
better performance.

In addition, we also evaluate HIGHT without the
tuning of HiPubChem. Aligned with our discus-
sion in Sec. 3.2, HIGHT without HiPubChem will still suffer the hallucination, due to the low quality of the instruction
tuning data. Interestingly, simply incorporating the hierarchical information at the architecture level can already help with
the perception of graph information in LGLMs, which improves the robustness against hallucination, aligned with our
discussion as in Sec. 4.1.

B.4. Molecular Property Prediction

In molecular property prediction, we leverage 3 datasets BACE, BBBP, and HIV from MoleculeNet to evaluate the
classification performance with ROC-AUC. We also adopt the regression based property prediction dataset from (Fang
et al., 2024), where we evaluate several quantum chemistry measures such as HUMO, LUMO, and HUMO-LUMO
gap (Ramakrishnan et al., 2014). The evaluation metric used to evaluate the regression based molecular property prediction
is Mean Absolute Error (MAE). All the datasets are converted into instruction formats following previous works (Fang et al.,
2024; Cao et al., 2023).

METHOD HOMO ↓ LUMO ↓ ∆ϵ ↓ AVG ↓
LLM Based Generalist Models
Alpaca† (Dubois et al., 2023) - - - 322.109
Baize† (Xu et al., 2023) - - - 261.343
LLama2-7B (Touvron et al., 2023b) (5-shot ICL) 0.7367 0.8641 0.5152 0.7510
Vicuna-13B (Chiang et al., 2023) (5-shot ICL) 0.7135 3.6807 1.5407 1.9783
Mol-Instruction (Fang et al., 2024) 0.0210 0.0210 0.0203 0.0210
InstructMol-G 0.0111 0.0133 0.0147 0.0130

HIGHT-G 0.0078 0.0086 0.0095 0.0086

Table 13. Results of molecular property prediction tasks (regression) on QM9. We
report the result in MAE. †: few-shot in-context learning (ICL) results from (Fang
et al., 2024). ∆ϵ refers to the HOMO-LUMO energy gap.

The results of molecular property prediction
are given in Table 12 and Table 13 for clas-
sification and regression, respectively. We

17



Improving Graph-Language Alignment with Hierarchical Graph Tokenization

can find that, no matter for classification or
regression-based molecular property predic-
tion, HIGHT always significantly boosts the
performance. The improvements brought by
HIGHT serve as strong evidence verifying
our discussion in Sec. 4 about the impor-
tance of hierarchical information for graph-
language alignment. Nevertheless, there re-
mains a gap between the specialist models
in classification based molecular property prediction, leaving space for future improvements in terms of the adapters or
instruction tuning configurations (Liu et al., 2023a).

B.5. Molecular Description Generation

For the task of molecular description generation or molecular captioning, we adopt the widely used benchmark
ChEBI-20 (Edwards et al., 2021). Given the molecules, ChEBI-20 evaluates the linguistic distances of the gener-
ated molecule captions of molecular characteristics such as structure, properties, biological activities etc.. Following the
common practice, we report the metrics of BLEU (Papineni et al., 2002), ROUGE (Lin, 2004) and Meteor (Banerjee and
Lavie, 2005). The LGLMs are trained using the ChEBI-20 train split and evaluated using the test split. The final is selected
according to the best training loss.

The results are given in Table 14. We can find that HIGHT consistently brings significant improvements over LGLMs
with node-centric tokenization, again verifying our discussion about the importance of hierarchical graph information for
graph-language alignment. Nevertheless, compared to the specialist models such as MoT5 (Edwards et al., 2022) that are
pretrained on a significant amount of molecule-text related corpus, there remains a gap for generalist LGLMs even with
HIGHT. The gap calls for interesting future investigations on how to properly incorporate HIGHT into the pretraining of the
LGLMs.

B.6. Chemical Reaction Prediction

For chemical reaction prediction tasks, we incorporate three tasks from Mol-Instructions (Fang et al., 2024), i.e.,
reagent prediction, forward reaction prediction, and retrosynthesis prediction, which are crucial for AI-aided drug discovery.
Reagent prediction aims to predict the suitable reagents for a particular chemical reaction. Forward reaction prediction
aims to predict the products of a chemical reaction, given the reactants and the reagents. Retrosynthesis prediction aims to
predict the suitable reactants given a target product. The inputs and outputs for chemical reaction related tasks adopt the
SELFIES (Krenn et al., 2019) as recommended by (Fang et al., 2024). In terms of the evaluation metrics, we incorporate
both linguistic distance metrics such as BLEU (Papineni et al., 2002) and Levenshtein (Yujian and Bo, 2007), as well as
molecular similarity measures such as similarity of the molecular fingerprints by RDKit (Landrum, 2016).

The results are given in Table 15. It can be found that across all tasks in chemical reaction prediction, LGLMs with HIGHT
consistently and significantly improve the performances compared to the node-centric tokenization. Meanwhile, LGLMs
with HIGHT achieve the state-of-the-art results in several tasks and metrics, compared to other generalist models that even
incorporate a stronger LLM backbone such as Mol-Instruction which adopts Llama-2 (Touvron et al., 2023b), and additional
information of SELFIES.

C. Details of Experiments
Implementation of graph tokenizer. We implement the GNN tokenizer/encoder based on the same GNN backbone,
which is a 5-layer GIN (Xu et al., 2019). The hidden dimension is 300. For the node-centric tokenization, we employ the
VQVAE GNN tokenizer from Mole-BERT (Xia et al., 2023) and adopt self-supervised learning tasks from the official
Mole-BERT implementation.6 For HIGHT, we train the VQVAE with the self-supervised learning tasks from (Zang et al.,
2023) based on the official implementation.7 Meanwhile, we set the hyperparameters of GNN tokenizer training the same as
those recommended by (Xia et al., 2023; Zang et al., 2023).

6https://github.com/junxia97/Mole-BERT
7https://github.com/ZangXuan/HiMol
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After training the tokenizer, we adopt the GNN encoder within the tokenizer instead of the codebook embeddings as we
empirically find that the GNN embeddings perform better than that using the VQVAE codebook embeddings.

Implementation of LGLMs. For the cross-modal adapters, we implement it as a single-layer MLP with an input
dimension of 300 as our main focus is the tokenization. For HIGHT, we adopt three distinct adapters to handle the node-
level, motif-level and graph-level embeddings. Meanwhile, we also adopt a Laplacian position encodings with respect to the
supernode-augmented graphs. The dimension of the Laplacian position encoding is set to 8, therefore the input dimensions
of the adapters in HIGHT will be 308.

For the LoRA adapters, we use a LoRA rank of 64 and a scaling value α of 16 (Hu et al., 2022) for all methods and tasks.

For the base LLM, we mainly adopt vicuna-v-1.3-7B (Chiang et al., 2023). The overall scale of parameters is around
6.9B.

Implementation of instruction tuning. In stage 1 instruction tuning, we train all methods based on PubChem-295k
dataset. The training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. If there is an OOM issue, we
will decrease the batch size a little bit to 40. The learning rate is set to 2× 10−3 for all methods.

For classification-based property prediction, the training goes 20 epochs, with a batch size of 128 (distributed to 4 GPUs) by
default. If there is an OOM issue, we will decrease the batch size a little bit to 64. The learning rate is set to 8× 10−5 for all
methods.

For regression-based property prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by
default. The learning rate is set to 2× 10−5 for all methods.

For molecular description, the training goes 50 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. If there is
an OOM issue, we will decrease the batch size a little bit to 32. The learning rate is set to 8× 10−5 for all methods.

For forward reaction prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. The
learning rate is set to 2× 10−5 for all methods.

For reagent prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. The learning
rate is set to 2× 10−5 for all methods.

For retrosynthesis prediction, the training goes 5 epochs, with a batch size of 64 (distributed to 4 GPUs) by default. The
learning rate is set to 2× 10−5 for all methods.

Training and evaluation. Throughout the paper, we use a max token length of 2048. Meanwhile, we adopt an AdamW
optimizer with a warmup ratio of 3% for optimizing all models. We select the final model according to the best training loss.

For the evaluation of classification-based property prediction, we adopt the ROC-AUC following the common practice (Wu
et al., 2017).

For the evaluation of regression-based property prediction, we adopt the Mean Absolute Error (MAE) following the common
practice (Fang et al., 2024).

For the evaluation of molecular description, we adopt BLEU-2, BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L, and METEOR
following the common practice (Papineni et al., 2002; Lin, 2004; Edwards et al., 2021). To improve the reliability of the
evaluation, the metrics are computed based on the tokenizer scibert_scivocab_uncased of SciBERT (Beltagy et al.,
2019).

We follow the common practice to evaluate models for the tasks of chemical reaction predictions (Fang et al., 2024). We
adopt linguistic metrics such as BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004), METEOR (Banerjee and Lavie,
2005) and Levenshtein scores (Yujian and Bo, 2007). Meanwhile, we also validate the validity of the generated molecular
sequences with RDKit (Landrum, 2016). In addition, several molecular similarity measures are also leveraged. Specifically,
we present the MAE of the RDKit, MACCS, and Morgan fingerprints to assess the semantic similarity of the generated
compounds and the ground truth ones (Durant et al., 2002; Schneider et al., 2015).

As for the MotifHallu, in order to avoid the drawbacks that LGLMs may output answers that do not follow the instructions,
we compare the loss values by feeding the answers of “Yes” and “No”, and take the one with a lower autoregressive language
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modeling loss as the answer. Following the practice in LVLMs, we present the F1 scores, accuracies, and the ratio that the
model answers “Yes” (Li et al., 2023c). Given the severe imbalance of positive and negative samples, we separately report
the F1 scores for positive and negative classes.

Software and hardware. We implement our methods with PyTorch 11.3 (Paszke et al., 2019). We run experiments on
Linux Servers with NVIDIA V100 and NVIDIA A100 (40G) graphics cards with CUDA 11.7.
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Table 9. List of functional groups from RDKit used to construct MotifHallu. The functional group with the name “???” is neglected.

Chemical Representation SMARTS Name

-NC(=O)CH3 *-[N;D2]-[C;D3](=O)-[C;D1;H3] methyl amide
-C(=O)O *-C(=O)[O;D1] carboxylic acids

-C(=O)OMe *-C(=O)[O;D2]-[C;D1;H3] carbonyl methyl ester
-C(=O)H *-C(=O)-[C;D1] terminal aldehyde
-C(=O)N *-C(=O)-[N;D1] amide

-C(=O)CH3 *-C(=O)-[C;D1;H3] carbonyl methyl
-N=C=O *-[N;D2]=[C;D2]=[O;D1] isocyanate
-N=C=S *-[N;D2]=[C;D2]=[S;D1] isothiocyanate

Nitrogen containing groups

-NO2 *-[N;D3](=[O;D1])[O;D1] nitro
-N=O *-[N;R0]=[O;D1] nitroso
=N-O *=[N;R0]-[O;D1] oximes

=NCH3 *=[N;R0]-[C;D1;H3] Imines
-N=CH2 *-[N;R0]=[C;D1;H2] Imines

-N=NCH3 *-[N;D2]=[N;D2]-[C;D1;H3] terminal azo
-N=N *-[N;D2]=[N;D1] hydrazines
-N#N *-[N;D2]#[N;D1] diazo
-C#N *-[C;D2]#[N;D1] cyano

S containing groups

-SO2NH2 *-[S;D4](=[O;D1])(=[O;D1])-[N;D1] primary sulfonamide
-NHSO2CH3 *-[N;D2]-[S;D4](=[O;D1])(=[O;D1])-[C;D1;H3] methyl sulfonamide

-SO3H *-[S;D4](=O)(=O)-[O;D1] sulfonic acid
-SO3CH3 *-[S;D4](=O)(=O)-[O;D2]-[C;D1;H3] methyl ester sulfonyl
-SO2CH3 *-[S;D4](=O)(=O)-[C;D1;H3] methyl sulfonyl
-SO2Cl *-[S;D4](=O)(=O)-[Cl] sulfonyl chloride
-SOCH3 *-[S;D3](=O)-[C;D1] methyl sulfinyl
-SCH3 *-[S;D2]-[C;D1;H3] methylthio

-S *-[S;D1] thiols
=S *=[S;D1] thiocarbonyls

Miscellaneous fragments

-X *-[#9,#17,#35,#53] halogens
-tBu *-[C;D4]([C;D1])([C;D1])-[C;D1] t-butyl
-CF3 *-[C;D4](F)(F)F trifluoromethyl

-C#CH *-[C;D2]#[C;D1;H] acetylenes
-cPropyl *-[C;D3]1-[C;D2]-[C;D2]1 cyclopropyl

Teeny groups

-OEt *-[O;D2]-[C;D2]-[C;D1;H3] ethoxy
-OMe *-[O;D2]-[C;D1;H3] methoxy

-O *-[O;D1] side-chain hydroxyls
=O *=[O;D1] side-chain aldehydes or ketones
-N *-[N;D1] primary amines
=N *=[N;D1] ???
#N *#[N;D1] nitriles
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Table 10. Examples of the MotifHallu dataset.
Question Answer

SMILES: COC1=CC=CC2=C1C(=CN2)C/C(=N/OS(=O)(=O)[O-])/S[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O
Is there a methyl ester sulfonyl group in the molecule? No
SMILES: CN(C)C(=O)C(CCN1CCC(CC1)(C2=CC=C(C=C2)Cl)O)(C3=CC=CC=C3)C4=CC=CC=C4
Is there a carbonyl methyl ester group in the molecule? Yes
SMILES: CN(C)C(=O)C(CCN1CCC(CC1)(C2=CC=C(C=C2)Cl)O)(C3=CC=CC=C3)C4=CC=CC=C4
Is there a terminal aldehyde group in the molecule? No

METHOD F1 (pos) ↑ F1 (neg) ↑ Acc ↑ Yes Ratio

Node-centric Tokenization
InstructMol-G 95.7 9.5 19.9 94.5
InstructMol-GS 97.1 10.6 20.9 94.4

Hierarchical Tokenization
HIGHT-G 85.5 48.2 39.1 74.7
HIGHT-GS 84.5 42.7 35.1 73.1

Ablation variants of HIGHT
G w/o HiPubChem 96.6 12.5 21.6 96.6
GS w/o HiPubChem 98.2 6.5 19.4 93.3

Table 11. Results of motif hallucinations on MotifHallu.

MODEL BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑

Specialist Models
MoT5-base (Edwards et al., 2022) 0.540 0.457 0.634 0.485 0.568 0.569
MoMu (MolT5-base) (Su et al., 2022) 0.549 0.462 - - - 0.576
MolFM (MolT5-base) (Luo et al., 2023a) 0.585 0.498 0.653 0.508 0.594 0.607
MolXPT (Liu et al., 2023f) 0.594 0.505 0.660 0.511 0.597 0.626
GIT-Mol-graph (Liu et al., 2024b) 0.290 0.210 0.540 0.445 0.512 0.491
GIT-Mol-SMILES (Liu et al., 2024b) 0.264 0.176 0.477 0.374 0.451 0.430
GIT-Mol-(graph+SMILES) (Liu et al., 2024b) 0.352 0.263 0.575 0.485 0.560 0.430
Text+Chem T5-augm-base (Christofidellis et al., 2023) 0.625 0.542 0.682 0.543 0.622 0.648
Retrieval Based LLMs
GPT-3.5-turbo (10-shot MolReGPT) (Li et al., 2023b) 0.565 0.482 0.623 0.450 0.543 0.585
GPT-4-0314 (10-shot MolReGPT) (Li et al., 2023b) 0.607 0.525 0.634 0.476 0.562 0.610

LLM Based Generalist Models
GPT-3.5-turbo (zero-shot) (Li et al., 2023b) 0.103 0.050 0.261 0.088 0.204 0.161
BioMedGPT-10B (Luo et al., 2023b) 0.234 0.141 0.386 0.206 0.332 0.308
Mol-Instruction (Fang et al., 2024) 0.249 0.171 0.331 0.203 0.289 0.271
InstructMol-G 0.481 0.381 0.554 0.379 0.488 0.503

HIGHT-G 0.504 0.405 0.570 0.397 0.502 0.524

Table 14. Results of molecular description generation task on the test split of ChEBI-20.
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MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑

Reagent Prediction
Alpaca† (Dubois et al., 2023) 0.000 0.026 29.037 0.029 0.016 0.001 0.186
Baize† (Xu et al., 2023) 0.000 0.051 30.628 0.022 0.018 0.004 0.099
ChatGLM† (Zeng et al., 2023) 0.000 0.019 29.169 0.017 0.006 0.002 0.074
LLama† (Touvron et al., 2023a) 0.000 0.003 28.040 0.037 0.001 0.001 0.001
Vicuna† (Chiang et al., 2023) 0.000 0.010 27.948 0.038 0.002 0.001 0.007
Mol-Instruction (Fang et al., 2024) 0.044 0.224 23.167 0.237 0.364 0.213 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.031 0.429 31.447 0.389 0.249 0.220 1.000

HIGHT-G 0.050 0.462 28.970 0.441 0.314 0.275 1.000

Forward Reaction Prediction
Alpaca† (Dubois et al., 2023) 0.000 0.065 41.989 0.004 0.024 0.008 0.138
Baize† (Xu et al., 2023) 0.000 0.044 41.500 0.004 0.025 0.009 0.097
ChatGLM† (Zeng et al., 2023) 0.000 0.183 40.008 0.050 0.100 0.044 0.108
LLama† (Touvron et al., 2023a) 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna† (Chiang et al., 2023) 0.000 0.057 41.690 0.007 0.016 0.006 0.059
Mol-Instruction (Fang et al., 2024) 0.045 0.654 27.262 0.313 0.509 0.262 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.012 0.804 29.947 0.499 0.649 0.407 1.000
InstructMol-G 0.031 0.853 24.790 0.512 0.362 0.303 0.993

HIGHT-G 0.037 0.869 23.759 0.590 0.394 0.340 0.993

Retrosynthesis
Alpaca† (Dubois et al., 2023) 0.000 0.063 46.915 0.005 0.023 0.007 0.160
Baize† (Xu et al., 2023) 0.000 0.095 44.714 0.025 0.050 0.023 0.112
ChatGLM† (Zeng et al., 2023) 0.000 0.117 48.365 0.056 0.075 0.043 0.046
LLama† (Touvron et al., 2023a) 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna† (Chiang et al., 2023) 0.000 0.057 46.877 0.025 0.030 0.021 0.017
Mol-Instruction (Fang et al., 2024) 0.009 0.705 31.227 0.283 0.487 0.230 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.001 0.835 31.359 0.447 0.277 0.241 0.996

HIGHT-G 0.008 0.863 28.912 0.564 0.340 0.309 1.000

Table 15. Results of chemical reaction tasks. These tasks encompass reagent prediction, forward reaction prediction, and retrosynthesis. †:
few-shot ICL results from (Fang et al., 2024). ∗: use task-specific instruction data to finetune.
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