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ABSTRACT

Transformer has become ubiquitous in the deep learning field. One of the key
ingredients that destined its success is the self-attention mechanism, which allows
fully-connected contextual encoding over input tokens. However, despite its effec-
tiveness in modeling short sequences, self-attention suffers when handling inputs
with extreme long-range dependencies, as its complexity grows quadratically w.r.t.
the sequence length. Therefore, long sequences are often encoded by Transformer
in chunks using a sliding window. In this paper, we propose Cluster-Former, a
novel clustering-based sparse Transformer to perform attention across chunked se-
quences. The proposed framework is pivoted on two unique types of Transformer
layer: Sliding-Window Layer and Cluster-Former Layer, which encode local se-
quence information and global context jointly and iteratively. This new design
allows information integration beyond local windows, which is especially ben-
eficial for question answering (QA) tasks that rely on long-range dependencies.
Experiments show that Cluster-Former achieves state-of-the-art performance on
several major QA benchmarks.

1 INTRODUCTION

Long-range contextual understanding has proven critical in many natural language processing (NLP)
tasks. For example, the relevant context for correctly answering an open-domain question can arch
over thousands of words. Encoding long sequences via deep neural networks, however, has re-
mained an expensive and challenging task due to high demand on training time and GPU memory.
Traditional sequence modeling methods (Hochreiter & Schmidhuber, 1997) encode long sequences
in a chronological order, which suffers high latency. In the place of sequential encoding, recent mod-
els such as Transformer (Vaswani et al., 2017) use simultaneous self-attention over the entire input
instead, which has been successfully adopted in many NLP tasks such as textual entailment (Devlin
et al., 2019), dependency parsing (Zhou & Zhao, 2019), and summarization (Lewis et al., 2019). A
caveat with Transformer though is that building full connections over long sequences translates to
quadratic growth on memory demand and computational complexity w.r.t. sequence length.

One way to efficiently encode long sequences is to first chunk a sequence into much shorter ones with
a sliding window, then build connections between the shorter sequences (Figure 1(a)). For example,
Child et al. (2019), Beltagy et al. (2020) and Zaheer et al. (2020) apply sparse attention to chunked
sequences in hand-designed patterns in order to gather information from the chunks (Figure 1(b)).
Choi et al. (2017) and Wang et al. (2019) first use a simpler model to filter chunked sequences, then
process selected sequences with fully-connected self-attention. Rae et al. (2019) makes use of the
shared memory of chunked sequences to build connections between them. However, these methods
cannot encode long-range dependencies with as much flexibility or accuracy as fully-connected self-
attention, due to their dependency on hand-designed patterns.

Recently, several studies (Kitaev et al., 2020; Tay et al., 2020b) propose to further improve the sparse
attention mechanism by hashing or sorting the hidden states into different buckets (Figure 1(c)).
These works mainly explore tasks with relatively short sequences, such as sentence-level Machine
Translation (MT), where the number of hashing vectors is relatively small (less than 16 in Kitaev
et al. (2020)), allowing randomly initialized hashing vectors to hash hidden states into correct buck-
ets. However, how to use hashing-based attention in the context of long sequences (e.g.,, up to
thousands of words) is still an unexplored territory.
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Figure 1: Illustration of different methods for processing long sequences. Each square represents
a hidden state. The black-dotted boxes are Transformer layers. (a) is the sliding-window-based
method to chunk a long sequence into short ones with window size 3 and stride 2. (b) builds cross-
sequence attention based on sliding window over pre-selected positions (red-dotted boxes). (c)
hashes the hidden states into different buckets by randomly-initialized vectors. (d) is our proposed
approach to cluster the hidden states. Our final model is a combination of (a) and (d) that processes
both local and global context.

Our proposed framework for efficient long sequence encoding, Cluster-Former, marries both
sliding-window and hashing-based methods to achieve effective local and long-range dependency
encoding. Cluster-Former consists of two types of encoding layer. The first one (noted as Sliding-
Window Layer) focuses on extracting local information within a sliding window. It applies Trans-
former to the hidden states of each chunked sequence independently, as shown in Figure 1(a). The
other one (noted as Cluster-Former Layer) learns to encode global information beyond the initial
chunked sequences. Specifically, we first apply clustering to the input hidden states so that similar
hidden states are assigned to the same cluster, as shown in Figure 1(d). The clustered and sorted
input is then divided uniformly into chunks, each encoded by a Transformer layer. Note that to
make model training more efficient, the cluster centroids are not computed online but updated peri-
odically (every epoch or a few epochs). We accumulate the hidden states from the layer prior to the
Cluster-Former layer in a memory bank, and apply the K-Means algorithm to form cluster centroids
during each update cycle. Compared to previously discussed sparse attention based on pre-selected
positions (Figure 1(b)) or randomly-initialized hashing vectors (Figure 1(c)), experimental results
show that our method can encode dependency across chunked sequences more effectively.

Our contributions can be summarized as follows. (i) We propose Cluster-Former, a novel approach
to capturing long-range dependencies more effectively than locality-sensitive hashing method. (ii)
We propose a new Transformer-based framework to process long sequences by combining Sliding-
Window and Cluster-Former layers to extract both local and global contextual information. (iii)
Our model achieves the best performance on question answering datasets of Natural Questions (long
answer), SearchQA, and Quasar-T.

2 RELATED WORK

Efficient Transformers With Transformer models growing larger and larger, how to handle longer
sequences arises as a critical challenge. Many works have been proposed to improve the computa-
tional and memory efficiency of Transformers, including Sparse Transformer (Child et al., 2019),
Routing Transformer (Roy et al., 2020), Reformer (Kitaev et al., 2020), Sinkhorn Transformer (Tay
et al., 2020b), Longformer (Beltagy et al., 2020), ETC (Ainslie et al., 2020), Synthesizer (Tay
et al., 2020a), Performer (Choromanski et al., 2020), Linformer (Wang et al., 2020), Linear Trans-
former (Katharopoulos et al., 2020), and BigBird (Zaheer et al., 2020). Tay et al. (2020c) provided
an excellent literature survey on this emerging topic. Our method falls into the setting of learnable
sparse-attention patterns including Routing Transformer, Reformer and Sinkhorn Transformer. Our
method is closer to Routing Transformer (Roy et al., 2020) which also uses cluster centroids to learn
patterns, while we are targeting on quite different tasks (language modeling VS question answering)
which leads to the significant difference on frameworks. Moreover, our cluster centroids are up-
dated in very different ways (online exponentially moving centroids VS periodical centroids update
by KMeans).
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Figure 2: An overview of proposed Transformer layer. (a) Sliding-Window layer over a sequence.
(b) Cluster-Former layer over clustered hidden states from the output of (a). Cluster centroids are
periodically updated based on the memory bank of the hidden states in the corresponding layer. Note
that the sequence inputs in (a) and (b) usually come from two different samples.

Long Sequence in Question Answering For tasks such as open-domain question answer-
ing (Chen et al., 2017), a large volume of documents or paragraphs is usually retrieved to infer the
answer, yielding extremely long context content. Despite the fact that state-of-the-art NLP models
are capable of extracting answers amid complex context, they still struggle with extremely long in-
put sequences. Recent advances that advocate the use of large-scale pre-trained models (Lewis et al.,
2019; Liu et al., 2019; Lan et al., 2020) for question answering make this problem more prominent,
due to tremendous memory consumption. To process long sequences, the most widely-used method
is to first use a lightweight model to filter out redundant text, then use sliding-window-based ap-
proaches to encode the remaining sequences with a more sophisticated model. Chen et al. (2017)
integrated bi-gram features into Information Retrieval (IR) methods to retrieve related documents
more accurately. Wang et al. (2018) trained a paragraph selector using as the reward whether the
entire system can obtain the correct answer or not . Lin et al. (2018) proposed to use a paragraph
ranking model to curate data that are required for training reading comprehension models. Wang
et al. (2019) trained a ranker to merge paragraphs for multi-passage reasoning. Asai et al. (2020)
trained a recurrent retriever to select paragraphs for multi-hop question answering. Besides the above
methods, directly applying Efficient Transformers to process long sequences in question answering
is another option. In this paper, we focus on this direction by directly training our Cluster-Former
on the long context without using lightweight model for context filtering.

3 PROPOSED APPROACH

The proposed framework to handle long sequences is pivoted on two types of Transformer layer:
(i) Sliding-Window Layer; and (ii) Cluster-Former Layer. The former focuses on encoding local
sequence information, while the latter is on encoding global context and always built on top of the
former layer. An overview of the two layers is illustrated in Figure 2.

3.1 SLIDING-WINDOW LAYER

Despite that our focus is on capturing long-range dependencies for global context, local information
also plays a critical role for knowledge propagation. Therefore, in the lower section of our network,
we adopt the traditional sliding-window encoding mechanism. A sliding window segments a long
sequence X into short, overlapping ones with window size l and stride m, as illustrated in Fig-
ure 2(a). Note that in this paper, we focus on question answering tasks, for which we concatenate
the question Q with each sequence chunked from the document:

H0
k = [Q;X [m× k : (m× k + l)]] , (1)
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where Q ∈ Rq×d denotes question embeddings given a QA task, q is the number of tokens in the
question, and X ∈ Rx×d is the embeddings for all context, x is the number of tokens in context. k
is the ID of the chunked sequence, l is the window size, and m is the stride of the sliding window.
[idx1 : idx2] indicates selecting rows between the index of idx1 and idx2 of the matrix. [·; ·] means
concatenating the matrices along the row. We first use Transformer to encode each sequence in
sliding window as follows:

Hn+1
k = Transformer(Hn

k ), (2)

where Hn+1
k ∈ R(q+l)×d is the output of Transformer on the k-th sequence in the n-th layer. While

it is not the final output of the n-th layer. As we expect the neighbouring sequences to share useful
information in hidden states as well, we always set m < l to allow overlapping between sequences.
We use the mean values of the Transformer hidden states at the overlapped tokens between windows
as final outputs. To merge the representations from (k − 1)-th sequence:

Hn+1
k [q : q + l −m] + = Hn+1

k−1 [q + m : end],

Hn+1
k [q : q + l −m] / = 2,

and merge representations from (k + 1)-th sequence:

Hn+1
k [q + m : end] + = Hn+1

k+1 [q : q + l −m],

Hn+1
k [q + m : end] / = 2, (3)

where + = is to add matrices in-place and / = is to divide a matrix by a scalar value in-place. The
merged hidden states Hn+1

k ∈ R(q+l)×d are the final outputs of the n-th layer. If the next layer
is Cluster-Former, the output hidden states in this layer Hn+1

k will be saved into memory bank for
computing the cluster centroids.

3.2 CLUSTER-FORMER LAYER

Algorithm 1 Cluster Centroids Update
1: Initialize Memory = Queue()
2: Centroids = GETCENTROIDS(RandomVector)
3:
4: function TRAIN(Inputs)
5: for i = 1, 2,. . . , IterationNum do
6: States = Sliding-Transformer(Inputs[i])
7: Memory.add(States)
8: while len(Memory) > M do
9: Memory.pop()

10: end while
11: if i % ClusterUpdateFrequency == 0 then
12: Centroids = GETCENTROIDS(Memory)
13: end if
14: Clusters = cluster States by Centroids
15: States = Cluster-Former(Clusters)
16: end for
17: end function
18:
19: function GETCENTROIDS(HiddenStates)
20: Centroids = K-Means(HiddenStates)
21: Outputs = List()
22: Outputs[1] = Centroids[1]
23: for i = 2, 3,. . . , ClusterNum do

24:
Outputs[i] = centroid from Centroids

that is closest to Outputs[i− 1]

but not in Outputs
25: end for
26: return Outputs
27: end function

We introduce a Cluster-Former layer
to add global representational power to
Transformer beyond sliding windows. An
in-depth visualization of the layer is illus-
trated in Figure 2(b).

The input of the Cluster-Former layer
comes from the hidden states of the
prior layer (in our case a Sliding-Window
layer). After merging the overlaps be-
tween sequence chunks, the input of this
layer is defined as:

H̄n = [Hn
0 [0 : q + m]; ...;Hn

k [0 : q + m]] ,
(4)

where H̄n ∈ R(qdx/me+x)×d is the hidden
states to cluster, x is the number of tokens
in the context.

As the hidden states with larger cosine
similarity are more likely to have higher
attention weights, we build sparse self-
attention only on the hidden states in the
same cluster. In this work, we use K-
Means as the chosen clustering method
for simplicity. More advanced cluster-
ing algorithms have the potential of yield-
ing better performance. Since running K-
Means on the fly in each training iteration
is computationally expensive, we decide to
re-compute the cluster centroids with low
frequency (every epoch or a few epochs).
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In addition, to avoid dramatic changes in the cluster centroids due to limited hidden state inputs,
we maintain a memory bank for the most recent hidden states. The entire procedure is depicted
in Algorithm 1. Once we compute the cluster centroids, we can directly use them for hidden state
clustering as follows:

vn = argmax
( Hn(Cn)T

||Hn||2||Cn||2

)
, (5)

where Cn ∈ Rp×d are the cluster centroids for layer n, and p is the pre-defined number of clusters.
The function argmax(·) performs on the last dimension and assigns all the input hidden states into
different clusters based on the max value of cosine similarity between the hidden states and cluster
centroids. vn ∈ R(qdx/me+x) is the assigned cluster IDs of all the input hidden states.

Since the number of hidden states in different clusters can vary substantially, padding them to the
maximum length for Transformer training will significantly increase the computational time. To
make the extraction of global context more efficient, we greedily pick the cluster centroids based
on the nearest neighbour (measured by cosine similarity) as shown in the function GETCENTROIDS
in Algorithm 1. Thus, the hidden states with similar cluster IDs are also close to each other. Then,
we can directly sort the cluster IDs of hidden states and uniformly chunk the hidden states (same
window size and stride m):

un = argsort(vn), ank = un[mk : m(k + 1)], En
k = Hn[ank ], (6)

where the function argsort(·) is to obtain the indexes of input values sorted in order (same values
sorted by the corresponding position of hidden states). ank ∈ Rm is the chunked indexes of the
hidden states. En

k ∈ Rm×d is the k-th clustered hidden states, and we will run Transformer on top
of it to build the connection beyond the words in the initial sliding window as follows:

En+1
k = Transformer(En

k ). (7)

After updating the hidden states, we map them back to the order before clustering:

H̄n+1 = [En+1
0 ;En+1

1 ; ...;En+1
K ],

ān = [an0 ;an1 ; ...;anK ], (8)

H̄n+1[ān] = clone(H̄n+1), (9)

where H̄n+1 is the final output hidden state of this layer and has the same word order as the input
H̄n. In experiments, we stack these two types of layer interchangeably to capture both global and
local context efficiently.

4 EXPERIMENTS

4.1 DATASETS

#train #test med max

Quasar-T 29k 3k 2.8k 8.2k
SearchQA 100k 27k 2.5k 4.9k
NQ 292k 8k 6.3k 128k

Table 1: Statistics of Question Answering
datasets. #train: number of questions in the train-
ing set. #test: number of questions in the test set.
med: median length of the context. max: max
length of the context.

We evaluate our proposed approach on multiple
question answering benchmarks. The statistics
of all the datasets are summarized in Table 1.

Quasar-T1 (Dhingra et al., 2017): The goal
of this task is to answer open-domain ques-
tions from Trivia Challenge. All the passages
harvested through information retrieval can be
used to answer questions. The task requires the
model to generate answers in phrases. The evaluation metric on this dataset is based on Exact Match
and F1 score of the bag-of-words matching. Our evaluation tool2 comes from the SQuAD dataset.

SearchQA3 (Dunn et al., 2017): The setting of this dataset is the same as Quasar-T, except that the
questions are sourced from Jeopardy! instead.

1https://github.com/bdhingra/quasar
2https://rajpurkar.github.io/SQuAD-explorer/
3https://github.com/nyu-dl/dl4ir-searchQA
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Natural Questions4 (Kwiatkowski et al., 2019): This task aims to answer questions based on a
given Wikipedia document, and has two settings. (i) Long answer: select a paragraph that can
answer the question based on the Wikipedia document if any. (ii) Short answer: extract an answer
phrase from the document if the document contains the answer. As the given document may not
contain answer, we can either predict an answer or predict no answer. The evaluation metric on this
dataset is the F1 score, where true positives are exactly correct answers, false positives are incorrect
answer predictions, and false negatives are incorrect “no answer” predictions. As the test set is
hidden, we split 5% of the training set for validation, and use the original validation set for testing.
We use the official tool from the dataset to evaluate our models. We also submit our best model to
the leaderboard.

4.2 IMPLEMENTATION DETAILS

All the models are trained on 8 Nvidia V100 GPUs. For clustering, we adopt “Yinyang
kmeans ”(Ding et al., 2015)5 which takes less than 5 seconds for clustering in all of our experi-
ment settings. We set the memory size for clustering M = 100, 000 in Algorithm 1. We use cluster
centroids that perform the best on the validation set for test set experiments. We initialize our mod-
els with RoBERTa-large (Liu et al., 2019). As the number of position embeddings of RoBERTa is
limited to 512, we cannot assign different position embeddings to all tokens. Instead, we assign
the same position embeddings to each chunked sequence. The majority of our model is made up
of Sliding-Window Layers, as the local information is essential for QA tasks. We adopt the pro-
posed Cluster-Former Layer in layers 15 and 20 to further capture long-range information. We set
the sliding window size l to 256, stride m to 224, and change the number of clusters in {64, 256,
512} to analyze its impact on the final performance. We prepend a special token to the beginning
of all the given/retrieved paragraphs and directly concatenate all the paragraphs as the final context
sequence. Due to memory constraints, we set the max length to be 5000 during training and 10000
during inference. During dataset finetuning, we use Adam (Kingma & Ba, 2015) to optimize the
model. We set warm-up updates to 2,220, maximal updates to 22,200, learning rate to 5×10−5, and
batch size to 160. We tune dropout rate from {0.1, 0.15, 0.2} for all methonds including baselines
and report the best results. The model converges in one day for all the QA datasets.

For Quasar-T and SearchQA, we predict the start and end positions of the answer. For Natural
Question, we first identify whether the question has short/long answers or not based on the mean
values of the first hidden state of all the chunked sequences, 1

K

∑K
k=1 H

N
k [0] , where K is the

number of chunks and N is the number of layers. If answerable, we rank all the candidates for
long answer selection, and predict the start and end positions of short answers. Our model submitted
to Natural Question Leaderboard ensembled 3 models with 512 clusters, and only these models are
firstly trained on SQuAD2.0 and then finetuned on Natural Question dataset.

4.3 BASELINE

We compare our models with several strong baselines, including:

R3 (Wang et al., 2018) proposes to use reinforcement learning to jointly train passage ranker and
reader. DS-QA (Lin et al., 2018) proposes to first use paragraph selection to filter the noisy data and
then trained model on denoised data. Multi-passage BERT (Wang et al., 2019) proposes to filter
the passages and then merge multiple useful passages into one sequence, which can be encoded
by BERT. DrQA (Chen et al., 2017) makes use of attention mechanism across the question and
the document for answer phrase extraction. DecAtt and DocReader (Kwiatkowski et al., 2019) is
based on a pipeline approach that first uses a simpler model to select long answers and then a reading
comprehension model to extract short answers from the long answers. BERTjoint (Alberti et al.,
2019) jointly trains short and long answer extraction in a single model rather than using a pipeline
approach. BERTwwm+SQuAD2 (Pan et al., 2019) makes use of multi-task learning to further boost
performance. RikiNet-RoBERTa (Liu et al., 2020) proposes a dynamic paragraph dual-attention
reader and a multi-level cascaded answer predictor. BigBird-ETC (Zaheer et al., 2020) makes use
of a sparse attention mechanism to encode long sequences.

4https://ai.google.com/research/NaturalQuestions
5https://github.com/src-d/kmcuda
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Quasar-T SearchQA NQ(long) NQ(short)
EM/F1 EM/F1 F1 F1

R3 (Wang et al., 2018) 35.3/41.7 49.0/55.3 - -
DECAPROP (Tay et al., 2018) 38.6/46.9 62.2/70.8 - -
DS-QA (Lin et al., 2018) 42.2/49.3 58.8/64.5 - -
Multi-passage BERT (Wang et al., 2019) 51.1/59.1 65.1/70.7 - -
DrQA (Chen et al., 2017) 37.7/44.5 41.9/48.7 46.1 35.7
DecAtt + DocReader (Kwiatkowski et al., 2019) - - 54.8 31.4
BERTjoint (Alberti et al., 2019) - - 64.7 52.7
BERTwwm + SQuAD2 (Pan et al., 2019) - - 68.2 57.2
RikiNet-RoBERTa (Liu et al., 2020) - - 75.3 59.3
Sliding Window 52.9/62.8 65.8/73.2 75.3 56.4
Sparse Attention (Child et al., 2019) 52.1/62.0 64.7/71.7 74.5 56.1
Locality-Sensitive Hashing (Kitaev et al., 2020) 53.2/62.9 66.0/73.5 75.5 56.4

Cluster-Former (#C=64) 53.3/63.3 67.0/74.2 76.3 56.7
Cluster-Former (#C=256) 53.6/63.5 67.5/74.5 76.3 56.7
Cluster-Former (#C=512) 54.0/63.9 68.0/75.1 76.5 57.1

Table 2: Results on Quasar-T, SearchQA test sets and NQ dev set. #C: number of clusters.

Long Answer Short Answer
F1 Precision Recall F1 Precision Recall

BigBird-ETC-large (Zaheer et al., 2020) 77.8 77.5 78.1 57.9 63.7 53.0
RikiNet (Liu et al., 2020) 76.1 78.1 74.2 61.3 67.6 56.1

Cluster-Former (Ours) 78.0 78.5 77.5 60.9 62.1 59.8

Table 3: Results on Natural Questions (NQ) leaderboard (test set). We show two published results
here from over 40 submissions. And our model achieves No.1 for long answer and No.4 for short
answer.

We also re-implement several strong baselines which have not been applied to process long context
in question answering tasks:

• Sliding Window: The original method is fully made up of Sliding-Window Layers and can only
attend to local information.
To make a fair comparison among different methods on long-range information collection, we
replace several layers of this sliding window baseline with Sparse Attention, Locality-Sensitive
Hashing, and Cluster-Former.

• Sparse Attention (Child et al., 2019): This method replaces several layers in the previous baseline
by training a Transformer layer across sequences on pre-selected positions. We run this sparse
Transformer on all the hidden states in the same position across sequences, so that the output of
sparse Transformer can merge the information from different sequences.

• Locality-Sensitive Hashing (Kitaev et al., 2020): This method hashes hidden states into different
buckets determined by randomly-initialized hashing vectors. A Transformer layer is then applied
across buckets to build Sparse Attention across the whole sequence. Note that this method cannot
be directly used for question answering without adding Sliding-Window layer, as our QA model
is initialized by RoBERTa that only has 512 position embeddings.

4.4 EXPERIMENTAL RESULTS

State-of-the-Art Results on QA Table 2 and 3 show that our proposed method outperforms several
strong baselines, thanks to its ability to encode both local and global information. Cluster-Former
with 512 clusters achieves new state-of-the-art results on Quasar-T, SearchQA and Natural Question
(long answer).

Effect of Cluster-Former We also test the ability of Cluster-Former on modeling long-range
dependencies. Note that Sparse Attention (Child et al., 2019) and Locality-Sensitive Hash-
ing (Kitaev et al., 2020) have never been tested on question answering tasks with long con-
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Question Where did the underground railroad start and finish ?
Context The Underground Railroad by artist Charles T. Webber , 1893 Date Late 1700s - 1865

Location Northern United States with routes to Canada , Mexico ...

Special token <s><s><s>Island island in the colonies city<s><s><s>With in the in .
Time did start and finish 1893 Date 1700 1865 Location Participants Outcome Deaths 19 1763
Stopwords the the , the , , , , to , , , , the American runaway slaves of free states the , , , it to , a the the
Entity Canada Mexico Canada is applied Florida Spanish Railroad Railroad Railroad

Positions 49, 50, 51, 52, 53, 54, 55, 115, 116, 168, 273, 394, ..., 6022, 6040, 6042, 6060, 6094, 6095

Table 6: An example from Natural Question dataset. The rows in the middle section show the
corresponding words of the clustered hidden states, and the bottom row shows the positions of the
clustered hidden states. “<s>” refers to start token of long answer candidate.

text. For fair comparison, we set the layers 15 and 20 as either Sparse Attention, Locality-
Sensitive Hashing or our Cluster-Former, and the left layers are Sliding Window layers.

3 4 5 6

8 55.7/65.0 55.6/64.4 54.7/64.3 55.4/64.6
12 55.1/64.9 55.8/65.0 56.1/65.4 55.4/64.6
16 55.6/65.0 55.2/64.7 55.1/64.6 54.8/64.1
20 54.8/64.2 55.4/64.8 55.1/64.6 -

Table 4: Experiments on Quasar-T dev dataset.
a ∈ {3, 4, 5, 6} and b ∈ {8, 12, 16, 20}, if the
layer number l % a == 0 and l >= b, we set it as
Cluster-Former Layer, otherwise Sliding Window
Layer.

As shown, Sparse Attention performs worse
than our Cluster-Former. The loss may come
from the noise introduced by pre-selected po-
sitions, the corresponding words of which may
not be related. We set the number of hashing
vectors in Locality-Sensitive Hashing (LSH)
to 64, the same as the number of clusters in
Cluster-Former. LSH outperforms the base-
line slightly on QA and consistently underper-
forms our Cluster-Former (#C=64). Overall,
our Cluster-Former performs the best.

Wikitext Enwik8
ppl bpc

Sliding window 20.8 1.34
Sparse Attention 20.5 1.29
Locality-Sensitive Hashing 20.8 1.33

Cluster-Former (#C=64) 20.5 1.28
Cluster-Former (#C=256) 20.3 1.24
Cluster-Former (#C=512) 20.2 1.22

Table 5: Results on Language Modeling. #C:
number of clusters; Wikitext: Wikitext-103.

Effect of Number of Cluster Centroids We
also test the effect of different numbers of clus-
ter centroids (C) on model performance. We
observe that the model with 512 clusters works
significantly better than the model with 64 clus-
ters on most of the tasks. However, for Natural
Questions Long Answer setting, the improve-
ment is marginal. As we mainly rely on the
hidden state of special tokens “<s>” for long
answer selection, and the same tokens can be
assigned into same chunk more easily even with
a smaller number of clusters.

Selection of Cluster-Former Layers We also have an analysis on which layers are better used for
Cluster-Former layer. As shown in Table 4, we conduct a hyper-parameter search. And find that it
can get better performance with at least one Cluster-Former layers in the middle layer (8-16). The
worst results come from only one Cluster-Former layer in the layer of 22 or 23.

Language Modeling Although we focus on QA tasks in this paper, to demonstrate the versatil-
ity of Cluster-Former, we further conduct additional experiments on language modeling using the
Wikitext-103 (Merity et al., 2017) and Enwik8 (Mahoney, 2011) benchmarks. Implementation de-
tails are provided in Appendix. As shown in Table 5, Cluster-Former outperforms strong state-of-
the-art baselines.

4.5 QUALITATIVE ANALYSIS

We perform qualitative analysis on how the hidden states are clustered, by visualizing the corre-
sponding words and positions of the hidden states in Table 6. From the first row, we can see that
the special tokens “<s>” tend to belong to the same cluster. Note that “<s>” is the start token of
each long answer candidate, and its hidden state is used for final long answer selection. Therefore,
Transformer on this cluster can compare across the candidates to make the final prediction.
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We further observe that the same types of token are more likely to appear in the same cluster. For
example, words from the second row to the forth row cover the topics of time, stopwords, and
organization & geopolitical entities.

Finally, we randomly sample a cluster and list the positions of clustered hidden states in the last row
of the table. We find that states in long distance, such as the 50-th and 6060-th states (over 6000
tokens apart), can be in one cluster, which demonstrates the ability of Cluster-Former in detecting
long-range dependencies. Further, we observe that states tend to cluster in phrases. For example,
we see consecutive positions such as “49, 50, 51, 52, 53, 54, 55”, which likely results from the
sliding-window encoding.

5 CONCLUSION

In this paper, we present Cluster-Former, a new method to encode global information for long se-
quences. We achieve new state of the art on three question answering datasets: Quasar-T, SearchQA,
and Natural Questions. Further, we observe that a larger number of clusters in Cluster-Former can
lead to better performance on question answering tasks. Cluster-Former is a generic approach, and
we believe that it can benefit other NLP tasks that rely on long-range dependencies as well.
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