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ABSTRACT

Recent compositional scene representation learning models have become remark-
ably good in segmenting and tracking distinct objects within visual scenes. Yet,
many of these models require that objects are continuously, at least partially, visible.
Moreover, they tend to fail on intuitive physics tests, which infants learn to solve
over the first months of their life. Our goal is to advance compositional scene
representation algorithms with an embedded algorithm that fosters the progres-
sive learning of intuitive physics, akin to infant development. As a fundamental
component for such an algorithm, we introduce Loci-Looped, which enables the
recently published unsupervised object location, identification, and tracking neural
network architecture (Loci-v1, Traub et al., ICLR 2023) to learn about object
permanence and directional inertia via an internal processing loop. The loop learns
to flexibly and adaptively blend pixel-space information with anticipations yielding
information-fused activities as percepts. We show that Loci-Looped learns to track
objects through extended periods of object occlusions, without the need for an ex-
plicit history buffer or any supervised information about objects. We even find that
Loci-Looped surpasses state-of-the-art models on the ADEPT and the CLEVRER
dataset when confronted with object occlusions or temporary sensory data interrup-
tions. Our work thus introduces the first self-supervised learning model that learns
about object permanence and directional inertia from video without supervision.

1 INTRODUCTION

State-of-the-art Artificial Intelligence (AI) systems achieve impressive performance in object detec-
tion, instance segmentation, and object tracking tasks (He et al., 2017; Wang et al., 2022). Yet these
systems hardly develop any intuitive physical knowledge, such as object permanence (i.e., objects
continue to exist when hidden) or directional inertia (i.e., objects continue their motion unless acted
on by an external force) (Weihs et al., 2022). This understanding, however, is key to interact with our
environment flexibly and effectively in a goal-directed manner (Butz, 2021; Lake et al., 2016; Spelke
& Kinzler, 2007; Spelke et al., 1992).

During infancy, humans learn physical concepts in the form of expectations about how objects behave
(Aguiar & Baillargeon, 1996; Lin et al., 2022; Summerfield & Egner, 2009). These expectations
have been explicitly probed with the Violation-of-Expectation (VoE) paradigm (Baillargeon et al.,
1985): infants (a few months old) are shown videos that either adhere to (e.g., an occluded object
reappears) or violate (e.g., an occluded object vanishes) a physical concept while monitoring their
gaze behavior. When the necessary physical knowledge has developed, they look longer at physical
violations compared to similar normally unfolding scenes. The VoE paradigm is directly compatible
with predictive coding (Clark, 2013; Butz et al., 2021; Den Ouden et al., 2012) and prediction error
signals that allow the segmentation of the stream of information into event-predictive structures (Butz
& Kutter, 2017; Lin et al., 2022; Zacks et al., 2007).

The challenge to model the development of object permanence in artificial neural network reaches
back to experiments in the last century with recurrent neural networks (Munakata et al., 1997). In
a recent study working with actual video data, Piloto et al. (2022) leveraged the idea of predictive
coding. They first trained a deep learning model on next-frame prediction tasks and then assessed the
model’s understanding of intuitive physics using the VoE paradigm, indicating that their model had
learned multiple physical concepts. Although the model was trained in a self-supervised manner, it
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received supervised information regarding the location and identity of each object in the scene in the
form of object-respective ground truth masks. Thus, while Piloto et al. (2022) have solved parts of the
intuitive physics problem, solutions to the segmentation and tracking problems were provided a priori.
Particularly the challenge of learning object permanence was side-stepped via the provided object
masks. Other individual solutions exist for learning object segmentations (Burgess et al., 2019; Greff
et al., 2020; Traub et al., 2023b; Wu et al., 2023b), tracking (Creswell et al., 2021; Traub et al., 2023b;
Wu et al., 2023b), and other intuitive physics problems (Riochet et al., 2022; Smith et al., 2019). A
model that would learn all intuitive physical properties end-to-end from videos is still missing.

We propose Loci-Looped, enabling the recently introduced location and identity tracking model
(Traub et al., 2023b), named Loci (here referred to as Loci-v1), to solve the problem of learning about
object permanence. Instead of relying on ground truth information about the location and identity
of objects, Loci-v1 learns through self-supervision to both segment a scene into individual objects
and track the objects over time. It implements a slot-wise encoder-transition-decoder architecture
that produces image predictions about the location and appearance of objects at the next time step,
including predictions about temporarily hidden objects. Although Loci-v1 significantly improved
state-of-the-art performance in the CATER benchmark (Girdhar & Ramanan, 2019), our analyses have
revealed that Loci-v1’s predictive abilities are partially compromised when objects are progressively
occluded, extensively occluded, or proceed with their inertial movement behind the occluding object.
Moreover, Loci-v1’s ability to imagine the progression of interaction dynamics is limited: it needs to
generate closed-loop imaginations via its outer, sensory loop. We provide further internal recurrent
information to the outer sensory loop in Loci-Looped. Moreover, we equip the model with an inner
processing loop, enabling Loci-Looped to imagine object-centric latent state dynamics—much like
the dreamer architecture (Hafner et al., 2020; Wu et al., 2023a)—but via interpretable, object-identity
and location-encoding slots. Key for closing the inner loop was to add gates that allow the model to
flexibly fuse current observations (outer loop) with its latent predictions (inner loop).

As our main results, we show that Loci-Looped learns, fully unsupervised, to

• adaptively and selectively fuse internal beliefs with external evidence;

• track moving objects over time, particularly also when they are hidden over extended periods
of time or when blackouts temporarily conceal visual information;

• show surprise when objects do not reappear where and when they should;

• form concepts of object permanence and directional inertia from scratch—an ability that has
not yet been achieved by any other fully self-supervised learning system.

2 RELATED WORK

Recently various approaches in the field of compositional scene representation learning have been
proposed. These methods share the idea of decomposing a scene into multiple components and
representing the scene by a composition of these individual parts. Ideally this decomposition
corresponds to semantically meaningful image parts (e.g., objects). Following Yuan et al. (2023), we
give a brief overview of the main characteristics of six recent models, namely Slot Attention (Ding
et al., 2021), SAVi (Kipf et al., 2022), SlotFormer (Wu et al., 2023b), G-SVM (Lin et al., 2020),
MONet (Burgess et al., 2019), and Loci-v1 (Traub et al., 2023b).

Layer Composition When modeling a scene as a composition of individual layers, the question
arises how these layers are merged to reconstruct the scene. Two approaches are commonly used. In
the first approach, exemplified by MONet, the value of a pixel is only determined by one layer that is
sampled based on spatial mixture weights. Alternatively, the scene can be reconstructed by summing
over all layers while weighting the contribution of each layer in each pixel individually. SlotAttention,
SAVi, Slotformer, G-SVM, and Loci-v1 employ such a summation approach to reconstruct the scene.

Shape Representation When objects are occluded, the representation of full object shapes becomes
challenging. Methods like SlotAttention, Slotformer, SAVi, and MONet simplify the problem by
focusing solely on representing visible object shapes within a flattened scene representation. On
the other hand, G-SVM and Loci-v1 pursue a more holistic scene representation. They represent
complete object shapes and order them based on depth variables. Only the latter approach enables
the composition of scenes with occluded objects.

2



Under review as a conference paper at ICLR 2024

Object Representation Objects are typically encoded as low-dimensional vectors, serving as an
information bottleneck that facilitates scene decomposition. Approaches such as SlotFormer, Savi
and SlotAttention sample these encodings from a prior distribution within generative models. In
contrast, G-SVM, MONet and Loci-v1 do not depend on a prior distribution.

Object Counting Methods vary in their capacity to explicitly count and represent the number of
objects in a scene. Unlike other approaches, G-SVM and Loci-v1 can flexibly adjust the number
of components that are used to represent the scene. Consequently, they can explicitly capture and
represent the actual number of objects present.

Attention Mechanism The integration of relational information between scene components is com-
monly achieved through the use of attention mechanisms. Attention can be employed to model
relations between rectangular image regions, such as object bounding boxes, or to capture relation-
ships between arbitrary-shaped image regions based on object representations. The latter approach is
used by SlotAttention, Slotformer, SAVi, MONet, and Loci-v1.

Intuitive Physics Recently, the PLATO model (Piloto et al., 2022) and the ADEPT model (Smith
et al., 2019) have gained attention for introducing models that learn the physical concepts of object
permanence, solidity, and continuity. While both models adopt object-centric architectures, they rely
on pre-existing segmentation information and supervision. A comprehensive review of these models
can be found in the Appendix A.1. We show that Loci-Looped learns about object permanence and
directional inertia without any segmentation information or any other type of supervised information.

3 METHOD

We give a brief introduction to Loci-v1 (Traub et al., 2023b) including its formalization. We then
introduce our novel developments defining Loci-Looped. Appendix A.3 provides further details.

3.1 LOCI-V1

Loci-v1 consists of three main components: an encoder module that parses visual information into
object representations, a transition module that projects these representations into the future, and a
decoder module that reconstructs a visual scene from this prediction. Each of the three components
comprises k slots that share their weights. Each slot is dedicated to process one object. It may stay
empty when more slots than objects are available.

The ResNet-based, slotted encoder module receives the current frame It, the previous prediction
error Et, a background mask M̂ t

bg as well as slot-specific predictions of position Q̂t
k, visibility mask

M̂ t,v
k , RGB slot image R̂t

k, and the summed visibility mask of the remaining slots M̂ t,s
k . Positions

are encoded as isotropic Gaussians in pixel space, visibility masks as grayscale images. The encoder
produces Gestalt codes G̃t

k and positional codes P̃ t
k as output. Gestalt codes encode shape and surface

patterns, while positional codes include object location (xk, yk), size (σk), and priority (ρk).

The transition module predicts the encodings at the next timestep, namely Ĝt+1
k and P̂ t+1

k via a
combination of residual slot-wise recurrent and across-slot multi-head attention layers. Notably,
the recurrent layers do not receive a history of object states depicting previous object dynamics.
Following the transition module, the Gestalt codes are binarized, creating an information bottleneck
that biases the slots to develop factorized compositional encodings of entities.

The decoder module then reconstructs the predicted scene. It constructs slot-wise density maps as
object masks. The masks stand in competition with each other in the form of a priority attention. The
decoder then upscales to the full input resolution via a ResNet architecture, producing the prediction
of RGB slot image R̂t+1

k , visibility mask M̂ t+1,v
k , and position Q̂t

k. All slot outputs are unified in
the prediction R̂t+1, by taking the sum over the RGB slot images weighted by the visibility masks
and the background mask. Along with the next input frame It+1 the prediction serves to generate
prediction error Et+1. This process repeats in each timestep.
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3.2 LOCI-LOOPED

3.2.1 OBJECT MASK

The encoder of Loci-v1 is only directed to the processing of visible objects. To enable the encoder of
Loci-Looped to account for both visible and partially occluded objects, we introduce an additional
mask that depicts the area of the image where an object is present. To compute object mask M t,o

k
we assume that only slot-object k is in the scene, ignoring the remaining slots. Consequently, in the
decoding process slot k only competes with the background for visibility yielding object mask

M t,o
k =

exp(M t
k)

exp(M t
k) + exp(M t

bg)
, (1)

where M is generated by the decoder (see Appendix 1). Note the difference between the visibility
mask and the full object mask. The latter encodes the complete 2D object shape, while the visibility
mask only depicts those parts that are currently visible. As a result, the visibility mask is a subset of
the object mask, and the two are identical when the object is fully visible (see Fig. 1).

Figure 1: The inputs to the encoder of slot k for one timestep, here depicting the blue object in
the scene. Auto-regressive inputs are marked with a hat. From left to right: Current video frame,
background mask, prediction error, reconstructed RGB slot image, Gaussian position map, object
mask, visibility mask, and the summation of the visibility masks of the remaining slots.

3.2.2 OCCLUSION STATE

The introduction of the object mask enables Loci-Looped to determine the degree of occlusion for
each object. We calculate the occlusion state Ot

k as follows:

Ot
k = 1−

∑
i,j [M

t,v
k (i, j) > θ]∑

i,j [M
t,o
k (i, j) > θ] + c

, (2)

where θ is a threshold value, which we set to 0.8, and c is a small constant. By counting the number
of pixels larger than threshold θ, the denominator determines the total area of the object, while the
numerator determines the visible area of the object. The occlusion state ranges from 0 (fully visible)
to 1 (fully occluded), allowing Loci-Looped to explicitly represent the state of occlusion, increasing
interpretability and serving as input to the percept gate controller.

3.2.3 PERCEPT GATE

Loci-v1’s object tracking approach draws inspiration from Kalman filtering, which iteratively predicts
object state changes and then adaptively fuses these predictions with current observations (Kalman,
1960). Accordingly, Loci-v1 predicts the next object states, decodes them into pixel space and
then uses these predictions along with the current frame to produce new object states (see Figure 2;
outer loop). While the Kalman filter separates the steps of observation and information fusion,
Loci-v1 observes and fuses jointly and implicitly in the encoding process. This is advantageous when
fusing pixel-based information (e.g., combining hidden and visible object parts). However, when the
model needs to fully maintain its own predictions because the current frame does not provide new
information (e.g., during full occlusion), the encoding process becomes inefficient. Meanwhile, work
from model-based reinforcement learning advocates the efficiency and precision of predicting directly
in latent space (Hafner et al., 2019; 2020; Ha & Schmidhuber, 2018). Latent world models can be
used to imagine how a scene will unfold while not being provided with new observations, fitting the
problem of occlusion well. Therefore, we introduce an inner processing loop in Loci-Looped, which
enables the model to propagate internal imaginations over time in latent space (see Figure 2; inner
loop).
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Figure 2: The slot-wise processing architecture of Loci-Looped. Predictions are made available on
two routes. First, through an outer loop in pixel-space enabling consistent object tracking over time.
Second, through an inner loop allowing for latent imaginations.

Similar to the Kalman filter, we equip the model with the ability to linearly interpolate between the
current observations and the last predictions. Formally, the current object states Gt

k, P t
k become a

linear blending of the observed object states G̃t
k, P̃ t

k and the predicted object states Ĝt
k, P̂ t

k:

Gt
k = αt,G

k G̃t
k + (1− αt,G

k )Ĝt
k (3)

P t
k = αt,P

k P̃ t
k + (1− αt,P

k )P̂ t
k (4)

The weighting α is specific for each Gestalt and position code in each slot k. Importantly, Loci-
Looped learns to regulate the two percept gates on its own in a fully self-supervised manner. It learns
an update function gθ, which takes as input the observed state S̃t

k, the predicted state Ŝt
k, and the last

positional encoding P t−1
k :

(zt,Gk , zt,Pk ) = gθ(S̃
t
k, Ŝ

t
k, P

t−1
k ) + ε with ε ∼ N (0,Σ), (5)

where a state comprises the Gestalt encoding, the positional encoding, and the occlusion state. By
adding Gaussian noise with a fixed standard deviation Σ to the function gθ, the gates tend to either
close or open, rather than remaining partially open. We model gθ with a feed-forward network (see
Appendix A.3.2). To be able to fully rely on its own predictions, Loci-Looped needs to be able to
fully close the gate by setting α exactly to zero. We therefore use a rectified hyperbolic tangent to
compute α:

(αt,G
k , αt,P

k ) = max(0, tanh((zt,Gk , zt,Pk ))). (6)

To encourage robust world models without the reliance on continuous external updates, we impose
an L0 loss on gate openings (see Section 3.3) encouraging the sparse use of observations. The intro-
duction of the percept gate enables Loci-Looped to control its perception flexibly fusing predictions
with observations, essentially estimating their relative information values.

3.3 TRAINING

We adopt the training procedure of Loci-v1. Loci-Looped is trained in a wholly unsupervised
manner and undergoes end-to-end training, utilizing the rectified Adam optimization (Liu et al.,
2021) in conjunction with truncated backpropagation through time (see Appendix A.3.4 for details).
A complete list of the training losses used is presented in Table 1. Compared to Loci-v1, we
dispense the use of an object permanence loss, which explicitly facilitated the maintenance of object
representations in case of occlusions. Instead, Loci-Looped learns the concept of object permanence
autonomously. Furthermore, it is worth noting that the percept gates do not only control the forward
information flow, but also the backward flow of gradients. When the percept gates are closed, the
error signal is only backpropagated to the transition module but not to the encoder module, which
could lead to its degeneration. To avoid this, we incorporate a reconstruction loss in Loci-Looped
that is directly derived from the current observations (see Appendix A.3.2 for details).
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Table 1: Training losses used by Loci-v1 and Loci-Looped, where BCE denotes the pixel-wise binary
cross-entropy loss, D denotes the decoder, p0 the image center and Θ the Heaviside function.

Loss Term Loci-v1 Loci-Looped

Next-Frame Prediction BCE(It+1,D(Ĝt+1, P̂ t+1)) ✓ ✓

Gestalt Change Regularization
∑

k

[
Dk(p0, G

t
k)−Dk(p0, Ĝ

t+1
k )

]2
✓ ✓

Position Change Regularization
∑

k

[
P t
k − P̂ t+1

k

]2
✓ ✓

Object Permanence Regularization
∑

k

[
Dk(P

t
k, G

t
k)−Dk(P

t
k, G

t

k)
]2

✓ -
Input-Frame Reconstruction MSE(It,D(G̃t, P̃ t)) - ✓
Gate Opening Regularization

∑
k(Θ(αt,G

k ) + Θ(αt,P
k )) - ✓

4 EXPERIMENTS AND RESULTS

We evaluate Loci-Looped demonstrating that it learns (i) to reliably identifyobjects and to track them
through occlusion, (ii) the concept of object permanence, anticipating the reappearance of occluded
objects in VoE-like settings, and (iii) to handle situations where visual data is temporarily missing.

4.1 OBJECT IDENTIFICATION AND TRACKING

Dataset We train on the ADEPT (Smith et al., 2019) dataset. The training set contains 1000
synthetic videos displaying up to 7 solid objects traversing the scene with constant speed and
direction. The training set shows physically plausible dynamics including partial and full object
occlusions, while excluding any other object interactions (e.g. collisions). We use 35 videos of the
ADEPT vanish scenario as test set. This scenario starts with a large screen placed in the center of the
scene. Then one or two objects enter the scene from opposite directions, disappear behind the screen,
traverse the area behind the screen while hidden, reappear on the other side of screen, and finally exit
the scene. The traversing objects are not visible for 10.3 frames on average which equals 25.0% of
their total time being present.

Baselines We compare Loci-Looped against Loci-v1 and SAVi (Kipf et al., 2022). Additionally,
we perform two ablation experiments. In the first one, we train a version of Loci-Looped with its
percept gate deactivated, labelling this variant Loci-Unlooped. In the second one, we switch to the
inner loop directly proportionally to the perceived occlusion state of each object (i.e. αt

k = 1−Ot
k),

terming this variant Loci-Visibility.

Metric We evaluate the performance of the models with respect to two key capabilities. First,
we quantify how well the models detect objects and identify them temporally consistently using
Multiple Object Tracking Accuracy (MOTA) (Bernardin & Stiefelhagen, 2008). Second, we quantify
the model’s tracking error as the distance between estimated object positions and the true object
positions. The estimated object positions can be easily extracted as Loci-Looped represents positional
information explicitly. To extract object positions from the SAVi model, we first calculate object
masks for each slot (see Section 3.2.1) and then determine the center of these. Importantly, temporarily
occluded objects are included in both metrics (see Appendix A.4 for details).

Results The average tracking error and the MOTA are listed in Table 2. Loci-Looped outperforms
both baseline models by a large margin. The fact that the tracking error hardly increases in occlusion
shows that Loci-Looped imagined the trajectory of hidden objects with high precision. At this point,
allow us to emphasize that this precision is remarkable seeing that Loci-Looped was never informed
about the location or existence of objects. Importantly, 96.6% of slots that were recruited before the
occlusion phase achieved a final tracking error (i.e., the tracking error in the moment the objects exit
the scene) smaller than 10%, indicating that these slots tracked their assigned objects successfully
throughout the entire scene. The poor tracking results of Loci-Unlooped and Loci-Visibility suggest
that the internal loop and its adaptive control is critical for successfully tracking objects through
occlusions. Please see Appendix A.6.2 for detailed illustrations of the scene and the corresponding
slot representations.
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Table 2: Tracking results.
Mean Successful MOTA Mean

Tracking Error (%) trackings (%) Gate Openings (%)

Model Visible Occluded Overall Overall Visible Occluded

SAVi 26.7 ± 12.6 19.1 ± 9.8 3.2 -0.67 - -
Loci-v1 12.5 ± 10.3 16.2 ± 7.5 38.4 -1.34 - -
Loci-Unlooped 12.4 ± 14.8 7.7 ± 4.2 7.4 0.76 100 100
Loci-Visibility 7.7 ± 10.6 6.7 ± 6.3 43.6 0.64 100 0
Loci-Looped 2.6 ± 2.7 2.7 ± 1.9 96.6 0.84 8.9 ± 11.7 0.8 ± 3.9

4.2 OBJECT PERMANENCE

Having seen that Loci-Looped tracks objects successfully through occlusion, we now test whether it
has also learned to anticipate their reappearance.

Test scenario We focus on the ADEPT’s vanish scenario that tests the concept of object permanence
and directional inertia. The surprise condition (11 videos) features two objects but only one object
reappears from behind the screen while the other vanishes while behind the screen. See Section 4.1 for
the control condition. This scenario is designed to test the model’s anticipation about the reappearance
of the occluded object.

Slot Error To quantify an object- and thus slot-specific surprise we compute a slot error as follows:

Et
k =

∑
i,j

[
(It+1 − R̂t+1)⊙ M̂ t,v

k

]2∑
i,j M̂

t,v
k

, (7)

where the overall prediction error is simply masked by the visibility mask of slot k.
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Figure 3: Results on the VoE ex-
periment. Surprise is quantified as
the maximum slot error in the corre-
sponding frame interval.

In addition, we divide the error by the sum of the visibility
mask values to make the error invariant to the size of the
object. For the following analysis we only consider slots
that represent non-occluder objects and that achieved a final
tracking error smaller than 10%.

Results Loci-Looped maintains a clear object representa-
tion throughout the entire occlusion as shown in Figure 4. No-
tably, the model’s surprise response indicates a significantly
greater level of surprise when hidden objects fail to reappear.
Notably, this is the case for both time points: when the object
should reappear after having slid past the occluder and when
the occluder falls over after having not re-appeared before (cf.
Figure 3a; t(75) = 1.69, p = .047; t(75) = 3.68, p < .001;
as well as error peaks in Figure 3b around frames 30 and
65). The supplementary video material indeed shows that
Loci-Looped tends to park the object behind the occluder if
it did not reappear until the occluder falls over. Note that this
behavior is fully emergent, as Loci-Looped is never trained
on object that permanently disappearing behind occluders.

Further, we find that in the case of occlusion, Loci-Looped
learned to close the percept gates, thus switching to a latent
imagination mode (see Table 2). Similarly, we find that the
model made only sparse usage of observations when objects
were visible. This could explain the model’s learning of
object permanence. By predicting the visible world while
only glimpsing at it, the model essentially trained itself on
simulated occlusions. Unlike real occlusions, this scheme
provides access to targets and thus an error signal to learn
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from. This may have enabled the model to easily generalise to real occlusion scenarios where
no sensations are available. In the next section, we test the model’s ability to handle temporary
interruptions in sensory data.

Figure 4: Surprise condition: Top row from left to right: Two objects traverse the scene, only one
object reappears (blue), while the other vanishes (green). Middle row: Loci-Unlooped’s imagination
on how the scene unfolds behind the occluder. The colored dots show the GT positions of the objects.
Bottom row: Loci-Looped’s corresponding imagination indicating Loci-Looped surprise when the
green object does not reappear on the right side. As a result, Loci-Looped attempts to keep an
approximate imagination of it behind the occluder until the end of the sequence. The insight is
possible by suppressing the occluder-slot during decoding.

4.3 SENSORY INTERRUPTIONS

Having seen that Loci-Looped can handle the representation of partially observable scenes, we now
investigate how it behaves when no observation is available for a brief period of time, simulating a
short blink.

Dataset The CLEVRER dataset (Yi et al., 2020) contains 10,000 videos showing up to 6 small
objects moving through a scene, including collisions and partial occlusions. Again, we increase the
video speed by considering only every second frame resulting in 64 frames per video. We make use
of the training and testing split provided by Wu et al. (2023b).

Sensory Interruptions In training and testing, we simulate sensory interruptions by setting the
current input image to black with a probability of 20%. During such blackouts, the models are thus
required to maintain a stable scene representation without input information. They thus can only
imagine how the scene will unfold. In the first 10 frames of each sequence we do not allow blackouts.

Metric We evaluate the next-frame prediction quality using PSNR, SSIM (Wang et al., 2004),
and LPIPS (Zhang et al., 2018). In addition, we assess the segmentation quality using the Average
Recall (AR), the Adjusted Rand Index (ARI), a foreground specific ARI (FG-ARI) and a foreground
specific intersection over union (FG-mIoU). We use the stochastic SAVi implementation as well as
the evaluation scripts provided by (Wu et al., 2023b).

Results As depicted in Table 3, Loci-Looped demonstrates superior performance compared to SAVi
and Loci-Unlooped in timesteps with no available input frames and largely superior in timesteps with
provided input frames. This observation implies that only Loci-Looped can consistently uphold stable
object representations during blackout periods, whereas the baseline models strongly depend on
uninterrupted sensory input. The superiority over Loci-Visibility yet again confirms that the adaptive
fusion gates integrate recurrent and sensory information highly effectively. Figure 5 illustrates SAVi’s
and Loci-Looped’s abilities.

5 DISCUSSION

In this work, we introduced Loci-Looped: an object-centric world model that has the ability to flexibly
fuse outer loop sensations with inner loop imaginations into a consistent percept. Loci-Looped tracks
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Figure 5: Visual results of the sensory interruptions experiment on the CLEVRER dataset.

Table 3: Results on the Sensory Interruptions experiment on the CLEVRER Dataset.
Input Method PSNR SSIM LPIPS ↓ AR ARI FG-ARI FG-mIoU

Blackout

SAVi 25.3 0.81 0.47 0.0 0.0 0.01 0.01
Loci-Unlooped 21.8 0.71 0.47 0.0 0.0 0.02 0.01
Loci-Visibility 30.4 0.92 0.18 0.71 0.74 0.70 0.34
Loci-Looped 34.6 0.95 0.11 0.88 0.86 0.78 0.42

Visible

SAVi 37.5 0.96 0.19 0.47 0.57 0.90 0.36
Loci-Unlooped 28.1 0.86 0.26 0.38 0.46 0.38 0.20
Loci-Visibility 32.1 0.94 0.15 0.82 0.81 0.76 0.38
Loci-Looped 36.3 0.97 0.10 0.92 0.88 0.81 0.43

objects through occlusion, learns the physical concepts of object permanence and directional inertia
from scratch, and is robust to interruptions in its sensory signal. It builds on the idea that objects
can not only be leveraged to decompose a scene but also to assemble a scene percept from object-
wise observations (e.g., visible objects) as well as object-wise imaginations (e.g., occluded objects).
Importantly, and in contrast to competitive state of the art models, all of this was learned without
supervision, without access to a temporal buffer, and solely from the next-frame prediction objective.
In line with Piloto et al. (2022), our work suggests that intuitive physics can emerge from learning an
anticipatory world model that constantly predicts future world states.

Future advancements of Loci-Looped should incorporate probabilistic scene representations. As
shown in Smith et al. (2019), probabilistic transition models are advantageous for building expec-
tations in scenarios featuring agentive elements in more complicated VoE scenarios than the one
presented in this work. This is especially the case for scenarios in which the agent acts while being
occluded (e.g., an object that actively halts behind an occluder), which are often featured in more
complicated VoE scenarios than the one presented in this work. Furthermore, learning other and
more complex object interactions, such as collisions, in a history-compressing architecture, such as
the introduced Loci-Looped, should be examined in further detail. Another limitation is the yet very
simple nature of the considered datasets. Recent approaches, including another Loci variant Elsayed
et al. (2022); Traub et al. (2023a); Seitzer et al. (2023), suggest that bottleneck approaches paired with
object pre-training are well suited to handle real-world scenarios with (still rather slowly) moving
cameras. We are thus confident that Loci-Looped—combined with an appropriate background and
camera processing module—will soon be applicable so more sophisticated and real-world datasets.
Ideally, even non-rigid objects should be tackled in future models.

In conclusion, this work contributes to the growing body of research demonstrating the potential
of compositional scene representations for achieving more human-like scene understanding and
modelling cognitive development in artificial intelligence systems (Wu et al., 2023b; Locatello et al.,
2020; Yuan et al., 2023; Piloto et al., 2022; Traub et al., 2023b; Weihs et al., 2022). We believe that
the introduced adaptive information fusion process can be easily integrated into other compositional
scene segmentation algorithms. Overall, we hope that the presented algorithms will contribute to
further advance the development of more human-like visual intelligence and conceptual cognition.
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A APPENDIX

The Appendix provides additional information on the method A.3 and the results A.6.

A.1 RELATED WORK

Recently, two studies in the field of intuitive physics have gained attention for introducing a VoE
dataset and models that learn the concepts of permanence, solidity, and continuity. Similiar to Loci-
Looped, the Physics Learning through Auto-encoding and Tracking Objects (PLATO) model (Piloto
et al., 2022) uses a slot-wise encoder-predictor architecture. The second model is the Approximate
Derendering Extended Physics and Tracking (ADEPT) model (Smith et al., 2019) which implements
a hand-crafted physical reasoning system. In this section, we will review both approaches and
compare them with Loci-Looped.

Representation Loci-Looped, PLATO and ADEPT model physics at the level of objects. To
incorporate this object-centric approach all models make use of a slot architecture, where a slot
represents a processing pipeline dedicated to a single object. This slot-based architecture enables
the parallel processing of multiple objects, applying the same model by weight sharing. The models
differ in their latent code constraints. While PLATO does not constrain the latent code at all,
ADEPT explicitly encodes the object’s type, location, velocity, rotation, scale and color. As Smith
et al. (2019) has shown, this abstract encoding is beneficial for generalising to unseen objects, but
requires supervised training. Balancing both approaches and inspired by the dorsal and ventral visual
processing stream in humans, Loci-Looped disentangles an object’s position (where) and gestalt
(what).

Segmentation To identify objects in an image PLATO relies on ground-truth segmentation masks,
while ADEPT uses a supervised segmentation network. Unsupervised methods for image seg-
mentation typically learn to decompose scenes into object-centric representations using slot-wise
autoencoders (Burgess et al., 2019; Greff et al., 2020). Similarly, Loci-Looped learns to identify
objects in a scene using a slot-wise encoder-decoder architecture. By encoding positional information
explicitly and constraining the gestalt encoding capacity, each slot is naturally biased towards repre-
senting a cohesive and uniform area of the image. While Loci-v1 is capable of segmenting scenes
with complex backgrounds using an additional high-capacity background slot (Traub et al., 2023b),
this feature requires intensive training on the background. Our work focuses on short scenes with
varying backgrounds, making it necessary to provide the model with the background for each scene.

Dynamics Modelling All three models leverage a dynamics module to estimate the state of the
objects at the next timestep. While ADEPT does not learn objects dynamics but utilizes an out-of-
the-box physics engine for this purpose, Loci-Looped and PLATO make use of recurrent units. In
PLATO, a slot-wise LSTM is combined with two feedforward networks accounting for pairwise
object interactions to model object dynamics. Loci-Looped differs with respect to the choice of
the recurrent unit and how interactions are modelled. Loci-Looped uses a slot-wise GateLORD
(Gumbsch et al., 2022) module that penalizes latent state changes and thereby fosters stable hidden
object state representations over time, while interactions between objects is modelled using multi-head
self-attention between slots.

Tracking Accurately identifying objects over time is crucial for estimating and predicting object
motion. In practice, this means that recurrent prediction slots must receive consistent information
about the same object over time to enable reliable predictions. To achieve this, PLATO relies on
ground-truth information, while ADEPT utilizes a hand-crafted observation model that matches
objects in the current observation with objects in the model’s belief based on extracted object features.
Similar, recent research has proposed an alignment module that learns to match object encodings
between observations and a memory (Creswell et al., 2021). A different approach is taken by Loci-
Looped. The encoder module learns to consistently parse the same object in the same slot via a
predictive coding approach, which yield the to-be-minimized reconstruction error of the previous
time step as additional input. Moreover, each slot of the encoder receives its previous output, thus
priming its particular object-encoding responsibility. Finally, the internal GateLORD units as well as
a time persistence loss further encourage latent encodings of the same object properties in the same
slot over time.
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Temporal memory To predict the next position of objects, the models have to consider their
movements. To do so, ADEPT’s supervised perception module receives a history of three images and
derives object velocities from it. In contrast, the recurrence in the dynamics modules of PLATO and
Loci-Looped allows to accumulate information over time and thus to capture object dynamics in the
cell states. Although theoretically not needed, PLATO makes its prediction based on all past object
encodings stored in an object buffer which is also used to derive object interactions. On the other
hand, Loci-Looped’s dynamic module predicts the next object state based solely on the current object
state, requiring it to fully capture object dynamics within the current cell state.

Object permanence The ADEPT model does not learn object permanence which is by default built
into the physics engine. In contrast, PLATO learns to predict the reappearance of hidden objects,
which is however favored by access to the full history of object codes, informing about the previous
existence of the object, and by a relative short duration of occlusion.

A.2 CHOICE OF BASELINE MODELS

To our knowledge SAVi (Kipf et al., 2022) is the most structural similar state-of-the-art model to
Loci-Looped. Both share the idea of an encoder-predictor-decoder architecture, and differ in their
architectural details and overall inductive biases. Loci-Unlooped is an ablation variant of the model
that only differs in the availability of the inner loop. The Loci-Visibility baseline model is given
by the Loci-Looped model, where we however replace the gate control function with a rule-based
approach. Specifically, we switch to the inner loop directly proportionally to the perceived occlusion
state of each object (i.e. αt

k = 1−Ot
k), terming this variant Loci-Visibility.

We did not run baseline comparisons against two recent powerful frameworks, namely SAVi++
(Elsayed et al., 2022) and Slotformer (Wu et al., 2023b). In our understanding these comparisons
are of limited use. SAVi++ main extension is its improved performance on real-world datasets,
incorporating camera motion and explicitly exploiting ground-truth depth information in training.
Neither of these characteristics apply to our study of object permanence and our datasets. Moreover
there is no architectural improvement from SAVi to SAVi++ that would address the problem of
maintaining stable slot representations of temporarily hidden objects, suggesting that the performance
of SAVi is a good indicator on how SAVi++ will perform on our tests. Slotformer, on the other hand,
is not a compositional scene representation model but a slot-based video prediction model that trains
and relies on pre-computed slot-representations, for example, computed using SAVi or Steve. This
dependency makes a comparison with Slotformer not very informative as the model’s task is different.

Concerning the intuitive physics models: We were not able to train PLATO (Piloto et al., 2022)
on the ADEPT vanish scenario (as also stated in Piloto et al. (2022)), because the model expects
aligned input masks that need to be provided consistently. In addition, PLATO requires a very coarse
temporal resolution (15 frames for one video) simulating only short occlusions, whereas Loci-Looped
and SAVi can be trained on fine temporal resolutions (41 frames) simulating longer occlusions. We
did not include the ADEPT (Smith et al., 2019) model as baseline as it would be a skewed comparison
in our opinion. The model depends on supervised information to train its encoder, its decoder and
its particle filter. Moreover, the ADEPT model uses an out-of-the-box physics engine. We did not
include baselines without explicit object representations as numerous related work suggest that object
agnostic models perform inferior (Piloto et al., 2022; Smith et al., 2019; Wu et al., 2023b).

A.3 METHOD

A.3.1 OBJECT MASK

In practice, the object mask proved particularly useful in two scenarios. First, when objects slide into
occlusion. To produce full-extent encodings of these objects the encoder has to combine information
from the input image depicting visible parts and information from the predicted RGB reconstruction
depicting occluded parts. The object mask helps the encoder to do so by marking the full shape of
the object. Second, when objects slide out of occlusion. In this scenario, the visibility mask is only
helpful if the time of reappearance is predicted precisely, otherwise it will be empty. In contrast, the
object mask can still provide useful information by indicating that an object is close to reappearing.
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A.3.2 PERCEPT GATE CONTROLLER

The percept gate controller is part of the slot-wise gate module and computes αt,G
k and αt,P

k . The
controller receives the inputs P̃ t

k, G̃t
k, Õt

k, P̂ t
k, Ĝt

k, Ôt
k, P̂ t−1

k which are concatenated into a vector
of size 206. This vector is then fed into a feed-forward network modelling update function gθ.
This network is composed of three linear layers with dimensions 32, 16, and 2, and employs the
hyperbolic tangent activation function. During the training phase, the network’s output is augmented
with Gaussian noise (Σ = 0.1); however, this is not applicable during the inference stage. As
demonstrated by Gumbsch et al. (2022), the stochastic component fosters the learning of sparse gate
openings. The final values for αt,G

k and αt,P
k are calculated using the rectified hyperbolic tangent

function (Λ). The rectified variant generates values within the range [0, 1), thus enabling the model
to fully close the gates (i.e., α = 0). In the backward propagation, the following pseudo-derivative is
employed:

Λ′ =
∂Λ(x)

∂x
=

{
0 if x ≤ 0

(1− Λ(x)2) otherwise
(8)

In addition, we penalize gate openings (i.e. α > 0) by applying a L0 regularization. We therefore use
the method described in Gumbsch et al. (2022). The regularization loss is given as the sum of gate
openings:

LGate =
∑
k

(Θ(αt,G
k ) + Θ(αt,P

k )), (9)

where Θ is the non-differentiable Heavisite step function. We therefore use the derivative of the linear
function as the pseudo-derivative:

Θ′ =
∂Θ(x)

∂x
= 1. (10)

A.3.3 SLOT RECRUITING

A crucial step in slot-based architectures is the initial assignment of slots to objects. Traub et al.
(2023b) demonstrated that Loci-v1 can allocate multiple slots in parallel to identify multiple objects.
However, this allocation scheme can be sensitive to object sizes. Specifically, large objects are
more complicated to reconstruct than small objects and thus provoke larger prediction errors. As
a consequence large objects tend to attract multiple slots in parallel, resulting in one object being
encoded partly in multiple slots. To encourage the representation of entire objects in exclusively one
slot, we restrict the encoder to only use one slot at a time seeking for new objects. In general, we
distinguish between occupied slots which already represent an object and empty slots which do not
represent an object yet. Once both the visibility masks M̃ t+1,v

k and M̂ t+1,v
k exceed a threshold of 0.8

in one pixel, the corresponding slot is marked as occupied for the entire sequence. At the start of a
sequence Loci-Looped has one empty slot available. When this empty slot becomes occupied a new
one is recruited with a delay of two timesteps. This delay allows the initial slot to encode the object
in its entirety. This pattern repeats when the empty slot becomes occupied again. In addition, every
second frame the isotropic Gaussian Q̂t

k of the empty slot is set to the position (x, y) of the largest
prediction error in the background i.e.

(x, y) = argmax
(i,j)

(Mbg ⊙ E)(i, j) (11)

before entering the encoding process. With this incremental recruiting scheme, Loci-Looped encodes
entire objects of varying sizes more reliably in one slot.

A.3.4 TRAINING PROCEDURE

The training procedure entails randomly selecting sequences from the dataset and compiling them
into a single batch. This batch is then processed sequentially, with the model ingesting consecutive
frames and executing a backward pass every n frames. Simultaneously, an optimizer step is con-
ducted every n frames, followed by the detachment of gradients. Only the internal hidden states
remain unaltered, and they are cleared only after the full batch of sequences has been processed.
Similarly, the eprop eligibility traces employed within the GateL0rd layers are maintained for each
sequence. It is important to highlight that these eligibility traces effectively facilitate the integration
of error information from the past beyond the truncation horizon of backpropagation-through-time
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by accumulating previous neuron activations, akin to the approach described in Bellec et al. (2019)
which facilities the the learning of long lasting memory states as previously demonstrated by Traub
et al. (2023b).

Training the model in an unsupervised fashion is challenging which requires increasing the difficulty
of the task in three phases. During the first phase, the focus is on learning to represent foreground
objects. Therefore, the reconstruction and the prediction loss are initially only applied to the
foreground by masking the corresponding targets,

It′ = It ⊙M t
fg + It ⊙ (1−M t

fg) · β (12)

M t
fg = θ < (It − Itbg)

2, (13)

where β is set to zero. To encourage initial slot bindings, all slots are placed in parallel and in a
stochastic fashion to the largest foreground errors. By the end of the first phase, the model should be
able to use the slots to rudimentarily reconstruct and predict the foreground. In the second training
phase the aim is to learn to represent entire objects in one slot, for which slot recruiting (see Section
A.3.3) is enabled. In addition, the background is blended in the losses by gradually increasing β
to one. This enforces the learning of background mask Mbg which is used to distinguish between
background and foreground. At the end of phase two, the model should be able to reconstruct and
predict complete scenes. Until this point, the update module was skipped focusing the training on the
outer loop and visible objects. This is changed in the last training phase, in which the update module
is enabled and the model’s imagination is trained. Loci-Looped then learns to balance information
from the inner and the outer loop.

A.3.5 TEACHER FORCING

Following (Traub et al., 2023b), Loci-Looped starts a sequence by repeatedly processing the first
frame x times (teacher forcing phase). The prediction target is given by first frame as well. This
allows the model to identify initial objects in the scene using slot recruiting. In this phase the
updatemodule and transition module are skipped, basically using the encoder and decoder module as
slot-wise auto-encoder for an initial scene segmentation.

A.3.6 TRAINING SPECIFICS

From 200k updates on wards we summed the gradients over two timesteps and then ran one joint
optimization step. In addition, we applied a dropout on the prediction error Et before entering the
encoder (p = 0.1).

Table 4: Loci Training Specifics
Paramater ADEPT CLEVRER

Learning Rate 1 · 10−4 1 · 10−4

Learning Rate (from 400k updates) 3.3 · 10−5 3.3 · 10−5

Batch size 16 32
Number of updates 1150000 800000
Teacher forcing length 10 10
Resolution 120x80 120x80
Resolution (from 600k updates) 480×320 120x80
Number slots (objects) 7 6
Start training phase 2 30k updates 30k updates
Start training phase 3 60k updates 60k updates
GateLORD Regularization 1 · 10−10 1 · 10−10

Video length (training) 41 frames 64 frames
Training set size 1000 20000
Frame offset 3 frames 2 frames
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A.4 OBJECT IDENTIFICATION AND TRACKING

A.4.1 TRAINING SET

Each video contains a different background and a static camera perspective. We used 90% of videos
for training and 10% for validation. In addition, we increased the video speed by considering only
every third frame, which gives a video length of 41 frames. We trained 3 independent models of
Loci-Looped for the ADEPT dataset and averaged the results across slots. For the other models and
the CLEVRER dataset we only trained one model.

A.4.2 TRACKING ERROR

Loci-Looped encodes object positions explicitly in 2D image coordinates which is highly interpretable,
allowing us to easily quantify the model’s tracking precision as the distance between estimated object
positions and the true object positions. To do so, we pair the models internal representations with
the ground-truth objects in the scene. More specifically, each time the model detects a new object
the current positional encoding is used to assign the slot to the closest object in the scene based on
euclidean distance. This pairing is then locked. Finally, at each timestep the slot-specific tracking
error T t

k is computed as the euclidean distance between the estimated and the true object position.
Lastly, we scale the error to the interval 0 to 1 by dividing the error by the image diagonal d:

T t
k =

√
(P̂ t

k − P t
o)

2

d
, (14)

where P t
o is the true position of the assigned object.

A.4.3 MULTIPLE OBJECT TRACKING ACCURACY

In addition, we record the Multiple Object Tracking Accuracy (MOTA) (Bernardin & Stiefelhagen,
2008) to quantify how well the model detects objects and identifies them temporally consistent. The
MOTA is given as:

MOTA = 1−
∑

t(FNt + FPt + IDSt)∑
t GTt

, (15)

where FN denotes the number of false negative detections, FP the number of false positive detections,
IDS the number of object switches between slots, and GT the true object instances. Each timestep
the ground-truth objects in the scene are paired with the slot representations based on euclidean
distance (see Appendix A.4.2). As this is a one-to-one mapping, MOTA counts unassigned slots as
false-positives and unassigned objects as false-negatives. Object switches occur if an object is first
assigned to slot a and later to slot b. Importantly, we also provide the position of occluded objects as
part of GT.

We used the python package motmetrics for computing the MOTA (https://github.com/cheind/py-
motmetrics). Pairwise distances between slot positions and ground-truth positions were calculated
using euclidean distance, where the cutoff distance was set to 10% of the image diagonal. Further,
we only considered occupied slots (see Section A.3.3) which, made a position estimate within the
image borders, and predicted their slot-object to exist (

∑
(i,j)(M̂

t,o
k ) > 100, i.e. the object mask size

exceeds a threshold of 100).

A.5 SAVI TRAINING

For training SAVi Kipf et al. (2022), we used the stochastic SAVi implementation as well as the
hyper-parameters provided by Wu et al. (2023b). We used a resolution of 64x64 for both the ADEPT
and the CLEVRER dataset. For training efficiency (see (Wu et al., 2023b)) we trained SAVi on
subsequences of the full videos which had length 6. For the ADEPT dataset, we trained SAVi for
4 epochs, for longer training we observed that the model overfitted to the background and started
to neglect foreground objects. For the CLEVRER dataset, we trained SAVi for 12 epochs including
simulated blackouts in the training.
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A.6 RESULTS

A.6.1 VIOLATION OF EXPECTATION

Given the parallel trajectories of objects reappearing and vanishing, the anticipated moment of object
reappearance correlates with the increased visibility of reappearing objects (observed post-frame 30 in
Figure 3b). At this juncture, a noticeable surge in slot error aligns precisely with the expected moment
of object reappearance. Intriguingly, this surge is also evident for vanishing objects, suggesting the
model’s anticipation of their reappearance at this specific timepoint. This is confirmed by a significant
correlation between the slot error of vanished objects and the visibility of reappearing objects (frames:
25-40, r(13) = .9, p < .001). Likewise, we find the same pattern for the size of the visibility mask
(frames: 25-40, r(13) = .94, p < .001), indicating that Loci-Looped expected the vanished objects
to become visible again with the expected moment of reappearance. Interestingly, we find a second
peak of expectation in the moment the screen flips to the ground, failing to reveal the missing object.

To test the difference in surprise between the reappearing and the vanishing trials, we employ one-
sided two-sample t-tests according to our hypothesis that the surprise is larger for vanishing objects
than for reappearing objects.
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Figure 6: Gate openings on the Violation of Expectation experiment. Traversing objects either
reappear from occlusion (blue) or vanish in occlusion (red). We observe that the position gates mainly
open for sensory information after objects initially appear and after they reappear after occlusion.
The gestalt gates in contrast integrate constantly sensory information if the objects are visible or
expected to become visible.

A.6.2 ILLUSTRATIONS
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Figure 7: The control sequence of the Violation of Expectation experiment and Loci-Looped’s
perception of it. Loci-Looped maintains clear object representations throughout the occlusion phase.
Input: The current frame of the sequence which serves as input. Next-frame prediction Loci-Looped’s
composed RGB prediction for next timestep. Next-frame Imagination Loci-Looped’s composed RGB
prediction for next timestep without the occluder screen. The colored dots illustrate the GT positions
of the objects. Slot-wise object mask: Loci-Looped’s predicted object masks depict full object shapes.
Red colored parts correspond to occluded object parts and white colored parts to visible object parts.
Slot-wise RGB prediction: Loci-Looped’s predicted reconstruction of the object in pixel-space.
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Figure 8: The control sequence of the Violation of Expectation experiment and Loci-Unlooped’s
perception of it. Loci-Unlooped does not maintain clear object representations when objects become
occluded. The reappearing objects are switching slots showing inconsistent tracking of temporarily
hidden objects. Input: The current frame of the sequence which serves as input. Next-frame
prediction Loci-Unlooped’s composed RGB prediction for next timestep. Next-frame Imagination
Loci-Unlooped’s composed RGB prediction for next timestep without the occluder screen. The
colored dots illustrate the GT positions of the objects. Slot-wise object mask: Loci-Unlooped’s
predicted object masks depict full object shapes. Red colored parts correspond to occluded object
parts and white colored parts to visible object parts. Slot-wise RGB prediction: Loci-Unlooped’s
predicted reconstruction of the object in pixel-space.
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Figure 9: The control sequence of the Violation of Expectation experiment and SAVi’s perception of
it. SAVi’s does not maintain stable object masks when objects become occluded. The reappearing
objects are switching slots showing inconsistent tracking of temporarily hidden objects. Input: The
current frame of the sequence which serves as input. Slot-wise object mask: Using equation 3.2.1 we
compute the object masks, depicting full object shapes, the same way as in Loci-Looped.
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Figure 10: The surprise sequence of the Violation of Expectation experiment and Loci-Looped’s
perception of it. Loci-Looped maintains clear object representations throughout the occlusion phase,
even when the vanished object does not reappear when initially expected. Input: The current frame of
the sequence which serves as input. Next-frame prediction Loci-Looped’s composed RGB prediction
for next timestep. Next-frame Imagination Loci-Looped’s composed RGB prediction for next timestep
without the occluder screen. The colored dots illustrate the GT positions of the objects. Slot-wise
object mask: Loci-Looped’s predicted object masks depict full object shapes. Red colored parts
correspond to occluded object parts and white colored parts to visible object parts. Slot-wise RGB
prediction: Loci-Looped’s predicted reconstruction of the object in pixel-space.
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Figure 11: The CLEVRER dataset annotated with blackouts and Loci-Looped’s perception of it.
Loci-Looped maintains clear object representations throughout the blackout phases. Input: The
current frame of the sequence which serves as input. Next-frame prediction Loci-Looped’s composed
RGB prediction for next timestep. Slot-wise object mask: Loci-Looped’s predicted object masks
depict full object shapes. Red colored parts correspond to occluded object parts and white colored
parts to visible object parts. Slot-wise RGB prediction: Loci-Looped’s predicted reconstruction of the
object in pixel-space.
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Figure 12: The CLEVRER dataset annotated with blackouts and Loci-Unlooped’s perception of
it. Input: The current frame of the sequence which serves as input. Next-frame prediction Loci-
Unlooped’s composed RGB prediction for next timestep. Slot-wise object mask: Loci-Unlooped’s
predicted object masks depict full object shapes. Red colored parts correspond to occluded object
parts and white colored parts to visible object parts. Slot-wise RGB prediction: Loci-Unlooped’s’s
predicted reconstruction of the object in pixel-space.
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Figure 13: The CLEVRER dataset annotated with blackouts and SAVi’s perception of it. (4 out
of 7 slots displayed) Input: The current frame of the sequence which serves as input. Next-frame
prediction SAVi’s composed RGB prediction for next timestep. Slot-wise object mask: Using equation
3.2.1 we compute the object masks, depicting full object shapes, the same way as in Loci-Looped
Slot-wise RGB prediction: SAVi’s predicted reconstruction of the object in pixel-space.
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B LOCI-LOOPED ALGORITHM 1

In the remainder, we denote scalar values by lower-case letters, tensors by upper-case letters, and
vectors by bold letters. Moreover, we denote slot-specific activities with a subscript k ∈ 1, ..,K and
time by the superscript t. We drop t for temporary values.

B.1 SLOT-WISE ENCODER

Inputs The encoder inputs at each time step t consist of:

• RGB input image It ∈ RH×W×3,

• MSE map Et ∈ RH×W×1 (pixel-wise mean squared error between It and R̂t),

• Slot-specific RGB image reconstructions R̂t
k ∈ RH×W×3,

• Slot-specific visibility mask predictions M̂ t,v
k ∈ RH×W×1,

• Slot-specific visibility mask complements M̂ t,s
k =

∑
k′∈{1,..,K}\k M̂

t,v
k′

• Slot-specific object mask predictions M̂ t,o
k ∈ RH×W×1,

• Slot-specific isotropic Gaussian position map predictions Q̂t
k ∈ RH×W ,

• Background mask M̂ t
bg ∈ RH×W , which is equivalent to 1−

∑
k∈{1,..,K} M̂

t
k

Outputs Based on these inputs, the slot-wise encoder network generates latent codes:

• Slot-specific Gestalt codes G̃t
k ∈ RDg ,

• Slot-specific position codes P̃ t
k ∈ R4 encode an isotropic Gaussian (µt

k, σ
t
k) and a slot-

priority code ztk,

where Dg denotes the size of the Gestalt code and µt
k ∈ R2.

B.2 SLOT-WISE DECODER - RECONSTRUCTION

Inputs The outputs of all slots from the encoding module P̃ t and G̃t then act as the input to the
decoder.

Outputs The output of the decoder includes the slot-respective masks and RGB reconstructions:

• Slot-specific visibility mask outputs M̃ t,v
k ∈ RH×W ,

• Slot-specific object mask outputs M̃ t,o
k ∈ RH×W ,

• Slot-specific RGB image reconstructions R̃t
k ∈ RH×W×3,

Further, we compute the slot-specific occlusion state Õt
k as a function of M̃ t,v

k and M̃ t,o
k , as specified

in Equation 2. We generate the combined reconstructed image R̂t by summing all slot reconstructions
R̃t

k and the background estimate R̃bg weighted with their corresponding masks M̃ t
k and M̃ t

bg, as
specified further in Algorithm 1. The reconstructed image R̂t is subject to the reconstruction loss
(see Equation ??) and the occlusion state Õt

k serves as input to the update gate controller.

B.3 UPDATE MODULE

The slot-wise update module consists of an update gate controller and an update gate. The update
gate controller takes the inputs,

• Slot-specific encoder Gestalt codes G̃t
k ∈ RDg ,

1Reproduced from Traub et al. (2023b)
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• Slot-specific encoder position codes P̃ t
k ∈ R4,

• Slot-specific encoder occlusion state Õt
k ∈ RDg ,

• Slot-specific predicted Gestalt codes Ĝt
k ∈ RDg ,

• Slot-specific predicted position codes P̂ t
k ∈ R4,

• Slot-specific predicted occlusion state Ôt
k ∈ RDg ,

• Slot-specific previous position codes P t−1
k ∈ R4

and outputs gate activation:

• Slot-specific Gestalt gate activation αt,G
k ∈ [0, 1),

• Slot-specific position gate activation αt,P
k ∈ [0, 1).

The update gate then linearly interpolates between G̃t
k and Ĝt

k, as well as P̃ t
k and P̂ t

k, where a higher
activation opens the gate and gives more weighting to G̃t

k or P̃ t
k. Finally, the update module produces:

• Slot-specific Gestalt codes Gt
k ∈ RDg ,

• Slot-specific position codes P t
k ∈ R4,

B.4 TRANSITION MODULE

A transition module is used to process interaction dynamics within and between these slot-respective
codes and creates a prediction for the next state, which is fed into the decoder. The input to the
transition module equals Gt

k, P t
k, αt,G

k and αt,P
k . It is processed across slots and per slot in the

respective layers: Multi-Head Attention predicts slot interactions (across slots), while GateL0RD
predicts slot-specific dynamics (per slot). We use two attention layers with ten heads each with
GateL0RD layers in between.

Outputs The outputs of the transition module Ĝt+1
k and P̂ t+1

k have the same size as Gt
k and

P t
k. Additionally, recurrent, slot-respective hidden states Ĥt

k are maintained in the time-recurrent
GateL0RD layers:

• Slot-specific position codes P̂ t+1
k ∈ R4,

• Slot-specific Gestalt codes Ĝt+1
k ∈ RDg ,

• Slot-specific GateL0RD-layer-respective hidden states Ĥt
k ∈ RDh ,

where Dh denotes the size of the recurrent latent states.

B.5 SLOT-WISE DECODER - PREDICTION

Inputs The outputs of all slots from the transition module P̂ t+1 and Ĝt+1 then act as the input to
the decoder.

Outputs The output of the decoder includes the slot-respective masks and RGB reconstructions:

• Slot-specific visibility mask outputs M̂ t+1,v
k ∈ RH×W ,

• Slot-specific object mask outputs M̂ t+1,o
k ∈ RH×W ,

• Slot-specific RGB image reconstructions R̂t+1
k ∈ RH×W×3,

which are then used as part of the input at the next iteration as specified above. Further, we compute
the slot-specific occlusion state Ôt

k as a function of M̂ t+1,v
k and M̂ t+1,o

k , as specified in 2.
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We generate the combined reconstructed image R̂t+1 by summing all slot estimates R̂t+1
k and the

background estimate R̂bg weighted with their corresponding masks M̂ t+1
k and M̂ t+1

bg , as specified
further in Algorithm 1. The predicted image R̂t+1 is subject to the prediction loss (see ??) and the
occlusion state Õt+1

k serves as input to the update gate controller in the next timestep.
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Algorithm 1 Loci-v2-Algorithm (main processing loop)

1: Inputs: Input video I ∈ RT×H×W×3, static background R̂bg ∈ RH×W×3

2: Network parameters: Θencoder, Θupdate, Θtransition, Θdecoder

3: Additional parameters: initialization parameters Θinit; background threshold θbg, which is
encoded as a uniform offset mask M̃bg ← θbg; number of slots K; processing steps T

4: Initialize H1
k , R̂

1
k, R̂

1, M̂1,o
k , M̂1,v

k , Q̂1
k

5: for t = 1 . . . T do
6: # Pre-processing:

7: Et ←
√
Mean

(
(It −Rbg)

2
, axis = ’rgb’

)
◦ 4

√
Mean

((
It − R̂t

)2

, axis = ’rgb’
)

8: compute complement M̂ t,s
k

9: # Slot-wise encoder:
10: St

k ← EncoderTrunk(I
t, Et, R̂t

k, M̂
t,v
k , M̂ t,o

k , M̂ t,s
k , Q̂t

k, M̂
t
bg)

11: G̃t
k ← EncoderGestalt(S

t
k)

12: P ′t
k ← EncoderPosition(S

t
k)

13: P̃ t
k ← concat [µt

k, σ
t
k, z

t
k]← concat [Encoderµ(P

′t
k ), Encoderσ(P

′t
k ), Encoderz(P

′t
k )]

14: # Slot-wise decoder - reconstruction (see decoder - prediction and post-processing):

15: Õt
k ← 1−

∑
i,j [M̃

t,v
k (i,j)>θbg ]∑

i,j [M̃
t,o
k (i,j)>θbg ]+0.0001

16: R̃t ← sum(concat
[
R̃t

1, .., R̃
t
K , R̃bg

]
◦ M̃ t,v, axis = ’K’)

17: # Update module:
18: [αt,G

k , αt,P
k ]← UpdateController(P̃ t

k, G̃
t
k, Õ

t
k, P̂

t
k, Ĝ

t
k, Ô

t
k, P

t−1
k )

19: Gt
k ← αt,G

k G̃t
k + (1− αt,G

k )Ĝt
k

20: P t
k ← αt,P

k P̃ t
k + (1− αt,P

k )P̂ t
k

21: # Transition module:
22: Ĝt+1, P̂ t+1, Ht+1 = TransitionModule(Gt, P t, αt,G

k , αt,P
k , Ht)

23: # Gestalt binarization:
24: Ĝt+1 ← Sigmoid(Ĝt+1)

25: Ĝt+1 ← Ĝt+1 + Ĝt+1(1− Ĝt+1)N (0, 1)

26: # Slot-wise decoder - prediction:
27: # p encodes all pixel positions normalized to [−1, 1], width the number of pixels in a row

28: Q̂t+1
k ← exp

(
−(p−µ̂t+1

k )2

2max( 1
width ,σ̂

t+1
k )

2

)
29: decodek ← Priority-Based-Attention(Ĝt+1

k , Q̂t+1
k , ẑt+1)

30: R̂t+1
k , M̃ t+1

k ← DecoderTrunk(decodek)

31: # Post-processing:
32: [M̂ t+1,v

1 , . . . , M̂ t+1,v
K , M̂ t+1

bg ]← softmax(concat[M̃ t+1
1 , . . . , M̃ t+1

K , M̃bg], axis = ’K’)

33: M̂ t+1,o
k ← exp(M̂t+1

k )

exp(M̂t+1
k )+exp(M̂t+1

bg )
,

34: Ôt+1
k ← 1−

∑
i,j [M̂

t+1,v
k (i,j)>θbg]∑

i,j [M̂
t+1,o
k (i,j)>θbg]+0.0001

35: R̂t+1 ← sum(concat
[
R̂t+1

1 , .., R̂t+1
K , R̂bg

]
◦ M̂ t+1,v, axis = ’K’)

36: end for
37: return [R̂1 . . . R̂T ]
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Algorithm 2 Priority-based-Attention

1: Inputs: Gestalt: Gk ∈ R1,Dg , Gaussian 2d position: Qk ∈ RH′×W ′×1, priority: z ∈ RK

2: Additional parameters: values of the learnable θw ∈ RK are initially set to 25, while θb ∈
RK = {0, 1, . . . , (K − 1)} induces a default slot-order bias.

3: z′ ← (z·K+N (0, 0.1)+θb)◦θw # Scale priorities and add Noise

4: # Subtract Gaussian attention from other slots, scaled by priority (σ denotes the sigmoid)
5: Q′

k ← max(0, Qk −
∑

k′∈{1,...,K}\k σ(z
′
k − z′k′) ·Qi)

6: combinek ← Q′
k×Gk # combinek ∈ RH′×W ′×Dg

7: return combinek
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