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ABSTRACT

Diffusion-Based Purification (DBP) has emerged as an effective defense mechanism
against adversarial attacks. The efficacy of DBP has been attributed to the forward
diffusion process, which narrows the distribution gap between clean and adversarial
images through the addition of Gaussian noise. Although this explanation has
some theoretical support, the significance of its contribution to robustness remains
unclear. In this paper, we argue that the inherent stochasticity in the DBP process
is the primary driver of its robustness. To explore this, we introduce a novel
Deterministic White-Box (DW-box) evaluation protocol to assess robustness in the
absence of stochasticity and to analyze the attack trajectories and loss landscapes.
Our findings suggest that DBP models primarily leverage stochasticity to evade
effective attack directions, and their ability to purify adversarial perturbations
can be weak. To further enhance the robustness of DBP models, we introduce
Adversarial Denoising Diffusion Training (ADDT), which incorporates classifier-
guided adversarial perturbations into diffusion training, thereby strengthening the
DBP models’ ability to purify adversarial perturbations. Additionally, we propose
Rank-Based Gaussian Mapping (RBGM) to make perturbations more compatible
with diffusion models. Experimental results validate the effectiveness of ADDT. In
conclusion, our study suggests that future research on DBP can benefit from the
perspective of decoupling the stochasticity-based and purification-based robustness.

1 INTRODUCTION
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Figure 1: Comparison of attack trajecto-
ries under different evaluation settings.
The attack trajectory in the standard
White-box setting deviates significantly
from the DW-box trajectory and shows
lower effectiveness.

Deep learning has achieved remarkable success in vari-
ous domains, including computer vision (He et al., 2016),
natural language processing (OpenAI, 2023), and speech
recognition (Radford et al., 2022). However, in this flour-
ishing landscape, the persistent specter of adversarial at-
tacks casts a shadow over the reliability of these neural
models. Adversarial attacks for a vision model involve
injecting imperceptible perturbations into input images to
trick models into producing false outputs with high con-
fidence (Goodfellow et al., 2015; Szegedy et al., 2014).
This inspires a large amount of research on adversarial de-
fense (Zhang et al., 2019; Samangouei et al., 2018; Shafahi
et al., 2019; Wang et al., 2023).

Diffusion-based purification (DBP) (Nie et al., 2022) has
recently gained recognition as a powerful defense mech-
anism against a range of adversarial attacks. Existing
literature suggests that the robustness provided by DBP is
primarily due to the forward diffusion process that narrows the distribution gap between clean and
adversarial images through the application of Gaussian noise (Nie et al., 2022; Wang et al., 2022).
However, although the reduction of the distribution gap is theoretically proven, its contribution to
DBP robustness has not been sufficiently validated by empirical studies. Meanwhile, it is observed
that the stochasticity of DBP may also contribute to the robustness (Nie et al., 2022).
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In light of this, we introduce an alternative perspective that highlights the role of stochasticity
throughout the DBP process as a key contributor to its robustness, challenging the traditional focus
on the forward diffusion process. To evaluate the impact of stochasticity, we employ a Deterministic
White-box (DW-box) attack setting where the attacker has complete knowledge of both the model
parameters and the stochastic elements. Our findings reveal that DBP models significantly lose their
robustness when the process is entirely deterministic to the attacker, thereby emphasizing the critical
importance of stochasticity. Further investigations into attack trajectories and the loss landscape
demonstrate that DBP models do not counter adversarial perturbations by a flat loss landscape as
adversarial training (AT) (Madry et al., 2018); instead, they rely on stochasticity to circumvent the
most effective attack direction, as depicted in Figure 1.

Building on our new perspective regarding DBP robustness, we hypothesize that it can be further
enhanced by improving the capability of the diffusion model to purify adversarial perturbations.
To test this hypothesis, we propose Adversarial Denoising Diffusion Training (ADDT) for DBP
models. This method follows an iterative two-step process: first, the Classifier-Guided Perturbation
Optimization (CGPO) step generates adversarial perturbations; then, the diffusion model training
step updates the parameters of the diffusion model using these perturbations. To better integrate these
perturbations within the diffusion framework, we introduce Rank-Based Gaussian Mapping (RBGM),
which adjusts the adversarial perturbations to more closely resemble Gaussian noise, in alignment with
the theory behind diffusion models. Experiments across various diffusion methods, attack settings,
and datasets suggest that ADDT can consistently enhance DBP models’ robustness and purification
ability. With further empirical analysis and discussions, we argue that future research on DBP should
decouple the robustness based on stochasticity and that achieved by purification, which suggests
two orthogonal directions for improving DBP: (1) enhancing its capability to purify adversarial
perturbations with efficient training methods, and (2) defending Expectation of Transformation (EoT)
attacks by increasing the variance of attack gradients.

Our main contributions are as follows:

• We present a novel perspective on DBP robustness, emphasizing the critical role of stochas-
ticity and challenging the conventional purification-based belief that robustness primarily
stems from reducing the distribution gap via the forward diffusion process.

• We introduce a new Deterministic White-box attack scenario and show that DBP models
depend on stochastic attack gradients to avoid the most effective attack directions, demon-
strating distinct properties compared to robust models obtained by adversarial training.

• Based on the proposed ADDT, we validate that the DBP robustness can be further enhanced
by improving the capability of the diffusion model to purify adversarial perturbations.

2 RELATED WORK

Adversarial training (AT). First introduced by Madry et al. (2018), AT seeks to develop a robust
classifier by incorporating adversarial examples into the training process. It has nearly become the
de facto standard for enhancing the adversarial robustness of neural networks (Gowal et al., 2020;
Rebuffi et al., 2021; Athalye et al., 2018). Recent advances in AT harness the generative power of
diffusion models to augment training data and prevent AT from overfitting (Gowal et al., 2021; Wang
et al., 2023). However, the application of AT to DBP methods has not been thoroughly explored.

Adversarial purification. Adversarial purification utilizes generative models to remove adversarial
perturbation from inputs before they are processed by downstream models. Traditionally, generative
adversarial networks (GANs) (Samangouei et al., 2018) or autoregressive models (Song et al., 2018)
are employed as the purifier model. More recently, diffusion models have been introduced for
adversarial purification, in a technique termed diffusion-based purification (DBP), and have shown
promising results (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020a; Nie et al., 2022; Wang
et al., 2022; Wu et al., 2022; Xiao et al., 2022). The robustness of DBP models is often attributed
to the wash-out effect of Gaussian noise introduced during the forward diffusion process. Nie et al.
(2022) propose that the forward process results in a reduction of the Kullback-Leibler (KL) divergence
between the distributions of clean and adversarial images. Gao et al. (2022) suggest that while the
forward diffusion process improves robustness by reducing model invariance, the backward process
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restores this invariance, thereby undermining robustness. However, these theories explaining the
robustness of DBP models lack substantial experimental support.

3 PRELIMINARIES

Adversarial training. Adversarial training aims to build a robust model by including adversarial
samples during training (Madry et al., 2018). This approach can be formulated as a min-max problem,
where it first generates adversarial samples (the maximization) and then adjusts the parameters to
resist these adversarial samples (the minimization). Formally, this can be represented as:

minθE(x,y)∼D [maxδ∈BL(f(θ,x+ δ), y)] , (1)

where L is the loss function, f is the classifier, (x, y) ∼ D denotes sampling training data from
distribution D, and B defines the set of permissible perturbation δ.

Diffusion models. Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) and Denoising
Diffusion Implicit Models (DDIM) (Song et al., 2020a) simulate a gradual transformation in which
noise is added to images and then removed to restore the original image. The forward process can be
represented as:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I), (2)

where x0 is the original image and xt is the noisy image. αt is the cumulative noise level at step t
(1 < t ≤ T , where T is the number of diffusion training steps) . The model optimizes the parameters
θ by minimizing the distance between the actual and predicted noise:

θ∗ = argminθEx0,t,ϵ

[
∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)∥22

]
, (3)

where ϵθ is the model’s noise prediction, with ϵθ, we can predict x̂0 in a single step:

x̂0 =
(
xt −

√
1− αtϵθ∗(xt, t)

)
/
√
αt, (4)

where x̂0 is the recovered image. DDPM typically takes an iterative approach to restore the image,
removing a small amount of Gaussian noise at a time:

x̂t−1 =

(
xt −

βt√
1− αt

ϵθ∗(xt, t)

)
/
√

1− βt +
√
βtϵ, (5)

where βt is the noise level at step t, x̂t−1 is the recovered image in step t − 1, ϵ is sampled from
N (0, I). DDIM proposes to speed up the denoising process by skipping certain intermediate steps.
Recent work suggests that DDPM may also benefit from a similar approach (Nichol & Dhariwal,
2021). Score SDEs (Song et al., 2020b) give a score function view of DDPM and further lead to the
derivations of DDPM++ (VPSDE) and EDM (Karras et al., 2022). In this diffusion process, the
noise terms ϵ in Equation (2) and Equation (5) represent the key stochastic elements that govern the
randomness of the process. These stochastic elements will be further elaborated in Appendix C.1.

Diffusion-based purification (DBP). DBP uses diffusion models to remove adversarial perturbation
from images. Instead of using a complete diffusion process between the clean image and pure
Gaussian noise (between t = 0 and t = T ), they first diffuse x0 to a predefined timestep t = t∗(t∗ <
T ) via Equation (2), and recover the image x̂0 via the reverse diffusion process in Equation (5).

4 STOCHASTICITY-DRIVEN ROBUSTNESS OF DBP

4.1 STOCHASTICITY AS THE MAIN FACTOR OF DBP ROBUSTNESS

As discussed in Section 2, previous studies primarily attribute the robustness of DBP to the forward
diffusion process, which introduces Gaussian noise to both clean and adversarial images, thereby
narrowing the distribution gap between them (Wang et al., 2022; Nie et al., 2022). As a result,
adversarial perturbation can be “washed out” by Gaussian noise. However, it is also found that the
robustness of DiffPure can be reduced by switching the SDE sampling to ODE, which introduces less
randomness, implying the potential contribution of stochasticity to DBP robustness (Nie et al., 2022).

To assess whether stochasticity has a significant influence on DBP robustness, we implement DDPM
and DDIM within the DiffPure framework (Nie et al., 2022), resulting in DPDDPM and DPDDIM,
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respectively. Note that the original implementation of DiffPure adopts a DDPM discretization
form of DDPM++ (VPSDE), which has minimal differences compared to DDPM. Therefore, the
main difference between DiffPure and our DPDDPM is that DiffPure employs a larger UNet. DDIM
builds upon DDPM and introduces a deterministic ODE-based reverse process. DPDDPM introduces
Gaussian noise in both the forward and reverse processes, making the entire process stochastic. In
contrast, DPDDIM introduces Gaussian noise only in the forward process, and the reverse process
is deterministic. The clean and robust accuracy of the two models on CIFAR-10 (Madry, 2017;
Krizhevsky et al., 2009) under white-box PGD+EoT (Athalye et al., 2018) attack (as detailed in
Section 6.1) are presented in Figure 2 (Clean and White). Although DPDDPM achieves higher clean
accuracy, it exhibits lower robust accuracy under adaptive white-box attacks, consistent with the
observation by Nie et al. (2022). However, this comparison is insufficient to reveal the full role of
stochasticity in DBP robustness, as the forward process of both DDPM and DDIM are stochastic.
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Figure 2: DPDDPM and DPDDIM robust accu-
racy under different attack settings on CIFAR-10.
Both models lose most of their robustness only
when the attacker knows all stochastic elements
(DWBoth-box for DPDDPM and DWFwd-box for
DPDDIM).

To isolate the impact of stochasticity, we intro-
duce a new attack scenario called the Determin-
istic White-Box (DW-box) setting. In this set-
ting, the attacker has full knowledge of not only
the model parameters but also the specific sam-
pled values for the stochastic elements used dur-
ing evaluation, effectively rendering the diffusion
process deterministic from the attacker’s perspec-
tive. This setting can be realistic if the attacker is
aware of the seed or initial random state for the
pseudo-random number generation utilized by the
model. Concretely, we define three levels of at-
tacker knowledge for our evaluations: (1) the con-
ventional White-box setting, where the attacker
has access to the model parameters but not the
stochastic elements; (2) DWFwd-box/DWRev-box
setting, where the attacker knows the stochastic el-
ements in the forward/reverse process, in addition
to the model parameters; (3) DWBoth-box setting, where the attacker has full knowledge of the model
parameters and all the stochastic elements in both the forward and reverse processes. Details of these
settings are provided in Appendix C.2.

We evaluated adversarial robustness on CIFAR-10 using l∞ attacks (see Section 6.1). Traditional
theories emphasize forward diffusion as the primary defense mechanism, suggesting that both
DPDDPM and DPDDIM should behave similarly under the DWFwd-box setting. However, if stochasticity
throughout the diffusion process is crucial, DPDDIM, which becomes deterministic under the DWFwd-
box setting, should experience a notable reduction in robustness, similar to DPDDPM in the DWBoth-box
setting. As shown in Figure 2, in the DWFwd-box setting, DPDDPM maintains a significant portion of
its robustness, whereas DPDDIM loses almost all of its resistance to adversarial attacks. Furthermore,
DPDDPM exhibits a substantial drop in robustness only when the attacker has full access to both
the forward and reverse stochastic elements, as seen in the DWBoth-box setting. This suggests
that stochasticity across both the forward and reverse diffusion processes plays a critical role in
maintaining robustness, challenging the conventional focus on forward diffusion alone.

Our findings suggest that DBP models primarily use stochasticity to resist adversarial attacks, rather
than mainly depending on forward diffusion to mitigate adversarial perturbations, and it also reveals
that DBP itself lacks the ability to effectively purify adversarial perturbations.

4.2 EXPLAINING STOCHASTICITY-DRIVEN ROBUSTNESS

Table 1: Evaluation of state-of-the-art DBP
methods, EoT significantly influences the
evaluation accuracy (%) of model robustness.

DiffPure GDMP (MSE) DPDDPM DPDDIM

Clean 89.26 91.80 85.94 88.38
PGD20-EoT1 69.04 53.13 60.25 54.59

PGD20-EoT10 55.96 40.97 47.27 42.19

To elucidate the robustness of DBP models, partic-
ularly under EoT evaluations, we analyze the per-
formance of several DBP models—DiffPure, GDMP,
DPDDPM, and DPDDIM—under white-box attacks with
and without Expectation over Transformation (EoT)
iterations (denoted as EoT10 and EoT1, respectively).
The results shown in Table 1 suggest that these DBP
models remain robust under white-box attacks, with
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EoT evaluations resulting in moderate reductions in robustness. The detailed discussion on the
selection of PGD and EoT steps is provided in Appendix E and Appendix A.

To gain deeper insights, we visualize the attack trajectories using t-SNE, projecting them onto an
xy-plane with loss values represented along the z-axis. We compare trajectories for three types of
attacks: white-box without EoT (White-box), white-box with EoT (White-box-EoT), and Deter-
ministic White-box (DW-box). As shown in Figure 1, the trajectories exhibit high variance across
all settings, reflecting the stochastic nature of DBP models. Specifically, DW-box attacks lead to a
significant increase in loss values, whereas white-box attacks, even with EoT, result in only moderate
increases. This suggests that stochasticity prevents attackers from finding the optimal attack direction.
Specifically, due to the significant variance of the attack gradients, even if the EoT direction is an
accurate estimation of the mean gradient direction, it may not be completely consistent with the
most effective direction corresponding to the DW-box attack, thus resulting in a decline in attack
performance. Additional evidences are provided in Appendix B.

Figure 3: Visualisation of attack trajectories for
White-box-EoT attacks and DW-box attacks on the
loss landscape. The loss landscape is steep in the
direction of the DW-box attack. The plot is based
on the first 128 images of CIFAR-10.

Further analysis of the loss landscape, presented
in Figure 3, illustrates key differences between
White-box-EoT and Deterministic White-box
attacks. The trajectory of the White-box-EoT
attack diverges from the Deterministic White-
box direction, resulting in a flatter loss land-
scape along the White-box-EoT path. This be-
havior indicates that White-box-EoT attacks fail
to identify the most effective direction due to
the stochastic nature of DBP models. In con-
trast, the Deterministic White-box attack in-
duces a sharp increase in loss, revealing that
when stochasticity is removed, the model be-
comes more vulnerable to adversarial perturba-
tions. These findings differ from models trained
using AT, where the whole loss landscape tends
to remain flat and resistant across adversarial
directions (Shafahi et al., 2019).

To conclude, it is suggested that instead of possessing a flat loss landscape, DBP models rely on
stochasticity to evade the most effective attack directions. Note that while certified defense methods
like random smoothing also incorporate stochasticity (Xiao et al., 2022; Carlini et al., 2022), their
mechanisms and implications differ from those of DBP methods, as discussed in Appendix D.

5 TOWARDS IMPROVING THE PURIFICATION CAPABILITY OF DBP

Based on the analysis from Section 4, although the stochasticity-driven robustness of DBP does
not depend on the flatness of the loss landscape, flattening the landscape can still benefit the DBP
robustness given the non-trivial loss increment along the EoT direction. To achieve a flat loss
landscape, we need to introduce adversarial samples to the training of the DBP models and minimize
the loss on them. From the perspective of adversarial purification, this amounts to improving the
diffusion model in its ability to purify adversarial perturbations.

To this end, we propose Adversarial Denoising Diffusion Training (ADDT), which integrates
adversarial perturbations into the training of the diffusion model in DBP. ADDT employs an iterative
two-step procedure: (1) Classifier-Guided Perturbation Optimization (CGPO), which generates
adversarial perturbations by maximizing the classification error of a pre-trained classifier; (2) Diffu-
sion Model Training, which updates the diffusion model using these perturbations to improve its
capability of adversarial purification.

Integrating adversarial perturbations into diffusion training poses a challenge due to the Gaussian
noise assumption inherent in diffusion models. To address this, we introduce Rank-Based Gaussian
Mapping (RBGM), a technique designed to transform adversarial perturbations into a form consis-
tent with the Gaussian noise assumption. RBGM renders the perturbations more “Gaussian-like”,
facilitating their integration into the diffusion training process.

5
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Figure 4: Overview of Adversarial Denoising Diffusion Training (ADDT). ADDT alternates between
a CGPO step (left grey box) to refine the perturbations with a frozen diffusion model and classifier,
and a training step (right grey box) to update the diffusion model with the refined perturbation.
Throughout the process, RBGM is used to make the perturbation more “Gaussian-like”.

An overview of ADDT is illustrated in Figure 4, with pseudocode in Appendix G. The following
subsections detail the components of ADDT.

5.1 ADVERSARIAL DENOISING DIFFUSION TRAINING

Classifier-Guided Perturbation Optimization (CGPO) step. In this step, we aim to refine adver-
sarial perturbations δ in a way that maximizes the classification error of a pre-trained classifier C.
The process starts by reconstructing a clean image x̂0 from the perturbed input x′

t using the diffusion
model P . P (θ,x′

t, t) denotes a one-step diffusion process, which takes the noisy input x′
t and time

step t and reconstructs the image x̂0, following the formulation in Equation (4). The classifier C
is then applied to this reconstructed image x̂0 to predict a label. To maximize the prediction error
compared to the true label y, the optimization objective for refining δ can be defined as:

δ∗ = argmax
δ

Ex0,t,ϵ [L (C (P (θ,x′
t(x0, ϵ, ϵδ(δ)), t)) , y)] , (6)

where L(·, y) denotes the loss function used to measure the discrepancy between the classifier’s
predicted label and the true label y. During the optimization, since RBGM is non-differentiable,
we accumulate the gradient ϵδ(δ) to δ. Notably, the classifier in this process serves purely for
semantic guidance and does not have to be consistent with the protected model. Further discussions
on cross-classifier performance are provided in Section 6.2.

Diffusion Model Training step. The goal of this step is to update the diffusion model parameters
to accurately recover the original image x0 from a perturbed version x′

t. As depicted on the right
side of Figure 4, The model is optimized to subtract both the Gaussian noise and the RBGM-mapped
adversarial perturbations, effectively denoising the input. The optimization objective is defined as:

θ∗ = argmin
θ

Ex0,t,ϵ

[ √
αt√

1− αt
∥x0 − P (θ,x′

t, t)∥
2
2

]
, (7)

where the expectation is taken over the distribution of original images x0 ∼ D, time steps t ∼
U({1, . . . , T}), and Gaussian noise ϵ ∼ N (0, I). The perturbed input x′

t is formed from the original
image x0, Gaussian noise ϵ, and the RBGM-mapped adversarial perturbation ϵδ(δ), as defined in
Equation (8). The scaling factor

√
αt/

√
1− αt ensures consistency with the standard formulation of

DDPM/DDIM loss. This factor reflects the expected squared error between the noise introduced to
the input and the noise removed by the diffusion model during denoising.

5.2 RANK-BASED GAUSSIAN MAPPING

Traditional diffusion models operate under the premise that input images are corrupted by independent
Gaussian noise ϵ. To ensure that the perturbations remain Gaussian-like while capturing adversarial
characteristics, we introduce the Rank-Based Gaussian Mapping (RBGM), illustrated in Figure 5.

6
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Table 2: Clean and robust accuracy (%) on CIFAR-
10 obtained by different DBP methods. All meth-
ods show consistent improvement fine-tuned with
ADDT.

Diffusion model DBP model Clean l∞ l2

- - 95.12 0.00 1.46

DDIM DPDDIM 88.38 42.19 70.02
DPDDIM+ADDT 88.77 46.48 71.19

DDPM

GDMP (No Guided) (Wang et al., 2022) 91.41 40.82 69.63
GDMP (MSE) (Wang et al., 2022) 91.80 40.97 70.02
GDMP (SSIM) (Wang et al., 2022) 92.19 38.18 68.95

DPDDPM 85.94 47.27 69.34
DPDDPM+ADDT 85.64 51.46 70.12

DDPM++
COUP (Zhang et al., 2024) 90.33 50.78 71.19

DiffPure 89.26 55.96 75.78
DiffPure+ADDT 89.94 62.11 76.66

EDM DPEDM (Appendix I) 86.43 62.50 76.86
DPEDM+ADDT (Appendix I) 86.33 66.41 79.16

Table 3: Clean and robust accuracy (%)
on DPDDPM. ADDT improve robust-
ness across different NFEs, especially
at lower NFEs (*: default DDPM gener-
ation setting; -: classifier only).

Dataset NFEs Vanilla ADDT
Clean l∞ l2 Clean l∞ l2

CIFAR-10

- 95.12 0.00 1.46 95.12 0.00 1.46
5 49.51 21.78 36.13 59.96 30.27 41.99

10 73.34 36.72 55.47 78.91 43.07 62.97
20 81.45 45.21 65.23 83.89 48.44 69.82
50 85.54 46.78 68.85 85.45 50.20 69.04

100* 85.94 47.27 69.34 85.64 51.46 70.12

CIFAR-100

- 76.66 0.00 2.44 76.66 0.00 2.44
5 17.29 3.71 9.28 21.78 6.25 13.77

10 34.08 10.55 19.24 40.62 14.55 27.25
20 48.05 17.68 30.66 53.32 18.65 36.13
50 55.57 20.02 37.70 59.47 22.75 40.72

100* 57.52 20.41 37.89 59.18 23.73 41.70
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Figure 5: Rank-Based Gaussian Mapping. RBGM
trims the input to follow Gaussian distribution. It
samples a Gaussian noise and then replaces ele-
ments in the input with those from the Gaussian
noise, matched according to their respective ranks.

The RBGM function, denoted by ϵδ(δ), takes
a perturbation δ as input. The key idea is to
preserve the rank ordering of the elements in δ
but replace their actual values with those from
a standard Gaussian distribution. Specifically,
we sample a Gaussian tensor ϵs of the same
dimensions as δ. We then sort the elements
of both δ and ϵs respectively in ascending or-
der. By mapping the sorted elements of δ to the
corresponding elements of ϵs, we obtain ϵδ(δ),
which approximates Gaussian-distributed but re-
tains the structural information of δ. To further
enhance the Gaussian nature of the noise, we
mix the RBGM-mapped perturbation with addi-
tional random Gaussian noise.

By combining the RBGM-induced perturbation
with Gaussian noise, we generate an adversarial
input x′

t as follows:

x′
t(x0, ϵ, ϵδ(δ)) =

√
αtx0 +

√
1− λ2

t

√
1− αtϵ+ λt

√
1− αtϵδ(δ), (8)

where λt modulates the level of adversarial perturbation. This ensures that the overall noise remains
largely independent of x0 and that the perturbations do not overwhelm the denoising model’s learning
capabilities. We determine λt using the following formulation:

λt = clip(γtλunit, λmin, λmax), γt =

√
αt√

1− αt
, (9)

where the clip function limits λt between λmin and λmax. Additional details and discussions about
RBGM can be found in Appendix K.

6 EXPERIMENTS AND DISCUSSIONS

6.1 EXPERIMENT SETUPS

Classifier. We train a WideResNet-28-10 for 200 epochs following the methods in (Yoon et al., 2021;
Wang et al., 2022), achieving 95.12% accuracy on CIFAR-10 and 76.66% on CIFAR-100 dataset.

DBP timestep. For the diffusion forward process, we adopt the same timestep settings as Diff-
Pure (Nie et al., 2022). In continuous-time models, such as the VPSDE (DDPM++) variant, with
the forward time parameter 0 ≤ t ≤ 1, we set t∗ = 0.1, which strikes a balance between noise
introduction and computational efficiency. For discrete-time models, such as DDPM and DDIM,
where t = 0, 1, ..., T , we similarly set the timestep to t∗ = 0.1× T . Additional settings and results
on DPEDM are provided in Appendix I.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Clean and robust accuracy (%) on CIFAR-10, obtained
by different classifiers. ADDT (WRN-28-10 guidance) improves
robustness in protecting different subsequent classifiers. (*: the
classifier used in ADDT fine-tuning).

Model Classifier Vanilla ADDT
Clean l∞ l2 Clean l∞ l2

DPDDPM-1000

VGG-16 (Simonyan & Zisserman, 2014) 84.77 41.99 66.89 85.06 46.09 67.87
ResNet-50 (He et al., 2016) 83.11 44.04 67.58 83.84 48.14 67.87

WRN-28-10* (Zagoruyko & Komodakis, 2016) 85.94 47.27 69.34 85.64 51.46 70.12
WRN-70-16 (Zagoruyko & Komodakis, 2016) 88.43 48.93 70.31 87.84 52.54 70.70

ViT-B (Dosovitskiy et al., 2020) 85.45 45.61 69.53 85.25 48.63 69.92

DPDDIM-100

VGG-16 (Simonyan & Zisserman, 2014) 87.16 29.00 61.82 87.55 35.06 66.11
ResNet-50 (He et al., 2016) 86.04 31.74 62.11 86.57 38.77 65.82

WRN-28-10* (Zagoruyko & Komodakis, 2016) 88.96 43.16 67.58 88.18 47.85 70.61
WRN-70-16 (Zagoruyko & Komodakis, 2016) 84.40 39.16 68.36 84.96 47.66 69.14

ViT-B (Dosovitskiy et al., 2020) 88.77 34.38 65.72 88.48 41.02 68.65

DPEDM
WRN-28-10* (Zagoruyko & Komodakis, 2016) 86.43 62.50 76.86 86.33 66.41 79.16
WRN-70-16 (Zagoruyko & Komodakis, 2016) 86.62 65.62 76.46 86.43 69.63 78.91

Robustness evaluation. We em-
ploy PGD20+EoT10 (Athalye
et al., 2018) for assessing model
robustness. For ℓ∞-norm attacks,
we set the step size α = 2/255
and the maximum perturbation
ϵ = 8/255, while for ℓ2-norm
attacks, we use α = 0.1 and
ϵ = 0.5. Due to the high compu-
tational cost of EoT attacks, we
evaluate our models on the first
1024 images for CIFAR-10 and
CIFAR-100 datasets.

ADDT. ADDT fine-tuning is
guided by the pre-trained WideResNet-28-10 classifier. For the CIFAR-10 dataset, we utilize the
pre-trained exponential moving average (EMA) diffusion model from Ho et al. (2020), which has been
converted into the Huggingface Diffusers format by Fang et al. (2023). For the CIFAR-100 dataset,
we fine-tune this CIFAR-10 diffusion model over 100 epochs. In CGPO, we set the hyperparameters
to λunit = 0.03, λmin = 0, and λmax = 0.3, and iteratively refine the perturbation δ for 5 steps.
Additional details regarding computational cost are provided in Appendix P.

6.2 DEFENSE PERFORMANCE UNDER DIFFERENT CONDITIONS

Effectiveness of ADDT on different DBP models. We apply ADDT to a set of diffusion models
and apply DiffPure-style DBP with the refined models. The comparison on clean and robust accuracy
with the baseline and other DBP models is presented in Table 2. It shows that ADDT effectively
enhances the robustness of these models.

Table 5: Clean and robust accuracy (%) on
CIFAR-10 fine-tuned with different training
samples. (None: no fine-tuning)

Model Training samples Clean l∞ l2

DDPM

None 85.94 47.27 69.34
Clean 85.25 47.27 68.26

MSE-guided 86.91 46.97 70.80
CGPO 85.64 51.46 70.12

DDIM

None 88.96 43.16 67.58
Clean 88.87 41.41 67.19

MSE-guided 89.36 40.92 67.68
CGPO 88.18 47.85 70.61

Performance on different classifiers. We evalu-
ate the cross-model protection ability of ADDT fine-
tuned models by applying the diffusion model trained
with WRN-28-10 guidance to other classifiers. The
results in Table 4 indicate that the adversarial pu-
rification ability of these diffusion models could be
transferred to different classifiers with various archi-
tectures. Notably, using a DPEDM with WRN-28-
10 Guidance training, we achieve 69.63% l∞ robust
accuracy on a WRN-70-16 classifier. This demon-
strates the feasibility of ADDT as it does not require
classifier-specific fine-tuning.

Performance under acceleration. Speeding up the diffusion process by omitting intermediate steps
has become a common practice in the use of diffusion models (Nichol & Dhariwal, 2021; Song
et al., 2020a). Hence, we evaluate the robustness of accelerated DBP models. The computation
cost is measured by the number of neural function evaluations (NFEs), which indicates the number
of evaluation steps performed during the DBP backtracking process. For our experiments, we set
t∗ = 0.1× T and accelerate the process by excluding intermediate time steps. For example, with 5
NFEs, the time steps for the DBP reverse process would be t = [100, 80, 60, 40, 20, 0]. The results
in Table 3 validate the effectiveness of ADDT in improving the robustness of accelerated DPDDPM
models. Note that the performance of DPDDPM varies significantly between different values of NFEs.
This may be explained by the fact that DDPM introduces stochasticity (Gaussian noise) at each
reverse step; with fewer reverse steps, its stochasticity reduces. Additionally, the generation capability
of DDPM is sensitive to skipping of intermediate steps. We also conducted an evaluation of DPDDIM
models, as detailed in Appendix H.

6.3 ABLATION STUDY AND ANALYSIS

RBGM. We compare the generative ability of diffusion models fine-tuned from the same pre-trained
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Table 6: FID score of DDPM for CIFAR-
10 fine-tuned to different perturbations (the
lower the better). Fine-tuning with RBGM-
mapped perturbations yields lower FID scores
than l∞ perturbations (without RBGM).

Vanilla Clean Fine-tuning ADDT ADDT w/o RBGM

FID 3.196 3.500 5.190 13.608

models using two different perturbations: RBGM-
mapped perturbations and ℓ∞ perturbations. This
evaluation is conducted by comparing their Fréchet
Inception Distance (FID) scores (Heusel et al., 2017),
as shown in Table 6. The results show that diffusion
models fine-tuned with RBGM-mapped perturbations
maintain generation quality comparable to the vanilla
diffusion model, while models directly fine-tuned
with l∞ perturbations without RBGM show degraded
performance. We also observe that training with RBGM-mapped perturbations generalized bet-
ter to different attacks. Experimental details and additional tests are presented in Appendix M.
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Figure 6: Revisiting robustness under Determinis-
tic White-box setting. ADDT improves robustness
under both White-box and Deterministic White-
box setting, implying that ADDT strengthens the
models’ ability to purify adversarial inputs.

CGPO. We analyze the effect of fine-tuning us-
ing different training samples in Table 5. Specif-
ically, we compare the performance of samples
generated with classifier guidance in the CGPO
step, referred to as “CGPO”, against those gen-
erated with Mean Squared Error (MSE) loss,
noted as “MSE-guided”. The evaluation results
are presented for DDPM with 100 NFEs and
DDIM with 10 NFEs. Results demonstrates
that samples generated by CGPO significantly
outperform MSE-guided samples in enhancing
DBP robustness.

Revisiting DBP robustness. We re-examine
robustness under the Deterministic White-box
setting by comparing the performance of dif-
fusion models with and without ADDT fine-
tuning, as shown in Figure 6. The fine-tuned models show significantly higher robust accuracy
under the DW-box setting, indicating improved non-stochasticity-based robustness brought by
ADDT. Further experiments across different models and NFEs in Appendix N confirm these ro-
bustness improvements. We also compare the loss landscapes of ADDT fine-tuned models and
vanilla diffusion models, as shown in Figure 3. This comparison shows that our method effectively
smooths the loss landscape of DBP models and enhance its ability to purify adversarial perturbations.
Evaluation with stronger PGD+EoT attacks. To balance computational cost and attack strength,
we primarily employ the PGD20+EoT10 configuration in our evaluations. To further validate the
efficacy of ADDT under stronger attack settings, we assess its performance using the more challenging
PGD200+EoT20 setup. The results presented in Table 7 and Table 9 show that under these intensified
attacks, ADDT’s robust accuracy experiences a moderate 5% drop compared to the PGD20+EoT10
setting. Nonetheless, across various settings and datasets, ADDT consistently demonstrates superior
robust accuracy to the baseline.

6.4 SCALING TO MORE COMPLEX AND HIGH-DIMENSIONAL DATA

Table 7: Robust accuracy (%) on CIFAR-10 under more PGD
and EoT iterations.

Model PGD200+EoT20 PGD20+EoT10
Vanilla (ℓ∞) ADDT (ℓ∞) Vanilla (ℓ∞) ADDT (ℓ∞)

DPDDPM 41.02 46.19 47.27 51.46
DPDDIM 36.23 41.11 43.16 47.85
DiffPure 48.93 55.76 55.96 62.11

To evaluate the scalability of DBP
and ADDT on more complex and
high-dimensional datasets, we ex-
tend our experiments to include Tiny-
ImageNet (Le & Yang, 2015) and
ImageNet-1k (Deng et al., 2009). For
Tiny-ImageNet, we trained the diffu-
sion model from scratch for 200 epochs, followed by fine-tuning with ADDT for an additional 50
epochs, guided by a pretrained WRN-28-10 classifier. For ImageNet-1k, the diffusion model was
trained from scratch for 12 epochs and then fine-tuned with ADDT for 8 epochs, using a pretrained
ResNet-101 classifier as guidance.

As shown in Table 8 and Table 9, ADDT successfully enhances the robustness of DBP on these
complex datasets, while the improvement may be limited. Similar to the characteristics of adversarial
training on classifiers, effective up-scaling of ADDT may require sufficient model capacity and a
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Table 8: Clean and robust accuracy (%) on
Tiny-ImageNet with WRN-28-10 classifier.
ADDT improves DBP robustness on Tiny-
ImageNet (-: classifier only).

Model Vanilla ADDT
Clean l∞ l2 Clean l∞ l2

- 71.37 0.00 0.00 - - -
DPDDPM-1000 57.13 11.82 46.68 56.15 13.57 48.54
DPDDIM-100 60.35 4.79 39.75 60.45 5.86 40.82

DPEDM 57.03 19.14 46.00 56.45 20.61 47.95

Table 9: Clean and robust accuracy (%)
on ImageNet-1k with ResNet-101 classi-
fier. All experiments are conducted un-
der l∞ perturbation bound of ϵ = 4/255.

Metric Vanilla ADDT

Clean Accuracy 80.31 80.20
PGD20+EoT10 46.92 48.02
PGD200+EoT20 35.31 35.83

large amount of data, and our results in Table 2 have demonstrated the benefits of applying a larger
diffusion model in DBP. However, efficient training methods specialized for DBP models can be a
promising direction for future studies.

In addition, we observe that the strong EoT attacks on images of higher resolution are computationally
intensive. Specifically, our evaluation with PGD200+EoT20 on 1024 images of the size 224× 224
requires approximately 7 days on 8 NVIDIA RTX 4090 GPUs. Therefore, we argue that the up-scaling
in data dimension can also imply significantly increased computational costs for the attacker.

6.5 DISCUSSIONS ON IMPROVING STOCHASTICITY-BASED DBP ROBUSTNESS

As analyzed in Section 4.2, the DBP robustness can be primarily attributed to the high variance
of the stochastic attack gradients. We argue that increasing the variance of attack gradients can
improve the stochasticity-based robustness of DBP models by reducing the effectiveness of EoT
attacks. Specifically, on the one hand, higher variance means higher errors in the estimation of the
expected attack gradient direction with a fixed number of samples, and to reduce the error, more EoT
steps are required. On the other hand, higher variance also suggests that the expected deviation of the
DW-box attack gradient (which suggests the most effective attack direction) deviates more from the
EoT attack gradient, even if the estimation of the mean attack gradient is accurate. As discussed in
Section 4.2, such deviation leads to lower increase in classification loss for one attack step, suggesting
that a successful attack may not be achieved or require more PGD steps.

To increase the variance of attack gradients, an intuitive approach is to introduce more stochasticity.
As an initial experiment, we augment the DBP framework’s stochasticity by integrating a Corrector
sampler. Specifically, Song et al. (2021) develop a Predictor-Corrector (PC) sampler framework.
While standard VPSDE (DDPM++) implementations typically use only the predictor component, we
add a Corrector sampler to increase stochasticity in the reverse diffusion process, thereby boosting
the overall variance of attack gradients. As detailed in Appendix J, our preliminary results indicate
that this modification improves the robustness of DBP models against adaptive White-box attacks.
However, there is a trade-off: the model’s clean accuracy decreases slightly. These observations
align with the findings of Nie et al. (2022), where randomizing the diffusion timesteps also leads to
robustness improvements at the cost of clean accuracy, as well as with prior research on stochastic
preprocessing defenses (Gao et al., 2022).

7 CONCLUSION

This study offers a new perspective on the robustness of Diffusion-Based Purification (DBP), empha-
sizing the crucial role of stochasticity and challenging the traditional view that robustness is mainly
derived from minimizing the distribution gap through the forward diffusion process. We introduce a
Deterministic white-box (DW-box) attack scenario and show that DBP models are based on stochastic
elements to evade effective attack directions and lack the ability to purify adversarial perturbations,
demonstrating distinct properties compared to models trained with Adversarial Training. To fur-
ther enhance the robustness of DBP models, we develop Adversarial Denoising Diffusion Training
(ADDT) and Rank-Based Gaussian Mapping (RBGM). ADDT integrates adversarial perturbations
into the training process, while RBGM trims perturbations to more closely resemble Gaussian dis-
tributions. Experiments across various diffusion methods, attack settings, and datasets suggest the
effectiveness of ADDT. In summary, this study highlights the decoupling of stochasticity-based and
purification-based robustness of DBP models for deeper analysis, and suggests combining them for
better robustness in practice.
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A INFLUENCE OF EOT ITERATIONS ON DBP ROBUSTNESS EVALUATION

In this section, we examine how the number of EoT iterations influences the DBP robustness
evaluation. As previously discussed in Section 4.1, the Deterministic White-box attack could find
the most effective attack direction. To quantify the impact of EoT iterations, we compare the attack
direction of the standard White-box-EoT across various numbers of EoT iterations with that of the
Deterministic White-box.

See Figure 7 for a visual explanation, where the red line shows the DBP accuracy after attack, and the
blue line shows the similarity between the attack directions of the White-box-EoT and Deterministic
White-box. The trend is clear: more EoT iterations lead to greater similarity and lower model
accuracy, the rate of increase in similarity and the rate of decrease in accuracy both tend to slow down
with further iterations.

Balancing computational cost and evaluation accuracy, we chose the PGD20-EoT10 configuration
for our robustness evaluation.
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Figure 7: Robust accuracy (%) and gradient similarity on DPDDPM for CIFAR-10, obtained by
different EoT iterations. As the number of EoT iterations increases, the gradient similarity between
the White-box-EoT attack direction and the Deterministic White-box attack direction increases and
the robust accuracy decreases.

B DBP MODELS EMPLOYING DIFFERENT STOCHASTIC ELEMENTS CANNOT
BE ATTACKED ALL AT ONCE

Previous research has questioned whether stochasticity can improve robustness, arguing that it can
produce obfuscated gradients that give a false sense of security (Athalye et al., 2018). To investigate
this, we implement DWSemi-box, a semi-stochastic setting that restricts the stochastic elements to a
limited set of options. Our results show that stochasticity can indeed improve robustness, even when
the attacker has full knowledge of all the possible options for stochastic elements.

Building on the concept of Deterministic White-box, we further propose DWsemi-128 to explore whether
stochasticity can indeed improve robustness. Unlike under Deterministic White-box, where the
attacker attacks a DBP model under the exact set of stochastic noise used in the evaluation, DWsemi-128
relaxes the stochastic elements to a limited set of options, the attacker should simultaneously attack
over 128 different sets of stochastic noise. It uses the average adversarial direction from these 128
noise settings (EoT-128) to perturb the DBP model. To understand the impact of stochasticity, we
analyze the changes of the model loss under DW-box attack and DWsemi-128 attack. We plot these
changes by adjusting a factor k to modify an image x with a perturbation σ, evaluating the loss
at x + kσ where k varies from −16 to 16. We generate perturbations with l∞ Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015) with magnitude 1/255. The plot is evaluated using
WideResNet-28-10 with DPDDPM over the first 128 images of CIFAR-10 dataset.

As Figure 8 shows, in the Deterministic White-box setting, the perturbations significantly increase
the loss, proving their effectiveness. However, for DWsemi-128, where the attack spans multiple noise
setting, the increase in loss is more moderate. This suggests that even when the attackers are fully
informed about the stochastic noise choices, stochasticity still improves the robustness of the DBP.
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Figure 8: Impact of stochasticity on perturbation efficacy. Perturbations created under DWsemi-box
setting are less potent compared to DW-box setting. For non-adversarial perturbations, we randomly
assign each element a value of either 1/255 or −1/255.

This challenges the notion that there exists a vulnerable direction that is effective for all stochastic
noise.

C IMPACT OF ATTACKERS’ KNOWLEDGE ON ROBUSTNESS: COMPARISON OF
ATTACK SETTINGS

This appendix delves into the influence of varying levels of attackers’ knowledge about the stochastic
components in diffusion processes on the robustness of diffusion-based models. We specifically
assess the individual contributions of the forward and reverse diffusion processes to model robustness
across different attack scenarios.

C.1 STOCHASTIC ELEMENTS IN THE DIFFUSION PROCESSES

To elucidate the impact of the attacker’s knowledge, it is crucial to understand the stochastic elements
integral to the diffusion processes, which are pivotal for the model’s robustness.

In the forward diffusion process, Gaussian noise is incorporated into the input data to derive a noisy
version xt:

xt =
√
ᾱt x+

√
1− ᾱt ϵf , (10)

where ϵf ∼ N (0, I) is sampled once per input.

In the reverse diffusion process, the model progressively denoises xt through iterative steps. For the
Denoising Diffusion Probabilistic Model (DDPM), the reverse process is inherently stochastic:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

, ϵθ(xt,t)

)
+ σtϵt, (11)

where ϵt ∼ N (0, I) is sampled at each reverse step. In contrast, for the Denoising Diffusion Implicit
Model (DDIM), the reverse process is deterministic, and no noise {ϵt}Tt=1 is added.

C.2 ATTACK SETTINGS AND ATTACKER KNOWLEDGE

We delineate four distinct attack scenarios, each characterized by the extent of information available
to the attacker, particularly concerning the Gaussian noise variables in the diffusion process. Table 10
provides a summary of the attacker’s knowledge in each scenario.

In the conventional white-box attack setting, the attacker possesses comprehensive knowledge of the
model architecture and parameters but lacks insight into the stochastic elements used during inference
(ϵf and {ϵt}Tt=1). The DWFwd setting grants the attacker knowledge of the Gaussian noise in the
forward diffusion process (ϵf ). Conversely, the DWRev setting provides the attacker with knowledge
of the Gaussian noise introduced during the reverse diffusion steps ({ϵt}Tt=1). The DWBoth setting
offers the attacker complete access to all stochastic elements, ϵf and {ϵt}Tt=1. By manipulating the
attacker’s knowledge in this manner, we isolate the individual effects of the forward and reverse
diffusion processes on model robustness.
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Table 10: Information accessible to the attacker in different attack settings. ϵf denotes the Gaussian
noise in the forward process, and {ϵt}Tt=1 represents the Gaussian noise in the reverse process.

Attacker’s Knowledge White-box DWFwd DWRev DWBoth

Model Architecture and Parameters ✓ ✓ ✓ ✓
Input Images and Class Labels ✓ ✓ ✓ ✓

Forward Process Noise ϵf × ✓ × ✓
Reverse Process Noise {ϵt}Tt=1 × × ✓ ✓

C.3 IMPLICATIONS OF THE ATTACKER’S KNOWLEDGE OF STOCHASTIC ELEMENTS

The attacker’s capability to craft potent adversarial examples is significantly influenced by their
knowledge of the stochastic elements in diffusion processes. When these elements are unknown to
the attacker, they must independently sample noise variables, leading to discrepancies between their
approximations and the actual behavior of the victim model. Conversely, if the attacker is privy to the
exact noise variables used during inference, they can precisely mimic the model’s behavior, markedly
boosting the efficacy of their attack.

Attacker Without Knowledge of Stochastic Elements. In scenarios where the attacker lacks
access to specific noise variables ϵf and {ϵt}Tt=1, the model’s output becomes unpredictable from the
attacker’s viewpoint. The attacker must then optimize the expected value of the loss function over
the distribution of these stochastic elements. The optimization problem for devising an adversarial
example xadv is formulated as:

xadv = arg max
∥xadv−x∥≤δ

Eϵf ,{ϵt}
[
L
(
f(xadv; ϵf , {ϵt}), y

)]
, (12)

where δ specifies the permissible perturbation magnitude, L is the loss function, f represents the
model’s output given the input and stochastic elements, and y is the actual class label.

Attacker With Knowledge of Stochastic Elements. Should the attacker possess exact knowledge
of the noise variables ϵf and {ϵt}Tt=1 utilized during the model’s inference, they can accurately
emulate the victim classifier’s behavior. The stochastic processes become deterministic from the
attacker’s perspective, facilitating the formulation of the optimization problem as:

xadv = arg max
∥xadv−x∥≤δ

L
(
f(xadv; ϵf , {ϵt}), y

)
. (13)

This precise knowledge allows the attacker to adopt the exact noise that will be used during the target
evaluation, allowing effective evaluation.

C.4 EFFECT OF ATTACKER’S KNOWLEDGE ON MODEL ROBUSTNESS

We test the robustness of DDPM under these four settings, and Table 11 encapsulates the result.

Table 11: Robust accuracy (%) of DDPM under different attack settings.

Attack Setting Robust Accuracy (l∞)

Conventional White-Box Attack 47.27
DWFwd 45.41
DWRev 35.25
DWBoth 16.80

Conventional White-Box Attack. In this setting, the attacker fully understands the model’s
architecture and parameters but lacks knowledge of the stochastic elements (ϵf and {ϵt}Tt=1) used
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during inference. The model’s output remains unpredictable due to the stochasticity of both diffusion
processes, making it challenging for the attacker to generate effective adversarial examples (reaching
robust accuracy of 47.27%).

DWFwd. Here, the attacker is aware of the Gaussian noise ϵf used in the forward diffusion process
but not of the noise {ϵt}Tt=1 in the reverse process. This partial knowledge allows the attacker to
accurately simulate the forward process, reducing uncertainty in this phase. However, the reverse
process remains unpredictable. The slight decrease in robust accuracy to 45.41% suggests that
while forward process stochasticity contributes to robustness, its effect is somewhat diminished when
compromised.

DWRev. In this scenario, the attacker knows the noise variables {ϵt}Tt=1 used in the reverse diffusion
steps but not the forward process noise ϵf . This knowledge enables the attacker to align their strategy
more closely with the actual behavior of the model during reverse diffusion, resulting in a more
noticeable drop in robust accuracy to 35.25%. The reverse process’s stochasticity appears to play a
more critical role in model robustness compared to the forward process.

DWBoth. When the attacker has comprehensive knowledge of both the forward and reverse process
noise variables, they can replicate both diffusion processes accurately, eliminating any stochasticity
from their perspective. This complete predictability allows for precise adversarial example crafting,
leading to a significant reduction in robust accuracy to 16.80%. This demonstrates that the combined
stochastic elements are crucial for maintaining robustness; when fully exposed, the model’s defense
mechanisms are substantially weakened.

D THE ROLE OF STOCHASTICITY IN DBP COMPARED TO CERTIFIED
DEFENSE METHODS

In this appendix section, we delve deeper into the role of randomness in Diffusion-Based Prediction
(DBP) models and contrast it with its role in certified defense methods such as randomized smooth-
ing (Cohen et al., 2019). While both approaches incorporate stochasticity, their mechanisms and
implications for adversarial robustness differ significantly.

• Conventionally, the classification models discussed in the studies of adversarial robustness
can be viewed as mappings from input space X to the label space Y . However, DBP
additionally involves a random variable ϵ ∈ E that determines the random sampling in the
forward and reverse processes (which can be the random seed in implementation). Hence, a
DBP model f can be viewed as the mapping f : (X,E) → Y .

• Previous studies on randomized smoothing treat the randomized model f as a mapping
f : X → PY , where PY is the space of label distribution. Typically, the final prediction can
be formulated as F (x) = argmaxc[f(x)]c, i.e., the class c with the highest probability in
the output distribution f(x). Apparently, F deterministically maps X to Y , consistent with
the conventional models.

• Recent studies on DBP also regard the model as f : X → PY , without explicitly studying
the role of ϵ. The key difference between DBP and randomized smoothing is that the final
prediction for an input x is directly sampled from the distribution f(x) for once, instead of
sampling multiple times to approximate F (x) as in randomized smoothing.

• In this paper, we revisit DBP by treating the randomized model f as the mapping f :
(X,E) → Y and studying the role of ϵ ∈ E as an input of f . From this perspective, the
conventional adversarial setting assuming full knowledge of the model parameters (but not
ϵ) is not a complete white box, which motivates us to study the DW-box setting.

• From our perspective, we can clearly point out the difference between DBP and randomized
smoothing in terms of the loss landscape. Given an input x0, the local loss landscape for
a DBP model f is not deterministic as it also depends on ϵ. Although the expected loss
landscape over ϵ ∈ E may be smooth, it does not suggest the robustness of DBP, as ϵ is
fixed during a single inference run of DBP. Indeed, our study suggests that given x0 and a
fixed ϵ0, the local landscape of DBP is likely not smooth. In contrast, the loss landscape of a
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randomized smoothing model F may be smooth as it is the average landscape over multiple
ϵ. To conclude, we argue that the random noise itself may not smooth the loss landscape,
but the average over random noises may.

E ATTACK METHOD AND SETTINGS

Previous assessments of DBP robustness have often utilized potentially unreliable methods. In partic-
ular, due to the iterative denoising process in diffusion models, some studies resort to mathematical
approximations of gradients to reduce memory constraints (Athalye et al., 2018) or to circumvent the
diffusion process during backpropagation (Wang et al., 2022). Furthermore, the reliability of AutoAt-
tack, a widely used evaluation method, in assessing the robustness of DBP models is questionable.
Although AutoAttack includes a Rand version designed for stochastic models, Nie et al. (2022) have
found instances where the Rand version is less effective than the Standard version in evaluating DBP
robustness.

To improve the robustness evaluation of diffusion-based purification (DBP) models, we implement
several modifications. First, to ensure the accuracy of the gradient computations, we compute the
exact gradient of the entire diffusion classification pipeline. To mitigate the high memory requirements
in diffusion iterative denoising steps, we use gradient checkpointing (Chen et al., 2016) techniques
to optimize memory usage. In addition, to deal with the stochastic nature of the DBP process, we
incorporate the Expectation over Transformation (EoT) method to average gradients across different
attacks. We adopt EoT with 10 iterations, and a detailed discussion of the choice of EoT iterations
can be found in Appendix A. We also use the Projected Gradient Descent (PGD) attack instead of
AutoAttack for our evaluations1. Our revised robustness evaluation revealed that DBP models, such
as DiffPure and GDMP, perform worse than originally claimed. DiffPure’s accuracy dropped from a
claimed 70.64% to an actual 55.96%, and GDMP’s from 90.10% to 40.97%. These results emphasize
the urgent need for more accurate and reliable evaluation methods to properly assess the robustness of
DBP models. Similar evaluation protocols are also applied in Chen et al. (2023); Kang et al. (2024).

F EXPERIMENTAL SETTING OF VISUALIZATION OF THE ATTACK TRAJECTORY

We visualize the attack by plotting the loss landscape and trace the trajectories of EoT attack under
White-box setting and the Deterministic White-box setting in Figure 3. We run a vanilla PGD20-
EoT10 attack under White-box setting and a PGD20 attack under Deterministic White-box setting.
We then expand a 2D space using the final perturbations from these two attacks, draw the loss
landscape, and plot the attack trajectories on it. Note that the two adversarial perturbation directions
are not strictly orthogonal. To extend this 2D space, we use the Deterministic White-box attack
direction and the orthogonal component of the EoT attack direction. Note that the endpoints of both
trajectories lie exactly on the loss landscape, while intermediate points are projected onto it. The plot
is evaluated using WideResNet-28-10 with DPDDPM over the first 128 images of CIFAR-10 dataset.

G PSEUDO-CODE OF ADDT

The pseudo-code for adopting ADDT within DDPM and DDIM framework is shown in Algorithm 1.

H ADDT RESULTS ON DPDDIM

As shown in Table 12, the performance of DPDDIM is less sensitive to the number of function
evaluations (NFEs). Additionally, ADDT consistently improved the robustness of DPDDIM.

1We discover a bug in the Rand version of AutoAttack that causes it to overestimate the robustness of DBP.
After fixing this, AutoAttack gives similar results to PGD attacks, but at a much higher computational cost. We
discuss this in detail in Appendix L.
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Algorithm 1 Adversarial Denoising Diffusion Training (ADDT)
Require: x0 is image from training dataset, y is the class label of the image, C is the classifier, P is one-step

diffusion reverse process and θ is it’s parameter, L is CrossEntropy Loss.
1: for x0, y in the training dataset do
2: t ∼ Uniform({1, ..., T})
3: λt = clip(γtλunit, λmin, λmax), where γt =

√
αt√

1−αt

4: Init δ to a small random vector.
5: for 1 to ADDTiterations do
6: ϵ ∼ N (0, I)
7: ϵ′ = RBGM(δ, ϵ)

8: xt =
√
αtx0 +

√
1− λ2

t

√
1− αtϵ+ λt

√
1− αtϵ

′

9: δ = δ +∇ϵ′L(C(P (xt, t), y))
10: end for
11: ϵ ∼ N (0, I)
12: ϵ′ = RBGM(δ, ϵ)

13: xt =
√
αtx0 +

√
1− λ2

t

√
1− αtϵ+ λt

√
1− αtϵ

′

14: Take a gradient descent step on:
∇θ∥

√
αt√

1−αt
(x0 − P (xt, t))∥22

15: end for
Diffusion model ϵθ predicts the Gaussian noise added to the image, adopting Equation (4) in the paper, we
have P (xt, t) =

(
xt −

√
1− αtϵθ(xt, t)

)
/
√
αt

Table 12: Clean and robust accuracy (%) on DPDDIM. ADDT improve robustness across different
NFEs (*: default DDIM generation setting, -: classifier only ).

Dataset NFEs Vanilla ADDT
Clean l∞ l2 Clean l∞ l2

CIFAR-10

- 95.12 0.00 1.46 95.12 0.00 1.46
5 89.65 42.19 68.65 88.57 47.27 70.61

10* 88.96 43.16 67.58 88.18 47.85 70.61
20 87.89 41.70 69.24 88.67 48.63 69.73
50 88.96 42.48 68.85 88.57 46.68 69.24
100 88.38 42.19 70.02 88.77 46.48 71.19

CIFAR-100

- 76.66 0.00 2.44 76.66 0.00 2.44
5 62.11 15.43 35.74 62.79 17.58 38.87

10* 62.21 15.33 36.52 64.45 20.02 39.26
20 63.67 15.62 37.89 65.23 18.65 40.62
50 62.40 16.31 37.79 63.87 19.14 39.94
100 63.28 15.23 36.62 66.02 18.85 39.84

I ADOPTING VPSDE(DDPM++) AND EDM MODELS IN DBP

In the previous discussion of the robustness of DBP models, as detailed in Section 4.1, our focus
was primarily on the DDPM and DDIM models. We now extend our analysis to include VPSDE
(DDPM++) and EDM (Karras et al., 2022) models. VPSDE (DDPM++) is the diffusion model used
in DiffPure.

From a unified perspective, diffusion process can be modeled by stochastic differential equations
(SDE) (Song et al., 2021). The forward SDE, as described in Equation (14), converts a complex
initial data distribution into a simpler, predetermined prior distribution by progressively infusing
noise. This can also be done in a single step, as shown in Equation (15), mirroring the strategy of
DDPM described in Equation (2). Reverse SDE, as explained in Equation (16), reverses this process,
restoring the noise distribution to the original data distribution, thus completing the diffusion cycle.

dx = f(x, t)dt+ g(t)dw, (14)

p0t(x(t) | x(0)) =

N
(
x(t); e−

1
4 t

2(β̄max−β̄min)− 1
2 tβ̄minx(0), I − Ie−

1
2 t

2(β̄max−β̄min)−tβ̄min

)
, t ∈ [0, 1]

(15)

dx =
[
f(x, t)− g2(t)∇x log pt(x)

]
dt+ g(t)dw̄. (16)
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The reverse process of SDEs also derives equivalent ODEs Equation (17) for fast sampling and exact
likelihood computation, and this Score ODEs corresponds to DDIM.

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt. (17)

By modulating the stochasticity, we can craft a spectrum of semi-stochastic models that bridge pure
SDEs and deterministic ODEs, offering a range of stochastic behaviors.

EDM provides a unified framework to synthesize the design principles of different diffusion models
(DDPM,DDIM,iDDPM (Nichol & Dhariwal, 2021),VPSDE,VESDE (Song et al., 2021)). Within
this framework, EDM incorporates efficient sampling methods, such as the Heun sampler, and
introduces optimized scheduling functions σ(t) and s(t). This allows EDM to achieve state-of-the-art
performance in generative tasks.

EDM forward process could be presented as:

xt = x0 + σ(t∗) ∗ ϵ, ϵ ∼ N (0, I), (18)

where we choose σ(t∗) = 0.5 for clean and robust accuracy tradeoff. And for reverse process, EDM
incorporates a parameter Schurn to modulate the stochastic noise infused during the reverse process.
For our experiments, we choose 50 reverse steps (50 NFEs, NFEs is Function of Neural Function
Evaluations), configured the parameters with Smin = 0.01, Smax = 0.46, Snoise = 1.007, and
designate Schurn = 0 to represent EDM-ODE, Schurn = 6 to represent EDM-SDE.

As shown in Table 13, our ADDT could also increase the robustness of DPEDM.

Table 13: Clean and robust accuracy (%) on DPEDM for CIFAR-10. ADDT improves robustness in
both DPEDM-SDE and DPEDM-ODE.

Type Vanilla ADDT
DPEDM-SDE DPEDM-ODE DPEDM-SDE DPEDM-ODE

Clean 86.43 87.99 86.33 87.99
l∞ 62.50 60.45 66.41 64.16
l2 76.86 75.49 79.16 77.15

J STRENGTHENING DBP VIA AUGMENTED STOCHASTICITY

Song et al. present a Predictor-Corrector sampler for SDEs reverse process for VPSDE (DDPM++)
(as detailed in Appendix I of Song et al. (2021)). However, standard implementations of VPSDE
(DDPM++) typically use only the Predictor. Given our hypothesis that stochasticity contributes to
robustness, we expect that integrating the Corrector sampler into VPSDE (DDPM++) would further
enhance the robustness of DBP models. Our empirical results, as shown in Table 14, confirm that the
inclusion of a Corrector to VPSDE (DDPM++) indeed improve the model’s defenses ability against
adversarial attacks with l∞ norm constraints. This finding supports our claim that the increased
stochasticity can further strengthen DBP robustness. Adding Corrector is also consistent with ADDT.
Note that the robustness against l2 norm attacks does not show a significant improvement with the
integration of the Extra Corrector. A plausible explanation for this could be that the robustness under
l2 attacks is already quite strong, and the compromised performance on clean data counteracts the
increase in robustness.

Table 14: Clean and robust accuracy (%) on DPDDPM++ for CIFAR-10. Both extra Corrector and
ADDT fine-tuning improved robustness.

Type Vanilla Extra Corrector ADDT ADDT+Extra Corrector

Clean 89.26 85.25 89.94 85.55
l∞ 55.96 59.77 62.11 65.23
l2 75.78 74.22 76.66 76.66
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K DISCUSSION ABOUT RBGM-MAPPED PERTURBATIONS

K.1 MOTIVATION AND ADVANTAGES OF RBGM

In Section 4, we discuss the limitations of Diffusion-Based Perturbation (DBP) models in effectively
purifying adversarial perturbations. To overcome these limitations and simultaneously preserve the
generative ability of the diffusion models, we introduce a novel approach: incorporating “adversarially
selected Gaussian noise” into the diffusion training process.

To elaborate, a conventional diffusion forward process is based on the equation:

xt =
√
αt x0 +

√
1− αt ϵ, (19)

where xt represents the noisy image at time t, x0 is the initial input, αt is a time-dependent scaling
factor, and ϵ is random Gaussian noise. Our proposed method, ADDT, modifies this equation to
include an adversarial component:

xt =
√
αt x0 +

√
1− λ2

t

√
1− αt ϵ+ λt

√
1− αt ϵδ(δ). (20)

In this revised formulation, ϵδ(δ) represents the adversarial perturbation, and λt is a parameter that
controls the blend between traditional and adversarial noise. The core objective of ADDT training is
to generate perturbations that emulate the characteristics of Gaussian noise in conventional diffusion
training while incorporating adversarial disturbances.

This introduces our Rank-Based Gaussian Mapping (RBGM) technique, which retains the relative
ordering of perturbation magnitudes while adjusting the values to more closely resemble a Gaussian
distribution. The advantages of RBGM are twofold:

Enhancing statistical consistency. Raw adversarial perturbation values often exhibit non-standard
distributions, and RBGM serves to recalibrate these perturbations, aligning them more closely with a
Gaussian distribution. To elaborate, rather than enforcing a multivariate Gaussian distribution for the
entire perturbation, RBGM ensures that the distribution of individual perturbation values adheres to
Gaussian characteristics.

The benefit of this transformation can be illustrated in Figure 9 and Figure 10. For a fair comparison,
the perturbation values have been normalized. In Figure 9, the original perturbation values display
a wide array of distributions across different images and time steps. After the mapping of RBGM,
these values are transformed to exhibit a uniform Gaussian distribution.

In Figure 10, the raw perturbations show irregular and inconsistent behavior when mixed with
Gaussian noise at varying ratios. However, after RBGM adjustment, the perturbations and the
mixture exhibit consistent statistics with the pure Gaussian noise. The statistical consistency of the
perturbation values may ease the training of the diffusion model and avoid significant deviation from
the normal diffusion process.

Reducing image-specific dependence. In the training of diffusion models, the Gaussian noise is
independent of specific images or time steps. This approach contrasts with the nature of adversar-
ial perturbations, which are typically tailored to each input. RBGM mitigates this by introducing
stochasticity into the construction of perturbations and merely preserving the ranks of the values of
the image-dependent adversarial perturbations, thus reducing image-specific dependence. This char-
acteristic further ensures the resemblance of ADDT to the diffusion training process and potentially
mitigates the overfitting of training images.

K.2 RBGM-MAPPED PERTURBATIONS PRESERVE ADVERSARIAL CHARACTERISTICS

While RBGM-mapped perturbations are “selected from a Gaussian distribution”, their actual distri-
bution deviates from a pure Gaussian distribution, and are adversarial for models. To substantiate
this claim, we compare the influence of RBGM-mapped perturbations and Gaussian noise on model
performance. In our experiments, we perturb clean images by adding RBGM-mapped perturbations

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 9: Raw perturbation values exhibit diverse distributions across images and time steps. RBGM
maps these perturbations to a uniform Gaussian distribution.
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Figure 10: RBGM ensures that mixing perturbations with Gaussian noise at any ratio yields a
consistent value distribution.

and Gaussian noise, each scaled by a factor of 0.03. The results present in Table 15 demonstrate that
RBGM-mapped perturbations effectively act as adversarial inputs to the model. These perturbations
drastically reduce the accuracy of a pre-trained clean WRN-28-10 from 95.12% to 4.47%.

Table 15: Comparison of model accuracy under different conditions. RBGM-mapped perturbations
lead to a significant reduction in accuracy compared to Gaussian noise.

Model Clean Gaussian noise RBGM-mapped perturbation

WRN-28-10 95.12 81.54 4.47
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K.3 BLENDING ADVERSARIAL PERTURBATIONS INTO DIFFUSION MODEL TRAINING

In conventional adversarial attacks, perturbations are directly applied to the image, resulting in an
adversarial image:

xadv = x0 + δ,

where x0 is the original input image, and δ is the adversarial perturbation. In ADDT, we incorporate
this concept into the diffusion process, redefining the noisy image at time step t as:

xt =
√
αt(x0 + δ) +

√
1− αtϵ,

To enable the diffusion model to effectively purify adversarial perturbations during training, we
reformulate the above equation by merging the perturbation δ with the noise ϵ. This results in:

xt =
√
αt x0 +

√
1− αt (ϵ+ γt δ) ,

where γt is a scaling factor defined as:

γt =

√
αt√

1− αt
.

Since αt is a time-dependent parameter that monotonically decreases from 1 to 0 during the diffusion
process, γt spans the range from 0 to ∞. To ensure the adversarial perturbation remains within a
manageable intensity, we constrain its value to the range between λmin and λmax.

K.4 RBGM ENHANCES PERTURBATION COMPATIBILITY WITH DIFFUSION MODEL TRAINING

To illustrate how RBGM enhances the compatibility of perturbations with diffusion model training,
we conduct comparative analyses in two scenarios. First, we assess the impact of RBGM on statistical
consistency by comparing Gaussian noise with adversarial perturbations reordered based on Gaussian
noise ranks. Second, we evaluate the effectiveness of RBGM-mapped perturbations in improving
model robustness while maintaining generative performance by comparing them with ℓ2-normalized
perturbations.

Gaussian noise vs. adversarial perturbations ordered by Gaussian noise We begin by examining
RBGM’s influence on statistical consistency through two training methodologies:

1. Vanilla: Trained with standard Gaussian noise.
2. ADDTGaussian reorder: Trained with adversarial perturbations reordered according to Gaussian

noise ranks. To ensure a fair comparison, the perturbations are normalized to have a
mean of 0 and a variance of 1, as their original magnitudes (derived from accumulated
gradients) are significantly smaller than those of standard Gaussian noise. Note that this
approach—reordering adversarial perturbations based on Gaussian noise ranks—is distinct
from RBGM, where Gaussian noise is reordered based on adversarial perturbation ranks.

The results presented in Table 16 reveal that models trained with Gaussian noise reordering using
adversarial perturbation values exhibit lower accuracy on both clean and adversarial samples compared
to vanilla models. This decline in performance underscores RBGM’s ability to enhance perturbation
compatibility with diffusion model training by improving statistical consistency.

Table 16: Comparison of DPDDPM accuracy under different conditions and perturbation types. Train-
ing with perturbations reordered by Gaussian noise and adversarial perturbation values degrades
performance.

NFEs Vanilla ADDTGaussian reorder
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

5 49.51 21.78 36.13 48.40 21.10 33.40
10 73.34 36.72 55.47 71.78 34.07 52.98
20 81.45 45.21 65.23 79.99 42.43 64.21
50 85.54 46.78 68.85 83.90 46.73 68.17

100 85.94 47.27 69.34 84.54 46.98 69.33
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RBGM-mapped perturbations vs. ℓ2-normalized perturbations To further investigate RBGM’s
effectiveness in managing adversarial perturbations, we compare:

1. ADDT: Trained with RBGM-mapped perturbations.

2. ADDTℓ2-normalized: Trained with raw adversarial perturbations, scaled to match the ℓ2 norm
of standard Gaussian noise. This scaling ensures that the perturbations share the same ℓ2
norm as those mapped by RBGM, which we refer to as ℓ2-normalized perturbations.

As shown in Table 17, models trained with ℓ2-normalized perturbations tend to perform better under
ℓ2 attacks in some scenarios (possibly because these perturbations are more similar to those generated
by ℓ2 attack during testing). ADDT generally achieves better results. This advantage is particularly
pronounced under ℓ∞ attacks and in scenarios with higher NFEs. Furthermore, as shown in Table 18,
ADDT yields a lower FID value, reflecting better preservation of generative capabilities.

Table 17: Comparison of DPDDPM accuracy under different perturbation conditions. Training with
ADDT leads to improved performance.

NFEs ADDT ADDTℓ2-normalized
Clean ℓ∞ ℓ2 Clean ℓ∞ ℓ2

5 59.96 30.27 41.99 60.40 28.47 44.58
10 78.91 43.07 62.97 79.29 41.90 63.72
20 83.89 48.44 69.82 83.59 47.85 67.68
50 85.45 50.20 69.04 84.83 49.12 69.24

100 85.64 51.46 70.12 84.97 49.95 69.29

Table 18: FID scores of DPDDPM under different training conditions. Training with ADDT result in
lower FID score compared to ℓ2 normalization.

Clean fine-tuning ADDT ADDTℓ2-normalized

FID 3.50 5.190 5.678

As discussed in Appendix K.1, the primary objective during ADDT training is to design perturbations
that emulate the characteristics of traditional diffusion models. In this context, both RBGM and
ℓ2 normalization serve as approximations of Gaussian noise. Yet, RBGM provides a more precise
approximation, enhancing robustness and maintaining the generative performance more effectively
than ℓ2 normalization.

L EVALUATION WITH FIXED AUTOATTACK

AutoAttack (Croce & Hein, 2020), an ensemble of White-box and Black-box attacks, is a popular
benchmark for evaluating model robustness. It is used in RobustBench (Croce et al., 2020) to evaluate
over 120 models. However, Nie et al. (2022) finds that the Rand version of AutoAttack, designed
to evaluate stochastic defenses, sometimes yields higher accuracy than the Standard version that is
intended for deterministic methods. Our comparison of AutoAttack and PGD20-EoT10 in Table 19
also shows that the Rand version of AutoAttack gives higher accuracy than the PGD20-EoT10 attack.

We attribute this to the sample selection of AutoAttack. As an ensemble of attack methods, AutoAttack
selects the final adversarial sample from either the original input or the attack results. However, the
original implementation neglects stochasticity and considers a adversarial sample to be sufficiently
adversarial if it gives a false result in one evaluation. To fix this, we propose a 20-iteration evaluation
and selects the adversarial example with the lowest accuracy. The flawed code is in the official GitHub
main branch, git version a39220048b3c9f2cca9a4d3a54604793c68eca7e, and specifically in lines
#125, #129, #133-136, #157, #221-225, #227-228, #231 of the file ’autoattack/autoattack.py’. We
will open source our updated code and encourage future stochastic defense methods to be evaluated
against the fixed code. The code now can be found at: https://anonymous.4open.science/r/auto-attack-
595C/README.md.
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After the fix, robust accuracy under AutoAttack drops by up to 10 points, producing similar results to
our PGD20-EoT10 test results. However, using AutoAttack on DPDDPM with S = 1000 took nearly
25 hours, five times longer than PGD20-EoT10, so we will use PGD20-EoT10 for the following test.

Table 19: AutoAttack (Rand version) and PGD20-EoT10 performance on DBP methods for CIFAR-
10 (the lower the better). The original AutoAttack produces high accuracy (%), after fixing, it achieves
similar results to PGD20+EoT10 attack.

Method l∞ l2
AutoAttack AutoAttackFixed PGD20-EoT10 AutoAttack AutoAttackFixed PGD20-EoT10

DiffPure 62.11 56.25 55.96 81.84 76.37 75.78
DPDDPM-1000 57.81 46.88 48.63 71.68 71.09 72.27
DPDDIM-100 50.20 40.62 44.73 77.15 70.70 71.68

Table 20: Clean and robust accuracy (%) on different DBP methods for CIFAR-10, evaluated with
AutoAttackADDT (Rand version). All methods show consistent improvement when fine-tuned with
ADDT.

Method Vanilla ADDT
Clean l∞ l2 Clean l∞ l2

DiffPure 89.26 56.25 76.37 89.94 58.20 77.34
DPDDPM 85.94 46.88 71.09 85.64 48.63 72.27
DPDDIM 88.38 40.62 70.70 88.77 44.73 71.68

M COMPARING RBGM-MAPPED PERTURBATIONS WITH l∞ PERTURBATIONS

In Section 6.3, we briefly explore the generation capabilities of diffusion models trained with RBGM-
mapped and l∞ perturbations. Here, we provide further experiment and delve deeper into their
robustness comparison. To train with l∞ perturbations, we adjust ADDT, replacing RBGM-mapped
perturbations with l∞ perturbations. Here, instead of converting accumulated gradients to Gaussian-
like perturbations, we use a 5-step projected gradient descent (PGD-5) approach. For fair comparison,
we also set λunit = 1, λmin = 0, λmax = 10 and refer to this modified training protocol as ADDTl∞ .

Table 21: Clean and robust accuracy (%) on DBP models trained with different perturbations for
CIFAR-10. While ADDT simultaneously improves clean accuracy and robustness against both l2 and
l∞ attacks. ADDTl∞ primarily improves performance against l∞ attacks.

Method Dataset Vanilla ADDT ADDTl∞
Clean l∞ l2 Clean l∞ l2 Clean l∞ l2

DPDDPM-1000
CIFAR-10 85.94 47.27 69.34 85.64 51.46 70.12 84.47 52.64 68.55
CIFAR-100 57.52 20.41 37.89 59.18 23.73 41.70 57.81 23.24 40.04

DPDDIM-100
CIFAR-10 88.38 42.19 70.02 88.77 46.48 71.19 88.48 50.49 70.31
CIFAR-100 63.28 15.23 36.62 66.02 18.85 39.84 64.84 20.31 39.36

We evaluate the clean and robust accuracy of ADDT and ADDTl∞ fine-tuned models. These
models exhibit different behaviors. As shown in Table 21, while Gaussian-mapped perturbations can
simultaneously improve clean accuracy and robustness against both l2 and l∞ attacks, training with
l∞ perturbations primarily improves performance against l∞ attacks.

N ADDITIONAL EXPERIMENTS UNDER DETERMINISTIC WHITE-BOX SETTING

Evaluation across different models We extend our analysis to include VPSDE and EDM models
under the proposed Deterministic White-Box (DW-box) attack scenario. The results, presented in
Table 22, demonstrate that ADDT consistently improves robustness across different models.

Evaluation across different NFEs We also investigate the robustness under the Deterministic
White-box Setting across varying NFEs. The comparison of performance between vanilla models and
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Table 22: DW-box accuracy (%) under ℓ∞ perturbations for various models. ADDT consistently
improves robustness across all models.

Model Vanilla ADDT

DPDDPM 16.80 39.16
DPDDIM 4.98 17.09
DiffPure 22.76 51.63
DPEDM 13.33 32.94

ADDT fine-tuned models, shown in Figure 11, highlights that ADDT consistently enhances model
performance at different NFEs. This improvement is particularly pronounced at lower NFEs, further
confirming that ADDT enables diffusion models to more effectively counter adversarial perturbations.
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Vanilla, White-box (EoT)
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Figure 11: Revisiting Deterministic White-box Robustness. ADDT consistently improves robustness
under both White-box and Deterministic White-box setting, implying that ADDT strengthens the
models’ ability to handle adversarial inputs.

O SENSITIVITY ANALYSIS OF λunit

In Section 6.1 we choose λunit=0.03 because most of the adversarial perturbations are in this range.
We also provide an ablation study here, which shows that the performance of ADDT is insensitive to
λunit and gets a consistent improvement.

Table 23: Sensitivity analysis of λunit, ADDT is insensitive to it and gets a consistent improvement
on robust accuracy (%).

Attack type \NFEs λunit 5 10 20 50 100

l∞

Clean 21.78 36.72 45.21 46.78 47.27
0.02 24.02 40.92 48.14 48.83 48.93
0.03 30.27 43.07 48.44 50.20 51.46
0.04 31.25 44.92 50.68 51.07 50.88

l2

Clean 36.13 55.47 65.23 68.85 69.34
0.02 41.99 61.72 67.48 69.82 70.31
0.03 41.99 62.97 69.82 69.04 70.12
0.04 49.02 64.45 69.24 69.53 69.92

P COMPUTATIONAL COST ANALYSIS FOR TRAINING AND INFERENCE

Fine-tuning DDPM and DDIM models using ADDT to achieve near-optimal performance requires
50 epochs and approximately 12 hours of training on 4 NVIDIA GeForce RTX 2080 Ti GPUs. This
efficiency matches that of traditional adversarial training approaches and is notably faster than recent
adversarial training techniques that utilize diffusion models for dataset augmentation (Wang et al.,
2023). However, testing DPDDPM and DPDDIM involves significant computational expense due to
the use of Expectation over Transformation (EoT). For instance, validating 1,024 images on the
CIFAR10/CIFAR100 datasets takes approximately 5 hours on the same GPU configuration.

One of the key advantages of ADDT is its "train-once" approach. Once the initial training is complete,
ADDT can protect multiple classifiers without requiring additional fine-tuning, as demonstrated in
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Table 4. This is in stark contrast to adversarial classifier training, where each classifier demands
individual training.

During inference, models trained with ADDT have a similar complexity to standard DBP. However,
their performance gains in accelerated scenarios offer the potential for a reduction in computational
overhead. As shown in Table 3, DPDDPM + ADDT achieves comparable performance to DPDDPM
while requiring only 20 NFEs, resulting in up to an 80% reduction in computation time compared to
the 100 NFEs required for DPDDPM.

Q CREDIBILITY OF OUR PAPER

The code was developed independently by two individuals and mutually verified, with consistent
results achieved through independent training and testing. We will also make the code open-source
and remain committed to advancing the field.

R BROADER IMPACT AND LIMITATIONS

Our work holds significant potential for positive societal impacts across various sectors, including
autonomous driving, facial recognition payment systems, and medical assistance. We are dedicated
to enhancing the safety and trustworthiness of global AI applications. However, there are potential
negative societal impacts, particularly concerning privacy protection, due to adversarial perturbations.
Nonetheless, we believe that the positive impacts generally outweigh the potential negatives. Regard-
ing the limitations, our approach could benefit from integrating insights from traditional adversarial
training methods (Zhang et al., 2019; Shafahi et al., 2019; Wang et al., 2023), such as through more
extensive data augmentation and a refined ADDT loss design. Nevertheless, these limitations are
minor and do not significantly detract from the overall contributions of this paper. We believe that
these new findings and perspectives could have a sustained impact on future research on DBP, which
is a promising approach to adversarial defense and could be more valuable for real-world applications,
although existing studies on DBP are at an early stage.
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