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Abstract
Preference learning from human feedback has
been widely adopted to align generative mod-
els with end-users. However, human feedback
is costly and time-consuming to obtain, creating
demand for data-efficient query selection methods.
This work presents a novel approach that lever-
ages optimal experimental design to ask humans
the most informative preference queries, which
can efficiently elucidate the latent reward func-
tion modeling user preferences. To this end, we
formulate the problem of preference query selec-
tion as a planning problem aimed to maximize the
information that queries provide about the user’s
underlying latent reward model. We show that this
problem has a convex optimization formulation,
and introduce ED-PBRL, a statistically and com-
putationally efficient algorithm that is supported
by theoretical guarantees. We empirically show-
case the proposed framework by personalizing a
text-to-image generative model to user-specific
styles, showing that it requires substantially fewer
preference queries compared to random query se-
lection.

1. Introduction
Generative Models & Reinforcement Learning In re-
cent years, large-scale generative models have demon-
strated tremendous success in generating high-fidelity con-
tent across various modalities (Brown et al., 2020; Rombach
et al., 2022; Brooks et al., 2024). These models are sequen-
tial by nature; they append to or refine generated content in-
crementally. For example, Large Language Models (LLMs)
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generate text by sequentially adding tokens (Brown et al.,
2020; Ouyang et al., 2022), and text-to-image diffusion mod-
els refine their generations over a series of steps (Dhariwal
& Nichol, 2021). This sequential decision-making process
naturally fits the Reinforcement Learning (RL) paradigm,
where the generation process is modeled by an RL agent aim-
ing to take the best action at each intermediate step (Ouyang
et al., 2022; Deng et al., 2022). This inherent sequential
structure makes RL a powerful framework for optimizing
and controlling the behavior of these generative agents, a
connection that has been successfully exploited for multiple
purposes, such as improving generation quality (Lee et al.,
2023; Xu et al., 2023), aligning models with safety con-
straints (Bai et al., 2022; Askell et al., 2021), or with other
personal user tastes (Ouyang et al., 2022; Rafailov et al.,
2023; Stiennon et al., 2020).

PBRL for Personalization Framing the generative pro-
cess as an RL problem is particularly powerful for person-
alization, as it allows for aligning the agent’s policy with a
user’s subjective taste. The key challenge is that this taste is
difficult to formalize as a numerical reward function. Rein-
forcement Learning from Human Feedback (RLHF) is the
standard paradigm for this, learning rewards from human-
supplied demonstrations or other forms of feedback (Ziebart
et al., 2008; Finn et al., 2016; Linder et al., 2022; Casper
et al., 2023). Perhaps the most prominent and practical in-
stance of RLHF is Preference-Based Reinforcement Learn-
ing (PBRL), where the latent reward model is learned from
comparative feedback (e.g., a user choosing between two
generated images). This feedback modality is often more
intuitive for humans to provide than absolute scores or full
demonstrations (Christiano et al., 2017; Sadigh et al., 2017;
Biyik et al., 2019; Ouyang et al., 2022; Saha et al., 2023;
Azar et al., 2024). After collecting preference feedback
from the user, an estimated reward model then serves as the
reward signal aligning the RL agent to the human.

PBRL Query Selection via OED The success of PBRL,
however, hinges on the accuracy of this learned reward
model, which in turn depends on the quality of the prefer-
ence queries presented for user feedback. Collecting these
user preferences is a significant practical bottleneck, as it re-
quires a human to provide numerous labels—a process that
is both time-consuming and costly (Ouyang et al., 2022; Lee
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et al., 2023). This data collection bottleneck makes sample
efficiency paramount, which requires selecting maximally
informative queries. Existing PBRL methods for selecting
such queries often face a trade-off: they are either computa-
tionally tractable but lack theoretical guarantees, or they are
theoretically grounded but computationally expensive (Chen
et al., 2022; Wu et al., 2023; Saha et al., 2023; Zhan et al.,
2023; Pacchiano et al., 2023). This raises a fundamental
question for making personalization practical:

Can we select PBRL queries in a way that is both
statistically efficient, computationally tractable, and also

theoretically guaranteed?

In this work, we address this question by leveraging the prin-
ciples of Optimal Experimental Design (OED) (Chaloner
& Verdinelli, 1995; Pukelsheim, 2006; Fedorov & Hackl,
1997). We propose a method to select the most informa-
tive queries to present to the user, ensuring that the prefer-
ence model is learned with as few interactions as possible.
Specifically, our objective is to determine a set of K distinct
exploration policies for the generative agent. These policies
are carefully chosen to generate a diverse, informative, and
discerning set of outputs. When the user provides feedback
on these outputs, we gain maximal information about their
latent reward parameters. We do this by reformulating the
generally intractable OED problem (Pukelsheim, 2006; Fe-
dorov & Hackl, 1997) to a convex optimization problem
over the space of state visitation measures induced by the
policies. This allows us to use Convex Reinforcement Learn-
ing (Hazan et al., 2019) to efficiently compute the optimal
set of policies for the query generation.

Our contributions To sum up, we provide the following:

• A formal problem setting for query selection for gener-
ative models, modeled via Markov Decision Processes
(Sec. 3).

• ED-PBRL, a method that leverages Optimal Experi-
mental Design (OED) to efficiently solve the problem
of learning preferences from a minimal number of
queries (Sec. 4 and 5.1).

• Convergence guarantees for ED-PBRL based on con-
vex optimization analysis, ensuring the procedure finds
a globally optimal set of query policies (Sec. 5.2).

• An experimental evaluation of the proposed method,
showcasing promising performance for the personal-
ization of text-to-image models (Sec. 6).

2. Related Work
Generative Model Guidance Generative models, espe-
cially diffusion models (Ho et al., 2020; Sohl-Dickstein

et al., 2015; Dhariwal & Nichol, 2021) and Large Language
Models (LLMs), have achieved remarkable success but of-
ten require guidance to align outputs with user preferences.
For diffusion models, guidance techniques steer pre-trained
models by incorporating preference information, for exam-
ple, through gradients from an auxiliary classifier (classifier
guidance (Dhariwal & Nichol, 2021; Song et al., 2021)) or
by leveraging conditional model properties (classifier-free
guidance (Ho & Salimans, 2022)). Similarly, LLMs are
often guided in a post-training phase to better align with
user intent; for instance, InstructGPT (Ouyang et al., 2022)
uses human feedback to fine-tune models to follow instruc-
tions. The effectiveness of these methods often hinges on
an accurate underlying preference model. Our work focuses
on efficiently learning such preference models to enhance
personalized generative model guidance.

Preference-Based Reinforcement Learning A key chal-
lenge in realizing effective generative model guidance is the
accurate and efficient learning of the underlying user pref-
erence models. Preference-Based Reinforcement Learning
(PBRL) offers a powerful paradigm for this, learning re-
wards (and thus preference models) from comparative feed-
back, which is often more intuitive for humans than provid-
ing explicit reward values or detailed demonstrations. While
traditional Inverse Reinforcement Learning (IRL) methods
also infer reward functions, often from expert demonstra-
tions (Ziebart et al., 2008; Finn et al., 2016), and some IRL
approaches actively query for expert actions to improve
sample efficiency (Linder et al., 2022), PBRL’s focus on
preferences aligns well with capturing nuanced user tastes
for guidance. Many PBRL advancements focus on statis-
tical efficiency and regret guarantees (Chen et al., 2022;
Saha et al., 2023; Zhan et al., 2023; Pacchiano et al., 2023).
However, these methods can rely on computationally expen-
sive components, such as oracles for selecting informative
queries over pairs of policies from an exponentially large
set, or complex algorithmic structures (Wu et al., 2023).
Our work differs by focusing on a computationally tractable
method for query selection in PBRL. We optimize a set of
K exploration policies to generate informative comparative
queries using an experiment design (ED) objective, rather
than relying on pairwise policy comparison oracles.

Optimal Experiment Design To efficiently learn pref-
erence models for guidance, the queries presented to the
user must be highly informative. Optimal Experimental
Design (OED) (Pukelsheim, 2006; Fedorov & Hackl, 1997)
provides principles for selecting experiments to maximize
information gain, often by optimizing scalar criteria of the
Fisher Information Matrix. Due to the NP-hardness of dis-
crete design, continuous relaxations optimizing over design
measures are common. Mutny et al. (2023) applied OED
to active exploration in Markov Chains by optimizing over
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visitation measures of a single policy. Our work adapts OED
to PBRL by designing a set of K policies for generating
informative comparative queries, a distinct problem setting,
making it tractable using Convex Reinforcement Learning
(Convex-RL) (Hazan et al., 2019).

3. Preliminaries and Problem Formulation
We frame the task of personalized content generation as
an RL problem, where the agent sequentially appends to
or refines its output. The reward function is unknown and
defines the latent personal user’s taste. Our goal is to learn
this latent reward model using the fewest preference queries
possible to be given user feedback upon.

3.1. MDPs and Latent Reward

We consider a finite-horizon Markov Decision Process
(MDP) defined by the tuple M = (S,A, P,H). Here,
S and A are the state and action spaces, P (s′|s, a) is the
known transition matrix, and H is the finite horizon. A
policy π(a|s) defines a distribution over actions given a
state, which induces a distribution over trajectories τ =
{(s1, a1), . . . , (sH , aH)}.

We assume the user’s latent reward function is linear in a
known feature space. We assume access to a feature map
ϕ : S × A → Rd that transforms state-action pairs into d-
dimensional embeddings. The user’s preferences are driven
by an unknown reward function r(s, a) = (θ∗)⊤ϕ(s, a),
parameterized by a true but unknown vector θ∗ ∈ Rd. The
objective of the learning process is to produce a good esti-
mate θ̂ of θ∗.

Remark 3.1 (State vs. State-Action Rewards). Our frame-
work is general and applies equally to state-based reward
models, r(s) = (θ∗)⊤ϕ(s), where features depend only on
the state. For notational clarity in the theoretical sections,
we often use state-based notation (e.g., features ϕ(s) and
visitation measures d(s)). This is done without loss of gen-
erality, as all theorems can be extended to the state-action
case by considering an augmented state space S ′ = S ×A.

3.2. Learning from Preference Feedback

To learn θ∗, we rely on comparative feedback rather than
explicit reward values. Given K options (e.g., trajectories
or states), denoted by {x1, . . . , xK}, a user selects the one
they prefer most. We model the probability of this choice
using the standard multinomial logit (softmax) model. The
probability that a user chooses option xq is proportional to
its latent reward:

P (xq is best) =
exp((θ∗)⊤ϕ(xq))∑K

k′=1 exp((θ
∗)⊤ϕ(xk))

(1)

where ϕ(xk) is the feature vector of option xk. This model
is a generalization of the Bradley-Terry model (which corre-
sponds to K = 2) (Bradley & Terry, 1952).

3.3. Interaction Protocol

The learning process follows a fixed experimental design
protocol with three phases:

1. Policy Optimization: The algorithm determines a set
of K exploration policies, π1, . . . , πK , by solving an
information-maximization optimization problem (de-
tailed in Section 4).

2. Data Collection: The K policies are executed for T
episodes, generating T sets of trajectories. Each set is
{τt,1, . . . , τt,K}, where τt,q ∼ πq . These sets (or their
components, see below) are presented to the user, who
provides one preference choice for each set, resulting
in a dataset of T feedback points.

3. Parameter Estimation: Using the collected feedback
and the features of the corresponding trajectories, the
algorithm computes the final estimate θ̂ of the true
parameter θ∗.

The central challenge, which we address, is how to perform
Phase 1 to select policies that make the estimation in Phase
3 as efficient as possible.

3.4. Feedback Models

We consider two plausible models for how feedback is
elicited over the generated trajectories.

State-based Preference Feedback At each timestep
h ∈ [H] of an episode, the user compares the states
{s1,h, . . . , sK,h} reached by the K trajectories. The proba-
bility that the user selects state sq,h is given by the softmax
model in Eq. 1, using the state features ϕ(sq,h). This model
is a direct application of the general framework where the
reward depends only on the state (see Remark 3.1).

Truncated Trajectory Feedback In many applications,
evaluating cumulative progress is more natural. For instance,
if trajectories are sequences of words forming a sentence,
a user might prefer to compare partial sentences. In the
truncated trajectory feedback model, we assume the user’s
preference at each timestep h is formed over the partial
sequence of states σq[1 : h] = {sq,1, . . . , sq,h}. The prob-
ability of the user selecting the q-th sequence is given by
Eq. 1 using features of that partial sequence, ϕ(σq[1 : h]).
These features (e.g., a CLIP embedding of a partial sen-
tence) are not necessarily simple sums of their constituent
state features.

3



Efficient Generative Models Personalization via OED

3.5. Estimation

Given a dataset of T×H preferences from the user, the algo-
rithm estimates θ∗ via regularized maximum likelihood. Let
yt,h,q be a one-hot indicator that alternative q was chosen at
step h of episode t, and let p(q|t, h, θ) be the probability of
this choice under the relevant feedback model. The estimate
θ̂ is:

θ̂ = argmax
θ∈Rd

T,H,K∑
t=1,h=1,q=1

yt,h,q log(p(q|t, h, θ)) +
λ

2
||θ||22

g in where λ ≥ 0 is a regularization coefficient.

4. Optimal Experimental Design for
Preference Learning

Our main motivation is selecting queries for PBRL in a
sample efficient manner. This core challenge can be framed
as:

Which exploration strategies yield trajec-
tories that maximize information about θ?

To address this, we use an information-theoretic approach,
leveraging the Fisher Information Matrix.

4.1. Fisher Information and Estimation Error

The quality of the estimate θ̂ is fundamentally linked to
the queries selected. The Fisher Information Matrix (FIM),
I(θ), quantifies how informative these queries are. For
regularized estimators like ours, maximizing the regularized
FIM, Iλ(θ) = I(θ) + λId, serves to reduce the overall
estimation error. This is formalized in the following result.

Theorem 4.1 (Maximizing FIM improves Estimation). Un-
der regularity conditions and local consistency assumptions
detailed in Appendix B.1, the Mean Squared Error (MSE)
matrix of the estimator θλ is bounded in terms of the inverse
regularized FIM at the true parameter θ∗:

E[(θλ − θ∗)(θλ − θ∗)T ] ⪯ C · Iλ(θ∗)−1

for a constant C > 0 that depends on the local quality of
the estimator.

Theorem 4.1 shows that maximizing Iλ(θ∗) in the Loewner
sense (which makes its inverse smaller) is a principled way
to reduce estimation error. The full proof, which leverages
the self-concordance of the log-likelihood, is provided in
Appendix B.1.

Our goal is thus to select a set of K policies, π1:K , to
maximize a scalar criterion of the expected regularized FIM
they induce, Ireg(π1:K , θ). However, this ideal objective

(defined formally in Appendix B.3, Eq. 4) presents two
major challenges:

• Dependence on unknown θ: The FIM depends on the
true θ, which is unknown at the design stage.

• Intractable Optimization: The objective involves an
expectation over an exponentially large trajectory space
and optimization over the high-dimensional space of
K policies.

4.2. Reformulation to a Tractable Objective

We address these challenges by deriving a tractable objective
in three steps. Full details are in Appendix B.4.

Step 1: Reformulation using State Visitation Measures.
The expected FIM, initially defined over policies π1:K , can
be equivalently expressed in terms of the state visitation
measures d1:K = {dhπq

}h,q induced by these policies. This
shifts the problem from the space of policies to the space
of visitation measures, but does not yet resolve the core
challenges.

Step 2: Approximation for θ-Independence. To remove
the dependency on the unknown θ at the design stage, we
assume a uniform preference distribution over theK options,
i.e., p(q|s1..K) ≈ 1/K. This is a standard approximation
for initial designs and yields an approximate FIM, Iapprox,
that is independent of θ.

Step 3: Marginalization for Tractability. The expectation
in the approximate FIM can be resolved into a tractable
matrix form. As shown in Theorem B.4, the per-timestep
contribution Iapprox,h(dh1:K) can be computed efficiently:

Iapprox,h(d
h
1:K) = ΦT

(
1

K

K∑
q=1

diag(dhq )− d̄h(d̄h)T
)
Φ

(2)

where Φ is the state feature matrix, dhq is the visitation vector
for policy q at step h, and d̄h = 1

K

∑
q d

h
q .

This yields our final practical experimental design objective:
optimizing a scalar criterion s(·) over the state visitation
measures d1:K = {dhq }q∈[K],h∈[H]:

argmax
d1:K

s

(
T ·

H∑
h=1

Iapprox,h(d
h
1:K) + λId

)
(3)

This optimization is subject to the constraints that each dhq
must be a valid visitation measure. The information decom-
position of this objective, which highlights its preference
for policy diversity, is discussed in Appendix B.4.1.
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4.3. Information Equivalence of Feedback Models

A natural question is how the state-based and truncated
trajectory feedback models relate in terms of information.
Under a simplifying assumption that trajectory features are
sums of state features, we can show a formal connection.

Theorem 4.2 (Informal: Information Relationship). If tra-
jectory features decompose additively, then the information
from truncated trajectory feedback is lower-bounded by the
information from state-based feedback: Itrunc ⪰ c · Istate for
some constant c > 0.

This result (formally stated and proven as Theorem B.2 in
Appendix B.5) provides confidence that optimizing for the
more analytically tractable state-based model is beneficial
even when using the more user-friendly truncated trajectory
model in practice.

5. The ED-PBRL Algorithm and Guarantees
5.1. Algorithm Overview

Our approach first determines K optimal exploration poli-
cies by maximizing the information objective from Eq. 3.
This involves optimizing a scalar criterion s(Itotal), where
Itotal is the total approximate expected regularized Fisher
Information Matrix (FIM), i.e., the matrix argument of s(·)
in Eq. 3. These policies then generate trajectories for user
preference collection, which are used to estimate the reward
parameters. The conceptual flow is:

Algorithm 1 ED-PBRL (Conceptual Overview)
Input: MDP details (M,Φ), design parameters
(K,T, s(·), λ)
Output: Estimated preference parameter θ̂
Phase 1: Compute Optimal State Visitation Measures

Solve Eq. 3 for optimal state visitation measures
{d∗hq }h,q .
Phase 2: Policy Extraction and Trajectory Sampling

Extract policies {π∗
q}Kq=1 from {d∗hq }h,q .

Sample K × T trajectories using {π∗
q} and collect

preference feedback.
Phase 3: Parameter Estimation

Estimate θ̂ using all collected feedback (cf. Section 3).

The algorithm proceeds in three phases. Phase 1 leverages
Convex-RL, a Frank-Wolfe based method, to solve the con-
vex optimization problem over visitation measures. Phase
2 derives policies from these measures and samples trajec-
tories. Phase 3 uses the collected feedback for parameter
estimation. The detailed algorithmic procedure and further
explanation are in Appendix B.8.

5.2. Theoretical Guarantees

The ED-PBRL framework is theoretically well-founded.
The core optimization problem (Eq. 3) for finding optimal
state visitation measures is convex.

Theorem 5.1. [Concavity of the Objective Function] As-
sume the scalar criterion s : Sd+ → R is concave and
matrix-monotone non-decreasing. Then the objective func-
tion f(D) = s(Itotal(D)), where Itotal(D) is the total ap-
proximate expected regularized FIM (the matrix argument
of s(·) in Eq. 3), is concave with respect to the collection of
state visitation vectors D = {dhq }h∈[H],q∈[K].

Specifically, the objective function s(Itotal(D)) (Theorem
5.1) is concave if the scalar criterion s(·) (e.g., D- or A-
optimality) is concave and monotone. This ensures that the
Frank-Wolfe based optimization (Algorithm 2) converges
to a globally optimal set of policies.

Theorem 5.2 (Simplified Convergence Guarantee). Algo-
rithm 2, which employs a Frank-Wolfe based method to
optimize the objective f(D) = s(Itotal(D)) (defined in
Theorem 5.1) over the compact convex domain Dsv of state
visitation measures, converges to a global optimum. IfNiter

iterations are performed (i.e., the loop for n in Algorithm 2
runs Niter times), the suboptimality of the final solution is
bounded by O(1/Niter).

Proofs for these theorems, including a detailed version of
Theorem 5.2 (as Theorem B.6), are provided in Appendix
B.9.

6. Experimental Evaluation
We evaluate our Optimal Experimental Design (OED) ap-
proach for personalizing text-to-image generation based on
CLIP embeddings (Radford et al., 2021). We conduct two
types of experiments: (1) a quantitative evaluation using
synthetic ground truth (GT) models to simulate user prefer-
ences, and (2) a qualitative study involving a real human-in-
the-loop. An overview of the experimental flow is illustrated
in Figure 1.

6.1. Experimental Methodology

Both our synthetic and human-feedback experiments are
centered around a prompt construction task, modeled as an
MDP, and share a common set of core components.

Prompt Construction MDP The environment is a finite-
horizon MDP where states correspond to timesteps in the
prompt creation process (H total steps). Actions involve
selecting textual tokens (e.g., "Man drinking tea", "artistic")
from a predefined vocabulary. A trajectory through this
MDP forms a sequence of tokens, which are concatenated
to create a textual prompt.
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Figure 1. Simplified workflow for our experiments. ED-PBRL selects prompts, which are used by Stable Diffusion to generate images.
Feedback on these images is collected (either from a synthetic GT model or a real human) and used to estimate the guidance model θ̂. A
more detailed diagram is in Appendix (Figure 6).

Table 1. Summary of experimental parameters.
Common Parameters

Feedback Model Truncated Trajectory OED Criterion V-design (App. A.1)
Horizon (H) 6 Frank-Wolfe Iters (N ) 100
Num. Policies (K) 4 FW Step Size Line Search
CLIP Model ViT-L/14

Synthetic Experiment Human-Feedback Experiment

Feedback Source GT Model Feedback Source Real Human
Num. Episodes (T ) 10, 30, ..., 110 Num. Episodes (T ) 30
Num. Runs 25 Episode Split 20 train / 10 test
Num. Test Prompts 1000 Vocabulary Split N/A
Num. Eval Pairs 5000 Regularization (λ) 0.1
Vocabulary Split 75% train / 25% test Evaluation Metrics App. A.3
Regularization (λ) 100
Evaluation Metrics App. A.2

Features and Preference Model The features ϕ(·) for
individual design tokens (used in the OED objective) and
for full/partial prompts (used in preference modeling) are
their respective CLIP text embeddings. We assume user
preferences for prompts can be represented by a linear model
r(prompt) = θ⊤ϕ(prompt). We model these preferences
using the Truncated Trajectory Feedback model. As the
features of a partial prompt are derived from the sequence
of chosen tokens (actions), our setup uses a state-action
based instance of this model (see Section 3.4 and Remark
3.1). At each timestep h, the user provides a preference over
K partial prompts.

Design Objective and Optimization To efficiently learn
θ, our ED-PBRL algorithm selects K exploration policies
by optimizing an A-optimality criterion, s(Itotal,reg) =
−Tr(V (Itotal,reg)

−1), where V prioritizes minimizing un-
certainty in relative preferences between tokens. The op-
timization is solved using the Convex-RL procedure (Al-
gorithm 2). This design optimization is a one-time, offline
cost.

Experimental Parameters Table 1 summarizes the key
parameters and settings for both the synthetic and human-
feedback experiments.

6.2. Synthetic Ground Truth Model Experiments

This phase focuses on the quantitative evaluation of ED-
PBRL against known GT preference models. We simulate
a user whose preferences are dictated by a GT linear pref-
erence model θ∗. Each GT model is constructed from the
normalized CLIP text embedding of a descriptive sentence.
For instance, the Sunny GT model, which is the focus of
our main results, uses the phrase "An image with warm col-
ors depicting bright sunshine". We also evaluate against
Medieval and Technological GT models, with full details
for all models provided in Appendix A.2. The goal is to
measure how accurately and efficiently our method recovers
this known θ∗. Performance is assessed using two main
metrics (detailed in Appendix A.2):

• Cosine Error: The cosine distance between the
learned preference vector θ̂ and the GT vector θ∗.

• Preference Prediction Error: The error rate of θ̂
in predicting the synthetic user’s preference on new,
unseen pairs of prompts from a held-out test set of
tokens.

Figure 2 presents the learning curves for these metrics for
the Sunny GT model, averaged over multiple independent
runs (see Table 1). The results show that ED-PBRL con-
sistently learns the underlying preference model more ef-
fectively than random exploration, as evidenced by lower
error rates. Similar trends hold for other GT models (see
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(a) Cosine Error (Sunny GT) (b) Preference Error (Sunny GT)

Figure 2. Performance of ED-PBRL on the Sunny synthetic Ground Truth (GT) model. We plot the Cosine Error (left) and Preference
Prediction Error (right) against the number of interaction episodes. These results demonstrate the efficiency of our OED approach.
Numerical results for all GT models (Sunny, Medieval, and Technological) are presented in Appendix (Figure 7).

Base Image ED-PBRL based Personalization Random Exp. based Personalization

Prompt: "A photo of a gate" θ̂ED-PBRL ≈ θ∗Sunny θ̂Random ≈ θ∗Sunny

Figure 3. Synthetic Experiment: Qualitative comparison demonstrating generalization for personalizing the base prompt "A photo of
a gate" towards the "Sunny" GT model aesthetic. Both methods learn a preference model θ̂ to approximate the true preferences θ∗Sunny.
The personalized images are generated by using these learned models to select optimal style tokens from the held-out test vocabulary,
testing their ability to generalize. The model learned via ED-PBRL successfully captures the target style, while the model from random
exploration is less successful. See Appendix Fig. 8 for full details.
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Appendix Figure 7). Figure 3 provides a qualitative un-
derstanding of these results, illustrating image generation
guided by a model estimated by ED-PBRL versus a model
learned from random exploration. The ED-PBRL-guided
image better reflects the target "sunny" aesthetic.

6.3. Real Human-Feedback Experiment

To validate our approach in a real-world scenario, we con-
ducted an experiment with a human participant. The user’s
stated goal was to personalize a text-to-image model to
generate images with a "vintage photo" aesthetic.

Setup We collected feedback over T = 30 episodes. For
each episode, the user was presented with a set of K = 4
images generated by ED-PBRL and another set of K = 4
images from random exploration. The query sets were shuf-
fled to obscure which strategy generated them. The first 20
episodes were used to train two separate preference models,
θ̂ED-PBRL and θ̂Random, while the remaining 10 episodes were
held out for evaluation.

Evaluation Metric Since there is no ground truth θ∗ for a
real user, we evaluate the learned model’s ability to predict
the user’s own choices on unseen data. We use Hold-out
Preference Accuracy: the percentage of times the learned
model θ̂ correctly predicts the human’s choice on the 10
held-out episodes. With a horizon of H = 6, there are
10× 6 = 60 preference decisions in the test set.

Results The model learned by ED-PBRL achieved a Hold-
out Preference Accuracy of 51.7% (31/60 correct predic-
tions), significantly outperforming the random exploration
baseline which achieved 33.3% (20/60). Both methods sur-
pass the Random Guessing baseline of 25% (15/60). These
results, summarized in Figure 4, indicate that our method
successfully captured the user’s preferences and could gen-
eralize to new prompts.

After the main experiment, the user was asked to choose
several new, unseen base prompts for a qualitative gener-
alization test. When asked to describe their taste, the user
specified a preference for "foresty images with a lot of green,
nature and landscapes." As shown in Figure 5, the model
learned via ED-PBRL generated images that were more
aligned with this specific "foresty" and "green" feel. In con-
trast, the model from random exploration produced images
that, while often featuring landscapes, did not capture the
user’s nuanced preference as accurately. This pattern was
consistent across multiple base prompts (see Appendix A.4),
supporting the conclusion that ED-PBRL learned a more
accurate preference model within the fixed feedback budget.

ED-PBRL Random Exp. Random Guess
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Figure 4. Hold-out preference accuracy for the human-feedback
experiment. ED-PBRL correctly predicts the user’s preference on
held-out data more often than random exploration. Both methods
outperform the 25% accuracy expected from Random Guessing.
This theoretical baseline corresponds to the expected performance
of choosing one of the K = 4 options at random for each of the
60 preference decisions.

7. Conclusion
We introduced ED-PBRL, a novel framework for efficiently
personalizing generative models by learning user prefer-
ences from a minimal number of comparative queries. Our
work demonstrates that the principles of Optimal Experi-
mental Design (OED) can be practically and effectively ap-
plied to Preference-Based Reinforcement Learning (PBRL),
leading to the following conclusions:

1. Efficient Personalization through OED: We estab-
lished a formal connection between OED and PBRL for
personalizing generative models. By framing query se-
lection as an information-maximization problem, ED-
PBRL significantly accelerates the learning of a user’s
latent reward function. This directly addresses the crit-
ical bottleneck of user feedback, enabling effective
personalization with fewer interactions compared to
standard random query selection.

2. A Tractable Formulation for Information Maxi-
mization: A core contribution is rendering the com-
plex problem of optimal query selection tractable.
We showed that the generally NP-hard problem of
selecting a set of informative policies can be refor-
mulated as a convex optimization problem over the
space of state visitation measures. This reformulation,
combined with principled approximations, makes our
information-theoretic approach computationally feasi-
ble.

3. Theoretically-Grounded and Scalable Algorithm:

8
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Base Image ED-PBRL based Personalization Random Exp. based Personalization

Prompt: "Reflecting last year" Personalized with θ̂ED-PBRL Personalized with θ̂Random

Figure 5. Human-Feedback Experiment: Qualitative results from the human-feedback experiment for the base prompt "Reflecting last
year". The user’s revealed preference was for "foresty images with a lot of green, nature and landscapes". The image generated using the
model from ED-PBRL (middle) aligns well with this preference, while the image from the random exploration model (right) does not.
Full results for all base prompts are in Appendix A.4.

The resulting algorithm, ED-PBRL, is not only practi-
cal but also theoretically sound. By leveraging Convex-
RL, we provide guarantees that our method converges
to a globally optimal set of query-generating policies.
This provides a robust and scalable foundation for ac-
tive preference learning in sequential decision-making
settings.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix: Detailed Experimental Setup

Figure 6. Detailed workflow simulated in the
synthetic user experiment. This diagram illus-
trates the generation of prompts by ED-PBRL,
image creation via Stable Diffusion, feedback
collection (simulated by a GT model), and
subsequent guidance model learning. It ex-
pands on the simplified flow shown in Figure
1.

This section provides a comprehensive description of the experimental envi-
ronment, parameters, and models used in our evaluation, intended for repro-
ducibility and completeness. The overall workflow is depicted in Figure 6. A
summary of key parameters is available in the main paper in Table 1.

A.1. Common Experimental Components

Environment: Prompt Construction MDP The environment is modeled
as a finite-horizon Markov Decision Process (MDP) designed to simulate the
construction of textual prompts.

• States (S): States s ∈ {0, 1, . . . ,H − 1} directly correspond to the
current timestep or depth in the prompt construction process.

• Horizon (H): The horizon corresponds to the number of vocabulary files
used for sequential token selection.

• Actions (A): Actions are indices corresponding to unique "design tokens"
extracted from the vocabulary files. These tokens represent semantic
concepts (e.g., "Man sitting", "artistic", "happy").

• Vocabulary: The vocabulary is sourced from H files: ‘bases.txt‘, ‘am-
bient.txt‘, ‘style.txt‘, ‘composition.txt‘, ‘lighting.txt‘, ‘detail.txt‘. The
selection of tokens is structured by timestep. At s = 0, only "base"
concepts are allowed. For s > 0, tokens from other categories are used.

• Transitions (P ): Deterministic. Selecting a token at state s transitions
to state s+ 1.

• Feature Representation for OED (ϕ(a)): The features for design to-
kens are their 768-dimensional, normalized CLIP text embeddings (‘ViT-
L/14‘).

Preference Model and Estimation

• Feedback Model: We use the Truncated Trajectory Feedback model
(Section 3.4) for both experiments. At each timestep h, a preference is
given over K partial prompts {τ1[0 : h], . . . , τK [0 : h]}.

• Features for Estimation (ϕ(partial prompt)): The feature vector for a
partial prompt is its normalized CLIP text embedding (‘ViT-L/14‘).

Experimental Design (OED) The experimental design objective is to select
policies that maximize information about θ.

• Scalarization Criterion s(·): We use an A-optimality variant,
s(Itotal,reg) = −Tr

(
V (Itotal,reg)

−1
)
, where Itotal,reg is the regularized

total approximate FIM from Eq. 3.

• V Matrix Construction: The matrix V = CTC is constructed from
differences between feature embeddings of tokens from the same thematic
category (excluding ’bases.txt’), i.e., cTk = (ϕ(ai) − ϕ(aj))T . This c-
optimality criterion directly targets the precision of estimated preference
differences, which is essential for learning an effective ranking model.
The full construction is detailed in the original appendix text.
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• Optimization: The Convex-RL procedure (Algorithm 2) is used to solve
the design problem.

• Computational Cost: The one-time design optimization for a vocabu-
lary of approximately 5000 tokens takes around 10 minutes on a single
NVIDIA A100 GPU.

A.2. Synthetic Ground Truth Model Experiments: Setup and Metrics

Ground Truth Scorer Models For the synthetic experiments, we simulate
user preferences using three distinct ground truth (GT) scorer models. Each is
represented by a weight vector θ∗ ∈ Rd constructed by taking the normalized
CLIP text embedding of a descriptive sentence:

• Sunny GT Model (θ∗sunny): From CLIP("An image with warm
colors depicting bright sunshine").

• Medieval GT Model (θ∗medieval): From CLIP("An image with
ancient kingdom depicting medieval times").

• Technological GT Model (θ∗technological): From CLIP("An image
with advanced technologies depicting futuristic
style").

The GT vector θ∗ is used to simulate user choices and serves as the ground truth for evaluation.

Evaluation Metrics

• Cosine Error: 1− cosine_similarity(θ̂, θ∗). Measures the angular deviation between the estimated preference vector
and the ground truth θ∗.

• Preference Prediction Error: The fraction of pairs where θ̂’s prediction mismatches the GT’s preference on prompts
generated exclusively from the held-out testing vocabulary.

A.3. Human-Feedback Experiment: Setup and Metrics

Setup This experiment involved one human participant aiming to personalize the model to a "vintage photo" aesthetic. We
collected feedback for T = 30 episodes. The first 20 episodes were used for training the preference model θ̂, and the final
10 episodes were held out for testing.

Evaluation Metric

• Hold-out Preference Accuracy: Since no ground truth θ∗ exists, we measure how well the learned model predicts
the user’s own choices on unseen data. This is the percentage of times that the preference predicted by θ̂ (i.e.,
argmaxq θ̂

⊤ϕ(τq[1 : h])) matches the actual choice made by the human user on the 10 held-out test episodes. With a
horizon of H = 6, this evaluation is performed over a total of 10× 6 = 60 preference decisions.

A.4. Full Numerical and Qualitative Results

This section provides the full set of results for all experiments.

Synthetic Experiment Results

Qualitative Results Summary (Synthetic) For each Ground Truth (GT) model (Sunny, Medieval, Technological), Figures
8, 9, and 10 show a visual comparison of the prompts generated by ED-PBRL (Design) and Random exploration. The
figures correspond to the median cosine error run (out of 25 seeds) after T = 110 feedback episodes with K = 4 policies.
To test generalization, the personalized prompts are constructed by adding style tokens selected from the held-out test
vocabulary to a base prompt.
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(a) Cosine Error (Sunny GT) (b) Preference Error (Sunny GT)

(c) Cosine Error (Medieval GT) (d) Preference Error (Medieval GT)

(e) Cosine Error (Technological GT) (f) Preference Error (Technological GT)

Figure 7. Performance of ED-PBRL on Sunny, Medieval, and Technological synthetic Ground Truth (GT) models. For each GT model,
we plot the Cosine Error (left column) and Preference Prediction Error (right column) against the number of interaction episodes. Results
are averaged over N=25 independent runs, and the shaded regions represent the standard error of the mean. The Sunny GT model results
are also shown in the main paper (Figure 2).
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(a) ED-PBRL (Design) - Top Prompts for Sunny GT

(b) Random Exploration - Top Prompts for Sunny GT

Figure 8. Full summary of top generated prompts for the Sunny GT Model. The images compare prompts generated via ED-PBRL
(Design) and Random exploration. Each personalized image is annotated with its estimated score from the learned model (RankScore) and
its true score from the ground truth model (GTScore), where a higher GTScore indicates better alignment with the target ’Sunny’ aesthetic.
Note that ED-PBRL consistently finds prompts that yield higher GT Scores, demonstrating its superior personalization capability.
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(a) ED-PBRL (Design) - Top Prompts for Medieval GT

(b) Random Exploration - Top Prompts for Medieval GT

Figure 9. Full summary of top generated prompts for the Medieval GT Model. The images compare prompts generated via ED-PBRL
(Design) and Random exploration. Each personalized image is annotated with its estimated score from the learned model (RankScore)
and its true score from the ground truth model (GTScore), where a higher GTScore indicates better alignment with the target ’Medieval’
aesthetic. Note that ED-PBRL consistently finds prompts that yield higher GT Scores, demonstrating its superior personalization
capability.

16



Efficient Generative Models Personalization via OED

(a) ED-PBRL (Design) - Top Prompts for Technological GT

(b) Random Exploration - Top Prompts for Technological GT

Figure 10. Full summary of top generated prompts for the Technological GT Model. The images compare prompts generated via
ED-PBRL (Design) and Random exploration. Each personalized image is annotated with its estimated score from the learned model
(RankScore) and its true score from the ground truth model (GTScore), where a higher GTScore indicates better alignment with the
target ’Technological’ aesthetic. Note that ED-PBRL consistently finds prompts that yield higher GT Scores, demonstrating its superior
personalization capability.
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Qualitative Results Summary (Human Feedback) This section presents the full qualitative results for the human-
feedback experiment. After the main feedback collection phase, the user chose four new base prompts to test the general-
ization of the learned preference models (θ̂ED-PBRL and θ̂Random). The following figures show the top-ranked personalized
images generated by each model for these base prompts. The user’s revealed preference was for "foresty images with a lot
of green, nature and landscapes."

(a) ED-PBRL (Design) - Top Prompts for "Reflecting last year"

(b) Random Exploration - Top Prompts for "Reflecting last year"

Figure 11. Full summary of top generated prompts for the base prompt "Reflecting last year" from the human-feedback experiment. The
images are ranked according to the score from the respective learned models (RankScore).
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(a) ED-PBRL (Design) - Top Prompts for "A novice boxer"

(b) Random Exploration - Top Prompts for "A novice boxer"

Figure 12. Full summary of top generated prompts for the base prompt "A novice boxer" from the human-feedback experiment. The
images are ranked according to the score from the respective learned models (RankScore).
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(a) ED-PBRL (Design) - Top Prompts for "Half open window"

(b) Random Exploration - Top Prompts for "Half open window"

Figure 13. Full summary of top generated prompts for the base prompt "Half open window" from the human-feedback experiment. The
images are ranked according to the score from the respective learned models (RankScore).
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(a) ED-PBRL (Design) - Top Prompts for "A family vibing"

(b) Random Exploration - Top Prompts for "A family vibing"

Figure 14. Full summary of top generated prompts for the base prompt "A family vibing" from the human-feedback experiment. The
images are ranked according to the score from the respective learned models (RankScore).
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B. Appendix: Proofs, Derivations and Further Results
B.1. Relationship between Estimation Error and Fisher Information

To design experiments that yield accurate parameter estimates, we need a measure of the information provided by the data.
The Fisher Information Matrix (FIM), I(θ), is central here. For unbiased estimators, the Cramér-Rao Lower Bound states
that the estimator’s covariance is lower-bounded by I(θ∗)−1. Our estimator θ̂ (denoted θλ) is obtained via regularized
maximum likelihood and is generally biased. For such estimators, it is more direct to establish an upper bound on the
Mean Squared Error (MSE) matrix, E[(θλ − θ∗)(θλ − θ∗)T ], in terms of the inverse regularized FIM at the true parameter,
Iλ(θ

∗)−1 = (I(θ∗) + λId)
−1. This motivates maximizing a scalar function of Iλ(θ∗) to reduce the overall estimation error.

The following theorem formalizes this relationship. The proof leverages the self-concordance property of the logistic
regression log-likelihood function. This property is crucial as it ensures the Fisher Information Matrix (the Hessian of the
negative log-likelihood) does not change drastically in a local neighborhood of the true parameter θ∗. This allows us to
control the Hessian at an intermediate point from a Taylor expansion by relating it to the Hessian at θ∗.

B.1.1. ASSUMPTIONS FOR THE MSE BOUND

The derivation of the bound relies on two key assumptions. We state them formally here before proceeding with the proof.
Assumption B.1 (Uniform Local Consistency). For a given experimental design, total number of samples T , and regular-
ization parameter λ, the resulting regularized maximum likelihood estimator θλ is guaranteed to lie within a local norm ball
of radius r < 1 around the true parameter θ∗, for any realization of the data. Specifically, we assume there exists a constant
r ∈ [0, 1) such that:

∥θλ − θ∗∥I(θ∗) ≡
√
(θλ − θ∗)T I(θ∗)(θλ − θ∗) ≤ r

This assumption is necessary for our finite-sample analysis. It requires the condition to hold deterministically for all data
realizations, which ensures that the radius r is a constant. This allows us to define a non-random constant C = (1− r)−4

that can be moved outside the expectation in the proof, simplifying the analysis by avoiding more complex concentration
arguments. Standard large-sample theory for MLE suggests that θλ converges to θ∗ (or a neighborhood for biased
estimators), so for a sufficiently large number of samples, this condition is expected to hold with high probability.
Assumption B.2 (Bounded True Parameter). The squared ℓ2-norm of the true parameter vector θ∗ is bounded relative to
the regularization strength λ:

∥θ∗∥22 ≤
1

λ
This assumption, which is standard in the analysis of ridge regression and regularized estimators (Mutnỳ, 2024), constrains
the magnitude of the true parameter relative to the regularization strength. It ensures that the bias introduced by the ℓ2
penalty does not overwhelm the information-related terms in the analysis. In matrix terms, this implies λ2θ∗(θ∗)T ⪯ λId.

With these conditions explicitly stated, we can now present the formal theorem and its proof.
Theorem B.1 (Upper Bound on MSE). Let θλ be the regularized maximum likelihood estimator and θ∗ be the true parameter.
Under Assumptions B.1 and B.2, the Mean Squared Error (MSE) matrix of the estimator is bounded by:

E[(θλ − θ∗)(θλ − θ∗)T ] ⪯ C · Iλ(θ∗)−1

where Iλ(θ∗) = I(θ∗) + λId is the regularized Fisher Information Matrix at the true parameter, and the constant
C = (1− r)−4 depends on the radius r from Assumption B.1.

Proof. The proof proceeds in three main steps. First, we establish an exact expression for the estimation error using a Taylor
expansion. Second, we use the self-concordance property of the negative log-likelihood, combined with Assumption B.1, to
bound the random Hessian that appears in the error expression. Finally, we combine these results and use Assumption B.2 to
derive the upper bound on the MSE.

Step 1: Taylor Expansion of the Score Function. The estimator θλ is the solution to the regularized maximum likelihood
problem, defined by the first-order optimality condition sλ(θλ) = 0. The regularized score function sλ(θ) is the gradient of
the regularized log-likelihood:

sλ(θ) = ∇Lreg(θ) =

T∑
t=1

K∑
q=1

(yt,q − pt,q(θ))xt,q − λθ
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The Hessian of the negative regularized log-likelihood is the regularized Fisher Information Matrix, Iλ(θ) = −∇2Lreg(θ) =
I(θ) + λId. Note that∇sλ(θ) = −Iλ(θ).

By the vector-valued Mean Value Theorem (a form of Taylor’s theorem), we can expand the function sλ(θ) around the true
parameter θ∗:

0 = sλ(θλ) = sλ(θ
∗) +∇sλ(θτ )(θλ − θ∗)

for some θτ on the line segment between θ∗ and θλ. Substituting∇sλ(θτ ) = −Iλ(θτ ), we get:

0 = sλ(θ
∗)− Iλ(θτ )(θλ − θ∗)

Rearranging gives the exact expression for the estimation error:

θλ − θ∗ = Iλ(θτ )
−1sλ(θ

∗)

The MSE matrix is therefore given by the expectation:

E[(θλ − θ∗)(θλ − θ∗)T ] = E[Iλ(θτ )−1sλ(θ
∗)sλ(θ

∗)⊤Iλ(θτ )
−1]

Step 2: Bounding the Hessian via Self-Concordance. The main difficulty is relating the terms Iλ(θτ ) and sλ(θ∗) in the
error expression, as they are evaluated at different points. We resolve this by bounding the Hessian term Iλ(θτ ) using the
self-concordance property of the unregularized negative log-likelihood function, L(θ) = − logP (data|θ).

The negative log-likelihood for multinomial logistic regression is a sum of log-sum-exp functions, which is a standard
example of a self-concordant function. Its Hessian is the Fisher Information Matrix, I(θ) = ∇2L(θ). For a self-concordant
function f , the Hessians at two points x, y are related by (1− ∥y − x∥x)2∇2f(x) ⪯ ∇2f(y) provided that the local norm
∥y − x∥x =

√
(y − x)T∇2f(x)(y − x) is less than 1.

We now invoke Assumption B.1, which states that ∥θλ − θ∗∥I(θ∗) ≤ r < 1 for all data realizations. Since θτ lies on the
line segment between θ∗ and θλ, it is necessarily closer to θ∗ in any norm, including the local norm defined by I(θ∗). Thus,
∥θτ − θ∗∥I(θ∗) ≤ ∥θλ − θ∗∥I(θ∗) ≤ r.

Applying the self-concordance property with f(θ) = L(θ), x = θ∗, and y = θτ , we get a lower bound on the unregularized
FIM:

I(θτ ) ⪰ (1− ∥θτ − θ∗∥I(θ∗))
2I(θ∗) ⪰ (1− r)2I(θ∗)

This inequality holds deterministically for any realization of the data due to our assumption. We use this to bound the
regularized FIM:

Iλ(θτ ) = I(θτ ) + λId

⪰ (1− r)2I(θ∗) + λId

⪰ (1− r)2I(θ∗) + (1− r)2λId (since 0 < (1− r)2 ≤ 1 and λId is pos. semidef.)

= (1− r)2(I(θ∗) + λId) = (1− r)2Iλ(θ∗)

Inverting this matrix inequality (using the property that if A ⪰ B ≻ 0, then B−1 ⪰ A−1 ≻ 0) yields an upper bound on the
inverse Hessian:

Iλ(θτ )
−1 ⪯ (1− r)−2Iλ(θ

∗)−1

Step 3: Deriving the Final MSE Bound. We substitute the bound on the inverse Hessian back into the MSE expression.
Since the bound holds deterministically for a constant r, the term (1− r)−2 is a constant and can be manipulated outside
the expectation.

E[(θλ − θ∗)(θλ − θ∗)T ] = E[Iλ(θτ )−1sλ(θ
∗)sλ(θ

∗)⊤Iλ(θτ )
−1]

⪯ E
[(
(1− r)−2Iλ(θ

∗)−1
)
sλ(θ

∗)sλ(θ
∗)⊤

(
(1− r)−2Iλ(θ

∗)−1
)]

= (1− r)−4Iλ(θ
∗)−1 E[sλ(θ∗)sλ(θ∗)⊤]Iλ(θ∗)−1
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Next, we analyze the expectation of the outer product of the regularized score at the true parameter, E[sλ(θ∗)sλ(θ∗)⊤]. Let
s(θ∗) be the unregularized score. We know that E[s(θ∗)] = 0 and E[s(θ∗)s(θ∗)⊤] = I(θ∗) (by the Information Matrix
Equality).

E[sλ(θ∗)sλ(θ∗)⊤] = E[(s(θ∗)− λθ∗)(s(θ∗)− λθ∗)⊤]
= E[s(θ∗)s(θ∗)⊤]− λE[s(θ∗)](θ∗)⊤ − λθ∗ E[s(θ∗)⊤] + λ2θ∗(θ∗)⊤

= I(θ∗)− 0− 0 + λ2θ∗(θ∗)⊤

= I(θ∗) + λ2θ∗(θ∗)⊤

Now, we invoke Assumption B.2, which states ∥θ∗∥22 ≤ 1/λ. This implies that λ2θ∗(θ∗)T ⪯ λId. Using this, we can
bound the expected score term:

E[sλ(θ∗)sλ(θ∗)⊤] = I(θ∗) + λ2θ∗(θ∗)⊤ ⪯ I(θ∗) + λId = Iλ(θ
∗)

Finally, substituting this back into the MSE expression gives the result:

E[(θλ − θ∗)(θλ − θ∗)T ] ⪯ (1− r)−4Iλ(θ
∗)−1

(
E[sλ(θ∗)sλ(θ∗)⊤]

)
Iλ(θ

∗)−1

⪯ (1− r)−4Iλ(θ
∗)−1Iλ(θ

∗)Iλ(θ
∗)−1

=
1

(1− r)4
Iλ(θ

∗)−1

This establishes the bound with constant C = (1− r)−4, concluding the proof.

B.2. Derivation of the Fisher Information Matrix for Multinomial Logistic Regression

The Fisher Information Matrix (FIM) quantifies the amount of information that an observable random variable carries about
an unknown parameter θ upon which the probability of the random variable depends. Here, we derive the FIM for a single
preference observation within a multinomial logistic regression model.

Consider a single observation where an expert chooses one item from a set of K items. Let xq ∈ Rd be the feature vector
associated with item q ∈ {1, . . . ,K}. The probability of the expert choosing item q, given the parameter vector θ ∈ Rd, is
modeled by the softmax function:

pq(θ) = P (item q is chosen|x1, . . . ,xK , θ) =
exp(θ⊤xq)∑K

q′=1 exp(θ
⊤xq′)

Let yq be an indicator variable such that yq = 1 if item q is chosen, and yq = 0 otherwise. Note that
∑K

q=1 yq = 1. The
log-likelihood for this single observation is:

L(θ) =
K∑
q=1

yq log pq(θ)

The score vector, which is the gradient of the log-likelihood with respect to θ, is:

S(θ) = ∇θL(θ) =
K∑
q=1

yq
1

pq(θ)
∇θpq(θ)

The gradient of pq(θ) is∇θpq(θ) = pq(θ)(xq − x̄(θ)), where x̄(θ) =
∑K

q′=1 pq′(θ)xq′ is the expected feature vector under
the current model. Substituting this into the score function:

S(θ) =

K∑
q=1

yq(xq − x̄(θ)) =

(
K∑
q=1

yqxq

)
− x̄(θ)

This can also be written as S(θ) =
∑K

q=1(yq − pq(θ))xq .
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The Hessian matrix H(θ) is the matrix of second derivatives of the log-likelihood: H(θ) = ∇θS(θ)
⊤.

H(θ) = ∇θ

 K∑
q=1

yqxq −
K∑

q′=1

pq′(θ)xq′

⊤

= −∇θ

 K∑
q′=1

pq′(θ)xq′

⊤

Calculating the derivative:

∇θ

 K∑
q′=1

pq′(θ)xq′

⊤

=

K∑
q′=1

(
(∇θpq′(θ))x

⊤
q′ + pq′(θ)∇θx

⊤
q′
)

=

K∑
q′=1

pq′(θ)(xq′ − x̄(θ))x⊤
q′ (since ∇θx

⊤
q′ = 0)

=

K∑
q′=1

pq′(θ)xq′x
⊤
q′ −

 K∑
q′=1

pq′(θ)xq′

 K∑
q′′=1

pq′′(θ)xq′′

⊤

=

K∑
q′=1

pq′(θ)xq′x
⊤
q′ − x̄(θ)x̄(θ)⊤

So, the Hessian is:

H(θ) = −

 K∑
q′=1

pq′(θ)xq′x
⊤
q′ − x̄(θ)x̄(θ)⊤


The Fisher Information Matrix I(θ) for this single observation is defined as the negative expectation of the Hessian:
I(θ) = −E[H(θ)]. Since the Hessian H(θ) as derived here does not depend on the random outcome variables yq (after
simplification using properties of pq(θ)), the expectation does not change it. Thus:

I(θ) =

K∑
q′=1

pq′(θ)xq′x
⊤
q′ − x̄(θ)x̄(θ)⊤

Expanding x̄(θ) =
∑K

q=1 pq(θ)xq, the term x̄(θ)x̄(θ)⊤ becomes
(∑K

q=1 pq(θ)xq

)(∑K
q′=1 pq′(θ)xq′

)⊤
=∑

q,q′ pq(θ)pq′(θ)xqx
⊤
q′ . Thus, we get the form:

I(θ) =

K∑
q=1

pq(θ)xqx
⊤
q −

∑
q,q′

pq(θ)pq′(θ)xqx
⊤
q′

This expression represents the FIM for one multinomial preference choice. If there are N independent such choices, the
total FIM is the sum of the FIMs from each choice. This derivation provides the basis for the FIM expressions used in the
subsequent experimental design.

B.3. Expected Fisher Information Objective for PBRL

Our goal is to selectK policies, π1:K = (π1, . . . , πK), to maximize information about the unknown parameter θ. A classical
challenge in Optimal Experimental Design (OED) is that directly optimizing a discrete set of experiments (trajectories in our
case) is often intractable (Pukelsheim, 2006; Fedorov & Hackl, 1997). A standard approach in OED is to instead optimize a
design measure, which in our policy-based setting corresponds to optimizing over policies and considering the expected
Fisher Information Matrix (FIM) they induce.

The total expected regularized FIM, Ireg(π1:K , θ), for K policies π1:K generating T episodes of H steps each is:

Ireg(π1:K , θ) = T

H∑
h=1

Ih(π1:K , θ) + λId
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Here, Ih(π1:K , θ) is the expected FIM contribution from timestep h of a single episode, averaged over the trajectory
distributions ηπq induced by each policy πq. Let sqh be the state of trajectory τq ∼ ηπq at step h, and p(q|h; τ1..K) be the
softmax probability of preferring state sqh from the set of K states {s1h, . . . , sKh } presented at that step. Then Ih(π1:K , θ) is:

Ih(π1:K , θ) = Eτq∼ηπq

q∈[K]

[∑K
q=1 p(q|h; τ1..K)ϕ(sqh)ϕ(s

q
h)

⊤ −
∑

q,q′ p(q|h; τ1..K)p(q′|h; τ1..K)ϕ(sqh)ϕ(s
q′

h )
⊤
]

The detailed FIM derivation for a single multinomial choice is in Appendix B.2.

The ideal experimental design objective is to choose policies π1:K to optimize a scalar criterion s(·) of this expected FIM
(e.g., D- or A-optimality):

argmax
π1:K

s (Ireg(π1:K , θ)) (4)

The challenges associated with this ideal objective are discussed in Section 4, and are addressed by the reformulation and
approximation techniques detailed in the main text (Section 4.2) and expanded upon in Section B.4 below.

B.4. Reformulation to a Tractable Objective

This section provides the full derivation of the tractable experimental design objective discussed in Section 4.2.

Step 1: Reformulation using State Visitation Measures. The evaluation of Ih(π1:K , θ) (defined in Section 4 based
on an expectation over trajectories τq ∼ ηπq

) can be simplified. The term inside this expectation, which we denote
fh(s1, . . . , sK ; θ), is given by:

fh(s1, . . . , sK ; θ) =

 K∑
q=1

p(q|s1..K)ϕ(sq)ϕ(sq)
⊤ −

K∑
q,q′=1

p(q|s1..K)p(q′|s1..K)ϕ(sq)ϕ(sq′)
⊤

 ,
where p(q|s1..K) =

exp(θ⊤ϕ(sq))∑K
k=1 exp(θ⊤ϕ(sk))

. This term fh depends only on the states (s1, . . . , sK) presented at timestep h.

Invoking Lemma B.3, Ih(π1:K , θ) can be directly rewritten using state visitation measures dhπq
(s) (the probability policy πq

visits state s at step h). Let dh1:K = (dhπ1
, . . . , dhπK

). Then:

Ih(π1:K , θ) = E
sq∼dh

πq

q∈[K]

[fh(s1, . . . , sK ; θ)] ≡ Ih(dh1:K , θ).

This equality Ih(π1:K , θ) = Ih(d
h
1:K , θ) signifies that the expected FIM contribution at step h, originally defined over

policies, can be equivalently expressed in terms of the state visitation measures dh1:K induced by those policies. This
shifts the expectation from trajectory distributions to state visitation measures. While this simplifies the dependency, the
expectation is still over |S|K state tuples and depends on the unknown θ via fh.

Step 2: Approximation for θ-Independence. When no prior information about user preferences is available, the only
unbiased assumption is that each of the K presented options is equally likely to be chosen. This leads to the uniform
probability assignment:

p(q|s1..K) =
1

K
.

This assignment is standard for fixed design and serves as a natural starting point for adaptive strategies before any
information about θ is gathered.

Substituting this into the expression for Ih(dh1:K , θ) (specifically, into fh(s1, . . . , sK ; θ) within the expectation) yields the
approximate expected FIM contribution at timestep h, denoted Iapprox,h(dh1:K):

Iapprox,h(d
h
1:K) = E

sq∼dh
πq

q∈[K]

 1

K

K∑
q=1

ϕ(sq)ϕ(sq)
⊤ − 1

K2

K∑
q,q′=1

ϕ(sq)ϕ(sq′)
⊤

 (5)

Crucially, this approximate FIM, Iapprox,h(dh1:K), is now independent of θ. This step implies Ih(dh1:K , θ) ≈ Iapprox,h(dh1:K).
However, computing this expectation still involves a sum over |S|K terms if done naively.
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Step 3: Marginalization for Tractability. The expression for Iapprox,h(dh1:K) in Eq. 5 can be made computationally
tractable. As established in Theorem B.4 (and its proof, which shows how the expectation is resolved), this expectation
can be computed efficiently using the state visitation measures. Let Φ ∈ R|S|×d be the feature matrix (rows ϕ(sj)T ) and
dhq ∈ R|S| be the state visitation vector for policy πq at step h. Theorem B.4 provides the following tractable matrix form:

Iapprox,h(d
h
1:K) = ΦT

(
1

K

K∑
q=1

diag(dhq )− d̄h(d̄h)T
)
Φ (6)

where d̄h = 1
K

∑K
q=1 d

h
q is the average state visitation vector at step h.

This final expression Iapprox,h(dh1:K) depends only on the state visitation vectors dhq and the known feature matrix Φ. It is
independent of θ and computationally tractable.

Therefore, our practical experimental design objective becomes optimizing a scalar criterion s(·) applied to the total
approximate expected regularized FIM, which is now expressed entirely in terms of the state visitation measures d1:K =
{dhq }q∈[K],h∈[H]:

argmax
d1:K

s

(
T ·

H∑
h=1

Iapprox,h(d
h
1:K) + λId

)
(7)

The optimization is subject to the constraints that these visitation measures are valid in the given MDP.

B.4.1. INFORMATION DECOMPOSITION AND POLICY DIVERSITY

The tractable objective derived from Theorem B.4 provides valuable insight into what constitutes an informative experiment
in the context of preference-based RL. Let’s examine the core matrix term within the approximate FIM at timestep h:

Mh(d
h
1:K) =

1

K

K∑
q=1

diag(dhq )− d̄h(d̄h)T

This expression can be interpreted in terms of the statistics of the state visitation distributions. The first term,
1
K

∑K
q=1 diag(d

h
q ), represents the average of the per-policy state variances (since diag(dhq ) captures the variance if states

were one-hot encoded). The second term, d̄h(d̄h)T , represents the outer product of the *average* state visitation vector.
The structure resembles the definition of a covariance matrix: E[xxT ] − E[x]E[x]T . Maximizing a scalar function of
Iapprox,h(d

h
1:K) = ΦTMh(d

h
1:K)Φ intuitively encourages policies whose average state visitation behavior exhibits high

variance or spread in the feature space, after accounting for the variance of the average distribution.

This suggests that the objective implicitly favors diversity among the chosen policies π1, . . . , πK . If all policies induce
very similar state visitation distributions (dhq ≈ d̄h for all q), the term Mh(d

h
1:K) might be small. Conversely, if the policies

explore distinct regions of the state space, leading to diverse dhq vectors, the resulting Mh(d
h
1:K) is likely to be larger (in a

matrix sense, e.g., larger eigenvalues), contributing more to the information gain.

This intuition is made precise by Lemma B.5, which provides an alternative decomposition of Iapprox,h(dh1:K). Invoking
this lemma, we can rewrite the approximate FIM contribution as:

ΦT

[
1

K

K∑
q=1

(
diag(dhq )− dhq (dhq )T

)
︸ ︷︷ ︸

Average Per-Policy
State Covariance

+
1

K2

∑
1≤i<j≤K

(dhi − dhj )(dhi − dhj )T︸ ︷︷ ︸
Average Pairwise Difference

(Diversity Term)

]
Φ

This decomposition elegantly separates the information contribution into two components.

Average Per-Policy State Covariance The first term, Average Per-Policy State Covariance, represents the average of
the covariance matrices associated with each individual policy’s state visitation distribution dhq . It captures the inherent
uncertainty or spread within each policy’s behavior at timestep h; maximizing this term encourages policies that individually
explore diverse states within their own trajectories.
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Average Pairwise Difference (Diversity Term) The second component, the Average Pairwise Difference (Diversity
Term), directly quantifies the diversity between the policies. It is a sum of outer products of the differences between the
state visitation vectors of all unique pairs of policies (i, j). This term is explicitly maximized when the state visitation
distributions dhi and dhj are significantly different from each other, thereby encouraging the selection of policies that explore
distinct parts of the state space relative to one another.

Therefore, optimizing the approximate FIM objective naturally balances exploring broadly within each policy and ensuring
that the set of policies collectively covers different aspects of the state space, maximizing the potential for informative
comparisons.

B.5. Formal: Relationship between the State-based Feedback model and the Truncated Feedback model

We now formally analyze the relationship between the information content of the State-based feedback model and the
Truncated Trajectory feedback model. This analysis is performed under the perfect decomposition condition, where the
features of a truncated trajectory are assumed to be the sum of the features of its constituent states. Additionally, we utilize
the uniform preference approximation (p(q|s1..K) ≈ 1/K) introduced in Step 2 of Section 4.2 (Eq. 5), which yields the
following θ-independent structure for the approximated Fisher Information matrix component, Iapprox,h, derived from
comparing K feature vectors {xq}Kq=1 at a given step h:

Iapprox,h(x1, . . . ,xK) =
1

K

K∑
q=1

xqx
⊤
q −

1

K2

K∑
q,q′=1

xqx
⊤
q′

The following theorem compares the approximated FIMs of the two models under these conditions.
Theorem B.2 (Comparison of Approximated FIMs under Perfect Decomposition). Let T K = {(τ1t , . . . , τKt )}Tt=1 be a set
of T ×K trajectories. For the standard (state-based) feedback model, let ϕ(sqt,h) be the feature vector for the state sqt,h.
The approximated Fisher Information Matrix is

Iapprox(T K) =

T∑
t=1

H∑
h=1

 1

K

K∑
q=1

ϕ(sqt,h)ϕ(s
q
t,h)

⊤ − 1

K2

K∑
q,q′=1

ϕ(sqt,h)ϕ(s
q′

t,h)
⊤

 .

For the truncated trajectory feedback model, assume the perfect decomposition condition holds, such that the feature
representation of the q-th trajectory in episode t truncated at timestep h is ψq

t,h =
∑h

h′=1 ϕ(s
q
t,h′). The corresponding

approximated Fisher Information Matrix is

I trunc
approx(T K) =

T∑
t=1

H∑
h=1

 1

K

K∑
q=1

ψq
t,h(ψ

q
t,h)

⊤ − 1

K2

K∑
q,q′=1

ψq
t,h(ψ

q′

t,h)
⊤

 .

Then, under the perfect decomposition condition,

I trunc
approx(T K) ⪰ 1

4
· Iapprox(T K).

Proof of Theorem B.2. Let T K = {(τ1t , . . . , τKt )}Tt=1 be the set of trajectories. We define two approximated Fisher
Information Matrices based on the uniform preference assumption (p ≈ 1/K).

First, the FIM for the state-based feedback model, denoted Iapprox(T K), uses features ϕ(sqt,h) from individual states:

Iapprox(T K) =

T∑
t=1

H∑
h=1

 1

K

K∑
q=1

ϕ(sqt,h)ϕ(s
q
t,h)

⊤ − 1

K2

K∑
q,q′=1

ϕ(sqt,h)ϕ(s
q′

t,h)
⊤

 .

Next, the FIM for the truncated trajectory feedback model, I trunc
approx(T K), under the perfect decomposition condition, uses the

sum-decomposed features ψq
t,h =

∑h
h′=1 ϕ(s

q
t,h′):

I trunc
approx(T K) =

T∑
t=1

H∑
h=1

 1

K

K∑
q=1

ψq
t,h(ψ

q
t,h)

⊤ − 1

K2

K∑
q,q′=1

ψq
t,h(ψ

q′

t,h)
⊤

 .
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Our goal is to show that I trunc
approx(T K) ⪰ CH · Iapprox(T K) for some constant CH > 0. Let Φt,q ∈ RH×d be the matrix

whose h-th row is ϕ(sqt,h)
⊤. That is,

Φt,q =


ϕ(sqt,1)

⊤

ϕ(sqt,2)
⊤

...
ϕ(sqt,H)⊤

 .

The sum of outer products over the horizon H for the state-based model is
∑H

h=1 ϕ(s
q
t,h)ϕ(s

q
t,h)

⊤ = Φ⊤
t,qIHΦt,q, where

IH is the H ×H identity matrix. Similarly, the sum of cross-products is
∑H

h=1 ϕ(s
q
t,h)ϕ(s

q′

t,h)
⊤ = Φ⊤

t,qIHΦt,q′ . Thus,
Iapprox(T K) can be rewritten as:

Iapprox(T K) =

T∑
t=1

 1

K

K∑
q=1

Φ⊤
t,qIHΦt,q −

1

K2

K∑
q,q′=1

Φ⊤
t,qIHΦt,q′

 .

For the truncated trajectory model (under perfect decomposition), let Ψt,q ∈ RH×d be the matrix whose h-th row is

(ψq
t,h)

⊤ =
(∑h

h′=1 ϕ(s
q
t,h′)

)⊤
. Let S ∈ RH×H be the lower triangular matrix of ones, i.e., Sij = 1 if i ≥ j and Sij = 0 if

i < j. For example, if H = 3:

S =

1 0 0
1 1 0
1 1 1

 .

The cumulative sum structure means Ψt,q = SΦt,q. The sum of outer products over the horizon H for the truncated
model is

∑H
h=1 ψ

q
t,h(ψ

q
t,h)

⊤ = Ψ⊤
t,qΨt,q = (SΦt,q)

⊤(SΦt,q) = Φ⊤
t,qS

⊤SΦt,q. Similarly, the sum of cross-products is∑H
h=1 ψ

q
t,h(ψ

q′

t,h)
⊤ = Ψ⊤

t,qΨt,q′ = Φ⊤
t,qS

⊤SΦt,q′ . Let M = S⊤S. This is an H ×H symmetric positive definite matrix.

For H = 3, M = S⊤S =

1 1 1
0 1 1
0 0 1

1 0 0
1 1 0
1 1 1

 =

3 2 1
2 2 1
1 1 1

. Thus, I trunc
approx(T K) can be expressed in terms of

Φt,q and M :

I trunc
approx(T K) =

T∑
t=1

 1

K

K∑
q=1

Φ⊤
t,qMΦt,q −

1

K2

K∑
q,q′=1

Φ⊤
t,qMΦt,q′

 .

Let Xt =
(
Φ⊤

t,1 . . . Φ⊤
t,K

)⊤ ∈ R(KH)×d. Let JK = 1
K1K1⊤

K be the K ×K matrix of all 1/K. Let IK be the K ×K
identity matrix. The FIM expressions can be written compactly using Kronecker products ⊗:

Iapprox(T K) =

T∑
t=1

X⊤
t

(
1

K
(IK − JK)⊗ IH

)
Xt

I trunc
approx(T K) =

T∑
t=1

X⊤
t

(
1

K
(IK − JK)⊗M

)
Xt

SinceM = S⊤S is positive definite (as S is invertible), its eigenvalues are positive. Let λmin(M) be the smallest eigenvalue
of M . Then M ⪰ λmin(M)IH . The matrix IK − JK is positive semidefinite (it’s proportional to a projection matrix).
Therefore, using properties of Kronecker products and Loewner order:

(IK − JK)⊗M ⪰ (IK − JK)⊗ (λmin(M)IH) = λmin(M)(IK − JK)⊗ IH

Multiplying by 1/K and summing over t after pre- and post-multiplying by X⊤
t and Xt:

T∑
t=1

X⊤
t

(
1

K
(IK − JK)⊗M

)
Xt ⪰ λmin(M)

T∑
t=1

X⊤
t

(
1

K
(IK − JK)⊗ IH

)
Xt
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This shows I trunc
approx(T K) ⪰ λmin(M) · Iapprox(T K). Let CH = λmin(M). Since M = S⊤S and S is invertible, M

is positive definite, so its eigenvalues are positive, and CH > 0. CH depends only on H . The eigenvalues of M are
λk(M) = 1

4 sin2( (2k−1)π
2(2H+1) )

for k = 1, . . . ,H . The minimum eigenvalue occurs at k = H:

CH = λmin(M) =
1

4 sin2
(

(2H−1)π
2(2H+1)

)
Since sin2(x) ≤ 1 for any x, we have a simple lower bound:

CH =
1

4 sin2
(

(2H−1)π
2(2H+1)

) ≥ 1

4 · 1
=

1

4

Therefore, we can state the result using the constant lower bound 1/4:

I trunc
approx(T K) ⪰ 1

4
· Iapprox(T K)

This completes the proof.

B.6. Derivation of the Tractable Experimental Design Objective

We consider T episodes where in each episode we generate K parallel trajectories of horizon H . Let τ qt =
(sqt,1, a

q
t,1, . . . , s

q
t,H , a

q
t,H) be the trajectory for policy q in episode t. States are mapped to features via ϕ(s). We use

[K] to denote the set {1, 2, . . . ,K}.

The probability of the state sqt,h from trajectory q being preferred at timestep h in episode t is given by:

p(q|t, h) =
exp(θ⊤ϕ(sqt,h))∑K

q′=1 exp(θ
⊤ϕ(sq

′

t,h))

The regularized log-likelihood function is:

Lreg(θ) =

(
T∑

t=1

H∑
h=1

K∑
q=1

yt,h,q log(p(q|t, h))

)
− λ

2
θ⊤θ

where yt,h,q = 1 if trajectory q was chosen at step (t, h) and 0 otherwise.

The regularized Fisher Information Matrix (FIM) for a specific set of T ×K trajectories T K = {(τ1t , . . . , τKt )}Tt=1 is:

Ireg(T K , θ) =

 T∑
t=1

H∑
h=1

∑
q

p(q|t, h)ϕ(sqt,h)ϕ(s
q
t,h)

⊤ −
∑
q,q′

p(q|t, h)p(q′|t, h)ϕ(sqt,h)ϕ(s
q′

t,h)
⊤

+ λId

We relax the problem by choosing K policies π1, . . . , πK . We assume that in each episode t, the K trajectories (τ1t , . . . , τ
K
t )

are generated independently, with τ qt ∼ ηπq , where ηπq (τ) is the probability distribution over trajectories T induced by policy
πq . The joint probability of generating a specific tuple of K trajectories (τ1, . . . , τK) in an episode is ηπ1:K

(τ1, . . . , τK) =∏K
q=1 ηπq

(τq). Episodes are independent.

We are interested in the expected Regularized FIM over the distribution of trajectories induced by these policies:

Ireg(π1:K , θ) = E
T K∼ηπ1:K

[Ireg(T K , θ)]

Since episodes are i.i.d., the expectation of the sum over t is T times the expectation for a single episode. Let Ih(π1:K , θ)
denote the expected FIM contribution at timestep h of a single episode. Let (τ1, . . . , τK) denote the trajectories in a single
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episode, where τq ∼ ηπq
. Let sqh be the state at timestep h in trajectory τq . Let p(q|h; τ1..τK) =

exp(θ⊤ϕ(sqh))∑K
k=1 exp(θ⊤ϕ(skh))

. Then

Ih(π1:K , θ) = E
τq∼ηπq

q∈[K]

∑
q

p(q|h; τ1..τK)ϕ(sqh)ϕ(s
q
h)

⊤ −
∑
q,q′

p(q|h; τ1..τK)p(q′|h; τ1..τK)ϕ(sqh)ϕ(s
q′

h )
⊤


The total expected regularized FIM is then:

Ireg(π1:K , θ) = T ·
H∑

h=1

Ih(π1:K , θ) + λId

Now, we want to express this expectation in terms of state visitation measures dhπq
(s) =

∑
τ∈T ηπq

(τ)I{sqh=s}. We use a
lemma to formalize the transition from trajectory expectations to state-visitation expectations for a single timestep.

Lemma B.3. Let π1, . . . , πK be policies with corresponding trajectory distributions ηπ1
, . . . , ηπK

and state visitation
measures dhπ1

, . . . , dhπK
. Let f(s1, . . . , sK) be any function of a tuple of K states. Assume trajectories τ1, . . . , τK are drawn

independently, τq ∼ ηπq . Let sqh denote the state at timestep h of trajectory τq . Then for any fixed h:

E
τq∼ηπq

q∈[K]

[
f(s1h, . . . , s

K
h )
]
= E

sq∼dh
πq

q∈[K]

[f(s1, . . . , sK)]

where the expectation on the right is taken with respect to states s1, . . . , sK drawn independently from the respective state
visitation measures at timestep h. The notation sq ∼ dhπq

for q ∈ [K] implies the joint draw (s1, . . . , sK) is from the product

distribution
∏K

q=1 d
h
πq

.

Proof of Lemma B.3. For a fixed h, we have:

E
τq∼ηπq

q∈[K]

[
f(s1h, . . . , s

K
h )
]
=

∑
τ1,...,τK∈T

(
K∏
q=1

ηπq
(τq)

)
f(s1h, . . . , s

K
h )

=
∑

τ1,...,τK∈T

(
K∏
q=1

ηπq (τq)

) ∑
s1,...,sK∈S

f(s1, . . . , sK)

K∏
q=1

I{sq=sqh} (Introduce indicators)

=
∑

s1,...,sK∈S
f(s1, . . . , sK)

∑
τ1,...,τK∈T

(
K∏
q=1

ηπq
(τq)I{sq=sqh}

)
(Rearrange sums)

=
∑

s1,...,sK∈S
f(s1, . . . , sK)

 K∏
q=1

∑
τq∈T

ηπq (τq)I{sq=sqh}

 (Factorize sum over τ )

=
∑

s1,...,sK∈S
f(s1, . . . , sK)

(
K∏
q=1

dhπq
(sq)

)
(Definition of dhπq

)

= E
sq∼dh

πq

q∈[K]

[f(s1, . . . , sK)] (Definition of expectation w.r.t. product measure)

This completes the proof.

Using Lemma B.3, we can rewrite the per-timestep expected FIM Ih(π1:K , θ). Let fh(s1, . . . , sK ; θ) be the term inside the
expectation defining Ih(π1:K , θ):

fh(s1, . . . , sK ; θ) =

∑
q

p(q|s1..K)ϕ(sq)ϕ(sq)
⊤ −

∑
q,q′

p(q|s1..K)p(q′|s1..K)ϕ(sq)ϕ(sq′)
⊤


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where p(q|s1..K) =
exp(θ⊤ϕ(sq))∑K

k=1 exp(θ⊤ϕ(sk))
. Let s1:K = (s1, . . . , sK). Applying the lemma:

Ih(π1:K , θ) = E
sq∼dh

πq

q∈[K]

[fh(s1, . . . , sK ; θ)]

=
∑

s1,...,sK∈S

(
K∏
i=1

dhπi
(si)

)
fh(s1, . . . , sK ; θ)

Theorem B.4. Let dhq (representing dhπq
) be the state visitation measure for policy πq at step h, for q ∈ [K]. Assume the

preference probabilities are approximated as uniform, p(q|s1..K) ≈ 1/K. Let Iapprox,h(dh1:K) be the approximate expected
FIM contribution at timestep h for the set of state visitation measures dh1:K = (dh1 , . . . , d

h
K), given by

Iapprox,h(d
h
1:K) = E

sq∼dh
q

q∈[K]

 1

K

K∑
q=1

ϕ(sq)ϕ(sq)
⊤ − 1

K2

K∑
q,q′=1

ϕ(sq)ϕ(sq′)
⊤


Then Iapprox,h(dh1:K) can be rewritten using these state visitation measures as:

Iapprox,h(d
h
1:K) =

1

K

K∑
q=1

∑
s∈S

dhq (s)ϕ(s)ϕ(s)
⊤ − 1

K2

K∑
q,q′=1

(∑
s∈S

dhq (s)ϕ(s)

)(∑
s′∈S

dhq′(s
′)ϕ(s′)⊤

)
(8)

Furthermore, let the state space S be ordered {s1, . . . , s|S|}. Let Φ ∈ R|S|×d be the feature matrix where the j-th row is
ϕ(sj)

T . Let dhq ∈ R|S| be the state visitation vector (with (dhq )j = dhq (sj)). Let d̄h = 1
K

∑K
q=1 d

h
q be the average state

visitation vector at step h. Then,

Iapprox,h(d
h
1:K) = ΦT

(
1

K

K∑
q=1

diag(dhq )− d̄h(d̄h)T
)
Φ (9)

where diag(v) is the diagonal matrix with vector v on the diagonal.

Proof of Theorem B.4. We start with the definition of Iapprox,h(dh1:K) under the uniform approximation:

Iapprox,h(d
h
1:K) =

∑
s1,...,sK∈S

(
K∏
i=1

dhi (si)

) 1

K

K∑
q=1

ϕ(sq)ϕ(sq)
⊤ − 1

K2

K∑
q,q′=1

ϕ(sq)ϕ(sq′)
⊤


Let Ah =

∑
s1,...,sK∈S

(∏K
i=1 d

h
i (si)

) [
1
K

∑K
q=1 ϕ(sq)ϕ(sq)

⊤
]

and Bh =∑
s1,...,sK∈S

(∏K
i=1 d

h
i (si)

) [
1

K2

∑K
q,q′=1 ϕ(sq)ϕ(sq′)

⊤
]
. Then Iapprox,h(dh1:K) = Ah −Bh.

Compute Ah:

Ah =
1

K

K∑
q=1

∑
s1,...,sK∈S

(
K∏
i=1

dhπi
(si)

)
ϕ(sq)ϕ(sq)

⊤

=
1

K

K∑
q=1

∑
sq∈S

dhπq
(sq)ϕ(sq)ϕ(sq)

⊤
∏
i̸=q

∑
si∈S

dhπi
(si)

 (Marginalizing)

=
1

K

K∑
q=1

∑
s∈S

dhπq
(s)ϕ(s)ϕ(s)⊤ (since

∑
si

dhπi
(si) = 1)
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Compute Bh:

Bh =
1

K2

K∑
q,q′=1

∑
s1,...,sK∈S

(
K∏
i=1

dhπi
(si)

)
ϕ(sq)ϕ(sq′)

⊤

=
1

K2

K∑
q,q′=1

 ∑
sq,sq′∈S

dhπq
(sq)d

h
πq′

(sq′)ϕ(sq)ϕ(sq′)
⊤
∏

i ̸=q,q′

∑
si∈S

dhπi
(si)

 (Marginalizing)

=
1

K2

K∑
q,q′=1

∑
sq∈S

dhπq
(sq)ϕ(sq)

∑
sq′∈S

dhπq′
(sq′)ϕ(sq′)

⊤


=

1

K2

K∑
q,q′=1

(∑
s∈S

dhπq
(s)ϕ(s)

)(∑
s′∈S

dhπq′
(s′)ϕ(s′)⊤

)

Combining these yields the first result (8):

Iapprox,h(d
h
1:K) = Ah −Bh =

1

K

K∑
q=1

∑
s∈S

dhq (s)ϕ(s)ϕ(s)
⊤ − 1

K2

K∑
q,q′=1

(∑
s

dhq (s)ϕ(s)

)(∑
s′

dhq′(s
′)ϕ(s′)⊤

)

Now, we express this in matrix form. Let Φ ∈ R|S|×d have rows ϕ(sj)T , and let dhq ∈ R|S| (with entries (dhq )j = dhq (sj)).
The first term Ah can be written as:

Ah =
1

K

K∑
q=1

|S|∑
j=1

(dhq )jϕ(sj)ϕ(sj)
T

=
1

K

K∑
q=1

ΦTdiag(dhq )Φ

= ΦT

(
1

K

K∑
q=1

diag(dhq )

)
Φ

The second term Bh can be written as:

Bh =
1

K2

K∑
q,q′=1

 |S|∑
j=1

(dhq )jϕ(sj)

 |S|∑
k=1

(dhq′)kϕ(sk)
⊤


=

1

K2

K∑
q,q′=1

(ΦT dhq )(Φ
T dhq′)

T

=
1

K2

K∑
q,q′=1

(ΦT dhq )(d
h
q′)

TΦ

= ΦT

 1

K2

K∑
q=1

dhq

K∑
q′=1

(dhq′)
T

Φ

= ΦT

( 1

K

K∑
q=1

dhq

) 1

K

K∑
q′=1

dhq′

T
Φ

= ΦT d̄h(d̄h)TΦ
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where d̄h = 1
K

∑K
q=1 d

h
q . Substituting the matrix forms for Ah and Bh into Iapprox,h(dh1:K) = Ah −Bh yields the second

result (9):

Iapprox,h(d
h
1:K) = ΦT

(
1

K

K∑
q=1

diag(dhq )

)
Φ− ΦT d̄h(d̄h)TΦ = ΦT

(
1

K

K∑
q=1

diag(dhq )− d̄h(d̄h)T
)
Φ

This completes the proof.

The final optimization objective, using this approximate expected FIM, becomes optimizing over the state visitation measures
d1:K = {dhq }q∈[K],h∈[H]:

argmax
d1:K

s

(
T ·

H∑
h=1

Iapprox,h(d
h
1:K) + λId

)
where Iapprox,h(dh1:K) is given by the expression(s) in Theorem B.4, and the optimization is subject to dhq being valid state
visitation measures.

B.7. Information Decomposition and Policy Diversity

The tractable objective derived from Theorem B.4 provides valuable insight into what constitutes an informative experiment
in the context of preference-based RL. Let’s examine the core matrix term within the approximate FIM at timestep h:

Mh(d
h
1:K) =

1

K

K∑
q=1

diag(dhq )− d̄h(d̄h)T

This expression can be interpreted in terms of the statistics of the state visitation distributions. The first term,
1
K

∑K
q=1 diag(d

h
q ), represents the average of the per-policy state variances (since diag(dhq ) captures the variance if states

were one-hot encoded). The second term, d̄h(d̄h)T , represents the outer product of the *average* state visitation vector.
The structure resembles the definition of a covariance matrix: E[xxT ] − E[x]E[x]T . Maximizing a scalar function of
Iapprox,h(d

h
1:K) = ΦTMh(d

h
1:K)Φ intuitively encourages policies whose average state visitation behavior exhibits high

variance or spread in the feature space, after accounting for the variance of the average distribution.

This suggests that the objective implicitly favors diversity among the chosen policies π1, . . . , πK . If all policies induce
very similar state visitation distributions (dhq ≈ d̄h for all q), the term Mh(d

h
1:K) might be small. Conversely, if the policies

explore distinct regions of the state space, leading to diverse dhq vectors, the resulting Mh(d
h
1:K) is likely to be larger (in a

matrix sense, e.g., larger eigenvalues), contributing more to the information gain.

This intuition is made precise by Lemma B.5, which provides an alternative decomposition of Iapprox,h(dh1:K). Invoking
this lemma, we can rewrite the approximate FIM contribution as:

ΦT

[
1

K

K∑
q=1

(
diag(dhq )− dhq (dhq )T

)
︸ ︷︷ ︸

Average Per-Policy
State Covariance

+
1

K2

∑
1≤i<j≤K

(dhi − dhj )(dhi − dhj )T︸ ︷︷ ︸
Average Pairwise Difference

(Diversity Term)

]
Φ

This decomposition elegantly separates the information contribution into two components.

Average Per-Policy State Covariance The first term, Average Per-Policy State Covariance, represents the average of
the covariance matrices associated with each individual policy’s state visitation distribution dhq . It captures the inherent
uncertainty or spread within each policy’s behavior at timestep h; maximizing this term encourages policies that individually
explore diverse states within their own trajectories.

Average Pairwise Difference (Diversity Term) The second component, the Average Pairwise Difference (Diversity
Term), directly quantifies the diversity between the policies. It is a sum of outer products of the differences between the
state visitation vectors of all unique pairs of policies (i, j). This term is explicitly maximized when the state visitation
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distributions dhi and dhj are significantly different from each other, thereby encouraging the selection of policies that explore
distinct parts of the state space relative to one another.

Therefore, optimizing the approximate FIM objective naturally balances exploring broadly within each policy and ensuring
that the set of policies collectively covers different aspects of the state space, maximizing the potential for informative
comparisons.

Lemma B.5. Let Iapprox,h(dh1:K) be the approximate expected Fisher Information Matrix contribution at timestep h under
the uniform preference assumption, as given in Theorem B.4:

Iapprox,h(d
h
1:K) = ΦT

(
1

K

K∑
q=1

diag(dhq )− d̄h(d̄h)T
)
Φ

where dhq ∈ R|S| is the state visitation vector for policy πq at step h, Φ ∈ R|S|×d is the feature matrix, and d̄h = 1
K

∑K
q=1 d

h
q .

This can be rewritten in terms of pairwise differences between state visitation vectors as:

Iapprox,h(d
h
1:K) = ΦT

 1

K

K∑
q=1

(
diag(dhq )− dhq (dhq )T

)
+

1

K2

∑
1≤i<j≤K

(dhi − dhj )(dhi − dhj )T
Φ

Proof. We begin with the definition from Theorem B.4. Let Mh(d
h
1:K) denote the matrix expression within ΦT (. . . )Φ:

Mh(d
h
1:K) =

1

K

K∑
q=1

diag(dhq )− d̄h(d̄h)T

Expand the outer product of the average state visitation vector:

d̄h(d̄h)T =

(
1

K

K∑
i=1

dhi

) 1

K

K∑
j=1

dhj

T

=
1

K2

K∑
i=1

K∑
j=1

dhi (d
h
j )

T

Substitute this into the expression for Mh(d
h
1:K):

Mh(d
h
1:K) =

1

K

K∑
q=1

diag(dhq )−
1

K2

K∑
i=1

K∑
j=1

dhi (d
h
j )

T

We split the double summation based on whether the indices are equal (i = j) or distinct (i ̸= j):

K∑
i=1

K∑
j=1

dhi (d
h
j )

T =

K∑
q=1

dhq (d
h
q )

T +
∑
i ̸=j

dhi (d
h
j )

T

Substituting this yields:

Mh(d
h
1:K) =

1

K

K∑
q=1

diag(dhq )−
1

K2

K∑
q=1

dhq (d
h
q )

T − 1

K2

∑
i ̸=j

dhi (d
h
j )

T

By adding and subtracting the term (K − 1) 1
K2

∑K
q=1 d

h
q (d

h
q )

T :

Mh(d
h
1:K) =

1

K

K∑
q=1

diag(dhq )−
1

K2

K∑
q=1

dhq (d
h
q )

T − (K − 1)
1

K2

K∑
q=1

dhq (d
h
q )

T

+ (K − 1)
1

K2

K∑
q=1

dhq (d
h
q )

T − 1

K2

∑
i ̸=j

dhi (d
h
j )

T
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Combine the terms containing
∑K

q=1 d
h
q (d

h
q )

T :

Mh(d
h
1:K) =

1

K

K∑
q=1

diag(dhq )− (1 +K − 1)
1

K2

K∑
q=1

dhq (d
h
q )

T

+
K − 1

K2

K∑
q=1

dhq (d
h
q )

T − 1

K2

∑
i ̸=j

dhi (d
h
j )

T

=
1

K

K∑
q=1

diag(dhq )−
K

K2

K∑
q=1

dhq (d
h
q )

T

+
K − 1

K2

K∑
q=1

dhq (d
h
q )

T − 1

K2

∑
i ̸=j

dhi (d
h
j )

T

=

(
1

K

K∑
q=1

diag(dhq )−
1

K

K∑
q=1

dhq (d
h
q )

T

)

+

K − 1

K2

K∑
q=1

dhq (d
h
q )

T − 1

K2

∑
i ̸=j

dhi (d
h
j )

T


Consider the sum of outer products of pairwise differences over unique pairs {i, j} such that 1 ≤ i < j ≤ K:∑

1≤i<j≤K

(dhi − dhj )(dhi − dhj )T =
∑
i<j

(
dhi (d

h
i )

T − dhi (dhj )T − dhj (dhi )T + dhj (d
h
j )

T
)

= (K − 1)

K∑
q=1

dhq (d
h
q )

T −
∑
i<j

(
dhi (d

h
j )

T + dhj (d
h
i )

T
)

The second term
∑

i<j(d
h
i (d

h
j )

T +dhj (d
h
i )

T ) sums over all distinct pairs {i, j}, equivalent to the summation
∑

i̸=j d
h
i (d

h
j )

T .
Thus, ∑

1≤i<j≤K

(dhi − dhj )(dhi − dhj )T = (K − 1)

K∑
q=1

dhq (d
h
q )

T −
∑
i ̸=j

dhi (d
h
j )

T

Dividing by K2 yields:

1

K2

∑
1≤i<j≤K

(dhi − dhj )(dhi − dhj )T =
K − 1

K2

K∑
q=1

dhq (d
h
q )

T − 1

K2

∑
i̸=j

dhi (d
h
j )

T

This exactly matches the second grouped term derived for Mh(d
h
1:K). Substituting this structure back gives:

Mh(d
h
1:K) =

(
1

K

K∑
q=1

diag(dhq )−
1

K

K∑
q=1

dhq (d
h
q )

T

)
+

1

K2

∑
1≤i<j≤K

(dhi − dhj )(dhi − dhj )T

=
1

K

K∑
q=1

(
diag(dhq )− dhq (dhq )T

)
+

1

K2

∑
1≤i<j≤K

(dhi − dhj )(dhi − dhj )T

Finally, reintroducing the outer feature matrix multiplication provides the desired result:

Iapprox,h(d
h
1:K) = ΦTMh(d

h
1:K)Φ = ΦT

 1

K

K∑
q=1

(
diag(dhq )− dhq (dhq )T

)
+

1

K2

∑
1≤i<j≤K

(dhi − dhj )(dhi − dhj )T
Φ
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B.8. Detailed Algorithm Description

Our Experimental Design for Preference-Based Reinforcement Learning (ED-PBRL) algorithm, detailed in Algorithm 2,
consists of two main phases. The first phase optimizes a set of K policies using Convex-RL according to our objective
derived in Section 4.2. The second phase plays these optimized policies to collect K sets of trajectories for obtaining
preferences.

Algorithm 2 ED-PBRL using Convex-RL (Detailed Version of Algorithm 1)
Input: Known MDP components M = (S,A, P,H, ρ), number of policies K, number of episodes T , feature map Φ,
scalar criterion s(·), number of optimization iterations N , regularization constant λ (λ > 0)
Output: Estimated preference parameter θ̂
Phase 1: Compute Optimal State Visitation Measures {Solve Eq. 3}

Initialize (1)d
{1,...,H}
mix,q ← 0 for q = 1, . . . ,K {Initialize visitation measures}

for n = 1 to N − 1 do
Let I(n)total = T

∑H
h=1 Iapprox,h(

(n)dhmix,1:K) + λId {Objective using (n)dmix}
for q = 1 to K do

Compute gradient reward: rgradq (h, s, a)← ∇dh
πq

(s,a)s(I
(n)
total)

Find policy maximizing linear objective: π(n)
gradq
← value_iteration(M, rgradq )

Compute corresponding visitation vector d(n),{1,...,H}
gradq

from π
(n)
gradq

end for
Determine step size αn via line search: For q = 1, . . . ,K, let dhcand,q(α

′) = (1 − α′)(n)dhmix,q + α′d
(n),h
grad,q. Find

αn ← argmaxα′∈[0,1] s
(
T
∑H

h=1 Iapprox,h(d
h
cand,1:K(α′)) + λId

)
(see Eq. 6 for Iapprox,h)

for q = 1 to K do
(n+1)d

{1,...,H}
mix,q ← (1− αn) · (n)d{1,...,H}

mix,q + αn · d(n),{1,...,H}
gradq

end for
end for
Let {d∗hmix,q}h,q ← {(N)d

{1,...,H}
mix,q }h,q be the final optimal visitation measures.

Phase 2: Policy Extraction and Trajectory Sampling
for q = 1 to K do

Extract policy π∗
q from final visitation measure d∗hmix,q

Tq ← ∅ {Initialize trajectory set for policy π∗
q}

end for
for t = 1 to T do

for q = 1 to K do
Sample trajectory τ qt ∼ π∗

q

Tq ← Tq ∪ {τ qt }
end for

end for
Let Dfeedback = {Tq}Kq=1 be the collected trajectories.
Phase 3: Parameter Estimation
Collect preference feedback for trajectories in Dfeedback.
Estimate θ̂ using all collected feedback (cf. Section 3 for estimation equation).
return θ̂

Phase 1: Compute Optimal State Visitation Measures This phase adapts the Frank-Wolfe algorithm (Frank & Wolfe,
1956) to maximize the objective s(Itotal(π1:K)). Here, Itotal(π1:K) represents the total approximate expected regularized
FIM (the matrix argument of s(·) in Eq. 3), expressed in terms of policy-induced visitation measures. This is achieved by
iteratively building state-action visitation measures {(n)dhmix,q} corresponding to conceptual mixture policies. The process
starts with (1)dmix,q = 0.
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Each iteration n of this phase involves these main steps:

1. Gradient Computation: The gradient of s(Itotal) (using the current (n)dmix,q) defines a reward function rgradq for
each policy q.

2. Policy Search Oracle: For each q, a new base policy π(n)
gradq

is found by maximizing the expected cumulative reward

rgradq (e.g., via value iteration). Its visitation measure d(n)gradq
is computed.

3. Line Search for Step Size: The optimal step size αn is determined by maximizing s(·) for the candidate mixture
(1− αn)

(n)dmix,q + αnd
(n)
gradq

.

4. Mixture Update: The next mixture’s visitation measure is constructed: (n+1)dmix,q ← (1− αn)
(n)dmix,q + αnd

(n)
gradq

.

This efficiently computes the visitation measure of the new conceptual mixture policy π(n)
mix,q .

This iterative process converges to the globally optimal visitation measures {d∗hmix,q} due to the concavity of s(·) and the
convexity of the feasible set of visitation measures.

Phase 2: Policy Extraction and Trajectory Sampling Upon convergence of Phase 1 after N − 1 iterations, the final
policies {π∗

q}Kq=1 are extracted from the resulting state-action visitation measures {d∗hmix,q}Kq=1. These policies are then
executed to generate the K × T trajectories, which form the dataset Dfeedback for collecting user preference feedback.

Phase 3: Parameter Estimation After the trajectories are generated and collected into Dfeedback in Phase 2, preference
feedback is obtained from the user for these trajectories. This accumulated feedback is then used to compute the final
estimate θ̂ of the true reward parameter θ, as detailed in Section 3.

B.9. Detailed Optimization Guarantees

The Convex-RL optimization phase (Algorithm 2, lines 13-24) employs the Frank-Wolfe algorithm (also known as the
conditional gradient method) over the convex polytope of valid state-action visitation measures (Puterman, 2014; Frank &
Wolfe, 1956; Jaggi, 2013). The inclusion of an exact line search for the step size αn is a standard variant of the Frank-Wolfe
algorithm.

The key to guaranteeing global optimality for this procedure is the concavity of the objective function. Let D =
{dhq }h∈[H],q∈[K] represent the collection of all state visitation vectors, where each dhq ∈ ∆|S|−1 (the probability sim-
plex over states). The domain of D is a convex set. The objective function is f(D) = s(Itotal(D)), where Itotal(D) is
precisely the matrix argument of s(·) in Eq. 3:

Itotal(D) = T

H∑
h=1

ΦT

 1

K

K∑
q=1

diag(dhq )−

(
1

K

K∑
q=1

dhq

)(
1

K

K∑
q=1

dhq

)T
Φ

+ λId.

With the concavity of the objective function established (Theorem 5.1), we can state the convergence guarantee for Algorithm
2 (Theorem B.6), which implements the Frank-Wolfe method.

B.9.1. PROOF OF OBJECTIVE FUNCTION CONCAVITY (THEOREM 5.1)

Theorem 5.1. [Concavity of the Objective Function] Assume the scalar criterion s : Sd+ → R is concave and matrix-
monotone non-decreasing. Then the objective function f(D) = s(Itotal(D)), where Itotal(D) is the total approximate
expected regularized FIM (the matrix argument of s(·) in Eq. 3), is concave with respect to the collection of state visitation
vectors D = {dhq }h∈[H],q∈[K].

Proof. Let D = {dhq }h∈[H],q∈[K] be the collection of state visitation vectors, where each dhq ∈ ∆|S|−1 (the probability
simplex in R|S|). The domain of D, denoted Dsv , is a Cartesian product of simplices, which is a convex set. The objective
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function is f(D) = s(Itotal(D)), where

Itotal(D) = T

H∑
h=1

Iapprox,h(D
h) + λId,

and Dh = (dh1 , . . . , d
h
K) are the visitation vectors for timestep h. The term Iapprox,h(D

h) is given by:

Iapprox,h(D
h) = ΦTMh(D

h)Φ, with Mh(D
h) =

1

K

K∑
q=1

diag(dhq )−

(
1

K

K∑
q=1

dhq

)(
1

K

K∑
q=1

dhq

)T

.

We will prove the concavity of f(D) by showing that Itotal(D) is a concave matrix-valued function of D, and then using
the properties of s(·).

1. Concavity of Mh(D
h): Let Lh(D

h) = 1
K

∑K
q=1 diag(d

h
q ). The function diag(v) is a linear mapping from a vector v to

a diagonal matrix. Thus, Lh(D
h) is a linear function of the collection of vectors Dh = (dh1 , . . . , d

h
K). Linear functions are

both concave and convex.

Let d̄h(Dh) = 1
K

∑K
q=1 d

h
q . This is also a linear function of Dh. Consider the function Q(v) = −vvT . The function

v 7→ vvT is convex. To see this, for v1, v2 and α ∈ [0, 1]:

αv1v
T
1 + (1− α)v2vT2 − (αv1 + (1− α)v2)(αv1 + (1− α)v2)T

= αv1v
T
1 + (1− α)v2vT2 − (α2v1v

T
1 + α(1− α)(v1vT2 + v2v

T
1 ) + (1− α)2v2vT2 )

= (α− α2)v1v
T
1 + ((1− α)− (1− α)2)v2vT2 − α(1− α)(v1vT2 + v2v

T
1 )

= α(1− α)v1vT1 + α(1− α)v2vT2 − α(1− α)(v1vT2 + v2v
T
1 )

= α(1− α)(v1 − v2)(v1 − v2)T .

Since α(1 − α) ≥ 0 and (v1 − v2)(v1 − v2)T ⪰ 0 (it’s an outer product, hence positive semidefinite), the expression is
⪰ 0. Thus, v 7→ vvT is convex. Therefore, Q(v) = −vvT is concave. The composition of a concave function with a linear
function is concave. Since Q(v) is concave and d̄h(Dh) is linear, the function Dh 7→ Q(d̄h(Dh)) = −d̄h(Dh)(d̄h(Dh))T

is concave.

Mh(D
h) = Lh(D

h) + Q(d̄h(Dh)) is the sum of a linear function (which is concave) and a concave function. Thus,
Mh(D

h) is a concave matrix-valued function of Dh.

2. Concavity of Iapprox,h(Dh): The function Iapprox,h(Dh) = ΦTMh(D
h)Φ is a congruence transformation of Mh(D

h).
Since Mh(D

h) is concave in Dh, and congruence transformations preserve concavity (i.e., if A(x) is concave, then
CTA(x)C is concave for any constant matrix C), Iapprox,h(Dh) is concave in Dh.

3. Concavity of Itotal(D): The total approximate FIM before regularization is
∑H

h=1 Iapprox,h(D
h). Since each

Iapprox,h(D
h) is concave with respect to its arguments Dh (and thus with respect to the full D, as it doesn’t depend

on Dh′
for h′ ̸= h), their sum is concave with respect to D. Multiplying by a non-negative scalar T preserves con-

cavity. So, T
∑H

h=1 Iapprox,h(D
h) is concave in D. Adding a constant matrix λId also preserves concavity. Therefore,

Itotal(D) = T
∑H

h=1 Iapprox,h(D
h) + λId is a concave matrix-valued function of D.

4. Concavity of s(Itotal(D)): We are given that the scalar criterion s : Sd+ → R is concave and matrix-monotone non-
decreasing. If g(x) is a matrix-valued concave function and s(A) is a scalar-valued concave and non-decreasing function of
matrix A (in the Loewner order), then the composition s(g(x)) is concave (see Boyd & Vandenberghe, Convex Optimization,
Section 3.2.4). In our case, g(D) = Itotal(D) is concave in D. Thus, f(D) = s(Itotal(D)) is concave with respect to
D = {dhq }h∈[H],q∈[K] over the convex domain Dsv .

B.9.2. PROOF OF CONVERGENCE GUARANTEE (THEOREM B.6)

Theorem B.6. [Convergence Guarantee of Algorithm 2 (Detailed)] Let D(n) be the sequence of collections of state
visitation measures generated by Algorithm 2, where D(1) is the initialization and D(n+1) is the iterate after n Frank-Wolfe
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steps. Let f(D) = s(Itotal(D)) be the objective function defined in Theorem 5.1, and let D∗ ∈ Dsv be an optimal solution,
D∗ = argmaxD∈Dsv

f(D). The domain Dsv of valid collections of state visitation measures is compact and convex. If
Algorithm 2 performs Niter iterations of the Frank-Wolfe update (i.e., the loop from n = 1 to Niter in the algorithm’s
notation, resulting in the final iterate D(Niter+1)), using exact line search for αn at each iteration, then the suboptimality of
the final iterate D(Niter+1) is bounded by:

f(D∗)− f(D(Niter+1)) ≤ 2Cf

Niter + 2

where Cf is the curvature constant of f over Dsv .

Theorem B.6. [Convergence Guarantee of Algorithm 2 (Detailed)] Let D(n) be the sequence of collections of state
visitation measures generated by Algorithm 2, where D(1) is the initialization and D(n+1) is the iterate after n Frank-Wolfe
steps. Let f(D) = s(Itotal(D)) be the objective function defined in Theorem 5.1, and let D∗ ∈ Dsv be an optimal solution,
D∗ = argmaxD∈Dsv

f(D). The domain Dsv of valid collections of state visitation measures is compact and convex. If
Algorithm 2 performs Niter iterations of the Frank-Wolfe update (i.e., the loop from n = 1 to Niter in the algorithm’s
notation, resulting in the final iterate D(Niter+1)), using exact line search for αn at each iteration, then the suboptimality of
the final iterate D(Niter+1) is bounded by:

f(D∗)− f(D(Niter+1)) ≤ 2Cf

Niter + 2

where Cf is the curvature constant of f over Dsv .

Proof. The convergence of Algorithm 2 relies on standard results for the Frank-Wolfe algorithm when maximizing a concave
function over a compact convex set. We verify the conditions required for these guarantees.

1. Objective Function and Domain:

• Concavity: The objective function f(D) = s(Itotal(D)) is concave with respect to the collection of state visitation
vectors D = {dhq }h,q , as proven in Theorem 5.1.

• Domain Dsv: The domain Dsv is the set of all valid collections of state visitation measures {dhq }h,q. Each dhq is a
probability distribution over the finite state space S, so it belongs to the probability simplex ∆|S|−1. The full domain
Dsv is a Cartesian product of K ×H such simplices. Each simplex is compact and convex, and thus their Cartesian
product Dsv is also compact and convex.

2. Frank-Wolfe Algorithm Steps: Algorithm 2 implements the Frank-Wolfe algorithm:

• Initialization (Line 13): (1)dmix,q ← 0. This initializes the iterate D(1) within Dsv (the zero vector is on the boundary
of the simplex if non-negativity is the only constraint, or can be seen as a valid (degenerate) visitation measure).

• Gradient Computation (Line 16): The algorithm computes the gradient∇f(D(n)) (implicitly, by computing rgradq
which is derived from this gradient).

• Linear Maximization Oracle (LMO) (Lines 17-18): For each q, the step π(n)
gradq
← value_iteration(M, rgradq )

finds a policy that maximizes the linear objective
∑

s,a d
h
π(s, a)rgradq (h, s, a) over all policies π. This is equivalent to

finding a vertex S(n)
q of the polytope of visitation measures for policy q that maximizes ⟨∇dh

q
f(D(n)), S

(n)
q ⟩. The col-

lection of these S(n)
q for all q forms the S(n) in the standard Frank-Wolfe update S(n) = argmaxS∈Dsv

⟨∇f(D(n)), S⟩.
The computation of d(n)gradq

from π
(n)
gradq

yields this S(n).

• Step Size (Line 20): αn is determined by exact line search: αn ← argmaxα′∈[0,1] f((1− α′)D(n) + α′S(n)).

• Update (Line 22): D(n+1) ← (1− αn)D
(n) + αnS

(n).
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The algorithm performs Niter = N −1 such iterations, producing iterates D(2), . . . , D(N). (Note: D(1) is the initialization).

3. Convergence Rate: For a concave function f maximized over a compact convex set D using the Frank-Wolfe algorithm
with exact line search for the step size, the suboptimality gap hk = f(D∗)− f(D(k+1)) after k iterations (where D(1) is
the initial point and D(k+1) is the iterate after k Frank-Wolfe steps) is bounded by (Jaggi, 2013, Theorem 1 and discussion
for line search):

f(D∗)− f(D(k+1)) ≤ 2Cf

k + 2

where Cf is the curvature constant of f over D, defined as

Cf = sup
X,S∈D,γ∈(0,1]
Y=(1−γ)X+γS

2

γ2
(f(X) + γ⟨∇f(X), S −X⟩ − f(Y )).

In our case, Algorithm 2 initializes with D(1) and performs Niter iterations of the Frank-Wolfe update (corresponding to the
loop variable n from 1 to Niter in the algorithm’s notation as per Algorithm 2 where the loop runs N − 1 times; here we use
Niter to denote this count of iterations). The final iterate is D(Niter+1). The standard bound 2Cf/(k + 2) applies after k
iterations. Here, k = Niter. So, the suboptimality of the final iterate D(Niter+1) is bounded by:

f(D∗)− f(D(Niter+1)) ≤ 2Cf

Niter + 2

This holds for Niter ≥ 1. The constant Cf depends on the objective function f and the domain Dsv . Since Dsv is compact,
Cf is well-defined and finite, provided f is continuously differentiable (which it is, assuming s(·) is, and Itotal(D) is
differentiable).

Thus, Algorithm 2 converges to the global optimum with a rate of O(1/Niter).
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