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Abstract

In high-dimensional settings, Bayesian optimization (BO) can be expensive and infeasible.
The random embedding Bayesian optimization algorithm is commonly used to address high-
dimensional BO challenges. However, this method relies on the effective subspace assumption
on the optimization problem’s objective function, which limits its applicability. In this
paper, we introduce Condensing-Expansion Projection Bayesian optimization (CEPBO), a
novel random projection-based approach for high-dimensional BO that does not rely on the
effective subspace assumption. The approach is both simple to implement and highly practical.
We present two algorithms based on different random projection matrices: the Gaussian
projection matrix and the hashing projection matrix. Experimental results demonstrate that
both algorithms outperform existing random embedding-based algorithms in most cases,
achieving superior performance on high-dimensional BO problems. The code is available in
https://anonymous.4open.science/r/CEPBO-14429.

1 Introduction

For many optimization problems, the objective function f lacks a closed-form expression, and gradient
information is often unavailable, leading to what we are generally referred to as black-box functions (Jones
et al., 1998; Snoek et al., 2012; Shahriari et al., 2015). Bayesian optimization (BO) is an efficient method
for solving such optimization problems by modeling the unknown objective function through a probabilistic
surrogate model, typically a Gaussian Process. The BO routine is a sequential search algorithm where each
iteration involves estimating the surrogate model from available data and then maximizing an acquisition
function to determine which point should be evaluated next. As the input space dimension D increases,
typically D ≥ 10, BO encounters the so-called ‘curse of dimensionality’ (Bellman, 1966). This phenomenon
refers to the exponential increase in the number of evaluations required to cover the input space as the
dimensionality increases (Wang et al., 2016).

To address the issue, numerous studies have proposed high-dimensional BO algorithms (Wang et al., 2016;
Chen et al., 2012; Binois et al., 2015; 2020; Nayebi et al., 2019; Letham et al., 2020) that typically translate
high-dimensional optimizations into low-dimensional ones by various techniques, and search the new point in
the low-dimensional space. However, these approaches can become inefficient when the maximum over the
high-dimensional space cannot be well approximated by the maximum over the low-dimensional space.

In this paper, we introduce a novel search strategy in high-dimensional BO problems called the Condense-
Expansion Projection (CEP) technique, which is both simple to implement and highly practical. In each
iteration of the sequential search, the CEP technique generates a random projection matrix A ∈ Rd×D, where
d ≪ D, to project the available data from the high-dimensional space to the low-dimensional embedding
space by multiplying them with A. It estimates the surrogate model and searches for the next point to
evaluate in the low-dimensional embedding space. Subsequently, it projects the searched data point back to
the high-dimensional space by multiplying it with A⊤ for evaluation in the original space.

We employ two distinct random projection matrices to generate the projection matrix A: the Gaussian
projection matrix (Dasgupta & Gupta, 2002) and the hashing projection matrix (Rokhlin & Tygert, 2008;
Boutsidis & Gittens, 2013). We show that the CEP approach preserves GP consistency in both the projection
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from the high-dimensional space to the low-dimensional embedding space and the reverse projection back
to the high-dimensional space. We then apply the CEP technique to two algorithms, REMBO (Wang
et al., 2016) and HeSBO (Nayebi et al., 2019), resulting in the development of CEP-REMBO and CEP-
HeSBO. Our experimental results, comprising comprehensive simulation studies and analysis of four real-world
datasets, demonstrate that both algorithms generally outperform existing random embedding-based algorithms,
showcasting the superior performance of the CEP technique on high-dimensional BO problems.

2 Related Work

There is a substantial body of literature on high-dimensional BO. The most closely related approach is
REMBO (Wang et al., 2016) by fitting a Gaussian Process model in a low-dimensional embedding space
obtained through a Gaussian random projection matrix. This approach has been further investigated under
various conditions (Binois et al., 2015; 2020; Binois, 2015; Letham et al., 2020). Nayebi et al. (2019) proposed
HeSBO that utilizes a hashing projection matrix. However, these studies are based on the assumption of an
effective subspace, where a small number of parameters have a significant impact on the objective function.
Similar to these studies, our approach evaluates the acquisition function over the embedding space. However,
unlike these studies, our approach selects the new point in the embedding space and projects it back to the
original space to obtain a point in the original space. The second distinguishing aspect of our approach is
that it generates a new random projection matrix in each iteration.

Aside from the embedding approach, several other techniques warrant consideration. Kandasamy et al. (2015)
tackled the challenges in high-dimensional BO by assuming an additive structure for the function. Other works
along the line include GPs with an additive kernel (Mutný & Krause, 2018; Wang et al., 2017) or cylindrical
kernels (Oh et al., 2018). However, this approach is limited by its reliance on the assumption of the additive
form of the objective function. Li et al. (2017) applied the dropout technique into high-dimensional BO to
alleviate reliance on assumptions regarding limited “active” features or the additive form of the objective
function. This method randomly selects subset of dimensions and optimizes variables only from these chosen
dimensions via Bayesian optimization. However, it necessitates “filling-in" the variables from the left-out
dimensions. The proposed “fill-in" strategy, which involves copying the value of variables from the best
function value, may lead to being trapped in a local optimum, although the strategy is enhanced by mixing
random values. Similarly, Kirschner et al. (2019) proposed an iterative approach that solves sub-problems of
the global problem, where each sub- problem selects one-dimensional subspaces of the do- main that contain
the best point so far. Eriksson & Jankowiak (2021) introduced Sparse Axis-Aligned Subspace BO, which
imposes a Sparse Axis-Aligned Subspace function prior to effectively identify sparse subspaces, facilitating
high-dimensional BO. However, it depends on sufficiently parsimonious surrogate models. Finally, a related
work is by Hvarfner et al. (2024) enhanced vanilla BO in high dimensions by appropriately scaling the
lengthscale prior of the GP kernel. We will discuss its connection to our approach in the latter section.

3 Method

3.1 Bayesian Optimization

We consider the optimization problem

x∗ = arg maxx∈X f(x),

where f is a black-box function and X ⊂ RD is some bounded set. BO is a form of sequential model-based
optimization, where we fit a surrogate model, typically a Gaussian Process (GP) model, for f that is used to
identify which parameters x should be evaluated next. The GP surrogate model is f ∼ GP (m(·), k(·, ·)), with
a mean function m(·) and a kernel k(·, ·). Under the GP prior, the posterior for the value of f(x) at any point
in the space is a normal distribution with closed-form mean and variance. Using that posterior, we construct
an acquisition function α(x) that specifies the utility of evaluating f at x, such as Expected Improvement
(Jones et al., 1998). We find xnew = arg maxx∈X α(x), and in the next iteration evaluate f(xnew).

However, GPs are known to predict poorly for large dimension D (Wang et al., 2016), which prevents the use
of standard BO in high dimensions. A common approach to addressing this challenge is linear embeddings,
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which assume the existence of a low-dimensional linear subspace that captures all of the variation of f().
Specifically, let T∗ ∈ RD×de be a projection matrix, whose columns form an orthonormal basis for this
effective subspace. The key assumption is that there exists exists a low-dimensional representation y∗ ∈ Rde

such that

f(x) =f(T∗y∗). (1)

This defines the effective subspace in which optimization can be performed. Wang et al. (2016) proposed a
random embedding via a random matrix T ∈ Rd×D with each element i.i.d. N (0, 1). By ensuring d ≥ de, this
approach guarantees with probability 1 that the low effective dimensionality preserved. Therefore, instead
of optimizing in the high dimensional space, REMBO optimizes the function g(y) = f(Ty), y ∈ Rde in the
lower dimensional subspace.

3.2 Condensing-Expansion Projection

We propose an approach called Condensing-Expansion Projection (CEP) that does not rely on the assumption
in (1). The CEP framework consists of two key random linear projections: one that condenses the input
space to a low-dimensional space and the other that expands it back to the original input space. The
name “Condensing-Expansion Projection" captures this process of first reducing the dimensionality and then
restoring it.

• Condensing Projection: transpose points from the original space into a reduced-dimensional
embedding subspace, where the surrogate model is fitted from available data and the acquisition
function is maximized to determine which point should be evaluated next.

• Expansion Projection: revert these points in the embedding subspace back to the original space,
where the searched point is evaluated.
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Figure 1: An illustration of CEP. The colors represent function values, as indicated by the color bar. The
dimension of the original space is D = 3, and the dimension of the embedding subspace is d = 2. The five
points in the original space is projected to the embedding subspace by Condensing Projection, then they are
projected back to the original space by Expansion Projection. The optimal point (red dot) in the original
space is still at the (approximately) optimal position after CEP.

Let us define an embedding subspace Y ⊂ Rd of dimension d. We generate a random projection matrix
A ∈ Rd×D. Various methodologies exist for the construction of such a matrix, including the Gaussian random
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matrix, sparse random matrix (Dasgupta, 2000; Bingham & Mannila, 2001), and the Subsampled Randomized
Hadamard Transform (Tropp, 2011). In this paper, we utilize the Gaussian random matrix and the Hashing
matrix.

Consider a point x ∈ X within the original space X . In the condensing projection, we project x from the
original space X to the embedding subspace Y by multiplying x with the matrix A, resulting in

y = Ax ∈ Y,

thereby reducing the dimension from D in the original space to d in the embedding subspace. In the expansion
projection, we project y back to X by multiplying y with the transposed matrix A⊤, expressed as as

x̃ = A⊤y = A⊤Ax.

This completes the Condensing-Expansion Projection, which can be outlined as follows: transforming a
point from the original space to the embedding subspace and then restoring it back to the original space,
represented as

x → y → x̃.

We outline an illustration in Figure 1.

The CEP offers flexibility in selecting random projection matrix A. In this paper, we focus on two types:
Gaussian random matrices and Hashing random matrices.
Definition 1. (Gaussian Random Matrix) Let A ∈ Rd×D be a random matrix with independent Gaussian
entries. For any 1 ≤ i ≤ d and 1 ≤ j ≤ D, the element aij defined as

aij ∼ N (0, 1/d).

Definition 2. (Hashing Random Matrix) Let A ∈ Rd×D be a hashing random matrix. Specifically, (1) Each
column of A has a single non-zero element that is selected at random. (2) This non-zero element has an
equal probability p = 0.5 of being either +1 or −1.

Assume a matrix A satisfying Definition 1 or Definition 2, we have

E
[
A⊤A

]
=ID. (2)

The proof of (2) is provided in the appendix 6.1. (2) represents the isometry in expectation, suggesting that,
on average, the process of two linear projections preserves the information of x.

Now we analyze the two projection steps to demonstrate their rationale in GP-based Bayesian optimization.
Since the mean in the Gaussian process is typically constant, our focus is on the covariance matrix. We show
that the GP kernel is approximated well in the two linear projections. First, we investigate the Condensing
Projection by showing that optimization over the embedding subspace closely approximates optimization
over the original space. The objective function f() is fitted by a Gaussian Process model in the embedding
subspace Y:

f(y) ∼GP (m(Ax), k(Ax, Ax′)) .

We establish that
k(Ax, Ax′) = (1 + Op(d−1/2))k(x, x′). (3)

The proof details are provided in Appendix 6.3. Hence, the Gaussian process fit in the embedding space
converges to the fit in the original space.

Second, we investigate the Expansion Projection by illustrating the GP approximation in the original space,
when projected back, closely approximates the GP fit in the embedding subspace. The objective function f()
is fitted by a Gaussian Process model over x̃:

f(x̃) ∼ GP
(
m(A⊤y), k(A⊤y, A⊤y′)

)
.
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We show
k(A⊤y, A⊤y′) = (1 + Op(D−1/2))k(y, y′) (4)

for the Gaussian Random matrix and

k(A⊤y, A⊤y′) = (1 + Op((D/d)−1/2))k(y, y′), (5)

for the Hashing Random matrix. The proof details are provided in Appendix 6.4.

Thus, by combining the approximations in (3) as well as (4) and (5), we establish the rationale for applying
condensing-expansion projection in GP-based Bayesian optimization, specifically to preserve the variance
function of a Gaussian process. From the analyses, we show that the CEP approach does not rely on the
effective subspace assumption in (1), as the projections and ensure GP consistency, meaning that it does not
depend on the structure of the GP fit.

It is worth noting that our analysis ignores the lenthscale parameters, treating them as hyperparameters.
Hvarfner et al. (2024) demonstrated that appropriately scaling the lengthscale prior of the GP kernel makes
vanilla BO perform well in high dimensions. A natural extension would be to implement this method of
scaling lengthscale. However, a detailed investigation is needed in the future, as it is beyond the scope of this
paper.

3.3 The CEPBO Algorithms

We employ Condensing-Expansion Projection in Bayesian Optimization, leading to the development of the
Condensing-Expansion Projection Bayesian Optimization (CEPBO) algorithms. In contrast to Random
Embedding algorithms, such as REMBO(Wang et al., 2016), HeSBO(Nayebi et al., 2019) and ALEBO(Letham
et al., 2020), where a fixed projection matrix is employed, the CEPBO algorithms dynamically generate a
new projection matrix At during each iteration t.

The Random Embedding algorithms keeps the random embedding fixed and rely on the effective subspace
assumption to enable a deterministic Gaussian process model (Wang et al., 2016; Cartis et al., 2023), with
the suggestion of using several random embeddings. Unlike these algorithms, our approach does not depend
on this assumption. Instead, our analysis reveals an approximation error in the GP fit. To further reduce
this approximation error, we adopt the strategy of iteratively generating a new projection matrix at each
iteration.

Through Condensing Projection, which condenses available points from the original space to a new embedding
subspace via multiplication with At, CEPBO leverages past information to conduct BO within the embedding
subspace. It determines which point to evaluate next within this subspace. Afterward, the selected point in
the embedding subspace undergoes Expansion Projection, where it is projected back to the original space via
multiplication with A⊤

t . Subsequently, the objective function is then evaluated at the chosen point.

The detailed procedural flow of the algorithms is outlined in Algorithm 1. By using different random projection
matrices at line 4 of the Algorithm 1, we derive two algorithms: CEP-REMBO and CEP-HeSBO. These can
be regarded as enhanced versions of REMBO and HeSBO, respectively.

Condense original space into the embedding subspace. The core concept of employing Condensing
Projection involves creating a new subspace Y at each iteration, where BO is subsequently performed.
However, since the historical trajectories are preserved within the original space X , the newly formed subspace
must be equipped with the necessary information to enable effective BO. To tackle this issue, the primary
objective of Condensing Projection is to transfer the historical trajectories from the original space X into
an embedding subspace Y, thereby furnishing the embedding subspace Y with the necessary information to
facilitate BO. At the current iteration t, let Dt−1 represent the trajectories in the original space X , given by:
Dt−1 = {(x1, f(x1)), (x2, f(x2)), . . . , (xt−1, f(xt−1))}. During this iteration, a new projection matrix At of
dimensions Rd×D is sampled. This matrix serves as projecting the historical point from the original space X
into a newly formed embedding subspace Yt: Dy

t−1 = {(Atx1, f(x1)), (Atx2, f(x2)), · · · , (Atxt−1, f(xt−1))}.

Optimize over the embedding subspace. The objective f is fitted by a Gaussian Process model
over the embedding subspace Yt. From (3), we see that the Gaussian process fit in the embedding space
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Algorithm 1: CEPBO Algorithms
Input: Objective f : X → R; Acquisition criterion α; Original dimension D; Embedding dimension d;

Initial points t0; Evaluation trials tN

Output: Best point x ∈ arg max
X

f(x)

1 Uniformly sample t0 points {x1, x2, · · · , xt0} in the original space;
2 Define D0 = {(x1, f(x1)), (x2, f(x2)), . . . , (xt0 , f(xt0))};
3 while t0 + 1 ≤ t ≤ tN do
4 Construct the projection matrix At ∈ Rd×D according to Gaussian projection matrix in the Definition

1 or hashing projection matrix in the Definition 2;
5 Project the points in Dt−1 onto the embedding subspace Yt via At, obtaining the set of points in the

embedding subspace Dy
t−1 = {(Atx1, f(x1)), (Atx2, f(x2)), · · · , (Atxt−1, f(xt−1))};

6 Estimate the hyperparameters θt of the Gaussian Process prior for the given Dy
t−1;

7 Calculate the posterior probability of the Gaussian Process based on Dy
t−1 and the estimated

hyperparameters θt.
8 Compute the maximum of the acquisition criterion α, yt ∈ arg max

y∈Y
α(y | Dy

t−1);

9 Project yt back to the original space via A⊤
t , obtaining xt = A⊤

t yt;
10 Update the dataset Dt = Dt−1 ∪ {(xt, f(xt))}, and t = t + 1.
11 end

converges to the fit in the original space. Within the embedding subspace Yt, the dataset Dy
t−1 informs

the estimation of the hyperparameters θt for the Gaussian process, and the posterior probability of the
Gaussian process is computed. The acquisition function α (such as Expected Improvement) identifies the
embedding subspace’s optimal point y∗

t within the embedding subspace, which is represented by the equation
y∗

t = arg max
y∈Yt

α(y | Dy
t−1).

Project back and evaluate in the original space. After searching the optimal point with the acquisition
function, we need to project this point back to the original space X for objective function evaluation.
Subsequently, we add this point to the historical trajectories. To be more specific, we use the transpose
projection matrix At to map the optimal point y∗

t from the embedding subspace back to X by applying its
transpose A⊤

t , expressed as: x̃∗
t = A⊤

t y∗
t . As demonstrated in (4), the Gaussian process fit in the original

space, when projected back, approximates the fit in the embedding space. Subsequently, we evaluate the
objective function at x̃∗

t within X to obtain f(x̃∗
t ). This data, denoted as (x̃∗

t , f(x̃∗
t )), is then added to the

historical trajectories Dt−1, resulting in: Dt = Dt−1 ∪ {(x̃∗
t , f(x̃∗

t ))}. This completes a full iteration cycle of
the CEPBO algorithms.

3.4 Address the boundary issue

Our approach, akin to REMBO, encounters the issue of excessive exploration along the boundary of X . To
ensure the effective tuning of the acquisition function and to facilitate BO, it is crucial for the embedding
subspace Y to have a bounded domain. However, random projections between the original space of dimension
D and the embedding subspace of dimension d can lead to points exceeding domain boundaries after CEP.
These exceedances occur in two scenarios: y = Ax /∈ Y, x̃ = A⊤y /∈ X .

Following the convex projection strategy (Wang et al., 2016; Binois et al., 2020; Letham et al., 2020), to
mitigate the issue, we employ the convex projection of the original space, PX , and that of the embedding
subspace, PY , to rectify boundary transgressions. Specifically, the convex projection within the original space
X is defined as follows:

PX : RD → RD, PX (x̃) = arg minz∈X ∥z − x̃∥2.

Similarly, the convex projection within the embedding subspace Y is expressed as:

PY : Rd → Rd, PY(y) = arg minz∈Y ∥z − y∥2.
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Convex projection will lead to an issue where multiple distinctive values in the original space are mapped to
identical boundary points within the embedding subspace, i.e., for x1 ̸= x2 such that f(x1) ̸= f(x2), the
equality PY(Ax1) = PY(Ax2) holds. Moreover, the substantial disparity between the dimensions d and D
exacerbates the likelihood of such instances. This issue can undermine the precision of Gaussian process
models and consequently, diminish the efficacy of optimization. To mitigate this risk, a scaling strategy is
implemented within the Condensing Projection and Expansion Projection phases to diminish the probability
of such occurrences. This involves scaling the projected points Ax using a reduction factor before applying
convex projection, as follows:

y = PY

(
D−1/2Ax

)
.

In a parallel procedure, the optimal points of the acquisition function in the embedding subspace y undergo
an inverse scaling:

x̃ = PX (D1/2A⊤y).

In this context, the scaling factors 1/
√

D and
√

D confine the scope of projection within the viable domain.
These factors are verified through empirical experimentation.

4 Experiments

We conduct experiments to demonstrate the performance of the proposed method across various functions and
real-world scenarios. In Section 4.1, we evaluate its performance on three benchmark functions. In Section
4.2, we assess it across four real-world problems. These experimental results indicate that our algorithms,
CEP-REMBO and CEP-HeSBO, achieve superior results.

Because our approach, CEPBO, represents an advancement in the domain of the linear embeddings, our
experiments focus on comparing it with other linear embeddings. We aim to assess the improvement achieved
by applying CEP compared to REMBO (Wang et al., 2016) and HeSBO (Nayebi et al., 2019), respectively.
ALEBO (Letham et al., 2020) is considered to achieve state-of-the-art performance on this class of optimization
problems with a true linear subspace. Therefore, we chose REMBO (Wang et al., 2016), HeSBO (Nayebi
et al., 2019), and ALEBO (Letham et al., 2020) as benchmark algorithms for our comparisons. In addition to
these subspace-based algorithms, we also include two recent advanced algorithms operating in the original
space, SAASBO (Eriksson & Jankowiak, 2021) and VanillaBO (Hvarfner et al., 2024), as benchmarks.

4.1 Numerical Results

We evaluated the performance of the algorithms using the following benchmark functions: (1) the Holder
Table function, (2) the Schwefel function, and (3) the Griewank function. Each function’s input space was
extended to a dimensionality of D = 100. The Holder Table function is a two-dimensional function, meaning
it has an effective dimension of 2, while BO attempts to fit it in a D-dimensional space. In contrast, the
Schwefel and Griewank functions are defined over the entire D-dimensional space, with an effective dimension
of D. See Appendix 6.6 for their definitions. The goal is to find the minimum value of these functions. The
number of initialization trials for each algorithm was kept the same as the dimensionality of its embedding
subspace. Each experiment is independently repeated 50 times, with 50 evaluations per experiment. To assess
the performance of the CEPBO algorithm under various embedding space dimensions, we take d = 2, 5, 10
in the Holder Table function and d = 2, 5, 20 in the Schwefel and Griewank functions. Since an effective
dimension for the Schwefel and Griewank functions is 100, we prioritize the larger d for assessment. In these
experiments, we utilize expected improvement as the acquisition function.

We report the results in Figure 2. First, we compare against subspace-based algorithms: REMBO, HeSBO,
and ALEBO. For the Schwefel and Griewank functions, where embedding dimensions are smaller than the
effective dimension of 100, the baseline algorithms nearly ceased functioning, settling in local optima, which
is visually depicted as a flat horizontal line on the corresponding graphs. Interestingly, even in the instance
of the Holder Table function, where the embedding dimension met or exceeded the effective dimension, a
circumstance where the baseline algorithms typically perform well, the approached algorithms continued to
show superior performance over all baselines. Comparative the performance across a range of embedding
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Figure 2: The results of the optimization experiments for three functions across various embedding dimensions.
From top to bottom: Holder Table, Schwefel, and Griewank functions.

dimensions d, the performance are similar and CEP-REMBO and CEP-HeSBO consistently surpassed all
baseline algorithms. Therefore, the REMBO and HeSBO algorithms experienced substantial improvement
with the integration of the Condense-Expansion Projection mechanism.

Second, compared to the algorithms operating in the original space, SAASBO and VanillaBO, which
outperform REMBO, HeSBO, and ALEBO, our approach achieves superior performance on the Holder and
Schwefel functions. For the Griewank function, our algorithms performs slightly worse when d = 2 or 5, but
outperform them as d increases d = 20.

Impact of higher dimension D.

To assess the performance of the CEPBO algorithm in higher dimensions, we conducted simulations using
the well-known Hartmann function. Specifically, we utilized the Hartmann function with an original space
dimension of D = 6 and set the embedded space dimension to d = 6 as well. To simulate a high-dimensional
environment, we expanded the original space from D = 6 to D = 1000, but in practice, only the 6-dimensional
data is valid. Note that we exclude SAASBO and VanillaBO as competitors, as fitting the GP in such
high=dimensional setting is costly and leads to significantly longer computation time.

The results are reported on the left in Figure 3. In this setup, ALEBO, REMBO, and HeSBO were
identified as the best-performing configurations. The experimental results demonstrate that our proposed
algorithm still maintains a certain level of superiority, with the CEP-REMBO algorithm being the optimal
one. Additionally, the results indicate that incorporating the CEP projection mechanism can significantly
improve the performance of both REMBO and HeSBO algorithms.
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To realistically simulate the optimization performance of the CEPBO algorithm on an actual 1000-dimensional
function, we still use the settings from Section 4.1. However, we employ an Griewank function with an
effective dimension of 1000, where all 1000 dimensions have a tangible impact on the function results.

As shown on the middle in Figure 3, other algorithms, apart from CEPBO, quickly fail and become trapped in
local optima. This indicates that even in extremely high dimensions, once the effective dimension of the space
exceeds the embedding dimension, non-CEPBO algorithms struggle to perform. However, our projection can
effectively alleviate this issue, allowing for continuous searching for optimal solutions even when using a very
small embedding space.

Robustness to noisy rewards.

To assess the performance of the CEPBO algorithm in a noisy setting, we conducted simulations using
the well-known Holder Table function, and set d = 2. Specifically, the function settings were the same as
those outlined in Section 4.1. Furthermore, during the iterations of the Bayesian algorithm, we introduced a
random normal distribution noise disturbance to the reward function, where ϵ ∼ N(0, 1), to simulate noise in
real-world environments.

The results are illustrated on the right in Figure 3. The experimental findings indicate that our proposed
algorithm retains a significant advantage, with the CEP-HeSBO algorithm demonstrating the best performance.
The results suggest that incorporating the CEP projection mechanism is robust to the noisy rewards.
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4.2 Real-World Problems

In this section, we evaluate the CEPBO algorithm on real-world optimization problems. The test cases consist
of lunar landing task in the realm of reinforcement learning with D = 12 (Eriksson et al., 2019), a robot
pushing problem with D = 14 (Wang et al., 2017), a problem in neural architecture search with D = 36
(Letham et al., 2020), and a rover trajectory planning problem with D = 60 (Wang et al., 2018). Algorithmic
configurations and acquisition function selections strictly adhere to the settings outlined in the original papers.
For additional details, please refer to the appendix. The optimization goal is to maximize the reward function,
and each experiment is independently repeated 10 times, with 500 evaluations per experiment.

Lunar Landing. This experiment entails the task of devising a reinforcement learning strategy for the
lunar lander’s control mechanism, aiming to minimize fuel consumption and proximity to the landing site
while preventing a crash. The original space dimension is D = 12. In the first column of Figure 4, REMBO,
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Figure 4: The results of the optimization experiments for four real-world scenarios. From left to right: Lunar
landing, Robot pushing, NAS, and Rover planning.

HeSBO, and ALEBO algorithms become trapped in local optima to different extents. As the dimensionality
of the embedding subspace d increases from d = 2 to d = 5, notable performance improvements are observed
for most algorithms, except REMBO. The introduced CEP-REMBO and CEP-HeSBO algorithms consistently
demonstrate the ability to enhance and identify novel optimal resolutions. Now we compare with VanillaBO.
Note that when comparing with algorithms operating in the original space, we focus on VanillaBO (Hvarfner
et al., 2024) due to its strong performance in Section 4.1. Our algorithms perform slightly worse than
VanillaBO when d = 2. However, as observed in Section 4.1, increasing to d = 5 allows our algorithms to
outperform it.

Robot Pushing. This scenario involves a robotics dual-arm manipulation task where the robot’s arms
are controlled by adjusting 14 modifiable parameters to push two objects while tracking their movement
trajectories. The original space dimension is D = 14. The second column of Figure 4 demonstrates that
the proposed CEP-REMBO and CEP-HeSBO methods significantly outperform others when d = 2. When
increasing to d = 5, all methods exhibit varying degrees of performance enhancement. As observed in Cartis
et al. (2023), this suggests that for optimization issues with moderate to low dimensionalities, escalating the
dimensions of the embedding subspaces can notably bolster the algorithms’ efficacy. Notwithstanding these
improvements, the CEP-REMBO and CEP-HeSBO methods consistently maintain their leading positions.
VanillaBO performs best when d = 2 in this case. However, similar to the Lunar landing case, increasing to
d = 5 improves the performance of subspace-based algorithms and allows our algorithms to outperform it.

Neural Architecture Search (NAS). The objective of this experiment is to identify an optimal architecture
for neural networks, paralleling the methodology utilized by Letham et al. (2020). Leveraging data from
the NAS-Bench-101 benchmark Ying et al. (2019), we have developed an optimization problem focused
on searching for a convolutional neural network architecture characterized by 36 dimensions. The original
space dimension is D = 36. In the third column of Figure 4, at an embedding subspace dimension of d = 2,
the REMBO, HeSBO, and ALEBO algorithms rapidly converge to less than ideal solutions, hindering the
exploration of superior neural network structures. On the contrary, the CEP-REMBO and CEP-HeSBO
methods maintain the capability to persistently optimize, discovering architectures with improved accuracy.
Increasing the subspace dimension to d = 5 reveals the ALEBO’s enhanced ability to perform on par
with CEP-REMBO and CEP-HeSBO methods; however, CEP-HeSBO consistently exhibits the highest
performance across all conditions. In this case, VanillaBO performs worse than our algorithms when d = 2,
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and increasing to d = 5 improves the performance of subspace-based algorithms, further enhancing the
outperformance of our algorithms.

Rover Trajectory Planning. This task involves optimizing a 2D trajectory comprising of 30 pivotal points
that collectively define a navigational path. The original space dimension is D = 60. The fourth column of
Figure 4 indicates that for an embedding subspace dimension of d = 2, the REMBO, HeSBO, and ALEBO
algorithms can not successfully converge to an advantageous reward. In contrast, the CEP-REMBO and
CEPHeSBO algorithms exhibit a capacity to consistently identify superior solutions. This pattern is similarly
observed when the subspace dimension is increased to d = 5. VanillaBO performs worse than our algorithms
in this case, and the results are similar to those in the NAS case.

5 Conclusion

This paper proposes a Bayesian optimization framework utilizing the Condensing-Expansion Projection
technique, free from reliance on the assumption of effective dimension. The primary concept involves employing
projection twice within each iteration: first, projecting to an embedding subspace, and then projecting back to
retain optimization information in the original high-dimensional space. Our CEP approach does not impose
additional requirements on the projection matrix used, thereby significantly enhancing the applicability
of the embedding-based Bayesian optimization algorithms. Two new Bayesian optimization algorithms
based on Condensing-Expansion Projection are proposed: CEP-REMBO and CEP-HeSBO based on the
Gaussian projection matrix and the hash-enhanced projection matrix, respectively. Empirically, this paper
conducts comprehensive experiments to assess the performance of the proposed algorithms across diverse
optimization scenarios. The experimental results demonstrate that the Bayesian optimization algorithms based
on Condensing-Expansion Projection achieved promising performance across these optimization functions,
overcoming the reliance on effective dimension.

For previous embedding-based Bayesian optimization algorithms, achieving an optimal solution requires d
to be greater than or equal to the true effective dimension of the optimization problem. In contrast, our
algorithms do not have this requirement and perform robustly across different choices of d. In practice, d can
be viewed as a hyperparameter to be set. When selecting d, it is crucial to balance the approximation error
from Condensing-Expansion Projection and ’curse of dimensionality’ of Bayesian optimization. Empirically,
our approach performs robustly with respect to the choice of d when d ranges from 2 to 20, and increasing d
can be beneficial. Setting d = 5 is typically effective.

Our work has several limitations that can be addressed in future studies. For instance, one limitation is the
absence of an evaluation of CEP-based algorithms for optimization problems with billions of dimensions.
Despite this potential, our approach lacks empirical validation, whereas REMBO has been shown to effectively
address such challenges. Another limitation is that our analysis ignores the lenthscale parameters, treating
them as hyperparameters. A natural extension would be to implement the method of scaling lengthscale in
vanilla BO, as proposed by Hvarfner et al. (2024), which is promising direction for future work.
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6 Appendix

6.1 Proof of (2)

Proof. (1) First, we consider the Gaussian Projection. Let A = (l1, · · · , ld)⊤, such that li = (αi1, · · · , αiD)⊤

is a D × 1 vector where each element is from N
(
0, d−1)

distribution. It is easy to show that, given any vector
x ∈ X and any vector g ∈ RD,

E(A⊤A) =
∑d

i=1
E

(
lil

⊤
i

)
= I.

(2) Second, we consider the Hashing Random Projection. For the Hashing Random Matrix, we rewrite
A = SD, where S ∈ Rd×D has each column chosen independently and uniformly from the r standard basis
vectors of Rd and D ∈ RD×D is a diagonal matrix with diagonal entries chosen independently and uniformly
on bi ∈ {±1}.

Let S = (s1, · · · , sD), such that si is a random vector taking the vector ej for equal probability, where ek is
the kth standard unit vector of Rd for k = 1, · · · , d. Then E(si) = d−11d and E(s⊤

i si) = 1, which follow that
E[(S⊤S)ij ] = E(s⊤

i sj) = E(si)⊤E(sj) = 1
d2 for i ̸= j; and E[(S⊤S)ii] = E(s⊤

i si) = 1. Obviously,

E(A⊤A) = I.

6.2 Two proposition

Proposition 1. Let A is a d × D matrix where each element is independently from N
(
0, d−1)

distribution,
then we have

E
[
(x⊤A⊤Ax − x⊤x)2]

= 2d−1∥x∥4; (6)
E

[
(d/Dy⊤AA⊤y − y⊤y)2]

= 2D−1∥y∥4. (7)

Proof. Let A = (l1, · · · , ld)⊤, such that li = (αi1, · · · , αiD)⊤ is a D × 1 vector where each element is from
N

(
0, d−1)

distribution. (2) follows that

E[(x⊤A⊤Ax − x⊤x)2] =E[(x⊤A⊤Ax)2] − (x⊤x)2. (8)

In (8), we have,

E
[
(x⊤A⊤Ax)2]

=E
[
(
∑d

i=1
x⊤lil

⊤
i x)2

]
= E

[ ∑d

i=1
(x⊤lil

⊤
i x)2 +

∑
i ̸=j

(x⊤lil
⊤
i x)(x⊤ljl⊤

j x)
]

=dE[(x⊤lil
⊤
i x)2] + (d2 − d)

[
E(x⊤lil

⊤
i x)

]2
.

By (17) in Lemma 1,
E[(x⊤lil

⊤
i x)2] = 3

d2 ∥x∥4.

Then we have
E

[
(x⊤A⊤Ax)2]

= (x⊤x)2 + 2
D

∥x∥4.

Therefore, (6) is proved.

Let A = (a1, · · · , aD). A simple calculation shows

E[AA⊤] =
∑D

i=1
aia⊤

i = D/dId.

Then we have

E[(d/Dy⊤AA⊤y − y⊤y)2] =E[d2/D2(y⊤AA⊤y)2] − (y⊤y)2.
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For the term E[(y⊤AA⊤y)2], we have,

E
[
(y⊤AA⊤y)2]

=E
[
(
∑D

i=1
y⊤aia⊤

i y)2
]

= E
[ ∑D

i=1
(y⊤aia⊤

i y)2 +
∑

i ̸=j
(y⊤aia⊤

i y)(y⊤aja⊤
j y)

]
(9)

=DE[(y⊤aia⊤
i y)2] + (D2 − D)

[
E(y⊤aia⊤

i y)
]2

.

By (17) in Lemma 1,
E[(y⊤aia⊤

i y)2] = 3
d2 ∥y∥4.

Noting E(y⊤aia⊤
i y) = d−1∥y∥2, we then have

E
[
d2/D2(y⊤AA⊤y)2]

= ∥y∥4 + 2
d

∥y∥4.

(7) is from Lemma 3

Proposition 2. For the Hashing Random Matrix, we rewrite A = SD, where S ∈ Rd×D has each column
chosen independently and uniformly from the r standard basis vectors of Rd and D ∈ RD×D is a diagonal
matrix with diagonal entries chosen independently and uniformly on bi ∈ {±1}, then we have

E
[
(x⊤A⊤Ax − x⊤x)2]

=d−1
(

∥x∥4 −
∑D

i=1
x4

i

)
; (10)

E
[
(d/Dy⊤AA⊤y − y⊤y)2]

=D−1
(

d
∑D

i=1
y4

i − d∥y∥4
)

. (11)

Proof. Let S = (s1, · · · , sD), such that si is a random vector taking the vector ej for equal probability, where
ek is the kth standard unit vector of Rd for k = 1, · · · , d. Then E(si) = d−11d and E(s⊤

i si) = 1, which follow
that E[(S⊤S)ij ] = E(s⊤

i sj) = E(si)⊤E(sj) = d−2 for i ̸= j; and E[(S⊤S)ii] = E(s⊤
i si) = 1.

Applying Lemma 2,

E
[
(x⊤A⊤Ax)2]

=(x⊤x)2 + d−1
(

∥x∥4 −
∑D

i=1
x4

i

)
.

Thus, (10) is proved.

Applying Lemma 3,

E
[
(d/Dy⊤AA⊤y − y⊤y)2]

=(y⊤y)2 + D−1
(

d
∑d

i=1
y4

i − ∥y∥4
)

.

Thus, (11) is proved.

6.3 Consistency of Gaussian Process Fit from the original space to the embedding space

Besides of the isometry in expectation, we also examine the concentration of x̃ around the original point x in
terms of the function f . We measure the concentration by the difference between x⊤x̃ round x⊤x, which
presents how much x̃ − x projects onto x. Assume a matrix A satisfying Definition 1, we have

E
[
(x⊤A⊤Ax − x⊤x)2]

≤ 2d−1∥x∥4. (12)

Assume a matrix A satisfying Definition 2, we have

E
[
(x⊤A⊤Ax − x⊤x)2]

≤ d−1
(

∥x∥4 −
∑D

i=1
x4

i

)
. (13)

The proofs of (12) & (13) are provided in Lemmas 1 and 2, respectively.
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For simplifying, we focus on the squared exponential kernel

KSE(x1, x2) = θ0 exp{−2−1r2(x1, x2)},

where
r2(x1, x2) =

∑D

j=1
(x1j − x2j)2/θ2

j .

Since θj can be absorbed into x1j − x2j , without loss of generality, we simplify to consider

r2(x1, x2) = (x1 − x2)⊤(x1 − x2).

In the embedding space, y1 = Ax1 and y2 = Ax2, then the corresponding kernel is given by

r2(y1, y2) = (x1 − x2)⊤A⊤A(x1 − x2).

According to (12) and (13), we have

E[(r2(y1, y2) − r2(x1, x2))2] ≤ 2
d

[r2(x1, x2)]2.

By applying the Markov inequality, we obtain that there exists ϵ >
√

2 such that

P
(

|r2(x̃1, x̃2) − r2(x1, x2)| ≤ ϵd−1/2r2(x1, x2)
)

≥1 − 2
d

[r2(x1, x2)]2
[ϵd−1/2r2(x1, x2)]2

=1 − 2
ϵ2 .

Therefore, r2(y1, y2) = (1 + Op(d−1/2))r2(x1, x2). It follows

κ(Ax1, Ax2) =(1 + Op(d−1/2))κ(x1, x2).

6.4 Consistency of Gaussian Process Fit from the embedding space to the original space

Similar to Appendix 6.3, we consider

r2(y1, y2) = (y1 − y2)⊤(y1 − y2).

From the embedding space to the original space, x̃1 = A⊤y1 and x̃2 = A⊤y2. The corresponding kernel is
then given by

r2(x̃1, x̃2) = d2/D2(x̃1 − x̃2)⊤(x̃1 − x̃2) = d2/D2(y1 − y2)⊤AA⊤(y1 − y2).

Assume a matrix A satisfying Definition 1, (7) in Proposition 1 follows

E
[
(d/D(y1 − y2)⊤AA⊤(y1 − y2) − ∥y1 − y2∥2)2]

≤ 2
D

∥y1 − y2∥4. (14)

According to (14), we have We have

E[(r2(x̃1, x̃2) − r2(y1, y2))2] ≤ 2
D

[r2(y1, y2)]2.

By applying the Markov inequality, we obtain that there exists ϵ >
√

2 such that

P
(

|r2(x̃1, x̃2) − r2(y1, y2)| ≤ ϵD−1/2r2(y1, y2)
)

≥1 − 2
D

[r2(y1, y2)]2
[ϵD−1/2r2(y1, y2)]2

=1 − 2
ϵ2 .
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Therefore, r2(x̃1, x̃2) = (1 + Op(D−1/2))r2(y1, y2). It follows

κ(A⊤y1, A⊤y2) =(1 + Op(D−1/2))κ(y1, y2).

Similarly, assume a matrix A satisfying Definition 2, (11) in Proposition 2 follows

E
[
(d/D(y1 − y2)⊤AA⊤(y1 − y2) − ∥y1 − y2∥2)2]

≤D−1
(

d
∑d

i=1
(yi1 − yi2)4 − ∥y1 − y2∥4

)
≤d − 1

D
∥y1 − y2∥4. (15)

It follows

κ(A⊤y1, A⊤y2) =(1 + Op((D/d)−1/2))κ(y1, y2).

6.4.1 Three Lemmas

Lemma 1. Let A = (l1, · · · , lp)⊤, such that li = (αi1, · · · , αiq)⊤ is an q × 1 vector where each element is
from zero mean distribution with E(α2

ij) = 1 and E(α4
ij) = γ, we have that, for any vectors x1 ∈ Rq and

x2 ∈ Rq, where x1i and x2i are their i-th element, respectively.

E
[
(x⊤

1 lil
⊤
i x2)2

]
= x⊤

1 [(γ − 3)W2 + 2x2x⊤
2 + ∥x2∥2I]x1, (16)

where W2 = diag{x21x21, · · · , x2qx2q}. Particularly, for Gaussian projection,

E
[
(x⊤

1 lil
⊤
i x2)2

]
= 2x⊤

1 x2x⊤
2 x1 + ∥x2∥2∥x1∥2, (17)

Proof. Since x⊤
1 li =

∑q
j=1 αijx1j and x⊤

2 li =
∑q

j=1 αijx2j , we have

x⊤
1 lil

⊤
i x2 = (

∑q

j=1
αijx1j)(

∑q

j=1
αijx2j) =

∑q

j=1
α2

ijx1jx2j +
∑

j1 ̸=j2
αij1αij2x1j1x2j2 .

Noting E(α4
ij) = γ, we have

E
[(∑q

j=1
α2

ijx1jx2j

)2
]

=γ
∑q

j=1
x2

1jx2
2j +

(∑
j1 ̸=j2

x1j1x2j1x2j2x1j2

)
=

(∑q

j=1
x2

1j

) (∑q

j=1
x2

2j

)
+ (γ − 1)

∑q

j=1
x2

1jx2
2j .

We also have

E
(∑

j1 ̸=j2
αij1αij2x1j1x2j2

) (∑
j1 ̸=j2

αij1αij2x2j1x1j2

)
=

(∑
j1 ̸=j2

x1j1x2j2x2j1x1j2

)
+

∑
j1 ̸=j2

x2
1j1

x2
2j2

=
(∑q

j=1
x1jx2j

)2
−

∑q

j=1
x2

1jx2
2j +

(∑q

j=1
x2

1j

) (∑q

j=1
x2

2j

)
−

∑q

j=1
x2

1jx2
2j ;

E
(∑q

j=1
α2

ijx1jx2j

) (∑
j1 ̸=j2

αij1αij2x2j1x1j2

)
= 0;

E
(∑

j1 ̸=j2
αij1αij2x1j1x2j2

) (∑q

j=1
α2

ijx2jx1j

)
= 0.

Combing the four equations above, it is easy to verify that,

E
[
(x⊤

1 lil
⊤
i x2)2

]
=(γ − 3)

∑q

j=1
x2

1jx2
2j + 2(x⊤

1 x2)2 + ∥x2∥2∥x1∥2.
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Lemma 2. Consider the Hashing random projection A = SD, where S ∈ Rd×D has each column chosen
independently and uniformly from the r standard basis vectors of Rd and D ∈ RD×D is a diagonal matrix
with diagonal entries chosen independently and uniformly on bi ∈ {±1}. Then we have that for any vectors
x1 ∈ RD and x2 ∈ RD, where x1i and x2i are their i-th elements, respectively,

E
[
(x⊤

1 A⊤Ax2)2]
= x⊤

1 x2x⊤
2 x1 + d−1∥x1∥2∥x2∥2 − d−1x⊤

1 W2x1.

Proof. Let S = (s1, · · · , sD), such that si is a random vector taking the vector ej for equal probability, where
ej is the jth standard unit vector of Rd for j = 1, · · · , d. Then E(si) = d−11d and E(s⊤

i si) = 1, which follow
that E[(S⊤S)ij ] = E(s⊤

i sj) = E(si)⊤E(sj) = 1
d2 for i ̸= j; and E[(S⊤S)ii] = E(s⊤

i si) = 1. We have that,

x⊤
1 A⊤Ax2 = (

∑D

i=1
bisix1i)⊤(

∑D

i=1
bisix2i) =

∑D

i=1
b2

i x1is
⊤
i six2i +

∑
i̸=j

bibjx1is
⊤
i sjx2j (18)

From (18), we have,

E
[
(x⊤

1 A⊤Ax2)2]
=E

[
(
∑D

i=1
b2

i x1is
⊤
i six2i +

∑
i̸=j

bibjx1is
⊤
i sjx2j)2

]
=

∑D

i=1
E[(x1is

⊤
i six2i)2] +

∑
i ̸=j

E(x1is
⊤
i six2i)(x1js⊤

j sjx2j) +
∑

i ̸=j
E[(x1is

⊤
i sjx2j)2]

=:E1 + E2 + E3.

Specifically, we have that

E1 =
∑D

i=1
E[(x1is

⊤
i six2i)2] =

∑D

i=1

∑d

k=1
d−1(x1ie⊤

k ekx2i)2 =
∑D

i=1
(x1ix2i)(x1ix2i)⊤.

E2 =
∑

i ̸=j
E(x1is

⊤
i six2i)E(x1js⊤

j sjx2j)⊤ =
∑

i ̸=j
(x1ix2i)(x1jx2j)

E3 =
∑

i ̸=j
E[(x1is

⊤
i sjx2j)2] =

∑
i ̸=j

x2
1ix

2
2jE(s⊤

i sjsT
j si) =

∑
i ̸=j

x2
1ix

2
2jd−1E(s⊤

i si)

=d−1
∑

i ̸=j
x2

1ix
2
2j

=d−1∥x1∥2∥x2∥2 − d−1
∑D

i=1
x2

1ix
2
2i. (19)

Thus, we have,

E
[
(x⊤

1 A⊤Ax2)2]
= x⊤

1 x2x2ix1 + d−1∥x1∥2∥x2∥2 − d−1
∑D

i=1
x2

1ix
2
2i.

Lemma 3. Consider the Hashing random projection A = SD, where S ∈ Rd×D has each column chosen
independently and uniformly from the r standard basis vectors of Rd and D ∈ RD×D is a diagonal matrix
with diagonal entries chosen independently and uniformly on bi ∈ {±1}. Then we have that for any vectors
y1 ∈ Rd and y2 ∈ Rd,

E
[
D−2d2(y⊤

1 AA⊤y2)2]
= (y⊤

1 y2)2 + D−1
[
d

∑d

k=1
(y1ky2k)2 − (y⊤

1 y2)2
]

.

Proof. Let S = (s1, · · · , sD), such that si is a random vector taking the vector ej for equal probability, where
ej is the jth standard unit vector of Rd for j = 1, · · · , d. Then E(si) = d−11d and E(sis

⊤
i ) = d−1I. We have

that,

y⊤
1 AA⊤y2 =

∑D

i=1
b2

i y⊤
1 sis

⊤
i y2. (20)

18



Under review as submission to TMLR

From (20), we have,

E
[
(y⊤

1 AA⊤y2)2]
=E

[(∑D

i=1
b2

i y⊤
1 sis

⊤
i y2

)2
]

=
∑D

i=1
E[(y⊤

1 sis
⊤
i y2)2] +

∑
i̸=j

E(y⊤
1 sis

⊤
i y2)(y⊤

1 sjs⊤
j y2)

=:E1 + E2.

Specifically, we have that

E1 =
∑D

i=1
E[(y⊤

1 sis
⊤
i y2)2] = D

∑d

k=1
d−1(y⊤

1 eke⊤
k y2)2 = d−1D

∑d

k=1
(y1ky2k)2.

E2 =
∑

i̸=j
E(y⊤

1 sis
⊤
i y2)E(y⊤

1 sjs⊤
j y2) = d−2(D2 − D)(y1y⊤

2 )2. (21)

Thus, we have,

E
[
D−2d2(y⊤

1 AA⊤y2)2]
= (y⊤

1 y2)2 + D−1
[
d

∑d

k=1
(y1ky2k)2 − (y⊤

1 y2)2
]

.

6.5 Details of machine information

The entire experiment in this paper is programmed in Python and run under the Linux system, using
open-source Bayesian optimization libraries such as Ax(Bakshy et al., 2018) and BoTorch(Balandat et al.,
2020) for assistance. The experimental equipment is equipped with 2 AMD EPYC 7601 processors, each with
32 cores and a base clock frequency of 2.2GHz. The experiment is conducted in the form of parallel processing,
with different independent repeating experiments distributed to different CPU cores for acceleration. In
addition, the system has a memory capacity of 768GB, providing sufficient memory space for large-scale data
processing and complex algorithm operation.

6.6 Modified Schwefel function and Griewank function

To investigate the efficacy of the proposed method within the complex context of high-dimensional optimization
problems that entail numerous local minima, we applied a Schwefel function of D = 100 and a Griewank
function of D = 100. In the context of the Schwefel function and Griewank function, every dimension qualifies
as an effective dimension, hence de = D = 100. We increased the optimization challenge by altering the
Schwefel function and Griewank function. This alteration involved the adjustment of positions within different
dimensions where minimum values are attained, thereby making the optimization of the Schwefel function
and Griewank function more challenging. The modified Schwefel function is:

f(x) =
D∑

i=1

x2
i

4000 −
d∏

i=1
cos

(
xi√

i

)
+ 1, (22)

Where bi ∼ N (0, 1). We maintain the constancy of bi values across different independent repeated experiments,
while allowing bi values to vary across different dimensions.

The modified Griewank function can be expressed as:

f(x) =
D∑

i=1
wi(xi − bi)2 −

d∏
i=1

cos
(

xi√
i

)
, (23)

where wi ∼ N (0, 1) and bi ∼ N (0, 1). We ensure that the values of wi and bi remain consistent within various
independent repeat experiments, while differing across the several dimensions.
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6.7 Details about Real-World Problems

6.7.1 Lunar landing

In this experiment, our goal is to learn a strategy that controls the lunar lander, so that the lunar lander can
minimize fuel consumption and distance from the landing target, while avoiding crashes. This optimization
task was proposed by Eriksson(Eriksson et al., 2019). The simulation environment of the control task is
implemented through OpenAI gym 1. The state space of the lunar lander includes its coordinates x and y,
linear velocities xv and yv, its angle, its angular velocity, and two boolean values indicating whether each
leg is in contact with the ground. At any moment, the current controller state can be represented with an
8-dimensional vector. After obtaining the state vector, the controller can choose one of four possible actions,
corresponding to pushing the thrusters left, right, up or none. In the experiment, it can be considered as
a D = 12 optimization problem. Once the parameters are determined, the corresponding rewards can be
obtained through in-game feedback. If the lander deviates from the landing pad, it loses rewards. If the
lander crashes, it gets an extra −100 points. If it successfully controls the lander to stop, it will get an
extra +100 points. Each leg touching the ground gets +10 points. Igniting the main engine gets −0.3 points
per frame. Each frame starts side engine for −0.03 points. The goal of the control task optimization is to
maximize the average final reward on a fixed set of 50 randomly generated terrains, initial positions, and
speed combinations. We observe that even minor perturbations can have an impact on the simulation.

6.7.2 Robot pushing

This paper follows the experimental setup of Wang(Wang et al., 2017), Eriksson(Eriksson et al., 2019) et al.,
and also realizes the simulation of using two robot arms to push two objects in the Box 2D(Catto, 2011)
physics engine. In the simulation environment, the parameters of the robot arms are simulated to push two
objects, and the trajectories of the object movements are recorded at the same time. A total of 14 parameters
are used by the two robot arms, which respectively specify the position and rotation of the robot hands, the
pushing speed, the moving direction, and the pushing time. The lower bounds for these parameters are

[−5, −5, −10, −10, 2, 0, −5, −5, −10, −10, 2, 0, −5, −5],

and the upper bounds are
[5, 5, 10, 10, 30, 2π, 5, 5, 10, 10, 30, 2π, 5, 5].

The initial positions of the objects are designated as si0 and si1, and the end positions as se0 and se1. The
target positions of the two objects are indicated by sg0 and sg1. The reward is defined as

r = |sg0 − si0| + |sg1 − si1| − |sg0 − se0| − |sg1 − se1| ,

namely the distance by which the objects move towards their target positions.

6.7.3 NAS

In this paper, referring to the settings of Letham(Letham et al., 2020) and others, by parameterizing operations
and edges respectively, the optimal architecture search problem in NASBench-101 is set as a continuous
high-dimensional Bayesian optimization problem. Specifically, L different operations are represented by
one-hot encoding.

Since two of the seven nodes are fixed as input and output nodes, the remaining five optional nodes, each
node corresponds to three different operations, which generate a total of 15 different parameters. We optimize
these parameters in the continuous [0, 1] space. For each node, we take the "operation" corresponding to the
maximum value of the three operations under that node as the "operation" adopted by that node, and use
one-hot encoding to represent the specific "operation" used under that node.

Since NASBench-101 uses a 7 × 7 upper triangular adjacency matrix to represent edges, it generates a total
of 7·6

2 = 21 possible edges. And the five optional vertices can have three different operations, so under this
1www.gymlibrary.dev/environments/box2d/lunar_lander/
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encoding there are about 221 · 35 ≈ 510M unique models, After removing a large number of unreasonable
input and output models and models with more than 9 edges, the search space still has about 423k unique
models. We convert these 21 possible edges into 21 binary parameters that are similarly optimized in a
continuous [0, 1] space. We rank the continuous values corresponding to these 21 binary parameters and
create an empty adjacency matrix. Then, we add edges to the adjacency matrix in the percentile order of
the 21 binary parameters iteratively, while pruning parts that are not connected to the input or output
nodes, until reaching the limit of 9 edges. Finally, the combination of adjacency matrix parameters (21)
and one-hot encoded "operation" parameters (15) constitutes a 36-dimensional optimization space. The
Bayesian optimization algorithm only needs to be optimized in a high-dimensional space with D = 36, and
the boundary constraint is [−1, 1]36. Each vector x ∈ R36 can be decoded into a DAG and lookup evaluated
in NASBench-101.

6.7.4 Rover planning

To explore the performance of the proposed method in complex high-dimensional optimization scenarios, we
considered a two-dimensional trajectory optimization task aimed at simulating detector navigation missions.
This optimization task was proposed by Wang(Wang et al., 2018), and the experimental setup by Wang(Wang
et al., 2018) was continued to be used here, with the optimization objective being to maximize the reward
function. The problem instance is described by defining the starting position s, the target position g, and a
cost function on the state space. The goal of the problem is to optimize the detector’s trajectory on rugged
terrain. The trajectory consists of a set of points on a two-dimensional plane, and there are 30 points in
this instance, which can be fitted into a B-spline curve, so it is considered a high-dimensional optimization
problem with D = 60. Through a set of trajectories, x ∈ [0, 1]60, and a specific cost function, we can calculate
the cost of a trajectory c(x).

The reward for this problem is defined as

f(x) = c(x) + λ
(
|x0,1 − s| 1 + |x59,60 − g|1

)
+ b.

The reward function is non-smooth, discontinuous, and concave. The four input dimensions involved in the
reward function respectively represent the starting and target positions of the trajectory. Set λ = −10, b = 5,
any collision with objects along the trajectory will incur a penalty of −20, which is the collision cost of the
trajectory. Thus, in addition to penalties in the reward function caused by collisions, adverse deviations from
the trajectory’s starting point will also incur additional penalties.

21


	Introduction
	Related Work
	Method
	Bayesian Optimization
	Condensing-Expansion Projection
	The CEPBO Algorithms
	Address the boundary issue

	Experiments
	Numerical Results
	Real-World Problems

	Conclusion
	Appendix
	Proof of (2)
	Two proposition
	Consistency of Gaussian Process Fit from the original space to the embedding space
	Consistency of Gaussian Process Fit from the embedding space to the original space
	Three Lemmas

	Details of machine information
	Modified Schwefel function and Griewank function
	Details about Real-World Problems
	Lunar landing
	Robot pushing
	NAS
	Rover planning



