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ABSTRACT

We revisit recent spectral GNN approaches to semi-supervised node classifica-
tion (SSNC). We posit that many of the current GNN architectures may be over-
engineered. Instead, simpler, traditional methods from nonparametric estimation,
applied in the spectral domain, could replace many deep-learning inspired GNN
designs. These conventional techniques appear to be well suited for a variety of
graph types reaching state-of-the-art performance on many of the common SSNC
benchmarks. Additionally, we show that recent performance improvements in
GNN approaches may be partially attributed to shifts in evaluation conventions.
Lastly, an ablative study is conducted on the various hyperparameters associated
with GNN spectral filtering techniques.

1 INTRODUCTION

The problem of semi-supervised node classification (SSNC) (Seeger, 2002; Belkin et al., 2006) has
been a focal point in graph-based semi-supervised learning. Modern approaches to node classifi-
cation on graphs make use of complex Graph Neural Networks (GNNs) (Scarselli et al., 2009) for
prediction. These networks are trained to predict node labels, drawing on both the individual fea-
tures of nodes and the broader network structure. From a statistical standpoint, SSNC represents a
compelling regression or classification problem that incorporates network information.

The fundamental premise of SSNC is that the network structure (A) allows us to borrow informa-
tion from the neighbors of nodes for which we lack a response. This borrowing can enhance the
prediction of the unobserved responses beyond what could be achieved with a traditional regression
of yi on xi. Recently, there has been a wide breadth of literature (Veličković et al., 2018; Chien
et al., 2021; Luan et al., 2022) which attempt to leverage network structure using GNNs. This recent
flurry of activity has led to the proposal of many competing, often complex, architectures to solve
the SSNC problem.

In this paper, we review top-of-the-leaderboard, benchmarking practices and confirm whether or not
this “zoo” of models is necessary to achieve SOTA-like results. Recent studies by Maurya et al.
(2022) and Wang & Zhang (2022) have suggested that simple spectral approaches may be sufficient
to achieve SOTA performance for semi-surpervised graph classification. Using standard techniques
from functional estimation, we simultaneously simplify and generalize previous spectral approaches
to SSNC while maintaining or exceeding previous performance benchmarks. In particular, we are
able to achieve improvements of +5% and +20% compared to other spectral methods on directed
networks such as Chameleon and Squirrel (Rozemberczki et al., 2021).

Our contributions are as follows:

• Highlight spectral reshaping and modeling techniques which generalize previous spectral
filtering approaches.

• Outline common evaluation practices which have an outsized effect on model performance.
• Simplify modeling hyperparameters (e.g. dropout probabilities, model depth, parameter-

specific optimizers) while retaining SOTA or near-SOTA performance.

By standardizing evaluation practices and simplifying modeling considerations, we aim to disam-
biguate performance in the GNN model-space and believe our results will lead to more interpretable
models and heuristics for future SSNC problems.
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2 GNN AND SSNC FORMALISM

Consider a network represented by an adjacency matrix A on n nodes. Each node i in the network is
associated with a feature vector xi ∈ Rd and a response yi ∈ R. The collection of n feature vectors
will be succinctly expressed as X = [x1, . . . ,xn]

T ∈ Rn×d. In the case of SSNC, all node features
X , the observed network A, and a subset of the responses (yi)i∈S are known. The goal of SSNC
will be to correctly predict unobserved responses (yi)i∈Sc given the previously stated knowns.

A mainstay of all GNN architectures is the feature propagation structure P ∈ Rn×n. Common
choices of P include the adjacency matrix A and its transformed variants, e.g. normalized Lapla-
cian. These propagation structures need not be static. Indeed there are popular GNN architec-
tures (Veličković et al., 2018) which introduce layer-dependent interactions between a base propa-
gation P 0 and intermediate features Z ∈ Rn×d′

.

If we abstract away the aggregation specifics of propagations {P ℓ}ℓ, then intermediate representa-
tions of most GNNs can be recursively expressed as

Zℓ+1 = ϕ⊙ (P ℓZℓW ℓ) for layers ℓ = 1, . . . , L, (1)

where W ℓ ∈ Rdℓ×dℓ+1 are weight matrices and ϕ : R → R is a scalar function which is to be applied
element-wise. In the case of a C-class classification, it is common to extract row-wise “argmax”s of
the final features ZL ∈ Rn×C using differentiable argmax surrogates such as softmax.

Our studies will consider the simplest variant of GNN: a one layer, linear GNN, that is ϕ = id,
where special attention is paid to the propagation structure P . We will consider fixed and learnable
propagation structures derived from variants of the adjacency matrix A. Throughout, we will make
use of spectral and singular value decompositions (SVD) where, in the case of SVD, A = UΣV T

with Σ = diag(σi) and σ1 ≥ · · · ≥ σn are the singular values of A. In our analysis, we will
consider combinations of low-rank

A(r) = U:rΣ:r(V:r)
T

and kernelized
P (K) = U(diag(Kα))V T

representations of the network A. In the kernelized case, α ∈ Rn is a trainable free parameter and
Ki,j = K(σi, σj) is a kernel matrix formed by applying a kernel function K : R × R → R to the
singular values of A. The idea is that we can achieve a reshaping of the spectrum h(σi) by a general
function h through an appropriate choice of the kernel function and α such that h(σi) = (Kα)i.
This is motivated by the so-called representer theorem (Schölkopf et al., 2001) which holds valid if
h belongs to reproducing kernel Hilbert space of continuous functions H.

2.1 MOTIVATING SPECTRAL METHODS AND LEARNABLE PROPAGATIONS

Implicit in all graph learning problems, is the assumption that the nodal features X are only partially
informative towards learning the response y. Regression on the full set of observations (X,A)
is expected to lead to better response outcomes, but without knowledge of the underlying graph
generation process it becomes difficult to determine how observation A should be included in our
modeling. Nevertheless, there are some broad strokes we can make when talking about generation
of network data. Consider the following, similar lenses from which we can view network data
generation:

• The feature-network pair (X,A) share a dependent structure. That is, we may assume
there is a correlation between pairs of features (xi,xj) and the appearance of correspond-
ing edges Ai,j .

• The spectral representation of A can be used to form meaningful partitions on the set of
nodes [n]. These partitions may vary depending on the graph learning task at hand.

The first view is natural and leads to considering propagation schemes between features X and a
propagation P formed from polynomial and algebraic combinations of the the adjacency matrix
A. The second view point is primarily motivated by analysis done in community detection, where
class clusters of certain processes like the stochastic block model (SBM) (Holland et al., 1983) and
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Dataset Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Texas Wisconsin

Nodes 2708 3327 19717 2277 5201 7600 183 183 251
Edges 5429 4732 44338 36101 217073 33544 295 309 499
Features 1433 3703 500 2325 2089 931 1703 1703 1703
Classes 7 6 3 5 5 5 5 5 5

Table 1: Summary statistics on benchmark networks, provided by Pei et al. (2020).

the random dot product graphs (RDPG) Young & Scheinerman (2007) can be determined using the
spectral information of the observed graph. This second view point leads to the consideration of
graph Fourier methods (Shuman et al., 2013; Ricaud et al., 2019) using the spectral data found in
A. Of the two approaches, the graph Fourier methods are more general and will be our focus when
constructing learnable propagation stuctures P .

In graph Fourier methods, considering the undirected case for simplicity, a learnable filter h : R →
R is applied to the eigenvalue-eigenvector pairs (λi,ui) of A to construct the propagation operator

P =

n∑
i=1

h(λi)uiu
T
i . (2)

A sufficiently general and practical family of functions to estimate h from could be a reproducing
kernel Hilbert space (RKHS) of continuous functions H with associated kernel function K. The
choices of kernel K is flexible and determines the kind of regularity we wish to impose on graph
the spectral domain. Important to note however, is that our point evaluations h(λi) = (Kα)i are
dependent on a kernel matrix K which is created using noisy observations (λi)i. For this reason we
will also consider truncations r ≤ n of the form

P (r,K) =

r∑
i=1

(Kα)iuiu
T
i , (3)

with eigenvalue-eigenvector pairs (λi,ui) being ordered according to their eigenvalue magnitude in
decreasing order.

3 EXPERIMENTS

Our modeling efforts will be specific to the propagation structure P with no modifications made
on the original features X or linear weights W . In our experiments we do not consider any model
augmentations such as dropout (Srivastava et al., 2014), batchnorm (Ioffe & Szegedy, 2015), or per-
parameter optimizers (i.e. different learning rates for different layers). The design of P will have
the following degrees of freedom:

• Matrix representation of network. We will consider adjacency A and Laplacian D −A
and their normalized variants. Here D is column-wise sums of A placed in diagonal matrix
format.

• Spectral truncation factor. Given a truncation factor r, the spectral system (U ,Λ), resp.
(U ,Σ,V T ), will be reduced to (U:r,Λ:r), resp. (U:r,Σ:r, (V:r)

T ), where the eigenvec-
tors associated with the bottom n − r eigenvalue magnitudes are dropped. In our experi-
ments, truncation factors from 0 to 95% in 5% intervals will be considered.

• Choice of kernel. Some kernels we will consider are the identity (1{i = j}), linear (λiλj),
compact Sobolev (min(λi, λj)), unbounded Sobolev (exp(γ|λi−λj |)), and Gaussian radial
basis function (RBF) (exp(γ|λi − λj |2)) kernels. Note that the identity kernel does not
generate a continuous RKHS. In the case of the last two kernels, bandwidth parameter
γ ∈ R+ will be selected using a validation process.

Our methods are evaluated against common SSNC benchmark datasets, summarized in Table 1.More
information on the benchmarks can be found in Pei et al. (2020). All values are recorded using the
balanced splits defined in Chien et al. (2021). Section 5 further provides a comprehensive analysis
on the impact of the splitting conventions.
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Directed Networks

Chameleon Squirrel Actor

MLP2 48.5±2.6 34.8±1.4 40.3±2.3
LINEAR 48.1±3.2 34.9±1.4 38.9±1.2
PROP. LINEAR 79.0±1.4 78.0±1.1 32.4±1.3
KERNEL 78.7±1.1 76.0±1.2 32.2±1.8
LR KERNEL 79.4±1.4 76.8±1.3 32.3±1.7

GPRGNN∗ 67.5±0.4 49.9±0.5 39.3±0.3
JACOBICONV∗ 74.2±1.0 55.8±0.6 40.7±1.0
ACMII-GCN 68.4±1.4 54.5±2.1 41.8±1.2

Undirected Networks

Cora CiteSeer PubMed Cornell Texas Wisconsin

MLP2 77.8±1.6 77.2±1.1 88.2±0.5 86.1±3.0 91.7±4.4 95.0±2.6
LINEAR 78.9±2.0 76.2±1.2 85.8±0.4 84.9±5.6 89.7±3.8 95.0±3.8
PROP. LINEAR 84.0±2.0 73.9±1.4 82.6±0.5 67.8±8.7 86.8±3.5 83.8±3.2
KERNEL 88.6±1.0 81.1±1.0 89.4±0.8 83.3±5.9 88.2±2.6 92.1±3.4
LR KERNEL — — — — — —

GPRGNN∗ 79.5±0.4 67.6±0.4 85.1±0.1 91.4±0.7 92.9±0.6 NA
JACOBICONV∗ 89.0±0.5 80.8±0.8 89.6±0.4 92.3±2.8 92.8±2.0 NA
ACMII-GCN 89.0±0.7 81.8±1.0 90.7±0.5 95.9±1.8 95.1±2.0 96.6±2.4

Table 2: Performance: Mean test accuracy ± std. dev. over 10 data splits. Models include our own
variations of “Linear” and “Propagated Linear” GNNs, along with other state-of-the-art (SOTA)
GNNs. Dashed entry in for LR KERNEL signifies validated choice is the same as the full-rank
KERNEL. Performance is comparable between our simple GNNs and SOTA in some cases. Results
for GPRGNN, JACOBICONV and ACMII-GCN are cited from Chien et al. (2021), Wang & Zhang
(2022), and Luan et al. (2022) respectively. Entries marked with ‘∗’ report 95% confidence intervals.

The following linear and spectral models will be considered for evaluation: LINEAR (XW ), PROP-
AGATED LINEAR (PXW ), KERNEL (P (K)XW ), and LR KERNEL (P (r,K)XW ). Similar to
the model hyperparameters, learning rate and weight decay of the optimizer, Adam (Kingma &
Ba, 2015), will be determined using mean accuracies of the validation split of each dataset. For
completeness, we have also implemented a non-linear baseline which learns using only feature in-
formation X . This model will be a simple two-layer ReLU multi-layer perceptron MLP2 with
hidden layer size determined through validation.

Our models and their results compared to other current SOTA methods can be found in Table 2. We
note that, for most of the large graph benchmarks, our models perform within uncertainty or better
compared to SOTA. In particular for directed graphs like Chameleon and Squirrel, we see gains in
accuracy as high as 5% and 20% over other SOTA methods. A point of emphasis here is the relative
simplicity of our models compared to the performance they attain. The absence of any post-model
augmentations distinguishes our approach from other competing SOTA spectral methods (Wang &
Zhang, 2022).

A point of difficulty where a performance gap persists, is where the node response y is overwhelm-
ing described by its nodal information X . Graphs with this property (Actor, Cornell, Texas, and
Wisconsin) can be identified by the negative performance gap between LINEAR and PROPAGATED
LINEAR as well as the SOTA-like performance of MLP2. Note that, even without using any graph
information, MLP2 is able to achieve SOTA within uncertainty on almost all of the X-dominated,
network datasets. Furthermore, in the cases of Cornell, Texas, and Wisconsin, we may be running
into a sample size issues, as these dataset sare only 1/10 the size (a few hundred nodes) of the other
benchmarks, and the networks are extremely sparse.
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Kernel Cora CiteSeer PubMed Chameleon Squirrel Actor Cornell Texas Wisconsin
Identity 78.8± 2.7 72.6± 2.0 81.6± 0.9 69.7± 2.7 44.9± 2.9 28.6± 3.0 60.4± 8.1 76.2± 4.3 71.6± 5.7

Sob. Cmpct. 75.1± 1.9 73.0± 1.4 88.5± 0.4 41.4± 2.2 33.2± 1.1 32.2± 1.8 83.3± 5.9 88.6± 4.0 92.1± 3.4

Linear 81.1± 2.0 72.1± 1.8 82.3± 1.0 78.7± 1.2 76.0± 1.2 31.6± 0.9 66.5± 6.1 77.2± 8.0 81.3± 4.8

Sob. Unbnd. 88.8± 0.8 81.1± 1.0 89.2± 2.0 54.5± 6.4 68.8± 8.2 30.7± 1.0 80.6± 6.4 88.2± 2.6 90.4± 5.6

Gauss. RBF 88.6± 1.0 80.3± 1.9 89.4± 0.8 60.4± 8.4 71.3± 4.4 30.4± 1.3 79.4± 5.3 84.0± 4.5 85.8± 4.7

Table 3: Impact of the kernel choice on the performance of the full-rank KERNEL model. Bold
entries correspond to the model selected by validation.

Figure 1: Performance homogenization achieved by LR KERNEL model on directed networks.

Future work should explore how to make these simple kernel methods, no worse than a linear model
in the worst case. The introduction of an extra regularization parameter β of the form

P ′ = P + βI (4)

may help here at the cost of minor complexity overhead. So far, preliminary implementations
of equation 4 have not shown to be any more competitive than standard kernel approaches. It could
be that a more complicated regularizing form is needed to balance the propagation and identity terms
P and I .

4 SPECTRAL KERNEL ABLATION

We next conduct an ablation study on the three degrees of freedom (kernel choice, matrix represen-
tation, and truncation factor) in constructing the propagation matrix P . Optimal choice of the kernel
and other hyperparameters seem specific to particular datasets themselves. Although out-of-scope
for the paper, one may consider contrasting the best and worst performing hyperparameters to gain
insight into the underlying generative processes of these benchmark datasets.

For a first study, we consider ablating the kernel choice. Results of the ablation are shown in Table 3
for the full-rank KERNEL model, where a complicated dependence can be seen between the kernel
choice and the accuracy of the estimated response. Although some results are within uncertainty,
the dependence between kernel regularity and SSNC performance is not immediately clear. For
Chameleon and Squirrel datasets, we see that the wrong kernel may lead to performance degrada-
tions up to ∼30%. This is a problem which is partially alleviated by the LR KERNEL model, where
the option to reduce the kernel rank homogenizes some of the model performance. Figure 1 illus-
trates this homogenization effect. We stress however that this solution is partial, as the same order of
homogenization is not observed for the undirected datasets. Identifying the relevant graph statistics
which describe this homogenization discrepancy is something which is left to future work.

The next relevant hyperparameter is the matrix representation of the network. This choice can
have an outsized impact on performance as the eigenvectors, otherwise known as the modes of the
graph, are fixed once a representation is chosen. Similar to the kernel choice, it is not immediately
clear when one matrix representation will outperform the other. Figure 2 shows the impact on
performance is variable across both directed and undirected datasets.

Lastly, we carry out an ablation relative to the spectral truncation factor r. Larger spectral truncations
have the benefit of accelerating model execution at the potential cost of performance. Figure 3
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Figure 2: Accuracy comparison of the KERNEL model for different graph representations A and
D−A. Shown above is the signed accuracy difference between the adjacency and Laplacian repre-
sentations. Best performing kernel was selected per dataset.

Figure 3: LR KERNEL performance relative to the full-rank KERNEL for different truncation factors
r. Performance is seen to gradually decline on most datasets as the truncation factor r increases.
LR KERNEL performance can also be seen to periodically increase above full-rank KERNEL perfor-
mance for the datasets Chameleon (red) and Squirrel (purple).

demonstrates how performance degrades gradually with the truncation factor. The rate at which
performance degrades seems to be dependent on the dataset, but most benchmarks retain ∼90%
performance even after a 50% spectral trunctation. In special cases like Squirrel and Chameleon,
performance is even seen to increase at larger truncation values.

5 CHANGES IN EVALUATION CONVENTIONS

As interest in the SSNC learning task increased (Seeger, 2002; Zhu et al., 2003), so did the num-
ber of publicly available, real-world network datasets. These datasets spanned a variety of topics
from citation networks Sen et al. (2008) to social co-occurences graphs Tang et al. (2009) to web
link networks (Craven et al., 1998; Rozemberczki et al., 2021). From the modeling perspective, a
common set of datasets was useful to benchmark different methods and one set of networks which
quickly saw serialization were the citation datasets (Cora, Citeseer, Pubmed) popularized by Yang
et al. (2016).

Yang et al. (2016) defined the “sparse” train-test split on the citation datasets and their node masks
were made publically available. The sparse split had set 20 nodes per class for training and a 1000

6



Under review as a conference paper at ICLR 2024

Figure 4: Accuracy results and uncertainties on the citation datasets using different splits with linear
models XW and AXW . “Public” refers to the split introduced by Kipf & Welling (2017). Both
“Sparse” and “Public” are single splits, so one cannot associate uncertainty to them.

Figure 5: Accuracy results on datasets introduced by Pei et al. (2020). “Dense” refers to the original
split while “Balanced” refers to the split introduced by Chien et al. (2021). Test results and uncer-
tainties are evaluated using models XW and AXW . Results shown are on the method with best
validation per dataset.

nodes total for testing. These values were held constant for all three citation datasets, meaning
larger networks like Pubmed were left with a total label rate of about 0.3%. Quickly following was
the semi-supervised work of Kipf & Welling (2017) and Veličković et al. (2018). These follow-
up papers considered an additional 500 previously unlabeled nodes to use as validation. In the
respective code implementations of each paper, these additional labels were used in an early stopping
criterion for the final model checkpoint.

Introduced later was the “dense” split by Pei et al. (2020), where train, validation, and test were
now fractions of the whole graph, set to 60%-20%-20% respectively. This paper also popularized
two new benchmark datasets, the WebKB dataset Craven et al. (1998) and the Wikipedia animal
pages network Rozemberczki et al. (2021). After the introduction of these new benchmarks, a new
“balanced” split was proposed by Chien et al. (2021). Here, each class in a network was masked
according to a 60%-20%-20% split, which are then collected into the final train-validation-test splits.
Both the new datasets and the balanced splits are common benchmarking practices for current SSNC
papers and implementations of these conventions can be found in the code of various SOTA GNN
papers (Luan et al., 2022; Wang & Zhang, 2022).

Provided in Figures 4-5 are visualizations on the impacts of different evaluation techniques on simple
linear models (XW and AXW ). To keep things comparable to the sparse split, both the learning
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rate (10−3) and the weight decay (0.0) were fixed for the Adam optimizer. Despite this lack of
tuning, note that the best of these models, per dataset, achieve roughly 85% and above of the perfor-
mance relative to SOTA SSNC methods. For the high-end of this performance, see the classification
results on the Squirrel dataset in Figure 5 where a mean accuracy of 77.3% is achieved.

New GNN architectures which make use of the more recent splitting techniques may also experi-
ence a performance bump similar to our linear models. This perhaps leads to an overstatement of
the modeling contribution for certain new architecture and, on the downside, has the potential to
persuade later researchers to incorporate unnecessary modeling complexities in their SSNC exper-
iments. For this reason, we believe it is important to be upfront on the impact that the different
splitting conventions have on performance.

6 CONCLUSIONS

We have shown how classically-inspired nonparametric techniques can be used to match, and some-
times exceed, previous spectral and non-linear GNN approaches. Our methods make no use of
post-model augmentations such as dropout (Srivastava et al., 2014) or batchnorm (Ioffe & Szegedy,
2015) allowing for clean theoretical analysis in future work. We briefly note, that the formulation of
the spectral kernel model itself may be of theoretical interest, as its simplified variants have ties to
low-rank, noisy matrix sensing problems Fazel et al. (2008); Zhong et al. (2015); Deng et al. (2023).

Elaborating a little further, assume a regression setting with a scalar real-valued yi, and let β ∈ Rd

take the place of our linear weights. In this case, our evaluation outputs will be scalar valued, so the
j-th evaluation of the LR KERNEL model can be rearranged as

hj(A,X) = eTj U(diag(Kα)UT )Xβ

=

r∑
i=1

eTj ui(e
T
i Kα)uT

i Xβ

=

r∑
i=1

(k̃j
i )

TαβT x̃i

=
〈 r∑

i=1

k̃j
i x̃

T
i ,αβT

〉
F
,

where k̃j
i = ui,jKei, x̃i = XTui, and ⟨A,B⟩F := tr(ATB) is the Frobenius matrix inner

product. This formulation has the goal to estimate a rank-1 matrix parameter αβT given n, rank-r
linear measurements of the form Aj(·) = ⟨

∑r
i=1 k̃

j
i x̃

T
i , ·⟩F . If our underlying assumption is that

adjacency A is noisy then the construction of k̃j
i , and therefore our linear measurements, must be

noisy as well.

On the empirical side, we explored pertinent hyperparameters to the spectral kernel model and
showed how the dependence on these parameters may vary across different network datasets. On the
low-rank side, we showed how spectral truncation can homogenize response outcomes for different
kernel choices. Additionally, it was shown that performance declines gradually with increases in the
truncation factor, pointing to practical speed-ups for non-parametric kernel implementations.

Lastly, we looked at how evaluation conventions on SSNC tasks have changed since the introduction
of popular network datasets. We highlighted the recently defined balanced split and showed how
its use can lead to increases in performance outside of what may be expected by uncertainty. By
bringing attention to these changes, we hope to even the field on benchmark comparisons for later
SSNC works, allowing future researchers to accurately compare their methods to previous SOTA
results. The code for reproducing all the experiments will be made publicly available.
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