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ABSTRACT

Inverse reinforcement learning (IRL) seeks to learn the reward function from expert
trajectories, to understand the task for imitation or collaboration thereby removing
the need for manual reward engineering. However, IRL in the context of large, high-
dimensional problems with unknown dynamics has been particularly challenging.
In this paper, we present a new Variational Lower Bound for IRL (VLB-IRL),
which is derived under the framework of a probabilistic graphical model with
an optimality node. Our method simultaneously learns the reward function and
policy under the learned reward function by maximizing the lower bound, which
is equivalent to minimizing the reverse Kullback-Leibler divergence between an
approximated distribution of optimality given the reward function and the true
distribution of optimality given trajectories. This leads to a new IRL method
that learns a valid reward function such that the policy under the learned reward
achieves expert-level performance on several known domains. Importantly, the
method outperforms the existing state-of-the-art IRL algorithms on these domains
by demonstrating better reward from the learned policy.

1 INTRODUCTION

Reinforcement learning (RL) is a popular method for automating decision making and control.
However, to achieve practical effectiveness, significant engineering of reward features and reward
functions has traditionally been necessary. Recently, the advent of deep reinforcement learning has
eased the need for feature engineering for policies and value functions, and demonstrated encouraging
outcomes for various complex tasks such as vision-based robotic control and video games like Atari
and Minecraft. Despite these advancements, reward engineering continues to be a significant hurdle
to the application of reinforcement learning in practical contexts.

The problem at hand is to learn a reward function that explains the task performed by the expert,
where the learner only has access to a limited number of expert trajectories and cannot ask for more
data. While imitation learning is a popular technique for training agents to mimic expert behavior,
conventional methods such as behavior cloning and generative adversarial imitation learning Ho
& Ermon (2016) often do not explicitly learn the underlying reward function, which is essential
for a deeper understanding of the task. To overcome this limitation, researchers have developed
inverse reinforcement learning (IRL) to infer the reward function from expert trajectories. IRL offers
several advantages over direct policy imitation, including the ability to analyze imitation learning
(IL) algorithms, deduce agents’ intentions, and optimize rewards in new environments.

In this paper, we present a new probabilistic graphical model involving both the reward function
and optimality as key random variables, which can serve as a framework for representing IRL as a
probabilistic inference problem. Within the context provided by this model, our main contributions
are:

1. A lower bound on the likelihood of the reward model given the expert trajectories as data,
which is derived from first principles, and involves minimizing the reverse Kullback–Leibler
divergence between an approximated distribution of optimality given the reward function and the
true distribution of optimality given trajectories.

2. A novel IRL algorithm which learns the reward function as variational inference that optimizes
the lower bound in domains where the state and action spaces can be continuous.

1



Under review as a conference paper at ICLR 2024

3. Improved learning performance of the algorithm compared to state of the art techniques as seen
through the policy given the learned reward, which is demonstrated on multiple well-known
continuous domains of various complexity.

Our novel lower bound can not only serve as a point of departure for the formulation of other
principled bounds but also stimulate discussions and design of new IRL methods that utilize such
bounds.

2 A NOVEL VARIATIONAL LOWER BOUND

Inspired by the significant impact of variational lower bounds such as ELBO in RL, we present a
variational lower bound on the likelihood of the reward function. To derive this lower bound from
first principles, we first introduce a graphical model to represent the problem in Section 2.1 followed
by the derivation of the lower bound in Section 2.2. We discuss the appropriateness of an inherent
approximation in Section 2.3. All proof can be found in Appendix B.

2.1 A PROBABILISTIC GRAPHICAL MODEL OF IRL

Inspired by the graphical model for forward RL as shown in Levine (2018) and a general lack of
such modeling of IRL, we aim to fill this gap in this section. Recall that we are now interested in
learning the reward function given the state and action trajectories from the expert. Therefore, it is
necessary to embed the reward function explicitly in the graphical model, as shown in Figure 1. The
reward value rt is conditioned on state st and action at respectively denoting the state and action in
the trajectory. We introduce an optimality random variable Ot, whose value is conditioned on the
reward value rt. The optimality follows the definition of Levine (2018) in that the optimality variable
is a binary random variable, where Ot = 1 denoting that the observed action at time step t is optimal
given the state, and Ot = 0 denotes that it is not optimal. We will discuss the reward function R in
more detail in Section 2.3.
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(b) Graphical model with value function included

Figure 1: A probabilistic graphical model for the IRL problem. Shaded nodes represent the observed
variables, unshaded nodes represent the latent variables. The dashed line represents the reparameteri-
zation trick described later in Section 2.3. Reward value rt is sampled from distribution R(st, at)
using reparameterization trick.

The choice of a probabilistic graphical model to represent the relationships between the state,
action, reward, and optimality variables in IRL is motivated by the desire to capture the complex
dependencies between these variables in a lucid manner. Indeed, the graphical model has a natural
property when it comes to analyzing optimality. Specifically, the graphical model represents the
conditional independence of the optimality from the state and action variables, given the reward
variable. In other words, when given the state-action pair (st, at), we sum over the reward value rt
to get the marginal conditional distribution of the optimality Ot, that is p(Ot|st, at). However, if
the reward value rt is given, then the state-action pair is of course unnecessary in order to get the
marginal distribution of the optimality Ot, that is p(Ot|rt).
Given the conditional independence in a probabilistic graphical model, which is similar to a Bayesian
network, we may write:

p(Ot|rt, st, at) = p(Ot|rt) (1)
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which leads to the following marginal:

p(Ot|st, at) =
∫
rt

p(Ot|rt, st, at) p(rt|st, at) =
∫
rt

p(Ot|rt) p(rt|st, at) (2)

2.2 VARIATIONAL LOWER BOUND FOR IRL

We use the graphical models of Fig. 1 to formulate the log-likelihood of the observed trajectories. 1

Here, we are aided by Eqs. 1 and 2 in our derivation, which we detail below.

log p(τ) = log

∫
Ot

∫
rt

p(τ,Ot, rt)

= log p(s1) + log
∏
t

∫
Ot

∫
rt

p(rt|st, at) p(Ot|rt) p(st+1|st, at) p(at)

= log p(s1) +
∑
t

log

∫
Ot

p(Ot|st, at) p(st+1|st, at) p(at) (using Eq. 2)

= log p(s1) +
∑
t

log

∫
Ot

p(Ot|st, at)
q(Ot|rt)

q(Ot|rt) p(st+1|st, at) p(at).

(3)

Here, we use variational distribution q(Ot|rt) to approximate the true distribution p(Ot|st, at). We
may think of q(Ot|rt) as an approximation of the true distribution of optimality given the trajectories,
p(Ot|st, at) and we will discuss in more detail in Section 2.3. We may rewrite the equation above by
introducing the expectation Eq(Ot|rt) and applying Jensen’s inequality:

log p(τ) = log p(s1) +
∑
t

logEq(Ot|rt)

[
p(Ot|st, at)
q(Ot|rt)

p(st+1|st, at)p(at)
]

≥ log p(s1) +
∑
t

Eq(Ot|rt)

[
log

p(Ot|st, at)
q(Ot|rt)

+ log p(st+1|st, at) + log p(at)

]
= log p(s1) +

∑
t

[−KL(q(Ot|rt) ∥ p(Ot|st, at)) + log p(st+1|st, at) + log p(at)].

(4)

We end up with the following Evidence Lower BOund (ELBO):

ELBO = log p(s1) +
∑
t

[−KL(q(Ot|rt) ∥ p(Ot|st, at)) + log p(st+1|st, at) + log p(at)]. (5)

The motivation for using q(Ot|rt) to approximate p(Ot|st, at) is quite intuitive that both state-
action pair and reward value can explain the optimality. An interpretation of p(Ot|st, at) is that
the probability can be viewed as the confidence with which the state-action pair comes from the
expert. Analogously, q(Ot|rt) is the confidence with which the reward value rt belongs to the expert.
Additionally, to optimize the reward function, we have to incorporate the reward function into the
log-likelihood of trajectories.

Note that if we take the partial derivative of Eq. 5 with respect to rt, we obtain,

∂ ELBO
∂ rt

= −
∑
t

∂ KL(q(Ot|rt) ∥ p(Ot|st, at))
∂ rt

(6)

because the remaining terms in equation 4 are constant w.r.t. rt. The derivation from first principles
above leads to the following theorem.
Theorem 1. Optimizing the evidence lower bound of the log-likelihood of trajectories w.r.t rt is
equivalent to optimizing the reverse KL divergence between q(Ot|rt) and p(Ot|st, at) w.r.t rt.

1In practice, using full trajectories to estimate the reward function in IRL may lead to high variance especially
when the trajectories are long. On the other hand, using single state-action pairs to infer the reward function
can lead to more stable and efficient estimates, because each observed pair provides a separate estimate of the
reward function that can be combined to reduce variance.

3



Under review as a conference paper at ICLR 2024

2.3 APPROXIMATED DISTRIBUTION OF OPTIMALITY

Next, we discuss the approximation of the distribution over optimality under the framework of the
probabilistic graphical model and offer insights.

Given a state-action pair (st, at) obtained from some trajectory τ , p(Ot|st, at) informs whether
the action at is optimal at state st, or in other words, whether the state-action pair comes from the
expert’s trajectory. This term represents the true distribution in the reverse KL divergence contained
in the lower bound. To make this classification, we may simply use binary logistic regression, Cθ . In
algorithms such as GAIL and AIRL, the input to the classifier consists of trajectories from both the
expert and the learner. The classifier utilizes these trajectories as input to make predictions about the
optimality of the state-action pair.

p(Ot|st, at) ≜ Cθ(st, at) (7)

Similarly, given reward value rt, the approximation q(Ot|rt) informs whether the reward value leads
to optimal behavior, i.e., whether it is induced by the expert or not.

Recall that the reward value rt is the feedback from the environment. Therefore, we propose this
reward value as our first approach to estimate the optimality as defined in Eq. 8.

q(Ot = 1|rt) ∝ ert , where rt ∼ R(st, at). (8)

Note that the left hand side of Eq. 8 is conditioned on reward value rt, which is distributed according
to the distribution R(st, at). Thus, we may apply a reparameterization trick to sample a specific
reward value rt without losing track of the gradient propagation under the probabilistic graphical
model. The dashed line in Fig. 1 denotes the reparameterization trick and rt represents the sampled
specific reward value from the distribution of R(st, at). To illustrate this, consider the simplistic
case where the reward value distribution is a univariate Gaussian: R(st, at) = N (µ, σ2) and let
rt ∼ R(st, at). In this case, a valid reparameterization is rt = µ+ σϵ (reward values are distributed
around the mean), where ϵ is an auxiliary noise variable, ϵ ∼ N (0, 1).

However, it is not sufficient to use the reward values to represent the optimality because, in an optimal
trajectory, not every state-action pair has the highest reward value at each time step; often we may
perform an action that obtains longer term gain while forgoing greedy rewards. Hence, a more
robust way of computing the optimality given the distribution over reward value is needed. Here, the
advantage function is a candidate for the solution:

A(st, at) = Q(st, at)− V (st) = rϕ(st, at) + γV (st+1)− V (st) (9)

In practice, we can use actor-critic-based policy to retrieve the value function estimation, such as
PPO, SAC, or TD3. . As the reward value is a component of the advantage function, we can continue
to keep track of the reward function. Therefore, the optimality of reward value can be expressed as:

q(Ot = 1|rt) ∝ A(st, at) = σ (rt + γV (st+1)− V (st)) (10)

where rt ∼ R(st, at) and σ is the Sigmoid function to normalize the advantage function.

2.4 UNDERSTANDING THE RELATIONSHIP BETWEEN TWO DISTRIBUTIONS OVER
OPTIMALITY

Notice that the two distributions over optimality p(Ot|st, at) and q(Ot|rt) have different definitions
according to Eqs. 1 and 2. In this subsection, we demonstrate the validity of using q(Ot|rt) to
approximate p(Ot|st, at). We begin with Lemma 1 which establishes an upper bound that is utilized
later, and whose proof is in the Appendix.
Lemma 1. |E[f(X)] − f(E[X])| ≤ MVar(X), where |f ′′(x)| ≤ M and Var(X) denotes the
variance of the distribution of X .

We directly use Lemma 1 to arrive at the theorem below and present its proof in the appendix.
Theorem 2. If |p′′(Ot = 1|rt)| < M , then the approximation distribution q(Ot | E[rt]), where
rt ∼ R(st, at) and R(st, at) = p(rt|st, at), approximates the true distribution p(Ot|st, at) with an
approximation error that is bounded by MVar[rt].
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Note that the approximation error is bounded by the variance of rt instead of Ot and the motivation
of using reward rt to approximate state-action pair (st, at) comes from the Figure.1, in which holds
the connectivity that node rt is connected to node st, at and node Ot. Without the connectivity, even
if the variance of rt is zero, the approximation error cannot be bounded. More detail can be found in
Appendix B.2. It is also the connectivity that holds so that we can derive Eq. 1 and Eq. 2.

From Theorem 2, we know that we can use q(Ot | E[rt]) to approximate p(Ot|st, at) with a bounded
approximation error w.r.t Var(rt) . Additionally, if the variance of rt is small enough, then we can
use rt to estimate E[rt]. Subsequently, the objective function of VLB-IRL is defined in the following:

L(rt) =
∑
t

[−KL(q(Ot|rt) ∥ p(Ot|st, at))) + λVar(rt)]

=
∑
t

{
−KL

[
σ(ert+γV (st+1)−V (st)) ∥ Cθ(st, at)

]
+ λVar(rt)

} (11)

where σ is the Sigmoid function to normalize the advantage function and λ is the hyperparameter to
control the contribution of variance in the objective function.

2.5 THE REWARD AMBIGUITY PROBLEM

In this section, we discuss the reward ambiguity problem. As deduced in Ho & Ermon (2016), IRL
is a dual of an occupancy measure matching problem and the induced optimal policy is the primal
optimum. In the following, we further draw the conclusion that IRL is a dual of the optimality
matching problem and the reward function induced by the optimality best explains the expert πE .

Lemma 2. p(Ot|st, a∗t ) is maximal if and only if for any given st, the action a∗t from the expert
among all actions has the highest probability, p(Ot = 1|st, at).

The lemma follows from the definition of the classifier as discussed in Section 2.3, which classifies
whether the state-action pairs are from the expert or not.

Theorem 3. The reward function R best explains the expert policy πE if p(Ot|st, at) is maximal
and q(Ot|rt) is identical to p(Ot|st, at), where rt ∼ R(st, at).

From Theorem 3, we are guaranteed to have a reward function R that best explains the expert policy.
Theorem 3 also offers the benefit that we are guaranteed to avoid a degenerate reward function as the
solution by optimizing Eq. 6 if p(Ot|st, at) is maximal.

2.6 THE NOISY EXPERT TRAJECTORIES PROBLEM

Recall that the objective function of VLB-IRL consists of a reverse KL divergence between q(Ot|rt)
and p(Ot|st, at). Compared to the mean-seeking behavior induced by minimizing forward KL
divergence, minimizing reverse KL divergence has the behavior that it is mode-seeking, which tends
to be more robust to overfitting and can provide better estimates of the true posterior distribution
if the posterior distribution is noisy. This is beneficial for IRL because trajectories could be noisy
and may contain suboptimal actions, which challenges the learning. By emphasizing the modes of
the data distribution, the reverse KL divergence helps identify the most likely explanations for the
observed behavior, even in the presence of noise or uncertainty.

Compared to existing state-of-the-art algorithms, most of them use a single neural network to estimate
the reward function. However, in VLB-IRL, we use two separate neural networks to update the
reward function. The first neural network is the classifier, defined in Eq. 8. The second neural network
is the approximation optimality, defined in Eq. 8 and Eq. 10. The architecture of two separate neural
networks has a natural property that is robust to overfitting and has better generalization. It is essential
for the IRL algorithm with the presence of noise in expert trajectories.

Another major difference is that most prior algorithms focus on learning identical state-action marginal
distributions and consequently end up learning the expert’s noisy state-action representation as well.
However, in VLB-IRL, since the true distribution p(Ot|st, at) represents the optimality conditioned
on the state-action pair, it has the ability to distinguish and generalize the noisy trajectories.
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3 VLB-IRL ALGORITHM

We present an algorithm, which we call variational lower bound for IRL, VLB-IRL (Algorithm
1), for optimizing Eq. 11. To do so, we introduce function approximations for π and R: we fit
a parameterized policy πψ with weights ψ, a parameterized classifier Cθ with weights θ and a
parameterized reward function Rϕ with weights ϕ. From line 3 to Line 4, we collect learner policy
trajectories and save them into the buffer. From line 7 to line 8, we update the classifier and reward
function defined in Section 2.3. At line 9, we update the learner policy based on the learned reward
function.

Algorithm 1 VLB-IRL: Variational Lower Bound for Inverse Reinforcement Learning

Require: Expert trajectories τEi , N : # of iterations
1: Initialize learner policy πLψ , trajectory buffer B, classifier Cθ and reward function Rϕ

2: for step t in 1, ..., N do
3: Collect learner policy trajectories τLi = (s0, a0, ..., sT , aT ) by executing πLψ
4: Add trajectories τLi into trajectory buffer B
5: Sample random minibatch state-action pairs (sLt , aLt ) from Buffer B
6: Sample random minibatch state-action pairs (sEt , aEt ) from expert trajectories τEi
7: Train classifier Cθ via binary logistic regression to classify (sLt , a

L
t ) from (sEt , a

E
t )

8: Update reward function Rϕ via Equation 11
9: Update learner policy πLψ with reward function Rϕ

10: end for

4 EXPERIMENTS

To ascertain the efficiency of our method VLB-IRL, we use multiple Mujoco benchmark do-
mains (Todorov et al., 2012), such as LunarLander, Hopper, Walker2d, HalfCheetah, and Ant.
We also use another more realistic, robot-centered, and goal-based environment, Assistive Gym (Er-
ickson et al., 2020), to further analyze the performance of VLB-IRL. In our experiments, we compare
the average true reward accrued over 50 episodes by our method versus the current state-of-the-art
methods such as AIRL (Fu et al., 2018a), f -IRL (Ni et al., 2020), EBIL (Liu et al., 2021), IQ-
Learn (Garg et al., 2021) and GAIL (Ho & Ermon, 2016). Through these experiments, we examine
two main scenarios: (a) VLB-IRL’s ability to learn an optimal reward function as compared to
the baselines when noise-free optimal expert trajectories are available. (b) VLB-IRL’s capacity
to generalize and learn a robust reward function as compared to the baselines, when noisy expert
trajectories are provided.

4.1 MUJOCO DOMAINS

As part of our generalizability analysis, we consider both continuous and discrete control environments
from the Mujoco library and use twin-delayed DDPG (TD3) (Fujimoto et al., 2018) and proximal
policy optimization (PPO) (Schulman et al., 2017) for continuous and discrete domains respectively 2.
We readily obtain the expertly trained RL models from the popular RL library RL-Baselines3
Zoo (Raffin, 2020) and generate several expert trajectories employing them. Using the generated
expert trajectories, each method was trained with 5 random seeds and for each seed, the model with
the highest return was saved. At the end of the training, we evaluate these models on 50 test episodes.
We use MLP for the reward function approximation. The hyperparameters and other relevant details
needed for reproducibility are provided in the Appendix C. and our code is openly available on
GitHub3.

Performance on optimal trajectories For our first set of experiments, we directly use the optimal
expert trajectories obtained from the aforementioned pretrained models. Table 1 shows the summary
of results obtained and the statistically best average reward accrued per domain is highlighted in
bold. Our method VLB-IRL improves upon the baselines indicating that VLB-IRL’s learned reward
function successfully explains the expert’s policy.

2The same RL algorithms are used for expert trajectory generation.
3Double blind review note: we will share our code once our paper gets accepted
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Table 1: Performance when optimal trajectories are provided. The average return and standard
deviation of the return are reported. The bold method statistically (t-test using a significance level of
0.01) outperforms other methods.

Algorithm LunarLander Hopper Walker2d HalfCheetah Ant

Random −195.92± 97.17 21.94± 24.36 1.16± 6.26 −282.06± 83.09 −59.50± 103.75

GAIL 255.58± 8.51 3518.80± 54.12 4529.11± 102.53 9551.28± 96.01 5321.00± 26.81
AIRL 239.11± 55.03 2611.74± 890.14 2524.16± 824.00 5342.70± 1291.19 4360.28± 139.10
f -IRL - 3458.61± 90.05 4595.97± 144.92 9618.82± 90.21 4037.52± 721.58

IQ-Learn - 3523.88± 14.83 4719.93± 35.33 9592.53± 64.74 5072.59± 79.30
VLB-IRL(ours) 267.99± 10.85 3588.41± 6.22 4779.76± 32.25 9677.64± 76.64 5422.10± 83.02

Expert 266.67± 12.73 3606.22± 4.06 4835.76± 52.30 9714.77± 154.35 5547.41± 1376.67

Learning performance We find that VLB-IRL continues to perform well in a limited data regime.
The empirical result demonstrates that VLB-IRL exhibits fairly good sample efficiency. With
increasing amount of data, the standard deviation of the return from the learned policy becomes lower
as shown in Figure 2, indicating better stability in the learned policy, which is a direct result of a
better reward function. To further analyze the training progress of VLB-IRL, we use Inverse Learning
Error (ILE) from Arora & Doshi (2021a), as ||V πE − V πL ||p where πE is the expert policy and πL is
the learned policy. Here we use the L2 norm and the result is presented in Figure 2. The decreasing
ILE shows that both the learned reward function is getting closer to the true reward function and the
learned policy is more similar to the expert policy.

Figure 2: Left: Performance on different number of expert trajectories. The return has been
normalized to [0, 1]. Right: ILE during the training. The training progress has been normalized to
[0, 1] due to different training steps for different environments. 0 represents the beginning of the
training and 1 represents the end of the training.

Performance on noisy trajectories In order to further test VLB-IRL’s generalizability, in our second
set of experiments, we provide noisy trajectories and examine if the learned reward function is robust
enough to learn the noisy expert’s preferences and perhaps outperform them. The noisy trajectories
are generated by using A2C for discrete environments and PPO for continuous environments in the
library RL-Baselines3 Zoo. Compared to PPO for discrete environments and TD3 for continuous
environments, they are less optimal and contain noisy actions in the trajectories. Compare the expert
performance in Table 1 and Table 2 for detail. The results presented in Table 2 show that VLB-IRL’s
accrues comparable or higher reward on average as compared to the noisy expert.

For Hopper, HalfCheetah, and Ant environments, the VLB-IRL’s learned policy outperforms the
noisy expert by 15.6%, 14.4%, and 11.7% respectively. However, previous IRL techniques fail to
generalize well when noisy trajectories are provided and we suspect that they fall short due to their
optimization objective and divergence metric listed in Table 4.

4.2 REALISTIC SCENARIO

To further examine the performance of VLB-IRL, we use Assistive Gym (Erickson et al., 2020), a
more realistic, robot-centered, and goal-based environment. For our experiments, we use environ-
ments with an active robot and a static human, such as FeedingSaywer, BedBathingSawyer, and
ScratchItchSawyer. A description of the environments can be found in Figure.3. We use SAC to
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Table 2: Performance when noisy trajectories are provided. The average return and standard deviation
of the return are reported. The bold method statistically (t-test using a significance level of 0.01)
outperforms other methods.

Algorithm LunarLander Hopper Walker2d HalfCheetah Ant

Random −195.92± 97.17 21.94± 24.36 1.16± 6.26 −282.06± 83.09 −59.50± 103.75

GAIL 238.11± 18.10 2644.29± 412.57 3489.23± 211.55 2682.65± 366.92 3884.23± 938.26
f -IRL - 2371.61± 236.14 3603.85± 164.74 2980.33± 124.99 4140.15± 508.96
EBIL 239.47± 54.81 2073.39± 89.69 3295.84± 52.73 2499.83± 496.12 1520.84± 575.88

IQ-Learn - 2617.43± 13.82 3612.85± 132.51 3201.72± 132.54 4738.80± 151.51
VLB-IRL(ours) 237.61± 7.66 2786.22± 13.57 3694.82± 117.15 3375.81± 109.29 5125.00± 121.72

Noisy Expert 240.60± 45.68 2409.77± 9.80 3873.86± 165.73 2948.79± 383.29 4588.19± 1258.34

train an expert policy and use the trained expert policy to generate 50 expert episodes. The detailed
hyperparameter can be found in Appendix C.

(a) FeedingSawyer (b) BedBathingSawyer (c) ScratchItchSawyer

Figure 3: Assistive gym environment. (a) A Sawyer robot holds a spoon with small spheres
representing food on the spoon and must bring this food to a person’s mouth without spilling it. (b) A
person lies on a bed in a random resting position while a Sawyer robot must use a washcloth tool
to clean off a person’s right arm. (c) A Sawyer robot holds a small scratching tool and must reach
towards a random target scratching location along a person’s right arm.

The challenge in Assistive Gym compared to Mujoco benchmark is that it is a goal-based environment
and the agent only receives a positive reward after the completion of the goal, unlike Mujoco where
the agent can receive positive rewards at every timestep. This goal-based environment will generate
much more noisy expert trajectories. Table 3 shows that VLB-IRL outperforms all other baselines
and VLB-IRL is the only method that can successfully achieve the goal.

Table 3: Performance on Assistive Gym environments. The bold method statistically (t-test using a
significance level of 0.01) outperforms other methods.

Algorithm FeedingSawyer BedBathingSawyer ScratchItchSawyer

Random −106.39± 9.21 −21.42± 3.26 −31.74±−5.50

GAIL −50.68± 76.33 −6.63± 14.38 −23.75± 6.48
AIRL −76.13± 15.58 −15.22± 6.95 −27.85± 8.40
f -IRL −65.38± 19.64 −9.69± 19.82 −25.91± 5.08

IQ-Learn −30.33± 49.39 −2.34± 11.93 −15.32± 9.55
VLB-IRL(ours) 88.11± 52.95 10.86± 13.94 11.94± 24.44

Expert 117.74± 30.42 67.60± 37.22 61.64± 29.16

5 RELATED WORK

IRL was introduced more than two decades ago and Abbeel & Ng (2004)’s Apprenticeship Learning,
which sought to learn the reward function with the maximum margin, provided significant early im-
petus to IRL’s development. Subsequently, Bayesian methods for IRL, which viewed the trajectories
as observations, were introduced Ramachandran & Amir (2007). Subsequently, Choi & Kim (2011)
searches for the maximum-a-posteriori reward function instead of settling for the posterior mean. As
it is hard to integrate over the entire reward space, the posterior mean may not be an ideal proposal
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for the reward inference. However, Bayesian methods are now known to be severely impacted by
the issue of being unable to scale to large domains. Toward this challenge, recently Chan & van der
Schaar (2021) scales Bayesian IRL to learn in the context of complex state spaces and mitigates
reward uncertainty by using a variational approximation of the posterior distribution over reward and
can be executed entirely offline.

Fu et al. (2018a) presents adversarial IRL (AIRL), a practical and scalable IRL algorithm based
on an adversarial reward learning formulation, which has received significant attention and is one
of our baseline techniques in this paper. More recently, Ghasemipour et al. (2019) demonstrated
that the objective in AIRL is equivalent to minimizing the reverse KL divergence between the joint
state-action distribution induced by the learned policy and that of the expert. However, this has been
disputed by Ni et al. (2020), which claims that AIRL is not optimizing reverse KL divergence in
the state-action marginal. Ni et al. (2020) also introduces f -IRL that optimizes the f -divergence
measure, and is one of our baseline methods as well.

Although VLB-IRL and AIRL can be identified as adversarial method, VLB-IRL and AIRL come
from different frameworks. AIRL comes from generative adversarial network guided cost learning
(GAN-GCL) and the discriminator is interpreted as Dθ,ϕ = exp(fθ)

exp(fθ)+πϕ
. By training Dθ,ϕ via binary

logistic regression and placing a special structure, i.e. advantage function, on the discriminator,
the reward can be recovered. VLB-IRL comes from the graphical model and the graphical model
naturally hold the conditional independence, leading to two proposed interpretation of optimality,
i.e. q(Ot|rt) and p(Ot|st, at). By optimizing the reverse KL divergence in ELBO of log-likelihood
of trajectory p(τ), i.e. KL(q(Ot|rt) ∥ p(Ot|st, at)), the reward can be recovered. In practice,
VLB-IRL is more flexible. AIRL only accepts stochastic policy, while VLB-IRL is compatible with
both stochastic and deterministic policy.

More recently, IQ-Learn has been proposed by Garg et al. (2021). IQ-Learn is a method for dynamics-
aware IL that avoids adversarial training by learning a single Q-function, implicitly representing
both reward and policy. However, it is not an IRL method. It sacrifices reward estimation accuracy
by indirectly recovering rewards through a soft Q-function approximator, which relies heavily on
dynamic environmental factors and doesn’t strictly adhere to the soft-Bellman equation.

Table 4: Relevant IRL and imitation learning methods.

Algorithm Optimization Space Optimization Objective Divergence measure Type

GAIL s, a ρ(s, a) Jensen-Shannon IL
AIRL τ ρ(s, a) Forward KL IRL
f -IRL s ρ(s) f -divergence IRL
EBIL τ ρ(s, a) Reverse KL IRL

IQ-Learn s, a ρ(s, a) f -divergence IL
VLB-IRL(ours) s, a O(s, a) Reverse KL IRL

6 CONCLUSION

In this paper, we derive a novel variational lower bound on the log-likelihood of the trajectories
for IRL and present an algorithm that maximizes this lower bound. By posting IRL through the
framework of a probabilistic graphical model with an optimality node, the optimization dual problem
becomes minimizing the reverse KL divergence between an approximate distribution of optimality
given the reward function and the true distribution of optimality given the trajectories. In particular, it
models IRL as an inference problem within the framework of PGMs. Our experiments demonstrate
that VLB-IRL has better generalization in the presence of noisy expert trajectories compared to
popular baselines. In addition, when (optimal) expert trajectories are available, VLB-IRL maintains a
performance advantage compared to existing algorithms. The formulation of the graphical model
opens up the possibility for a wide variety of new IRL techniques that can interpret the framework in
various ways. Extending VLB-IRL to multi-agent environments and extending the interpretation of
the optimality node for multi-agent learning is an intriguing direction.

A limitation of the VLB-IRL is that the tightness of its lower bound to the true log-likelihood
is yet to be established, and VLB-IRL is not guaranteed to converge to the optimum, which is a
limitation shared by many other adversarial IRL algorithms as well. Another common limitation of
the adversarial algorithm is the unstable training progress.
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A VARIATIONAL LOWER BOUND

log p(τ) = Eq[log p(τ)]

= Eq

[
log

p(τ,O)]

p(O|τ)

]
= Eq

[
log

p(τ,O)

p(O|τ)
q(O|r)
q(O|r)

]
= Eq

[
log

p(τ,O)

q(O|r)
q(O|r)
p(O|τ)

]
= Eq

[
log

p(τ,O)

q(O|r)

]
+ Eq

[
log

q(O|r)
p(O|τ)

]
.

The first term on the RHS is exactly our ELBO and the second term on the RHS is the gap between
ELBO and the true log-likelihood of expert trajectories.

ELBO = Eq

[
log

p(τ,O)

q(O|r)

]
= Eq

[
log

∫
r

p(τ,O, r)− log q(O|r)
]

= log p(s1) +
∑
t

Eq

[
log

∫
rt

p(Ot|rt)p(rt|st, at)p(st+1|st, at)p(at)− log q(Ot|rt)
]

= log p(s1) +
∑
t

Eq [log p(Ot|st, at) + log p(st+1|st, at) + log p(at)− log q(Ot|rt)]

= log p(s1) +
∑
t

[−KL(q(Ot|rt) ∥ p(Ot|st, at)) + log p(st+1|st, at) + log p(at)].

B PROOF

B.1 PROOF FOR LEMMA 1

Proof. Let x0 := E[X] and we have the following Taylor expansion:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(ξ(x))

2
(x− x0)

2 (12)

where ξ(x) ∈ (x0, x). Replacing x with the random variable X and taking the expectation results in,

E[f(x)] = f(x0) + f ′(x0)E[x− x0] + E
[
f ′′(ξ(x))

2
(x− x0)

2

]
= f(x0) + E

[
f ′′(ξ(x))

2
(x− x0)

2

]
.

If function f has a bounded second derivative, |f ′′(x)| < M for all x, then we have

|E[f(x)]− f(x0)| = |E[f(x)]− f(E[x])| ≤ ME[(X − x0)
2] = MVar(X).

B.2 PROOF FOR THEOREM 2

Proof. As Ot is a binary variable, p(Ot|st, at) and q(Ot | E[rt]) are Bernoulli distributions,

q(Ot = 0 | E[rt]) = 1− q(Ot = 1 | E[rt])
p(Ot = 0|st, at) = 1− p(Ot = 1|st, at)

We prove that q(Ot = 1 | E[rt]) is a valid candidate for approximating p(Ot = 1|st, at).

p(Ot = 1|st, at) =
∫
rt

p(Ot = 1|st, at, rt) p(rt|st, at) = Ert [p(Ot = 1|rt)] (using Eq. 2) (13)
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Let f(rt) := p(Ot = 1|rt), Eq. 13 now becomes

p(Ot = 1|st, at) = Ert [f(rt)] (14)

And

f(E[rt]) : = p(Ot = 1 | E[rt]) (15)
= q(Ot = 1 | E[rt]) (16)

Given the condition |p′′(Ot = 1|rt)| < M , Eq. 14 and Eq. 16, applying Lemma 1, we get

|E[f(rt)]− f(E[rt])| = |p(Ot = 1|st, at)− q(Ot = 1 | E[rt])| ≤ MVar(rt) (17)

B.3 PROOF FOR THEOREM 3

Proof. If p(Ot|st, at) is maximal, from Lemma 2, we obtain that

a∗t = argmax
at

p(Ot = 1|st, at) (18)

In addition, if qϕ(Ot|rt) is identical to pθ(Ot|st, at),

a∗t = argmax
at

p(Ot = 1|st, at)

= argmax
at

qϕ(Ot = 1|rt) (given the assumption above)

= argmax
at

σ(Aϕ(st, at)).

(19)

Here, Aϕ(st, a
∗
t ) parameterized by rϕ(st, at) has the highest value given st for any at, which best

explains the expert policy πE .

C IMPLEMENTATION AND HYPERPARAMETER

C.1 IMPLEMENTATION

In this section, we discuss several implementation details for making training stable and getting a
better reward function and learner policy.

Iterative updates. Many algorithms for IRL exhibit a nested structure, involving an inner loop
and an outer loop. The inner loop focuses on finding the optimal policy given parameterized rewards.
However, this step is costly and we can avoid this by applying the iterative updates. We borrow the
idea from Finn et al. (2016), updating the reward function and learning policy in parallel without
finding the optimal policy given parameterized rewards.

Learner Policy Rollouts Buffer. There are two reasons to use the learner policy rollouts buffer.
First, recall that in Section 2.3, we get the approximation of the distribution of optimality given
trajectory, p(Ot|st, at) by using a classifier Cθ classifying whether a trajectory comes from an expert
or learner. In supervised learning with deep neural networks, it is common practice to compute
gradient estimates based on a minibatch of samples rather than individual samples. It is essential to
ensure that the samples are independently and identically distributed (i.i.d) from a fixed distribution.
However, if we sample minibatches from the most recent learner policy, the i.i.d assumption cannot
be held anymore because they are correlated. This is similar to the scenario described in Mnih et al.
(2013). By applying the learner policy rollouts buffer, we can alleviate the problems of correlated
data and non-stationary distributions. Second, to avoid catastrophic forgetting, which impedes the
training process heavily, the simplest solution is to store past experiences. By including previous
experiences in the training set, the neural network benefits from a diverse range of samples, leading
to a reduced risk of catastrophic forgetting.
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C.2 HYPERPARAMETER AND OTHER IMPLEMENTATION DETAILS

Environment: We use the LunarLander-v2, Hopper-v3, Ant-v3, HalfCheetah-v3,
Walker2d-v3 from OpenAI Gym. We use FeedingSawyer-v1, BedBathingSawyer-v1,
ScratchItchSawyer-v1 from Assistive Gym.

Expert Policy: For OpenAI Gym environments, we readily obtain the expertly trained RL models
from the popular RL library RL-Baselines3 Zoo (Raffin, 2020). We use TD3 and PPO for continuous
and discrete action environments for optimal trajectories collection respectively. We use PPO and A2C
for continuous and discrete action environments for sub-optimal trajectories collection respectively.
For Assistive Gym environments, we train the expert policy using SAC from Stable-Baselines3. We
use policy network as [512, 512] and action noise with N (0, 0.2). The remaining hyperparameter
remains the default value.

Training Details: We train 6 algorithms namely VLB-IRL, IQ-Learn, GAIL, AIRL, f -IRL, and
EBIL to recover the expert reward function and imitate the expert behavior using the given expert
trajectories.

For OpenAI Gym environments, we train VLB-IRL using Algorithm 1. We use TD3 and PPO for
continuous and discrete action environments from the popular RL library Stable-Baselines3 respec-
tively. The hyperparameter for learner policy is listed in Table 5 and Table 7 and the unmentioned
hyperparameters are the default value in the Stable-Baselines3 package. The hyperparameters for
learner policy are borrowed from the RL-Baselines3 Zoo, which includes a collection of hyperparam-
eters for various kinds of algorithms and environments. The hyperparameter for the reward function
network and the classifier are listed in Table 8 and Table 10 respectively.

For Assistive Gym environments, we train VLB-IRL using Algorithm 1. We use SAC from the
popular RL library Stable-Baselines3. The hyperparameter for learner policy is listed in Table 6

For GAIL and AIRL, we use the Python package Imitation, which provides clean implemen-
tations of imitation and reward learning algorithms. For IQ-Learn, EBIL, and f -IRL, we refer to
their authors’ official implementation. We use the same hyperparameter setting for learner policy and
reward function network. as VLB-IRL except for AIRL. AIRL only accepts stochastic policy, which
is not true for TD3. Therefore, we use SAC as the underlying RL algorithm. The hyperparameter for
SAC is borrowed from Ni et al. (2020).

Table 5: Hyperparameter setting for learner policy for continuous action OpenAI Gym environments.

TD3 Hopper Ant HalfCheetah Walker2d

Learning rate 1e−3 1e−3 1e−3 1e−3

Gamma 0.99 0.98 0.98 0.98
Batch size 256 256 256 256

Gradient steps 1000 1000 1000 1000
Net arch [400, 300] [400, 300] [400, 300] [400, 300]

Buffer size 2000000 200000 200000 200000
Action noise N (0, 0.2) N (0, 0.2) N (0, 0.2) N (0, 0.2)

Table 6: Hyperparameter setting for learner policy for Assistive Gym environments.

SAC FeedingSawyer BedBathingSawyer ScratchItchSawyer

Learning rate 3e−4 3e−4 3e−4

Gamma 0.97 0.97 0.97
Batch size 256 256 256
Net arch [512, 512] [512, 512] [512, 512]

Action noise N (0, 0.2) N (0, 0.2) N (0, 0.2)
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Table 7: Hyperparameter setting for learner policy for discrete action OpenAI Gym environments.

PPO LunarLander

Learning rate 1e−3

Gamma 0.99
Batch size 100

Entropy coefficient 1e−2

Table 8: Hyperparameter setting for reward function network in OpenAI Gym environments.

MLP LunarLander Hopper Ant HalfCheetah Walker2d

Learning rate 1e−3 1e−3 1e−3 1e−3 1e−3

Net arch [16, 16] [16, 16] [32, 32] [32, 32] [32, 32]
Optimizer Adam Adam Adam Adam Adam
Batch size 64 256 256 256 256
Activation LeakyReLU LeakyReLU LeakyReLU LeakyReLU LeakyReLU

Table 9: Hyperparameter setting for reward function network in Assistive Gym environments.

MLP FeedingSawyer BedBathingSawyer ScratchItchSawyer

Learning rate 1e−3 1e−3 1e−3

Net arch [64, 64] [64, 64] [64, 64]
Optimizer Adam Adam Adam
Batch size 256 256 256
Activation LeakyReLU LeakyReLU LeakyReLU

Table 10: Hyperparameter setting for the classifier in OpenAI Gym environments.

MLP LunarLander Hopper Ant HalfCheetah Walker2d

Learning rate 1e−3 1e−3 1e−3 1e−3 1e−3

Net arch [16, 16] [16, 16] [32, 32] [32, 32] [32, 32]
Optimizer Adam Adam Adam Adam Adam
Batch size 64 256 256 256 256
Activation LeakyReLU LeakyReLU LeakyReLU LeakyReLU LeakyReLU

Table 11: Hyperparameter setting for the classifier in Assistive Gym environments.

MLP FeedingSawyer BedBathingSawyer ScratchItchSawyer

Learning rate 1e−3 1e−3 1e−3

Net arch [64, 64] [64, 64] [64, 64]
Optimizer Adam Adam Adam
Batch size 256 256 256
Activation LeakyReLU LeakyReLU LeakyReLU
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