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ABSTRACT

Vision Transformer (ViT) architectures traditionally employ a rigid, grid-based
approach to tokenization. In this work, we propose a generalized superpixel
transformer (SPiT) framework that decouples tokenization from feature extrac-
tion; a significant shift from contemporary approaches, where these are treated as
an undifferentiated whole. Using on-line superpixel tokenization and scale- and
shape-invariant feature extraction, we perform experiments that contrast our ap-
proach with canonical tokenization and randomized partitions. We find that mod-
ular superpixel-based tokenization not only significantly enhances interpretabil-
ity, as measured by state-of-the-art metrics for faithfulness, but also maintains
competitive performance in classification. Our approach also demonstrates state-
of-the-art capability in unsupervised salient segmentation, providing a space of
semantically-rich models that can generalize across different vision tasks.

1 INTRODUCTION

ViTs (Dosovitskiy et al., 2021) have recently become the cynosure of vision tasks, outperforming
convolutional architectures (CNNs). In the original transformer for language modeling (Vaswani
et al., 2017; Devlin et al., 2019), tokenization serves as a crucial preprocessing step, with the aim
of optimally dividing the data based on a predetermined entropic measure (Sennrich et al., 2016;
Johnson et al., 2017). As transformers were adapted to vision, tokenization was simplified to parti-
tioning of images into regular square grids. This approach proved remarkably effective (Liu et al.,
2021; Touvron et al., 2021b;a; 2022; 2021c; Carion et al., 2020), and soon became canonical; an
integral part of the architecture. Since their introduction, vision transformers have been shown to
demonstrate inherent interpretability (Caron et al., 2021; Oquab et al., 2023), and their tokens can
be leveraged for dense prediction tasks (Hamilton et al., 2022; Amir et al., 2022). However, square
partitions incur a loss of resolution in the patch representation and subsequently do not inherently
capture the resolution of the original images. For high-resolution dense predictions, images must be
upscaled unless a separate decoder is used (Xie et al., 2021; Kirillov et al., 2023).

1.1 MOTIVATION

We posit that the approach to tokenization in ViTs, while practical, glosses over the nuanced vari-
ability inherent in visual data. The uniformity imposed by square grid partitioning disregards the
heterogeneity of semantic content across an image, resulting in token representations that are not
aligned with image content and lack pixel-level granularity. Hence, exploring alternative tokeniza-
tion methods is essential in order to further research into transformers for vision tasks.

We take a step back from the original ViT architecture to re-evaluate the role of the tokenizer in
vision transformers and take inspiration from the success of language models (Brown et al., 2020;
Ouyang et al., 2022) where tokenization is decoupled from the transformer backbone. We find a
versatile analogy in superpixels which partition the image according to content, allowing for greater
adaptability in scale and shape while effectively incorporating the semantic information inherent in
visual content. The alignment of superpixels with semantic structures in images (Stutz et al., 2018)
provides a compelling rationale for their integration into vision transformer architectures. This
forms the foundation of our proposed method designed to address the inherent limitations of using
square partitions as a minimal discrete unit for vision tasks and provides a framework for exploring
alternative tokenization independent of architecture, illustrated in Fig. 1.
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Figure 1: Visualization of tokens and feature attributions for prediction “grass snake” with different tokeniza-
tion strategies: square tokens (ViT), random Voronoi tokens (RViT) and superpixel tokens (SPiT). See more
visualizations in Fig. D.1.

1.2 CONTRIBUTIONS

Our research prompts two specific inquiries: (a) Is a rigid adherence to square patches necessary?,
and (b) What advantages might alternative tokenization strategies unveil? We establish that:

• Generalized Framework: Superpixel tokenization is not orthogonal to canonical ViT architec-
tures, but instead generalizes them in a modular scheme, providing a richer space of transformers
for vision tasks where the transformer backbone is independent of our tokenization framework.

• Efficient Tokenization: We introduce an efficient on-line tokenization approach with pixel-level
granularity, complemented by feature extraction independent of rigid patch sizes. It incorporates
learnable positional encodings informed by shape and scale, adaptable to irregular patches. Our
framework achieves training and inference times comparable to standard ViT models, while main-
taining classification performance.

• Refined Spatial Resolution: Superpixel tokens provide more granularity in spatial resolution
more semantically aligned with image content. We demonstrate that our framework achieves
SotA results in unsupervised salient segmentation, and conduct experiments that show that our
framework yields more faithful attributions compared to established explainability methods.

Our main contribution is the introduction of a novel way of thinking about tokenization, which
has been overlooked in recent works—cf. our discussion in Section 4. We propose a modular and
scalable framework for decoupling tokenization from the transformer backbone in standard ViT
architectures. Our experiments establish a fair comparison against well-known baselines without
the inclusion of various optimizations to the backbone (i.e., vanilla ViT architectures), highlighting
the importance of understanding tokenizers for different tasks. This controlled comparison is cru-
cial for attributing observed performance disparities specifically to the tokenization techniques un-
der scrutiny, and eliminates confounding factors from specialized architectures or training regimes.
Hence, our focus is on understanding the impact of irregular tokenization in ViTs instead of opti-
mizing models for a particular downstream task.

Preliminary Notation: We let H ×W =
{
(y, x) : 1 ≤ y ≤ h, 1 ≤ x ≤ w

}
denote the coordinates

of an image of spatial dimension (h,w), and let I be an index set for the mapping i 7→ (y, x). This
allows us to consider a C-channel image as a signal ξ : I → RC . In general, we assume C = 3.
At times, we will leverage a tensor representation denoted by ξ⃗ ∈ RH×W×C , and we use the
capitalized Ξ to denote extracted features of various modalities. We use the general vectorization
operator vec: Rd1×···×dn → Rd1...dn , and denote function composition by f(g(x)) = (f ◦ g)(x).
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2 METHODOLOGY: MODULAR TOKENIZATION IN VISION TRANSFORMERS

We set out to design a framework for modular tokenization, independent of the transformer archi-
tecture, with the following incentives. Firstly, the ability to transfer knowledge and adapt models
to new tasks or data is a crucial component in advancing research in deep learning. Modular to-
kenization enables precisely this by allowing models to interchange tokenization strategies based
on the requirements of different datasets or tasks. This flexibility not only enhances the utility of
pre-trained models and accelerates the development cycle of deploying models to new applications;
but also provides the opportunity to swap or optimize tokenization strategies without the need for
overhauling the entire model architecture.

Secondly, we note that different visual problems could require distinct approaches to tokenization.
This choice influences how the model perceives and interacts with visual data, shaping its ability
to capture features, relationships, and contextual information. A modular framework allows for the
application of tailored tokenization strategies that align optimally with the specific demands of each
problem, and potentially allows us to embed visual priors into the modeling process. Modular to-
kenization constitutes a powerful tool for analyzing models and studying components in isolation.
Combined with the granularity of superpixels, this allows for extracting interpretations and explana-
tions at the pixel-level, in response to increased demands for transparency in vision models.

2.1 FRAMEWORK

g f h

τ ϕ γ

Modular g

Figure 2: Illustration of modular
tokenization in ViT architecture.

We generalize the canonical ViT architecture by allowing for a
modular tokenizer and different methods of feature extraction. Note
that a canonical ViT is generally presented as a three-component
system with a tokenizer-embedder g, a backbone f consisting of a
sequence of attention blocks, and a subsequent prediction head h.
Contrarily, NLP transformers explicitly decouples g from the back-
bone f . Following this lead, we note that we can essentially rewrite
a embedding module as a three component modular system, featur-
ing a tokenizer τ , a feature extractor ϕ, and an embedder γ such that
g = γ ◦ ϕ ◦ τ , emphasizing that these are inherent components in
the original architecture, but “hidden” by a simplified tokenization
strategy. This framework allows for a more complete assessment of the model as a five component
feedforward system on the form

Φ(ξ⃗; θ) = (h ◦ f ◦ g)(ξ⃗; θ), (1a)

= (h ◦ f ◦ γ ◦ ϕ ◦ τ)(ξ⃗; θ), (1b)

where θ denotes the set of learnable parameters of the model, and ◦ denotes function composition.
Figure 2 illustrates the modular view on g. In a standard ViT model, the tokenizer τ acts by parti-
tioning the image into fixed-size square partitions. This directly provides vectorized features since
patches are of uniform dimensionality and ordering, hence ϕ = vec in standard ViT architectures.
The embedding γ is typically a learnable linear layer, mapping features to the embedding dimension
of the specific architecture. The feature extractor ϕ distinguishes transformer architectures for im-
ages from those for language. In language models, symbolic characters and words are numerically
represented solely through embeddings. Contrarily, image data is inherently numeric, necessitating
an extraction mechanism to generate features, particularly in the case of irregular partitions.

2.2 PARTITIONING AND TOKENIZATION

Tokenization in language tasks fundamentally involves partitioning characters or words into discrete
segments. Mirroring this procedure in vision tasks induces a comparable discrete partitioning of a
digital image. For a data driven partitioning task with raw pixel features, we construct a hierarchical
parallel on-line superpixel tokenizer. Our approach is similar to the method outlined by Wei et al.
(2018), but differs by an explicit regularization term and the fact that the aggregation is computed in
parallel with customized CUDA kernels over the full image graph at each step t. We also leverage
anisotropic diffusion as a preprocessing step over the features used for computing the superpixel
hierarchy, shown to be effective in the work by Xiaohan et al. (1992). We contrast our proposed
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superpixel tokenized model (SPiT) to two alternate approaches, the canonical square tokenization in
standard ViTs, and random Voronoi tessellations (RViT) selected for being well defined mathemat-
ical objects commonly used to generate random tilings of the plane. See Fig. 1’s first column for
examples of the different tokenization schemes.

Superpixel Graphs: Let E(0) ⊂ I × I denote the four-way adjacency edges under H × W . We
consider a superpixel as a set S ⊂ I, and we say that S is connected if for any two pixels p, q ∈ S,
there exists a sequence of edges in

(
(ij , ij+1) ∈ E(0)

)k−1

j=1
such that i1 = p and ik = q. A set

of superpixels form a partition π of an image if for any two distinct superpixels S, S′ ∈ π, their
intersection S ∩ S′ = ∅, and the union of all superpixels is equal to the set of all pixel positions in
the image, i.e.,

⋃
S∈π(t) S = I.

Let Π(I) ⊂ 22
I

denote the space of all partitions of an image, and consider a sequence of par-
titions (π(t))Tt=0. We say that a partition π(t) is a refinement of another partition π(t+1) if for
all superpixels S ∈ π(t) there exists a superpixel S′ ∈ π(t+1) such that S ⊆ S′, and we write
π(t) ⊑ π(t+1). Our goal is to construct a T -level hierarchical partitioning of the pixel indices
H =

(
π(t) ∈ Π(I) : π(t) ⊑ π(t+1)

)T
t=0

such that each superpixel is connected.

To construct H, the idea is to successively join vertices by parallel edge contraction to update the
partition π(t) 7→ π(t+1). We do this by considering each level of the hierarchy as a graph G(t) where
each vertex v ∈ V (t) is the index of a superpixel in the partition π(t), and each edge (u, v) ∈ E(t)

represent adjacent superpixels for levels t = 0, . . . , T . The initial image can thus be represented as
a grid graph G(0) = (V (0), E(0)) corresponding to the singleton partition π(0) =

{
{i} : i ∈ I

}
.

Weight function: To apply the edge contraction, we first define an edge weight functional
w

(t)
ξ : E(t) → R. In the the method by Wei et al. (2018), self-loops are removed after edge contrac-

tion. We retain these loops, which we use to constrain the growth of larger superpixels by weighting
loops by the size of the superpixel. This acts as a regularizer by constraining the variance of super-
pixel sizes, in contrast to the method proposed by Wei et al. (2018).

To this end, we define separate weight functionals for self-looping edges. We compute the empirical
mean and standard deviation of the size of the superpixels for each level t in the hierarchy, and
denote these by µ

(t)
|π|, σ

(t)
|π|, respectively. For the non-loops we use the averaged features of each

superpixel µ(t)
ξ (v) =

∑
i∈π

(t)
v

ξ(i)/|π(t)
v |, and use cosine similarity given by

sim
(
µ
(t)
ξ (u), µ

(t)
ξ (v)

)
=

〈
µ
(t)
ξ (u), µ

(t)
ξ (v)

〉
∥µ(t)

ξ (u)∥ · ∥µ(t)
ξ (v)∥

. (2)

The final edge weight function is then given by

wξ(u, v) =


sim

(
µ
(t)
ξ (u), µ

(t)
ξ (v)

)
, for u ̸= v;(

|π(t)
u | − µ

(t)
|π|

)
/σ

(t)
|π|, otherwise.

(3)

Update rule: We use a greedy parallel update rule for the edge contraction, such that each superpixel
joins with a neighboring superpixel with the highest edge weights. We also note that we include
self-loops for all G(t) where t ≥ 1. Let N(t)(v) denote the neighborhood of adjacent vertices of the
superpixel with index v at level t. We construct an intermediate set of edges, given by

E(t+½) =

(
v, argmax

u∈N(t)(v)

wξ(u, v) : v ∈ V (t)

)
. (4)

Now, the transitive closure E(t+½), i.e., the connected components of E(t+½), explicitly yields a
mapping V (t) 7→ V (t+1) such that π(t+1)

v =
⋃

u∈N(t+½)(v)
π
(t)
u , where N(t+½)(v) denotes the con-

nected component of vertex v in E(t+½). This update rule for the partitions ensures that each parti-
tion at level (t + 1) is a connected region, as it is formed by merging adjacent superpixels with the
highest edge weights. We show an illustration of this aggregation in Fig. 3.
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Figure 3: Visualization of superpixel aggregation.

Iterative refinement: We repeat the steps of
computing aggregation maps, regularized edge
weights, and edge contraction until the desired
number of hierarchical levels T is reached. At
each level, the partitions become more coarse,
representing larger homogeneous regions in the
image. The hierarchical structure allows for
a flexible multiscale representation of the im-
age, capturing both local and global structures.
At level T we have obtained a sequence of
partitions (π(t))Tt=0, where each partition at
level t is a connected region of the image, and
π(t) ⊑ π(t+1) for all t.

We conduct experiments to empirically verify the relationship between the number of tokens pro-
duced by varying the steps T and patch size ρ in canonical ViT tokenizers. Let NSPiT, NViT denote
the number of tokens for the SPiT tokenizer and ViT tokenizer respectively. Remarkably, we are able
to show with a high degree of confidence that the relationship is E(T | NSPiT = NViT) = log2 ρ,
regardless of image size. Results and more details can be found in Appendix F.

2.3 FEATURE EXTRACTION WITH IRREGULAR PATCHES

While we conjecture the choice of square patches in the ViT architecture to be motivated by con-
venience, it is naturally also a result of the challenge posed by the alternative. Irregular patches
are unaligned, exhibit different shapes and dimensionality, and are not necessarily convex. These
factors make the embedding of irregular patches to a common inner product space nontrivial. Which
properties, then, do the features need to encode to represent irregular image patches? In addition to
consistency and uniform dimensionality, we propose a minimal set of properties any such features
would need to capture; color, texture, shape, scale, and position.

Positional Encoding: To encode shape, scale and position, we propose applying a joint histogram
over the coordinates of a superpixel Sn for each of the n = 1, . . . , N partitions. First, we normalize
the positions such that (y′, x′) ∈ [−1, 1]2 for all (y′, x′) ∈ Sn. We decide on a fixed number
of bins β, denoting the dimensionality of our features in each spatial direction, and apply kernel
density estimation to construct a joint histogram Ξ̂(pos) ∈ Rβ×β using a Gaussian kernel Kσ with
bandwidth σ ∈ [0.01, 0.05] such that

Ξ̂(pos)
n,y,x =

∑
(yj ,xj)∈Sn

Kσ(y − yj , x− xj). (5)

This, in effect, encodes the position of the patch within the image, as well as its shape and scale.
Finally, spatial dimensions for each superpixel are flattened such that Ξ(pos)

n = vec(Ξ̂
(pos)
n ) ∈ Rβ2

.

Texture Features: Gradient operators provides a simple but relatively robust method of extracting
texture information (Leung & Malik, 2001). We use the gradient operator proposed by Scharr (2007)
for this purpose due to it providing better rotational symmetry while minimizing discretization er-
ror, and we normalize the gradient operator over averaged channels such that ∆ξ ∈ [−1, 1]H×W×2,
where the last dimensions correspond to each gradient direction in the image. Mirroring the pro-
cedure for the positional features, we then construct a joint histogram with a Gaussian KDE kernel
over the gradients within each superpixel Sn, giving the vectorized features Ξ(grad)

n ∈ Rβ2

.

While our proposed gradient features are commensurable with the canonical ViT architecture, they
represent an additional dimension of information. We therefore perform ablations on the effect
of including or omitting these features across architectures. For models where these features are
omitted, we say that the feature extractor ϕ is gradient excluding.

Color Features: To encode the light intensity information from the raw pixel data into our features,
we interpolate the bounding boxes of each patch to a fixed resolution of β × β using a bilinear in-
terpolation operator, while masking out the pixel information in other surrounding patches. These
features essentially capture the raw pixel information of the original patches, but resampled and
scaled to uniform dimensionality. We call our proposed feature extractor ϕ an interpolating feature

5



Under review as a conference paper at ICLR 2024

Table 1: Model performance and accuracy (Top 1) on classification tasks.

Model Perf. IN1K (384) INREAL (384) CIFAR100 (256) CALTECH256 (256)

Name Tok. Feat. Grad. # Par. Im./s.‡ KNN Lin. KNN Lin. KNN Lin. KNN Lin.

ViT-S16 Sqr. Pix. ✗ 22.1M — 0.692 0.765 0.970 0.778 0.833 0.827 0.827 0.818
ViT-S16 Sqr. Pix. ✓ 22.2M — 0.682 0.754 0.974 0.782 0.836 0.830 0.832 0.824
RViT-S16 Vor.† Intp. ✗ 22.1M — 0.740 0.767 0.977 0.829 0.858 0.856 0.858 0.852
RViT-S16 Vor.† Intp. ✓ 22.2M — 0.741 0.759 0.974 0.818 0.859 0.856 0.861 0.856
SPiT-S16 SPix. Intp. ✗ 22.1M — 0.628 0.689 0.956 0.746 0.769 0.761 0.771 0.767
SPiT-S16 SPix. Intp. ✓ 22.2M — 0.736 0.750 0.973 0.819 0.839 0.832 0.851 0.849

ViT-B16 Sqr. Pix. ✗ 86.6M 793.04 0.737 0.802 0.978 0.853 0.897 0.892 0.879 0.879
ViT-B16 Sqr. Pix. ✓ 86.8M 721.12 0.748 0.805 0.975 0.854 0.899 0.899 0.885 0.889
RViT-B16 Vor.† Intp. ✗ 86.6M 619.86 0.718 0.788 0.958 0.843 0.838 0.894 0.882 0.873
RViT-B16 Vor.† Intp. ✓ 86.8M 585.64 0.725 0.789 0.962 0.841 0.762 0.888 0.861 0.864
SPiT-B16 SPix. Intp. ✗ 86.6M 690.72 0.569 0.760 0.954 0.793 0.634 0.813 0.829 0.833
SPiT-B16 SPix. Intp. ✓ 86.8M 640.59 0.752 0.804 0.980 0.858 0.845 0.884 0.891 0.888
†Uncertainty measures for scores from the stochastic Voronoi (RViT) tokenizer are detailed in Appendix Table E.1.
‡Median throughput estimated over full training with 4× MI250X GPUs using float32 precision.

extractor. Similar to positional and texture features, the RGB features are normalized to [−1, 1] and
vectorized such that Ξ(col) ∈ R3β2

. The feature modalities are concatenated to yield the final fea-
tures Ξn = [Ξ

(col)
n ,Ξ

(pos)
n ,Ξ

(grad)
n ] ∈ R5β2

. For gradient excluding feature extractors, the gradient
features are dropped such that Ξn \ Ξ(grad)

n = [Ξ
(col)
n ,Ξ

(pos)
n ] ∈ R4β2

.

2.4 GENERALIZATION OF CANONICAL VIT

Our proposed feature extraction framework essentially acts as a generalization of the canonical ViT
framework, and is equivalent to applying an canonical tokenizer using a fixed patch size ρ with
interpolated feature extraction.
Proposition 2.1 (Embedding Equivalence). Let τ∗ denote an canonical ViT tokenizer with a fixed
patch size ρ, let ϕ denote a gradient excluding interpolated feature extractor, and let γ∗, γ denote
embedding layers with equivalent linear projections L∗

θ = Lθ. Let Ξ(pos) ∈ RN×β2

denote a matrix
of vectorized joint histogram positional embeddings under the partitioning induced by τ∗. Then
for H = W = β2 = ρ2, the embeddings given by γ ◦ ϕ ◦ τ∗ are equivalent to the canonical ViT
embeddings given by γ∗ ◦ ϕ∗ ◦ τ∗ up to proportionality.

We provide necessary definitions and proofs for Prop. 2.1 in the appendix, demonstrating that our
proposed framework includes the canonical ViT architecture as a special case. This provides oppor-
tunities for transfer learning, where pre-trained models can be fine-tuned to leverage our proposed
modular framework. The modularity of our framework can also be exploited to optimize compo-
nents individually, facilitating continued analysis and understanding of transformers for vision tasks.

3 EXPERIMENTS

To evaluate our SPiT framework, we train models with small (S) and base (B) capacities on a gen-
eral purpose classification task using IMAGENET1K (Deng et al., 2009), where the ViT serves as a
baseline. We evaluate the models by fine-tuning on CIFAR100 (Krizhevsky et al., 2009) and CAL-
TECH256 (Griffin et al., 2022), in addition to validation using the IMAGENET REAL labels (Beyer
et al., 2020). We ablate over the inclusion of gradient features in different models. We also evaluated
our models with a KNN classifier, which provides some insight into the properties of the embedding
space for the different models. Table 1 gives an overview of the results. We present the details of
our setup in Appendix C.

Classification: Our results demonstrate that ViTs can be successfully trained under irregular su-
perpixel tokenization for classification tasks. For models with gradient texture features, superpixel
tokenization performs comparably to square partitioning. We observe that models with irregular
tokens and gradient excluding feature extractors underperform. We conjecture that this is likely due
to irregularity and nonconvexity of superpixels, and largely confirms our conjecture that gradient
features can compensate for loss of information from interpolation. Our findings in Section 2.4 also
supports this.
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Table 2: Results for unsupervised salient segmentation.

ECSSD DUTS DUT-OMRON

TokenCut Backbone Postproc. maxFβ IoU Acc. maxFβ IoU Acc. maxFβ IoU Acc.

DINO (Wang et al., 2022b) ✗ 0.803 0.712 0.918 0.672 0.576 0.903 0.600 0.533 0.880
✓ 0.874 0.772 0.934 0.755 0.624 0.914 0.697 0.618 0.897

SPiT ✗ 0.903 0.773 0.934 0.771 0.639 0.894 0.711 0.564 0.868

When comparing results across the different datasets, we unsurprisingly note stronger results on
CIFAR100 for the ViT models. This is to be expected, since the original images are exceedingly low
resolution (32) and have been upscaled (256). While we use bilinear interpolation for upscaling, the
square artifacts from the low resolution still persist to some degree, and hence naturally align more
with square tokenization. On the other hand, we were more surprised to see that SPiT performs better
than the ViT over IMAGENET REAL, indicating that the model generalizes somewhat better. While
certain results indicates that SPiT outperforms the baseline ViT, we stress that the results are not
significant enough to warrant any clear benefit for any framework in particular on general purpose
classification tasks. We note that comparable performance is a positive result, since our focus is
on demonstrating the feasibility of modular superpixel tokenization as a new research direction for
vision transformers. See more details in Appendix E.

Unsupervised Salient Segmentation: Superpixels have historically been applied in dense predic-
tion tasks such as segmentation and object detection (Ladický et al., 2009; Yan et al., 2015) as a
lower-dimensional prior for dense prediction tasks. To evaluate our framework, we are particularly
interested in tasks for which the pretrained model can be leveraged directly to demonstrate the in-
herent benefits of the tokenizer. Wang et al. (2022b) propose an unsupervised methodology for
extracting salient segmentation maps for any transformer model using normalized graph cut (Shi &
Malik, 2000). We conduct experiments extending this well-established method to showcase prelim-
inary out-of-the-box capabilities on dense prediction tasks for our proposed tokenizer, with details
in Appendix G.

Table 2 shows results for the ECSSD (Yan et al., 2013), DUTS (Wang et al., 2017) and DUT-
OMRON (Yang et al., 2013) datasets, and demonstrates that SPiT compares favorably to the appli-
cation of DINO (Caron et al., 2021) under the TokenCut framework, notably without any form of
postprocessing. The results clearly indicates that our tokenizer has stronger semantic alignment with
image content, and that our proposed framework is capable of dense predictions without learnable
tokenization. We use the same metrics as the original TokenCut framework; for maxFβ we set
β = 1/3 and take the maximum score over 255 uniformly sampled thresholds. Visualization of a
set of random results are featured in Fig. G.1.

3.1 EFFECT ON INTERPRETABILITY FROM REFINED ATTENTION MAPS

One of the salient features of transformers is the inherent interpretability provided by their attention
mechanisms. Techniques such as attention rollout (Dosovitskiy et al., 2021), attention flows (Ab-
nar & Zuidema, 2020), class token attention maps (Caron et al., 2021), and PCA projections over
common sets of images (Oquab et al., 2023) have been leveraged to visualize the reasoning be-
hind the model’s decisions. These techniques are constrained by the granularity and semantic
alignment of the original tokenization scheme. In contrast, LIME (Ribeiro et al., 2016) provides
a well-established framework for post-hoc explainability with superpixel partitions using Quick-
shift (Vedaldi & Soatto, 2008) or SLIC (Achanta et al., 2012) for local linear surrogate models.

Since superpixel tokenization naturally augment attention maps with a higher level of granularity,
we conducted experiments to quantify the faithfulness of interpretations under different tokenization
strategies. To evaluate the inherent interpretability we compute the attention flow of the model in
addition to PCA projected features, infused with prototypes for the predicted class, and contrast
this with attributions from LIME with independently computed SLIC superpixels. We measure
faithfulness using comprehensiveness (COMP) and sufficiency (SUFF) (DeYoung et al., 2020), which
have been shown to be the two strongest quantitative measures for transformers (Chan et al., 2022).
See Appendix D for experimental details.
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Table 3: Faithfulness of Attributions, w. CI (95%).

ViT-B16 (IN1K) RViT-B16 (IN1K) SPiT-B16 (IN1K)

COMP ↑ SUFF ↓ COMP ↑ SUFF ↓ COMP ↑ SUFF ↓

LIME/SLIC 0.244 ± 0.004 0.543 ± 0.006 0.236 ± 0.004 0.591 ± 0.007 0.244 ± 0.005 0.520 ± 0.006
ATT.FLOW 0.160 ± 0.004 0.664 ± 0.006 0.223 ± 0.005 0.685 ± 0.007 0.259 ± 0.006 0.558 ± 0.006
PROT.PCA 0.206 ± 0.005 0.710 ± 0.006 0.209 ± 0.005 0.691 ± 0.007 0.256 ± 0.005 0.592 ± 0.006
Color coding: baseline, weaker than baseline, stronger than baseline.

Table 4: Tokenizer Generalization.

∆ Acc. ↑ (IN1K)

Model Grad. Sqr. Vor. SPix.

ViT-B16 ✗ 0.000 −0.551 −0.801
ViT-B16 ✓ 0.000 −0.494 −0.798
RViT-B16 ✗ 0.006 0.000 −0.593
RViT-B16 ✓ 0.003 0.000 −0.163
SPiT-B16 ✗ −0.407 −0.464 0.000
SPiT-B16 ✓ −0.200 −0.063 0.000

Table 5: Superpixel Quality and Efficiency.

BSDS500 SBD‡ Runtime

VExpl.↑ |π| ↓ VExpl. ↑ |π| ↓ sec/img. ↓

ETPS† 0.924 651.0 0.955 648.1 0.3268
SEEDS† 0.901 670.6 0.944 644.9 0.4501
SLIC† 0.847 575.3 0.897 592.2 0.0729
Watershed† 0.803 608.1 0.871 641.1 0.0038
SPiT Tok. 0.914 595.0 0.948 570.2 0.0047
†Results from survey paper by Stutz et al. (2018).
‡Full PASCALVOC12 due to folds for SBD missing from website.

The results in Table 3 suggests that interpretations extracted from the ViT and RViT models are less
faithful to the predictions than interpretations procured with LIME with SLIC superpixels. Con-
trarily, the predictions extracted from the attention flow and PCA using the SPiT model provide
better comprehensiveness scores than interpretations from LIME, indicating that SPiT models pro-
duce interpretations that more effectively exclude irrelevant regions of the image. A one-sided t-test
confirms that the improvement in comprehensiveness between ATT.FLOW and LIME for the SPiT
model is statistically significant.1 Furthermore, we note that the sufficiency score for SPiT models
are closer to the baseline LIME interpretations than what we observe for the ViT, indicating that the
interpretations from SPiT model captures the most essential features better than a canonical ViT.
Figs. 1, D.1, D.2, and D.3 clearly shows that the granularity of superpixel tokens provide interpreta-
tions that closely align with the semantic content of the image.

3.2 ABLATIONS

Tokenizer Generalization: In Section 2.1 we outlined our framework, and in Section 2.4 we showed
that our framework generalizes the canonical ViT. This allows us to contrast the generalizability
of the different strategies across models by directly swapping tokenization strategies between the
models. We report the change in accuracy (∆ Acc.) of models when changing tokenizers in Table 4.

Unsurprisingly, the ViT with square tokenization performs relatively poorly when evaluated on ir-
regular patches. We note that the RViT models trained with the random Voronoi tokenization see an
increase in accuracy when evaluated over square patches. Furthermore, we see that the SPiT models
also generalize well to both to square and Voronoi tokens, but is highly dependent on the gradient
features. In particular, when gradient features are included, we see a very low drop in accuracy
when evaluating over Voronoi tokens for the SPiT model, as well as evaluating superpixel tokens for
the RViT models. This largely confirms our conjecture that gradient features help encode important
information about texture, scale, and shape for irregular patches.

Quality of Superpixels: To evaluate the quality and estimate the information loss of our proposed
superpixel segmentation, we compute the explained variation given by

VExpl.(π | ξ) = 1

V(ξ)
∑
S∈π

Pr(S)
(
E(ξ ∩ S)− E(ξ)

)2
, (6)

where Pr(S) = |S|/|ξ|. The explained variation quantifies how well the superpixels capture the
inherent structures in an image by measuring the amount of dispersion in the image which can be
attributed to the partitioning π. An ideal algorithm would produce a high VExpl. with a minimal
number of superpixels. We compare our approach with SotA superpixel methods (Stutz et al., 2018)
in Table 5, demonstrating that our superpixel algorithm performs comparably to SotA algorithms
with substantially lower inference time, which is crucial for on-line tokenization.

1One-sided t-test (ATT.FLOW > LIME): (t = 6.54, p < 10−10, df = 49664).
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4 DISCUSSION AND RELATED WORK
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Figure 4: Taxonomy of adaptive tokenization in trans-
formers. Tokenization ranges from decoupled (�) to
coupled (�) to the transformer architecture, and from
coarse (ò) to fine (ó) token granularity. To contextual-
ize vision models (4) with LLMs (_), GPT-3 (Brown
et al., 2020) is included for reference.

Related Work: Recent research show that in-
terest in adaptive tokenization is burgeoning in
the field. We propose a taxonomy of adaptive
tokenization with two primary dimensions for
dividing the approaches—cf. Fig. 4 for an il-
lustration of this spectrum. Firstly, the divi-
sion is based on the coupling or integration of
tokenization into the transformer architecture.
Some approaches (Ma et al., 2023; Huang et al.,
2022; Bolya et al., 2023) prioritize this cou-
pling aspect. In contrast, others adopt a decou-
pled modular approach (Havtorn et al., 2023;
Ronen et al., 2023), which aligns with our SPiT
framework. Moreover, to enhance our under-
standing of this taxonomy, we introduce the
second dimension of token granularity. This di-
mension enables us to assess the proximity of a
method to operating with pixel-level precision.
By considering both dimensions, we can better
comprehend the full spectrum of adaptive tok-
enization for transformers.

A significant body of current research is primarily designed to improve scaling and reducing over-
all compute for attention (Bolya et al., 2023; Ryoo et al., 2021; Yuan et al., 2021) by leveraging
token merging strategies in the transformer layers with square patches, and can as such be consid-
ered low-granularity coupled approaches. Distinctively, the SuperToken transformer (Huang et al.,
2022) applies a coupled approach to extract a non-uniform token representation. The approach is
fundamentally patch based, and does not aim for pixel-level granularity.

In contrast, recent work on multi-scale tokenization (Havtorn et al., 2023; Ronen et al., 2023) have
made strides towards a decoupled approach where the tokenizer is largely independent of the trans-
former architecture. These works are commensurable with any transformer backbone, including our
SPiT framework, and can notably be used to improve computational overheads. While they operate
on a lower level of granularity with square tokens, there is significant potential for synergy between
these approaches and our own, particularly given the hierarchical nature of SPiT. On the periphery,
Ma et al. (2023) propose a pixel-level kernelized approach in a coupled high granularity approach.

Further Work: Our work is distinguishable as a decoupled high-granularity apprach that creates
multiple paths for further work. For more coherence in dense predictions, heuristic algorithms for
on-line superpixel tokenization should be replaced with a learnable framework. Since our framework
leverages a hierarchical graph, we see strong potential in exploring graph neural networks (GNNs)
for tokenization, while the hierarchy can be directly applied with self-supervised frameworks such
as DINO (Caron et al., 2021), or multiscale pyramid attention models (Wang et al., 2021; 2022a) in
a coupled approach.

The modularity of our framework provides opportunites for research into the dynamic between ViTs
and tokenization. Coupling SPiT with gated mixed-scale dynamical tokenization (Havtorn et al.,
2023) could be applied to further improve scalability, and potentially be used for learnable tokeniza-
tion. More work can be done in studying the effects of irregularity of partitions, as mentioned in
Section 3.2, while random voronoi tesselations have opportunities for using stochastic tokenization
as an augmentation strategy, which could be interesting for self-supervised frameworks.

Conclusion: In this work, we demonstrated that our proposed tokenization strategies generalize
transformers for vision tasks, and that irregular patches can be successfully leveraged for training
powerful models. We showed that SPiT models show strong performance in salient segmentation,
increase faithfulness of the interpretablity of attributions, while producing comparable results to
canonical ViT models for classification tasks. Our proposed gradient features and positional en-
coding improve performance of canonical ViTs with base capacities, and that irregular tokenizers
generalize between different tokenization strategies.
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A EQUIVALENCE OF FRAMEWORKS

Definition A.1 (ViT Tokenization). Let ξ : H ×W → RC be an image signal with tensor repre-
sentation ξ⃗ ∈ RH×W×C . The canonical ViT tokenization operator τ∗ : RH×W×C → RN×ρ×ρ×C

partitions the image into N = ⌈H
ρ ⌉ · ⌈

W
ρ ⌉ non-overlapping C-channel square zero-padded patches.

For H mod ρ = W mod ρ = 0, we have that N = H
ρ · W

ρ , and no padding is necessary.

Definition A.2 (ViT Features). Let ρ denote the patch dimension of a canonical ViT tokenizer τ∗,
and let M = ρ2C. The canonical ViT feature extractor ϕ∗ : RN×ρ×ρ×C → RN×M is given by
ϕ∗ = vecM , where vecM denotes the vectorization operator applied independently to each of the N
patches via ρ× ρ× C 7→ M .

Definition A.3 (ViT Embedder). Let ϕ∗ be a canonical ViT feature extractor, and let Q ∈ RN×D

denote a positional encoding. The canonical ViT embedder γ∗ : RN×M → RN×D is given by

γ∗(z) = Lθz +Q

where Lθ : RN×M → RN×D is a learnable linear transformation, and Q is either a learnable set of
parameters or a function of the positions of the N blocks in the partitioning induced by the canonical
tokenizer τ∗.

Lemma A.4 (Feature Equivalence). Let τ∗ denote a canonical ViT tokenizer with a fixed patch
size ρ, and let ϕ denote a gradient excluding interpolating feature extractor with β = ρ. Then the
operations ϕ ◦ τ∗ are equivalent to the canonical ViT operations ϕ∗ ◦ τ∗.

Proof. The proof is highly trivial but illustrative. Note that for each of the N square patches
generated by τ , the extractor ϕ performs an interpolation to rescale the patch to a fixed reso-
lution of β × β. However, for β = ρ the patches already match the target dimensions exactly.
It follows that the interpolation operation reduces to identity. The vectorization operator is
equivalent for both mappings, hence ϕ = vecN = ϕ∗.

Proposition 2.1 (Embedding Equivalence). Let τ∗ denote an canonical ViT tokenizer with a fixed
patch size ρ, let ϕ denote a gradient excluding interpolated feature extractor, and let γ∗, γ denote
embedding layers with equivalent linear projections L∗

θ = Lθ. Let Ξ(pos) ∈ RN×β2

denote a matrix
of vectorized joint histogram positional embeddings under the partitioning induced by τ∗. Then
for H = W = β2 = ρ2, the embeddings given by γ ◦ ϕ ◦ τ∗ are equivalent to the canonical ViT
embeddings given by γ∗ ◦ ϕ∗ ◦ τ∗ up to proportionality.

Proof. We first note that we can assume Ξ(pos) is a matrix with single entry components, since
under β = ρ and N = β2, each vectorized histogram feature is a scaled unit vector cne⃗n with
n = 1, . . . , N . Moreover, since the partitioning inferred by τ∗ exhaustively covers the spatial
dimensions H ×W , the histograms essentially span the standard basis, such that Ξ(pos) is
diagonal. Furthermore, since each patch is of the same size we have equal contribution towards
each entry, such that cn = cm for all m ̸= n. Therefore, without loss of generality, we can
ignore the scalars and simply consider Ξ(pos) = I as an identity matrix. From Proposition A.4
we have that z = (ϕ∗ ◦ τ∗)(ξ⃗) = (ϕ ◦ τ∗)(ξ⃗). Then, since

γ∗(z) = Lθz +Q = [Lθ, Q]
[z
I

]
= γ(z) (7)

we have that γ = γ∗ up to proportionality for some constant c = cn.

Remark A.5. While we only demonstrate the equality up to proportionality, this can generally be
ignored since we can effectively choose our linear projection under γ to be Lθ/c. We note that while
the equality holds for empirical histograms, equality does not strictly hold for Ξ(pos) computed using
KDE with a Gaussian kernel, however we point out that the contribution from the tails of a kernel
Kσ with a small bandwidth is effectively negligible.
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B PREPROCESSING AND SUPERPIXEL FEATURES

Compared to standard preprocessing, we use a modified normalization scheme for the features for
improving the superpixel extraction. We apply a combined contrast adjustment and normalization
function using a reparametrized version of the Kumaraswamy CDF. which is computationally effi-
cient and allows more fine-grained control of the distribution of intensities than empirical normal-
ization, which improves the superpixel partitioning.

The normalization uses a set of means µ shape parameters λ for normalizing the image and adjusting
the contrast. The normalization is given by(

1−
(
1− xλ

)b)
, (8)

where b is defined by

b = − ln(2)

ln (1− µλ)
, (9)

and we set means µr = 0.485, µg = 0.456, µb = 0.406 and λr = 0.539, λg = 0.507, λb = 0.404,
respectively. This gives a normalized image with support in [−1, 1].

The features used for the superpixel extraction are further processed using anisotropic diffusion,
which smoothes homogeneous regions while avoiding blurring of edges. This technique was ad-
vocated for superpixel segmentation by Xiaohan et al. (1992). We use the algorithm proposed by
Perona & Malik (1990) over 4 iterations, with κ = 0.1 and γ = 0.5. Note that these features are
only applied for constructing the superpixels in the tokenizer. We emphasize that we do not apply
anisotropic diffusion for the features in the predictive model.

C TRAINING DETAILS

As mentioned in Section 1.2, we use standardized ViT architectures and generally follow the rec-
ommendations provided by Steiner et al. (2021). We provide training logs, pretrained models, and
code for training models from scratch in our GitHub project repository.

Classification: Training is performed over 300 epochs using the ADAMW optimizer with a co-
sine annealing learning rate scheduler with 5 epochs of cosine annealed warmup from learning
rate ηstart = 1 × 10−5. The schedule maxima and minima are given by ηmax = 3 × 10−3,
and ηmin = 1 × 10−6. We use a weight decay of λdec = 2 × 10−2 and set the smoothing term
ϵ = 1 × 10−7. In addition, we used stochastic depth dropout with a base probability of p = 0.2
in addition to the budget input dropout, limiting the number of seen tokens during training. Models
were pretrained with spatial resolution 256× 256.

For augmentations, we randomly select between using the RANDAUG framework at medium
strength or using AUG3 framework by Touvron et al. (2022) including CUTMIX (Yun et al., 2019)
with parameter α = 1.0. We use RANDOMRESIZECROP using the standard scale (0.08, 1.0) with
stochastic interpolation modes. Since the number of partitions from the superpixel tokenizer are
adapted on an image-to-image basis, we effectively regularize the maximum number of superpixels
during training using a budget dropout to improve training times.

We found that a naive on-line computation of Voronoi tessellations was unnecessarily computation-
ally expensive, hence we precompute sets of random Voronoi tessellations with 196, 256, and 576
partitions, corresponding to images of 224×224, 256×256, and 384×384 resolutions given patch
size ρ = 16.

All training was performed on AMD MI250X GPUs. One important distinction is that we do not use
quantization with bfloat16 for training our models, instead opting for the higher 32-bit precision
of float32 since this improves consistency between vendor frameworks. Inference was carried
out on a mixture of NVIDIA A100, RTX 2080Ti, Quadro P6000, and AMD MI250X to validate
consistency across frameworks.

Fine Tuning: All base models were fine-tuned over 30 epochs with increased degrees of regular-
ization. We increase the level of RANDAUG to “strong” using 2 operations with magnitude 20.
Additionally, we increase the stochastic depth dropout to p = 0.4. Fine tuning was performed with
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spatial resolution 384 × 384, and we reduce the maximum learning rate to ηmax = 1 × 10−4. For
the alternative classification datasets CIFAR100 and CALTECH256, fine tuning was performed by
replacing the classification head and fine tuning for 10 epochs using ADAMW with learning rate
η = 1 × 10−4 and the same weight decay. No augmentation was used in this process, and images
were re-scaled to 256× 256 for training and evaluation.

D INTERPRETABILITY AND ATTENTION MAPS

For LIME explanations, we train a linear surrogate model LΦ for predicting the output probabili-
ties for the prediction of each model Φ. To encourage independence between tokenizers and LIME
explanations, as well as promote direct comparability, we use SLIC with a target of |π| ≈ 64 su-
perpixels. We use Monte Carlo sampling of binary features for indicating the presence or omission
of each superpixel with stochastic p ∈ Uniform(0.1, 0.3), and keep these consistent across model
evaluations. We observed that certain images in the IN1K at times produced less than 5 superpixels
using SLIC, hence these images were dropped from the evaluation.

The attention flow (Abnar & Zuidema, 2020) of a transformer differs from the standard attention roll-
out by accounting for the contributions of the residual connections in computations. The attention
flow of an L-layer transformer is given by

AFlow =

L∏
i=1

(
(1− λ)I + λAi

)
. (10)

where we set λ = 0.9 to normalize the stochasticity while accentuating the contribution of the atten-
tion matrices. We use max-aggregation over the heads to extract a unified representation. Following
Dosovitskiy et al. (2021) and Caron et al. (2021), we extract the attention for the class token as an
interpretation of the model’s prediction.

For the PCA projection, we take inspiration from the visualizations technique used in the work of
Oquab et al. (2023). In this work, the features of multiple images with comparable attributes are
concatenated, and projected onto a set of the top principal components of the image. We compute a
set of 5 prototype centroids ν ∈ R1000×d×5 for each class token of each model over ImageNet using
KMeans, while enforcing relative subclass orthogonality by introducing a regularization term

J(ν) =
λν

1000

1000∑
c=1

∥I − ν⊺c νc∥22, (11)

selecting λν = 0.1. Given a prediction c, we concatenate the prototypes to the token embeddings
to form a matrix M = [Φ(ξ; θ)⊺, ν⊺c ]

⊺. Letting UΣV ⊺ = M − µ(M) be a low-rank SVD of the
centered features, we then project the original features to the principal components by Φ(ξ; θ)V ,
and use max-aggregation to extract the attribution as an interpretation of the model’s prediction. We
experimented with different ranks, but found that simply using the first principal component aligned
well with attention maps and LIME coefficients. This somewhat mirrors the procedure by Oquab
et al. (2023), where a thresholded projection on the first principal component is applied as a mask.
In the interest of reproducibility, we provide links for downloading normalized attention maps for
all attributions in our GitHub repository.

To quantify the faithfulness of the attributions for each model, we used comprehensiveness and
sufficiency as proposed by DeYoung et al. (2020). Given a sequence of quantiles Q ∈ [0, 1] from an
attribution, these metrics are given by

COMPQ|x,Φ =
1

|Q|
∑
q∈Q

(
Φ(x; θ)− Φ(x \ x>q; θ)

)
, (12)

SUFFQ|x,Φ =
1

|Q|
∑
q∈Q

(
Φ(x; θ)− Φ(x \ x≤q; θ)

)
. (13)

The benefit of these metrics is that they are symmetrical, and invariant to the scaling of the attribu-
tions due to applying quantiles to produce the masks. Following the procedure outlined by DeYoung
et al. (2020) we set the quantiles to Q = (0.01, 0.05, 0.2, 0.5).
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Tokenized Image ATT. FLOW PROTO. PCA LIME (SLIC)

ViT

RViT

SPiT

ViT

RViT

SPiT

Figure D.1: Visualization of feature attributions for prediction “bee eater” and “bittern” with different tok-
enization strategies: square partitions (ViT), random Voronoi tesselation (RViT) and superpixels (SPiT).
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q = 0.05 q = 0.10 q = 0.20 q = 0.50

ViT / COMP

ViT / SUFF

RViT / COMP

RViT / SUFF

SPiT / COMP

SPiT / SUFF

Figure D.2: Visualization of attention flow occlusions at different quantiles q for prediction “grass snake”.
Note how the scaling of attention maps under superpixel tokenization improves occlusion for the predicted
class.
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q = 0.05 q = 0.10 q = 0.20 q = 0.50

ViT / COMP

ViT / SUFF

RViT / COMP

RViT / SUFF

SPiT / COMP

SPiT / SUFF

Figure D.3: Visualization of attention flow occlusions at different quantiles q for prediction “impala”. Note
how the scaling of attention maps under superpixel tokenization improves occlusion for the predicted class.
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Table E.1: Results w. CI (95%) for models with RVT tokenizers (5 runs).

ViT Model IN1K INREAL CIFAR100 CALTECH256

Name Tok. Feat. Grad.Ft. Lin. Lin. Lin. Lin.

SPiT-S16 RV Intp. ✗ 0.7669 ± 0.0002 0.8285 ± 0.0003 0.8557 ± 0.0028 0.8521 ± 0.0007
SPiT-S16 RV Intp. ✓ 0.7593 ± 0.0003 0.8183 ± 0.0002 0.8563 ± 0.0032 0.8558 ± 0.0006

SPiT-B16 RV Intp. ✗ 0.7878 ± 0.0002 0.8436 ± 0.0002 0.8941 ± 0.0043 0.8731 ± 0.0007
SPiT-B16 RV Intp. ✓ 0.7892 ± 0.0002 0.8414 ± 0.0001 0.8875 ± 0.0030 0.8644 ± 0.0006

Table F.1: Estimated E(|π(T )|) for SPiT tokenization over IN1K (training set, CI 95%).

Im.Size E(|π(1)|) E(|π(2)|) E(|π(3)|) E(|π(4)|)

224 11 940.278 ± 2.848 3155.512 ± 0.808 794.650 ± 0.209 197.411 ± 0.052
256 15 496.020 ± 3.786 4097.510 ± 1.074 1031.727 ± 0.277 256.051 ± 0.071
384 34 084.297 ± 9.188 9047.289 ± 2.586 2287.822 ± 0.669 567.690 ± 0.172

E EXTENDED DISCUSSION ON RESULTS

Certain interesting observations can be made from our results in Table 1. Firstly, random Voronoi
tessellations perform better than data-driven superpixels for gradient excluding features, and despite
its inherent stochasticity, tokenization with random Voronoi tessellations proves to be a relatively
effective strategy, and demonstrate surprisingly consistent results over prediction tasks as reported
in Table E.1. To account for the stochasticity in validation, we compute accuracy scores over five
runs and report 95% confidence intervals in Table E.1. We find that the segmentations based on the
Voronoi tessellations produces remarkably consistent results over the validation set.

Additionally we note that gradient including tokenizers perform comparatively worse for small (S)
models. This is particularly noteworthy, since the gradient features are essentially an added set of
features to the model. We speculate that this could be an artifact of over-fitting on information-dense
features, at the expense of the utility of the canonical pixel features.

F ADDITIONAL DETAILS ON SUPERPIXEL TOKENIZATION

Number of Superpixels: In section 2.2, we mention that SPiT gives comparable numbers of parti-
tions to a ViT with different patch sizes. Table F.1 shows empirical results for superpixel sizes using
the SPiT tokenizer over the training images of IMAGENET1K, and Fig. F.1 compares the results to
number of patches with canonical ViT tokenization, demonstrating the validity of our claims.

Importantly, these results also reveal much about effective inference times. In Table 5, we show that
the overhead for constructing the superpixels is very low. However, the number of tokens depends
on the image. Images with large homogeneous regions will be processed faster, while images with
many independent regions will necessary incur a cost. Nevertheless, the results in Table F.1 show

224 256 384
102

103

104

Image Size

E(
|π

(t
)
|)

E(|π(1)|) |πViT2|
E(|π(2)|) |πViT4|
E(|π(3)|) |πViT8|
E(|π(4)|) |πViT16|

Figure F.1: Comparison E(|π(T )|) for SPiT with different ViT patch sizes.
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that we will, on average, have comparable inference times to a canonical ViT due to the beneficial
properties of our proposed superpixel tokenization.

Superpixel Compactness: In the interest of reproducibility, we also outline a few additional details
on our proposed superpixel tokenization. Readers familiar with classical superpixel algorithms may
have noted that our exposition in Section 2.2 does not explicitly mention any regularization for
compactness, which is seen as an attractive feature of a superpixel partition. In fact, our proposed
tokenizer does support optional regularization of compactness based on a simplified measure of
bounding box density. We outline the details of the regularization in the following paragraphs.

Recall that the size-based similarity for vertices u, v when u = v at step t is computed by

wξ(u, v) =
|πu|(t) − µ

(t)
|π|

σ
(t)
|π|

, (14)

where µ
(t)
|π| is the mean size of partitions and σ

(t)
|π| is the standard deviation. To control the effect of

the regularization, this weight is then truncated to the range [−λsize, λsize] where λsize is a hyperpa-
rameter. We set λsize = 0.75 in our implementation.

Compactness is regulated through bounding box density δbbox(u, v) given by

δbbox(u, v) =
4(|πu|(t) + |πv|(t))

per(u, v)2
, (15)

where
per(u, v) = max

y
(πu, πv)−min

y
(πu, πv) + max

x
(πu, πv)−min

x
(πu, πv) (16)

corresponds to the perimeter of the bounding box that encapsulates superpixel vertices u and v. The
final similarity metric combines the weight function and the compactness regularization via

λbboxδbbox + (1− λbbox)

(
wξ(u, v) + 1

2

)
, (17)

where λbbox serves as the hyperparameter for controlling the amount of compactness regularization.
This emphasizes how tightly the two neighbouring superpixels u and v are packed in their bounding
box. Higher values of δbbox mean the merging of the two vertices are spatially denser, forming
a more compact structure. We recommend setting λbbox = 0.1 for SPiT models using gradient
excluding feature extractors.

G UNSUPERVISED SALIENT SEGMENTATION

The TokenCut (Wang et al., 2022b) framework proposes to use a normalized cut (Shi & Malik,
2000) over the key features without class tokens in the last self-attention layer of the network. A soft
adjacency ATC is computed using cosine similarities, which are thresholded using a small threshold
τTC = 1/3 to estimate adjacency over the complete graph over token features. The normalized cut is
performed by extracting the Fiedler vector; the second smallest eigenvector of the graph Laplacian,
and gives a bipartition of the graph into foreground and background elements. The original paper
(Wang et al., 2022b) uses DINO (Caron et al., 2021) as a pretrained base model.

We found that extracting the key tokens from the last self-attention operator in the network is less
effective than simply using the final features for the SPiT framework. In TokenCut, the saliency map
is refined using postprocessing with a bilateral solver, however, in the SPiT framework this step is
clearly redundant. Instead, we simply standardize the Fiedler vector using its mean and standard
deviation, and map the result on the segmentations from the SPiT tokenizer. For certain images, the
foreground and background elements could be swapped under the standard unsupervised normalized
cut method. From our experiments on interpretability, we found that simply taking the class token
for the full image, and comparing it using cosine similarity to class tokens (produced given the
saliency mask) will accurately provide a robust estimate of which element is the foreground and the
background.
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True positives False positives False negatives

Figure G.1: Non-cherry picked samples ({0257..0264}.jpg) of salient segmentation results on ECSSD.
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