
Graph Neural Networks with a Distribution of Parametrized Graphs

See Hian Lee * 1 Feng Ji * 1 Kelin Xia 2 Wee Peng Tay 1

Abstract
Traditionally, graph neural networks have been
trained using a single observed graph. However,
the observed graph represents only one possible
realization. In many applications, the graph may
encounter uncertainties, such as having erroneous
or missing edges, as well as edge weights that pro-
vide little informative value. To address these chal-
lenges and capture additional information previ-
ously absent in the observed graph, we introduce
latent variables to parameterize and generate mul-
tiple graphs. The parameters follow an unknown
distribution to be estimated. We propose a formu-
lation in terms of maximum likelihood estimation
of the network parameters. Therefore, it is possi-
ble to devise an algorithm based on Expectation-
Maximization (EM). Specifically, we iteratively
determine the distribution of the graphs using a
Markov Chain Monte Carlo (MCMC) method,
incorporating the principles of PAC-Bayesian the-
ory. Numerical experiments demonstrate improve-
ments in performance against baseline models on
node classification for both heterogeneous and
homogeneous graphs.

1. Introduction
Graph Neural Networks (GNNs) have facilitated graph rep-
resentational learning by building upon Graph Signal Pro-
cessing (GSP) principles and expanding their application
in the domains of machine learning. Moreover, GNNs have
demonstrated their effectiveness across a wide range of tasks
in domains such as chemistry (Gilmer et al., 2017a), recom-
mendation systems (Ying et al., 2018; Chen et al., 2022),
financial systems (Sawhney et al., 2021) and e-commerce
settings (Liu et al., 2022), among others. However, GSP and

*Equal contribution 1School of Electrical and Electronic En-
gineering, Nanyang Technological University, Singapore 2School
of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore. Correspondence to: Wee Peng Tay <wp-
tay@ntu.edu.sg>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

many GNNs rely on a fixed graph shift operator, such as the
adjacency or Laplacian matrix, to analyze and learn from
graph data, assuming that the given graph is accurate and
noise-free. This approach has inherent limitations, consider-
ing that graph data is often uncertain. There are also models
such as GTN (Yun et al., 2019) and GAT (Veličković et al.,
2018) that determine weighted graph structures or shift op-
erations in the training phase from multiple possibilities.
However, a single neighborhood feature aggregation mecha-
nism is usually learned and used for testing.

The uncertainty mentioned above stems from the existence
of multiple potential variations in graph constructions as a
universal optimal method does not exist. Structural noise,
which includes missing or spurious edges, and the absence
of informative edge weights, further contributes to the un-
certainty in graph data (Zhang et al., 2019; Dong & Kluger,
2023). Handling this uncertainty is crucial as the graph di-
rectly influences the results of both GSP and GNNs (Li et al.,
2021c).

Several GNN works have recognized that the provided graph
in benchmark datasets is suboptimal. For example, in (Top-
ping et al., 2022), a method was introduced to enhance the
provided graph by rewiring it at graph bottlenecks. Similarly,
in (Li et al., 2021a) and (Ye et al., 2020), approaches were
developed to reweigh edges, to reduce information flow at
cluster boundaries. Another perspective involves consider-
ing the given or observed graph as a particular realization
of a graph model, as discussed in (Zhang et al., 2019) (cf.
Appendix F on related works). In their work, a Bayesian
framework was adopted to learn a more robust model that
can withstand perturbations in graph topology. These col-
lective efforts underscore the common observation that the
observed graph is often imperfect, and determining the op-
timal graph is a non-trivial task, as it depends on both the
physical connections and the edge weights, which regulate
the rates of information transmission (Ji et al., 2023d).

Our work aligns with the viewpoint presented in (Zhang
et al., 2019). We conceptualize the observed graph as an
individual instance originating from a distribution of graphs,
which is influenced by one or more latent parameters. Nev-
ertheless, in contrast to (Zhang et al., 2019) which proposed
a Bayesian framework, we propose an EM framework for
graph learning and name our model EMGNN. Even though

1

Graph Neural Networks with a Distribution of Parametrized Graphs

both are probabilistic frameworks, the focus is distinctly
different. In the case of the Bayesian framework of (Zhang
et al., 2019), the focus is on estimating the posterior distri-
bution of model parameters given the data. As such, model
parameters are deemed as random variables trained by a
series of characteristically similar graphs. Meanwhile, in
our EM framework, we seek to maximize the log-likelihood
of the observed data in conjunction with the latent variables.
Additionally, we permit the generated graphs to demonstrate
more pronounced variations. Our main contributions are:

• We present a general framework for modeling the dis-
tribution of graphs to handle uncertainty in graph data.
The learned distribution provides valuable insights into
our model’s behavior.

• We formulate the graph learning problem as a maxi-
mum likelihood estimation (MLE) so that tools from
statistical learning can be applied. The new objective
subsumes the classical objective of minimizing empiri-
cal loss if the graph is deterministic.

• We evaluate our model on nine datasets in two dis-
tinct applications, and observe promising performance
compared to the respective baseline methods.

• We inspect the learned graph distribution, confirming
that it effectively captures the intricacies of heteroge-
neous graph datasets, thus validating the utility of our
model and framework.

Notations are in Appendix A and proofs are in Appendix G.

2. Preliminaries
2.1. Graph Neural Networks

Graph neural networks (Chen et al., 2020; Kang et al., 2023;
Brody et al., 2022; Lee et al., 2021; Zhao et al., 2023),
which are neural networks designed to operate on graphs,
typically employ the message-passing framework. Within
this framework, the features of each node are updated by
integrating with those of its neighboring nodes.

More specifically, suppose that we have a graph G = (V,E),
where V is the set of vertices and E is the set of edges.
Moreover, each node v ∈ V is associated with (initial) node
features represented by x0

v. The node features can then be
updated in the k-th layer as follows:

xk
v = σ

(
W kAGGR({xk−1

v | v ∈ N (v)})
)

(1)

where σ is an activation function, W k are the learnable
weights in the k-th layer andN (v) is the set of neighbors of
v. AGGR is a message aggregation function. The choice of
AGGR defines various variants of GNNs (Xu et al., 2019).

For example, the mean operator yields Graph Convolutional
Networks (GCN) (Kipf & Welling, 2017), while using the
attention mechanism results in Graph Attention Networks
(GAT) (Veličković et al., 2018).

In a GNN with K layers, the last layer outputs features
{xK

1 , . . . , xK
|V |}. For node classification, these features can

be used directly. Meanwhile, for a graph-level task, a READ-
OUT graph-level pooling function is needed to obtain the
graph-level representation (Xu et al., 2019).

2.2. Signal Processing over a Distribution of Graphs

GNN is closely tied to GSP’s theory (Shuman et al., 2013).
Briefly, given an undirected graph G, we consider a fixed
graph shift operator S such as its adjacency or Laplacian ma-
trix. A graph signal is a vector x = (xv)v∈V that associates
a number xv to each node v ∈ V . Intuitively, applying the
linear transformation S to x is considered as a “shift” of x.
If S is the normalized adjacency matrix, then it amounts to
the AGGR step of (1) for GCN. More generally, if P (·) is
a single variable polynomial, then plugging in S results in
the matrix P (S), which is called a convolution filter in GSP.
This notion of convolution appears in (Michael Defferrard,
2016), and has been widely used since then.

On the signal processing side, (Ji et al., 2023d) has devel-
oped a theory that generalizes traditional GSP. The authors
propose a signal processing framework assuming a family
of graphs are considered simultaneously, to tackle uncer-
tainties in graph constructions. Formally, it considers a dis-
tribution µ of graph shift operators Sλ parametrized by λ
in a sample space Λ. The work develops corresponding sig-
nal processing notions such as Fourier transform, filtering,
and sampling. In particular, a convolution takes the form
Eλ∼µ[Pλ(Sλ)], where Pλ(·) is a polynomial and Pλ(Sλ) is
an ordinary convolution with shift Sλ. Our work is based on
the idea that replaces Pλ(Sλ) with a more general filter such
as a GNN model. As a preview, unlike (Ji et al., 2023d), we
introduce an EM framework that simultaneously estimates
model parameters and the distribution µ.

3. The Problem Formulation
3.1. Distributions for Different Graph Types

Here, we outline how Λ, a parameter sample space, arises for
different graph types, showcasing why the proposed frame-
work is useful for graph-related tasks. Parameters λ ∈ Λ
can be scalars, vectors, or more general forms, enabling
task-specific graph parameterization and diverse graph gen-
eration. For instance, a specific λ can indicate the edge
weight for an edge type in heterogeneous graphs and be
employed to create varied weighted graphs. Details are task-
specific and provided in Section 5. Though the schemes are
simple and intuitive, there may be alternatives for Λ based

2

Graph Neural Networks with a Distribution of Parametrized Graphs

λ = 1 λ = 0.5

Heterogeneous graph

λ2 = 0.2

Homogeneous graph

λ1 =

Figure 1. For a heterogenous graph, we may use a parameter λ
to control the information transmission rate for each edge type.
For example, choosing λ = 1 or λ = 0.5 for the edge type be-
tween “disc” and “square” nodes yields different weighted graphs.
Conversely, in a homogeneous example with 5 initial edges, by
choosing λ1 = λ2 = 0.2, 20% of the initial and missing edges are
randomly removed and added, potentially forming a “pentagon”.

on other factors.

Heterogeneous graphs are graph structures characterized
by the presence of multiple node types and multiple edge
types, imparting a greater degree of complexity compared
to homogeneous graphs, which consist of a single node and
edge type. For a heterogeneous graph, the insight is that we
assign a parameter to each edge type, whose distribution is
to be estimated and used. Intuitively, in a model based on
message passing, the parameters for different edge types are
interpreted as different information transmission rates. Such
information is not observed in the given graph.

It is less obvious how Λ can be constructed for a homoge-
nous graph. Intuitively, we assume that the observed graph
contains “noisy” edges and has missing edges (cf. Zhang
et al. (2019)). Therefore, parameters that are interpreted as
probabilities for adding and removing edges from the ob-
served graph, can be introduced (see an example in Fig. 1).

Though we have different setups, a unified framework to
deal with both is proposed in the next section. To empha-
size the importance of having the correct µ on Λ, we note
the following result. Details are in Appendix G.1 to avoid
overloading the discussion with terms not used in the sequel.

Theorem 1. (Informal) If the parameterization λ ∈ Λ 7→
Sλ is sufficiently continuous, then the µ-expected feature
representation of a GNN model, whose layers are of the
form (1), changes continuously as the distribution µ varies.

Discussion: Intuitively, the result claims that if the parame-
terization is sufficiently regular, then similar distributions on
Λ yield GNN models with similar feature representations.
Hence, suppose there is a true graph G0 parameterized λ0,
whose associated GNN model gives a good feature represen-
tation. Instead of using a possibly “noisy” observed graph
G parameterized by λ, it might be beneficial to use a distri-
bution µ on Λ closer than δλ to δλ0

, even if µ is not a delta
distribution. It is less restrictive to allow non-delta graph
distributions. Moreover, we are also motivated by the insight
that there might be several node connections that contribute

with different importance to a learning task.

3.2. Maximum Likelihood Estimation

Motivated by the previous subsection, we consider a distri-
bution µ on a parameter (sample) space Λ ⊂ Rr of graphs
{Gλ, λ ∈ Λ}, with a fixed set of nodes V . The space Λ
can be finite, countably infinite, or even uncountable. For
each Gλ, there is a corresponding shift operator Sλ. We
usually assume that µ has a density function p(·) w.r.t. a
base measure on Λ. For example, if Λ is finite, we can use
the discrete counting measure as the base measure. On the
other hand, if Λ is a compact interval in R, then we can
choose the Lebesgue measure as the base measure.

Assume that each node v ∈ V is associated with features
xv . They are collectively denoted by x. Our framework de-
pends on a fixed GNN model architecture Ψ, e.g., GCN.
It outputs the learned embeddings z = Ψ(λ,x;θ) given
the node features x, the graph parameter λ, and the GNN
model parameters θ. These in turn are used to determine a
vector of labels ŷ. For a task-specific loss ℓ(·, ·) that com-
pares predicted ŷ and true label (vector) y, we may compute
LX(λ,θ) = ℓ(ŷ,y). We use X to denote the full informa-
tion {x,y}. We interpret X as a sample from a random
variable, denoted by X, of collective information of features
and labels.

An example of Ψ is the model described by (1). We may also
allow parameters θ and λ to determine W k. For example,
if θ = {θk1 , θk2 | 1 ≤ k ≤ K} and λ is a scalar parameter,
then one can choose a linear combination W k = θk1 + λθk2 .
Moreover, AGGR is determined by the shift Sλ associated
with Gλ.

In general, as λ follows an unknown distribution µ, it is hard
to find the optimal θ by minimizing Eλ∼µ[LX(λ,θ)] di-
rectly. On the other hand, the EM algorithm (Bishop, 2006)
enables the joint estimation of µ and θ if we can reformulate
the objective as an MLE.

To minimize the loss given X, the parameter θ is determined
by λ and vice versa. Therefore, Ψ(·,x; ·) becomes a random
GNN model that depends on λ,θ and input x. We aim to
identify a realization of the random models that makes the
observation X likely, i.e., there is less discrepancy between
the estimator labels ŷ and ground truth labels y measured
by the loss ℓ(ŷ,y). Motivated by the discussions above,
we consider the likelihood function p(λ,X | θ) on θ and
formulate the following MLE as our objective:

θ∗ = argmax
θ

p(X | θ) = argmax
θ

Eλ∼µ[p(λ,X | θ)].

(2)

Before discussing the main algorithm in subsequent subsec-
tions, we preview the roles of µ and LX(·, ·) in the algorithm.

3

Graph Neural Networks with a Distribution of Parametrized Graphs

We shall see that the EM algorithm outputs a distribution
µ̂ of λ, serving as an estimate of µ, by leveraging the PAC-
Bayesian framework (Guedj, 2019). In this framework, the
density of λ is proportional to the Gibbs posterior, depend-
ing on ℓ(·, ·). Consequently, µ̂ assigns higher probability
density to λ when the loss LX(λ,θ∗) is lower. Therefore,
we are minimizing the given loss as a main component of
the algorithm. In the above formulation, θ is the parameter
and µ is unknown before attaining θ. However, once θ is
determined, an estimation of µ is obtained using the Gibbs
posterior.

Example 1. Assume that µ is the delta distribution δλ0

supported on λ0, so that the graph Gλ0
is deterministic. If

we consider the Gibbs posterior, then we have p(X | θ) ∝
exp(−ηℓ(ŷ,y)) for a hyperparameter η, where ŷ depends
on both X = {x,y} and θ. Thus, maximizing p(X | θ) is
equivalent to the classical objective of minimizing ℓ(ŷ,y).

4. The Proposed Method and Its Derivation
4.1. EM for GNN

Optimizing (2) directly can be challenging, and we utilize
the EM algorithm that employs an iterative approach alter-
nating between the E-step and the M-step. Adapted to our
setting, the process unfolds as follows:

(a) E-step: Given parameters θ(t) at the t-th iteration, we
compute the expectation as the Q-function:

Q(θ | θ(t)) = Eλ∼p(·|X,θ(t))[log p(λ,X | θ)]. (3)

(b) M-step: θ(t+1) is updated as argmaxθ Q(θ | θ(t)).

The E-step: In the t-th iteration, in the same spirit as
the PAC-Bayesian framework (Guedj, 2019), we apply the
Gibbs posterior and assume that

p(λ,X | θ) ∝ exp(−η(t)LX(λ,θ))π0(λ,X), (4)

for a tunable hyperparameter η(t), while π0(·) is a prior
density of the joint (λ,X) independent of θ, representing
our initial knowledge regarding λ and X. In this expression,
LX(λ,θ) implicitly depends on the observations X. The
normalization constant is given by

C(θ) =

∫
(λ,X′)∈Λ×X

exp(−η(t)LX′(λ,θ))π0(λ,X
′) d(λ,X′)

= E(λ,X′)∼π0

[
exp(−η(t)LX′(λ,θ))

]
.

(5)

As a prior belief, we treat the observed X as a typical sample
such that the above average is (approximately) the same as
the average over graphs by fixing X (cf. Appendix H.1).

We assume that for each fixed X, there exists some prior
distribution with density p0,X(·) on Λ such that:

E(λ,X′)∼π0

[
exp(−η(t)LX′(λ,θ))

]
≈
∫
λ∈Λ

exp(−η(t)LX(λ,θ))p0,X(λ) d(λ)

=Eλ∼p0,X

[
exp(−η(t)LX(λ,θ))

∣∣∣X]
.

(6)

For notational simplicity, we use p0(·) to denote p0,X(·).
Correspondingly, Eλ∼p0

[
exp(−η(t)LX(λ,θ))

∣∣X]
is de-

noted by Eλ∼p0

[
exp(−η(t)LX(λ,θ))

]
. Hence, we have

C(θ) = Eλ∼p0

[
exp(−η(t)LX(λ,θ))

]
. (7)

On the other hand, given θ(t), we estimate p(λ | X,θ(t)) in
the subscript of E in (3). From (4), we have

p(λ | X,θ(t)) =
p(λ,X | θ(t))

p(X | θ(t))

∝ exp(−η(t)LX(λ,θ(t)))
π0(λ,X)

p(X | θ(t))
.

We assume that there is a prior p′0,t(·) such that p′0,t(λ) ∝
π0(λ,X)

p(X|θ(t))
, which is independent of θ. However, it is a func-

tion of t as θ(t) depends on t. By fixing X, the posterior is
written as

p(λ | X,θ(t)) ∝ exp(−η(t)LX(λ,θ(t)))p′0,t(λ). (8)

In our framework, we do not need to estimate the normal-
ization constant for (8).

Remark 1. From the above discussion, we see that pri-
ors p0(·) and p′0,t(·) play important roles. We discuss their
choices in Section 5 below. However, it is always desirable
to have a weaker prior assumption, under which the opti-
mizer can still be readily estimated.

The M-step: We now analyze the Q-function in more detail.
For convenience, we use pt(λ) to denote p(λ | X,θ(t)).

Combining (7) and (8), we express Q(θ | θ(t)) in (3) as:

Q(θ | θ(t))

=Eλ∼pt

[
log

exp(−η(t)LX(λ,θ))π0(λ,X)

C(θ)

]
=− η(t)Eλ∼pt [LX(λ,θ)] +D − logC(θ),

where D is a constant independent of θ.

To estimate logC(θ), consider the Jensen inequality:

−η(t)Eλ∼p0
[LX(λ,θ)] ≤ logC(θ).

4

Graph Neural Networks with a Distribution of Parametrized Graphs

This means that if logC(θ) is small, then necessarily so
is −η(t)Eλ∼p0 [LX(λ,θ)]. On the other hand, (Teh et al.,

2006) proposes to use E[log Y] +
var(Y)

2E(Y)2
to approximate

logE[Y] for a random variable Y . This is derived from the
second-order Taylor expansion of log Y at logE[Y]. In our
case, we have

logC(θ) ≈ −η(t)Eλ∼p0
[LX(λ,θ)]

+
var

(
exp(−η(t)LX(λ,θ))

)
2
(
Eλ∼p0

[
exp(−η(t)LX(λ,θ))

])2 . (9)

If −η(t)Eλ∼p0 [LX(λ,θ)] is the dominant component, then
we may use−η(t)Eλ∼p0 [LX(λ,θ)] as a proxy for logC(θ),
which is more manageable. In Appendix H.2, we numeri-
cally verify that this is indeed the case for our applications.

Hence, Q(θ | θ(t)) is approximated by

−η(t)
(
Eλ∼pt

[LX(λ,θ)]− Eλ∼p0
[LX(λ,θ)]

)
+D.

In summary, if we disregard η(t) and D, which are indepen-
dent of θ, we may minimize the following in the M-step:

J(θ) = Eλ∼pt
[LX(λ,θ)]− Eλ∼p0

[LX(λ,θ)]

=

∫
λ∈Λ

(
pt(λ)− p0(λ)

)
LX(λ,θ) dλ.

(10)

4.2. The Proposed Algorithm: EMGNN

To minimize J(θ) in (10), our strategy is to re-express it as
an expectation. For this purpose, we introduce a proposal
distribution. Let q(·) be the density function of a probability
distribution on the sample space Λ whose support includes
that of p0. Then we have:

J(θ) =

∫
λ∈Λ

q(λ)
pt(λ)− p0(λ)

q(λ)
LX(λ,θ) dλ

= Eλ∼q

[
pt(λ)− p0(λ)

q(λ)
LX(λ,θ)

]
.

We propose to minimize J(θ) by first randomly drawing
samples ΛT ′ = {λ1, . . . , λT ′} according to the density q(·).
Following that, we successively apply gradient descent to
pt(λt′)−p0(λt′)

q(λ) LX(λt′ ,θ) to update θ. Finally, given (8),
pt(λ) can be approximated by an empirical distribution
if we apply an MCMC method. The overall algorithm is
summarized in Algorithm 1 and illustrated in Figure 2.

Remark 2. In practice, the choices of the prior distributions
p0(·), q(·) and p′0,t(·) are hyperparameters. Moreover, in
our experiments, p′0,t(·) is set to be the same for every t. We
also discretize the continuous sample space Λ for simplicity
in analysis and computation.

Figure 2. Illustration of EMGNN.

Algorithm 1 EMGNN
Input: The observed graph G,
The node features x,
The number of EM iterations T ,
The number of epochs per M-step T ′,
The sample space Λ,
Prior distributions p0, p′0,t and q,
Function to convert samples to empirical distribution g(·),
Task-specific function to generate λ influenced graphs h(·),
A non-increasing step-size at′ .
Output: The learned representation z.
Initialization: Warm up Ψ using G.

1: for t = 1 to T do
2: AcceptedList(t) ←MCMC(Λ, p′0,t)
3: EmpProbDict(t) ← g(AcceptedList(t))
4: for t′ = 1 to T ′ do
5: Sample λt′ ∼ q.
6: Gλt′ ← h(λt′ , G)

7: Update via gradient descent: θ
(t)
t′+1 = θ

(t)
t′ −

at′∇(pt(λt′)−p0(λt′)
q(λt′)

LX(λt′ ,θ
(t)
t′))

8: θ
(t)
t′+1, zt′ ← Ψ(λt′ ,x;θ

(t)
t′)

9: end for
10: θ(t+1) ← θ

(t)
T ′

11: t← t+ 1
12: end for
13: zfinal = Eλ∼pT (·)

[
Ψ(λ,x;θ

(T)
T ′)

]

Remark 3. If we algorithmically plug in the delta distri-
bution supported on λ0 and p0(λ0) = 0 for p′0,t(·) and q(·)
respectively, then EMGNN reduces to the ordinary GNN
model on the graph Gλ0 .

Remark 4. Note that for the coefficient pt(λ)−p0(λ)
q(λ) , if

pt(λ) < p0(λ), then the loss LX(λ,θ) is to be made larger.
Intuitively, in this case, a “bad” λ is chosen. For the choice
of q(·), in practice, we propose two options in Section 5:
either the uniform distribution or q(·) = pt(·). Nonetheless,
q(·) can also be other appropriate density functions.

As we do not minimize J(θ) directly, we justify the pro-

5

Graph Neural Networks with a Distribution of Parametrized Graphs

posed approach under additional assumptions. We theoreti-
cally analyze the performance of the proposed (randomized)
algorithm in lines 5-12 of Algorithm 1, denoted by A. With
samples ΛT ′ , the algorithm A outputs θ̂ = A(ΛT ′). The
following expression is considered in algorithm A:

JΛT ′ (θ̂) =
1

T ′

∑
λt′∈ΛT ′

pt(λt′)− p0(λt′)

q(λt′)
LX(λt′ , θ̂).

We assume that after translation and scaling by posi-
tive constant of LX(λ, ·) if necessary, the expression
pt(λ)−p0(λ)

q(λ) LX(λ,θ) always belong to [0, 1]. The follow-
ing notions are well-known.
Definition 1. A differentiable function f is α-Lipschitz if
for all x in the domain of f , we have ∥∇f(x)∥ ≤ α. It is
β-smooth if its gradient is β-Lipschitz.

Denote by 1{pt(·)≥p0(·)}(λ) the indicator that is 1 if pt(λ) ≥
p0(λ), and 0 otherwise. Let b1 = Eλ∼q

[
1{pt(·)≥p0(·)}

]
. In-

tuitively, it computes the measure of λ, for which pt(·) is
larger. On the other hand, let b2 = Eλ∼q

[
|pt(λ)−p0(λ)|

q(λ)

]
,

and γ = supλ∈Λ 1/q(λ).
Theorem 2. Assume for any λ, the loss LX(λ, ·) is convex,
α-Lipschitz and β-smooth. Let b1, b2, γ be defined as above.
If for every t′ ≤ T ′, the non-increasing step-size in the algo-
rithm A satisfies at′ ≤ min{2/(βγ), c/t′} for a constant c,
then there is a constant C independent of T ′, α such that∣∣∣EA,ΛT ′

[
JΛT ′ (θ̂)− J(θ̂)

]∣∣∣ ≤ ϵ = C

(
b22α

2

T ′

) 1
βγc(1−b1)+1

.

Remark 5. From the result, we see that if b1 is close to 1,
i.e, the set {λ | pt(λ) ≥ p0(λ)} has a large measure, then
the expected error decays at a rate close to T ′−1.

4.3. A Brief Discussion on Testing

As our framework deals with a distribution of graphs,
during testing, the final learned representation is zfinal =

Eλ∼pT

[
Ψ(λ,x;θ

(T)
T ′)

]
(cf. Theorem 1). The learned model

parameters are a particular realization of the possible ran-
dom models that align with the observed data X and the mul-
tiple graphs influence the final embeddings based on their
respective likelihoods. The embedding zfinal is subjected to
a softmax operation to obtain ŷ for node classification tasks,
while a READOUT function is applied for graph-level tasks.

5. EXPERIMENTS
We study node classification for heterogeneous and homoge-
neous graphs. In Appendix B and Appendix E, we explore
chemical datasets and out-of-distribution (OOD) detection,
respectively. Additionally, in Appendix C and Appendix D,
we provide dataset and implementation details, and discuss
model complexity.

5.1. Heterogeneous Graphs

5.1.1. THE EXPERIMENTAL SETUP AND BASELINES

As outlined in Section 3.1, it is more natural to apply the
framework to heterogeneous graphs. Let G be such a graph
and assume with ω edge types. To apply the framework, it
suffices to specify the sample parameter space. We introduce
a vector of latent parameters λ = {λ1, . . . , λω}, where each
λi ∈ [0, 1] and

∑ω
i=1 λi = 1. The number λi is the weight

for the i-th edge type. Hence, the sample parameter space
is the (w − 1)-simplex, denoted by Λ. For a chosen λ, the
associated weighted graph Gλ has adjacency matrix

Aλ =

ω∑
i=1

λiAi, (11)

where Ai is the edge type specific adjacency matrix corre-
sponding to the i-th edge type. Note that when any λi = 0,
the edges of the associated edge types are removed. For
our model, we discretize the interval [0, 1] in increments of
0.05, and the resulting discretized sample parameter space
is denoted by Λ̂.

The heterogeneous graph datasets used are the same as those
in Yun et al. (2019) and Lee et al. (2022). These datasets
include two citation networks DBLP and ACM, as well as a
movie dataset IMDB. They have similar edge type structures
(cf. Appendix C.1). For example, IMDB has three node
types (Movie (M), Actor (A), Director (D)) and two edge
types (MD, MA). Hence, the parameter is λ = (λ, 1− λ).

We assess our approach against seven baseline models.
Specifically, GAT, GCN, LSM_GCN (Ma et al., 2019) and
SBM_GCN (Ma et al., 2019) are designed for homogeneous
graphs, while GTN (Yun et al., 2019), Simple-HGN (Lv
et al., 2021) and SeHGNN (Yang et al., 2023) are state-of-
the-art models developed for heterogeneous graphs. Our
framework, applicable to diverse GNNs, is exemplified with
a GCN backbone, named EM-GCN. We consider different
variants of EM-GCN, based on choices of p0(·), p′0,t(·), q(·),
as summarized in Table 1.

Table 1. Variants of EM-GCN with different p0(·), p′0,t(·), q(·).
For the nomenclature, we use ‘u’ for the uniform distribution, ‘d’
for the delta distribution, and ‘t’ for the adaptive distribution that
depends on t.

p0(·) p′0,t(·) q(·) Model

Unif(Λ̂) Unif(Λ̂) pt(·) EM-GCN[uut]
Unif(Λ̂) Unif(Λ̂) Unif(Λ̂) EM-GCN[uuu]
δλ0

Unif(Λ̂) pt(·) EM-GCN[dut]
δλ0

Unif(Λ̂) Unif(Λ̂) EM-GCN[duu]

6

Graph Neural Networks with a Distribution of Parametrized Graphs

Table 2. Heterogeneous node classification task. The results shown are averaged over ten runs and accompanied by the standard deviation.
The best performance is boldfaced and the second-best performance is underlined.

IMDB ACM DBLP
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN 61.91 ± 0.67 60.91 ± 0.57 91.92 ± 0.40 92.00 ± 0.41 94.60 ± 0.31 93.88 ± 0.36
GAT 63.54 ± 1.10 61.87 ± 0.95 92.61 ± 0.36 92.68 ± 0.36 94.48 ± 0.22 93.74 ± 0.27

LSM_GCN 62.65 ± 1.73 61.84 ± 1.55 92.03 ± 0.23 92.09 ± 0.24 89.38 ± 0.30 88.35 ± 0.32
SBM_GCN 63.43 ± 0.60 62.50 ± 0.43 91.85 ± 0.33 91.93 ± 0.34 89.40 ± 0.33 88.37 ± 0.34

GTN 60.58 ± 2.10 59.12 ± 1.58 92.12 ± 0.62 92.23 ± 0.60 94.17 ± 0.26 93.59 ± 0.40
Simple-HGN 58.91 ± 1.06 58.30 ± 0.34 92.73 ± 0.21 92.56 ± 0.42 94.48 ± 0.38 93.69 ± 0.32

SeHGNN 62.13 ± 2.38 60.62 ± 1.95 92.45 ± 0.17 92.51 ± 0.16 94.86 ± 0.14 94.14 ± 0.19

EM-GCN[uut] 64.78 ± 1.24 63.36 ± 0.80 92.70 ± 0.26 92.78 ± 0.26 95.06 ± 0.39 94.41 ± 0.45
EM-GCN[uuu] 63.35 ± 0.79 62.25 ± 0.59 92.35 ± 0.38 92.45 ± 0.38 94.95 ± 0.24 94.28 ± 0.28
EM-GCN[dut] 62.49 ± 0.87 61.55 ± 0.71 92.31 ± 0.43 92.41 ± 0.42 94.89 ± 0.17 94.15 ± 0.23
EM-GCN[duu] 62.01 ± 0.55 61.15 ± 0.46 92.18 ± 0.52 92.29 ± 0.52 95.02 ± 0.19 94.34 ± 0.20

5.1.2. RESULTS

Results are shown in Table 2. Similar to recent findings
(Lv et al., 2021), GCN and GAT are observed to perform
competitively against models designed for heterogeneous
graphs such as GTN under appropriate settings. Meanwhile,
EM-GCN[uut] consistently outperforms other variants in
our framework, in both micro and macro F1 scores. In par-
ticular, the superior performance of EM-GCN[uut], EM-
GCN[uuu], EM-GCN[dut], and EM-GCN[duu] compared
to GCN indicates the effectiveness of our distribution-based
framework.

EM-GCN[uut] also often surpasses baselines models with at-
tention mechanisms, namely GAT, Simple-HGN, SeHGNN,
and GTN, despite not incorporating any attention mecha-
nisms. This could be attributed to the construction of multi-
ple graphs, which may form instances whose information is
similar to what is achieved with semantic attention. In ad-
dition, the model may extract additional useful interactions
from other graph instances, enhancing its performance.

Both LSM_GCN and SBM_GCN are based on the varia-
tional approach. These two methods employ explicit para-
metric graph distribution models, namely, latent space mod-
els (LSM) and stochastic block models (SBM). The training
procedure estimates the (deterministic) parameters of the
distribution model, which then determines the graph distri-
bution. In principle, this is different from our framework,
where we parameterize the graphs and learn a distribution
on the sample space of parameters, which then determines a
distribution of graphs. Our approach can be more flexible
as no explicit graph distribution model is assumed. As ex-
pected, we observe that EM-GCN[uut] consistently outper-
forms LSM_GCN and SBM_GCN. However, LSM_GCN
and SBM_GCN are computationally more efficient.

5.1.3. FURTHER ANALYSIS

Ablation study: For EM-GCN[dut] and EM-GCN[duu], λ0

for the delta function is set to be any λ ∈ Λ\Λ̂. Conse-
quently, p0(·) will be 0 with probability 1 w.r.t q(·) on Λ̂.
Hence, for these variants, there is no “bad” λ such that the
corresponding iteration increases LX(·, ·) (cf. Remark 4).

From Table 2, we see that EM-GCN[uut] outperforms EM-
GCN[dut], along with EM-GCN[uuu] frequently outper-
forming EM-GCN[duu]. They indicate that increasing the
loss for a “bad” λ is beneficial as it penalizes deviations
from desirable graphs.

The learned distribution: We examine the learned empirical
distributions, depicted in Figure 3. Across all datasets, we
notice that the empirical probability of λ is relatively high
within the range of approximately [0.4, 0.6]. This suggests
a possible explanation for the decent performance of GCN
on a single graph with uniform edge weights.

For IMDB, (11) is of the form λAMD + (1 − λ)AMA. We
observe that λ = 1 has a relatively lower probability com-
pared to λ = 0. When λ = 1, it implies that edges in AMA
are all removed. This indicates that the MA relation is more
crucial than the MD relation. This observation might be
due to MA having an edge density more than triple that
of MD. Similarly, for the ACM dataset, where the dispar-
ity in edge density is also substantial, (11) takes the form
λAPA + (1 − λ)APS. Here, P, A, S stand for Paper, Au-
thor, Subject. The shift of λ towards 1 indicates that the
PA relation is more significant than PS, and agrees with the
higher density of PA type. The results demonstrate that our
approach implicitly captures such key graph features.

7

Graph Neural Networks with a Distribution of Parametrized Graphs

Table 3. Node classification on homogeneous graphs following the setup of Zhang et al. (2019).
Cora Citeseer Pubmed

5 labels 10 labels 20 labels 5 labels 10 labels 20 labels 5 labels 10 labels 20 labels

GCN 74.62 ± 0.54 75.30 ± 0.47 81.37 ± 0.31 54.24 ± 1.26 66.07 ± 0.68 70.19 ± 0.46 69.96 ± 0.65 72.96 ± 0.58 78.45 ± 0.44
DropEdge 74.79 ± 0.56 75.88 ± 0.19 81.46 ± 0.64 54.44 ± 2.54 67.59 ± 1.41 71.23 ± 1.26 71.69 ± 0.50 73.14 ± 0.33 78.50 ± 0.54
RSGNN 76.80 ± 3.19 78.23 ± 2.62 80.79 ± 0.91 59.97 ± 1.89 68.41 ± 0.94 69.73 ± 0.53 70.45 ± 0.78 70.92 ± 0.86 77.55 ± 0.46
BGCN 75.97 ± 0.54 76.52 ± 0.50 81.18 ± 0.48 56.58 ± 0.96 70.61 ± 0.69 72.11 ± 0.40 70.51 ± 1.61 73.36 ± 1.23 76.55 ± 0.65

EM-GCN 74.44 ± 0.76 76.71 ± 0.46 82.24 ± 0.48 58.04 ± 2.24 70.65 ± 1.10 72.13 ± 0.96 74.03 ± 0.55 74.93 ± 0.24 78.96 ± 0.38

(a) IMDB (b) DBLP

(c) ACM

Figure 3. Empirical distribution of pt(·) from the final E-step.

5.2. Homogeneous Graphs

5.2.1. THE EXPERIMENTAL SETUP AND BASLINES

For G = (V,E), we follow Section 3.1 for the design of
Λ. Specifically, we propose to parametrize graphs by a pair
λ = {λ1, λ2} with λ1, λ2 ∈ [0, 0.2]. Here, λ1 is the prob-
ability of randomly removing edges from the graph, to ac-
count for possible “noisy edges” in the observed graphs. On
the other hand, λ2 is the probability of randomly introducing
edges from a pre-constructed subset E′ of all missing edges.
More specifically, there are n(n− 1)/2 possible edges be-
tween pairs of distinct nodes of size |V | = n. For each
pair of nodes v, v′ without an edge connection in G, we
compute the cosine similarity of their node features. The
edge set E′ is obtained from including node pairs whose co-
sine similarities are above a threshold τ (see Appendix C.2).
It is intuitively considered as the set of “likely” missing
edges based on feature similarities. Notice that λ does not
determine a unique graph, we need to slightly modify Algo-
rithm 1 when applying MCMC (see Appendix C.4).

The most relevant benchmark is BGCN (Zhang et al., 2019)
for homogeneous graphs, based on a Bayesian approach to
infer the graph distribution. As our construction of Λ in-
volves edge removal and addition, we also consider DropE-

dge (Rong et al., 2020) and RSGNN (Dai et al., 2022),
where the former randomly removes edges at each epoch
and the latter learns a denser graph using a trained link pre-
dictor. The experimental setup follows exactly that from
Zhang et al. (2019), wherein for each dataset, we evalu-
ate the performance of the algorithms under limited data
scenarios where only 10 or 5 labels per class are available.

5.2.2. RESULTS

Based on Table 2 and the ablation study in Section 5.1.3,
we use the EM-GCN[uut] variant for EM-GCN. Results are
shown in Table 3. Overall, across all datasets, EM-GCN
surpasses the performance of BGCN and DropEdge and
frequently outperforms RSGNN. In principle, DropEdge
and RSGNN do not leverage the potential of a distribution of
graphs, which is fundamentally different from our approach.

5.2.3. FURTHER ANALYSIS

Heterophilic graphs: Recall that a graph is heterophilic
if many edges are connecting nodes with different labels.
In particular, nodes from the same class are not grouped.
Hence, as BGCN has a clustering mechanism, we expect
that it might face challenges for heterophilic graphs. On the
other hand, based on the construction of Λ, EM-GCN may
generate λ such that the associated graph reduces inter-class
edges while adding intra-class edges. Hence, we expect
EM-GCN should significantly outperform BGCN for het-
erophilic graphs, which is verified by results in Table 4.

EM-GCN is based on the “unsuitable” backbone GCN,
which suffers from the same problem as BGCN. Even so,
the performance of EM-GCN is much closer to benchmarks
ACM-GCN+ (Luan et al., 2022), ACMP (Wang et al., 2023)
and GBK-GNN (Du et al., 2022) dedicated to heterophilic
graphs. This validates our proposed construction of Λ. Fur-
thermore, our framework can be applied to other backbone
models, potentially leading to performance improvements.
Therefore, we introduce a variant of our model, EM-ACM,
with ACM-GCN+ as the backbone model. From Table 4,
we see that EM-ACM generally outperforms its SOTA back-
bone. This can be reasonably attributed to the use of a dis-
tribution of graphs.

Meanwhile, GBK-GNN incorporates attention mechanisms

8

Graph Neural Networks with a Distribution of Parametrized Graphs

Figure 4. Performance comparison for graph perturbation.

and relies on a bi-kernel to capture both positive and nega-
tive adjacent node correlations. While GBK-GNN does out-
perform its simplified counterpart GAT, EM-ACM demon-
strates an overall superior performance. Notably, even EM-
GCN outperforms GBK-GNN on the Wisconsin dataset.

Table 4. Node classification on heterophilic graphs. The setup and
data splits follow Pei et al. (2020).

Texas Wisconsin Cornell

GAT 52.20 ± 6.60 49.40 ± 4.10 61.90 ± 5.10
GCN 55.14 ± 5.16 51.76 ± 3.06 60.54 ± 5.30
DropEdge 57.57 ± 4.94 57.45 ± 5.47 60.54 ± 5.30
RSGNN 68.38 ± 5.26 68.82 ± 7.25 60.96 ± 6.90
BGCN 57.96 ± 6.77 61.37 ± 4.72 56.48 ± 6.67

GBK-GNN 81.08 ± 4.88 74.27 ± 2.18 84.21 ± 4.33
ACM-GCN+ 86.76 ± 4.26 86.86 ± 2.91 84.05 ± 7.88
ACMP 86.20 ± 3.00 86.10 ± 4.00 85.40 ± 7.00

EM-GCN 79.46 ± 4.26 83.73 ± 4.34 77.30 ± 4.10
EM-ACM 88.38 ± 5.14 87.06 ± 2.51 85.14 ± 6.54

Robustness: As discussed in Section 3.1, our approach
might be resistant to errors in the observed graph, as we are
not focusing on a single graph. To verify, we consider the
Cora graph G and randomly perturb r% of edges (by adding
new edges and removing existing edges) for 5 ≤ r ≤ 30.
We compare EM-GCN against four other methods: GCN,
GKDE (Zhao et al., 2020), BGCN, and DropEdge, while
observing only the perturbed graph. From the results in
Fig. 4, we observe that EM-GCN outperforms the mentioned
baselines, and the gap in accuracies widens as r increases.
We also observe that BGCN, which has certain common
characteristics to our approach such as being able to output
graph distributions, outperforms the other benchmarks. This
suggests the usefulness of this type of GNNs.

6. Conclusion
In this paper, we explore using a distribution of parametrized
graphs for training a GNN in an EM framework. Through

a probabilistic framework, we handle the uncertainty in
graph structures stemming from various sources. Our ap-
proach enables the model to handle multiple graphs where
the prediction loss is utilized to estimate the likelihood of
the graphs. The performance is proved as we provide it with
a wider array of graphs, which it can then sift through to
acquire more valuable information or remove noise.

A limitation of our model is that although it can also improve
the performance of attention-based GNNs, the extra benefit
is less than GNN models without the attention mechanism.
For future work, we shall investigate how to synergize our
approach with attention-based GNNs more effectively.

Acknowledgements
The first author is supported by Shopee Singapore Private
Limited under the Economic Development Board Industrial
Postgraduate Programme (EDB IPP). The programme is a
collaboration between Shopee and Nanyang Technological
University, Singapore. The third author is supported in part
by the Nanyang Technological University SPMS Collabora-
tive Research Award 2022, Singapore Ministry of Education
Academic Research Fund Tier 2 grants MOE-T2EP20221-
0003 and MOE-T2EP20120-0013. The remaining authors
are supported in part by the Singapore Ministry of Education
Academic Research Fund Tier 2 grant MOE-T2EP20220-
0002, and the National Research Foundation, Singapore and
Infocomm Media Development Authority under its Future
Communications Research and Development Programme.

Impact Statement
This paper introduces a research work aimed at pushing the
boundaries of the Machine Learning field. There are many
potential societal consequences of our work, none of which
we feel must be specifically highlighted here.

References
Bishop, C. Pattern Recognition and Machine Learning.

Springer, 2006.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? In International Conference on
Learning Representations, 2022.

Cen, Y., Hou, Z., Wang, Y., Chen, Q., Luo, Y., Yu, Z.,
Zhang, H., Yao, X., Zeng, A., Guo, S., Dong, Y., Yang,
Y., Zhang, P., Dai, G., Wang, Y., Zhou, C., Yang, H., and
Tang, J. Cogdl: A comprehensive library for graph deep
learning. In Proceedings of the ACM Web Conference
2023 (WWW’23), 2023.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In Proceedings

9

Graph Neural Networks with a Distribution of Parametrized Graphs

of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pp. 1725–1735. PMLR, 13–18 Jul 2020.

Chen, Y., Yang, M., Zhang, Y., Zhao, M., Meng, Z., Hao,
J., and King, I. Modeling scale-free graphs with hy-
perbolic geometry for knowledge-aware recommenda-
tion. In Proceedings of the 15th ACM International
Conference on Web Search and Data Mining, WSDM
’22, pp. 94–102, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450391320.
doi: 10.1145/3488560.3498419. URL https://doi.
org/10.1145/3488560.3498419.

Dai, E., Jin, W., Liu, H., and Wang, S. Towards robust graph
neural networks for noisy graphs with sparse labels. In
Proc. of the 15th ACM International WSDM Conference,
2022.

Dong, M. and Kluger, Y. Towards understanding and re-
ducing graph structural noise for gnns. In Proceedings of
the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Du, L., Shi, X., Fu, Q., Ma, X., Liu, H., Han, S., and Zhang,
D. Gbk-gnn: Gated bi-kernel graph neural networks
for modeling both homophily and heterophily. In Pro-
ceedings of the ACM Web Conference 2022, WWW ’22,
pp. 1550–1558, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450390965. doi:
10.1145/3485447.3512201.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Confer-
ence on Machine Learning, ICML’17, pp. 1263–1272.
JMLR.org, 2017a.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 1263–1272. PMLR, 06–11
Aug 2017b.

Guedj, B. A primer on PAC-Bayesian learning. arXiv
preprint arXiv:1901.05353, 2019.

Hardt, M., Recht, B., and Singer, Y. Train faster, gener-
alize better: stability of stochastic gradient descent. In
Proceedings of the 33th International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 1225–1234. PMLR, Jun 2016.

Ji, F., Jian, X., and Tay, W. P. On distributional graph signals.
arXiv:2302.11104, 2023a.

Ji, F., Lee, S., Zhao, K., Tay, W. P., and Yang, J. Distri-
butional signals for node classification in graph neural
networks. arXiv:2304.03507, 2023b.

Ji, F., Lee, S. H., Meng, H., Zhao, K., Yang, J., and Tay, W. P.
Leveraging label non-uniformity for node classification
in graph neural networks. In International Conference on
Machine Learning, 2023c.

Ji, F., Tay, W. P., and Ortega, A. Graph signal processing
over a probability space of shift operators. IEEE Trans-
actions on Signal Processing, 71:1159–1174, 2023d. doi:
10.1109/TSP.2023.3263675.

Kang, Q., Zhao, K., Song, Y., Wang, S., and Tay, W. P.
Node embedding from neural Hamiltonian orbits in graph
neural networks. In Proc. International Conference on
Machine Learning, Haiwaii, USA, Jul. 2023.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Ri-
ley, P. Molecular graph convolutions: moving beyond fin-
gerprints. Journal of Computer-Aided Molecular Design,
pp. 595–608, 2016. doi: 10.1007/s10822-016-9938-8.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. International
Conference on Learning Representations (ICLR), 2017.

Lee, S. H., Ji, F., and Tay, W. P. Learning on heterogeneous
graphs using high-order relations. In ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3175–3179, 2021. doi:
10.1109/ICASSP39728.2021.9413417.

Lee, S. H., Ji, F., and Tay, W. P. SGAT: Simplicial graph
attention network. In International Joint Conference on
Artificial Intelligence, 2022.

Li, H., Cao, J., Zhu, J., Liu, Y., Zhu, Q., and Wu, G. Curva-
ture graph neural network. Information Sciences, 2021a.
doi: 10.1016/j.ins.2021.12.077.

Li, M., Zhou, J., Hu, J., Fan, W., Zhang, Y., Gu, Y., and
Karypis, G. Dgl-lifesci: An open-source toolkit for deep
learning on graphs in life science. ACS Omega, 2021b.

Li, R., Yuan, X., Radfar, M., Marendy, P., Ni, W., O’Brien,
T., and Casillas-Espinosa, P. Graph signal processing,
graph neural network and graph learning on biological
data: A systematic review. IEEE Reviews in Biomedical
Engineering, PP:1–1, 10 2021c. doi: 10.1109/RBME.
2021.3122522.

Liu, W., Zhang, Y., Wang, J., He, Y., Caverlee, J., Chan, P.
P. K., Yeung, D. S., and Heng, P.-A. Item relationship
graph neural networks for e-commerce. IEEE Transac-
tions on Neural Networks and Learning Systems, 33(9):
4785–4799, 2022. doi: 10.1109/TNNLS.2021.3060872.

10

https://doi.org/10.1145/3488560.3498419
https://doi.org/10.1145/3488560.3498419

Graph Neural Networks with a Distribution of Parametrized Graphs

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Revisiting heterophily for
graph neural networks. Advances in neural information
processing systems, 35:1362–1375, 2022.

Lv, Q., Ding, M., Liu, Q., Chen, Y., Feng, W., He, S., Zhou,
C., Jiang, J., Dong, Y., and Tang, J. Are we really making
much progress? revisiting, benchmarking and refining
heterogeneous graph neural networks. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, KDD ’21, pp. 1150–1160,
2021. doi: 10.1145/3447548.3467350.

Ma, J., Tang, W., Zhu, J., and Mei, Q. A flexible generative
framework for graph-based semi-supervised learning. In
Advances in Neural Information Processing Systems, pp.
3276–3285, 2019.

Michael Defferrard, Xavier Bresson, P. V. Convolutional
neural networks on graphs with fast localized spectral
filtering. In Proc. of the 29th International Conference
on Neural Information Processing Systems, 2016.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks,
2020.

Rong, Y., Huang, W., Xu, T., and Huang, J. DropEdge:
Towards deep graph convolutional networks on node clas-
sification. In International Conference on Learning Rep-
resentations, 2020.

Sawhney, R., Agarwal, S., Wadhwa, A., and Shah, R. Ex-
ploring the scale-free nature of stock markets: Hyper-
bolic graph learning for algorithmic trading. In Pro-
ceedings of the Web Conference 2021, WWW ’21, pp.
11–22, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450383127. doi: 10.
1145/3442381.3450095. URL https://doi.org/
10.1145/3442381.3450095.

Shen, C., Luo, J., and Xia, K. Molecular geometric deep
learning, 2023.

Shui, Z. and Karypis, G. Heterogeneous molecu-
lar graph neural networks for predicting molecule
properties. In 2020 IEEE International Confer-
ence on Data Mining (ICDM), pp. 492–500, Los
Alamitos, CA, USA, nov 2020. IEEE Computer
Society. doi: 10.1109/ICDM50108.2020.00058. URL
https://doi.ieeecomputersociety.org/
10.1109/ICDM50108.2020.00058.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and
Vandergheynst, P. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis
to networks and other irregular domains. IEEE Signal
Processing Magazine, 30(3):83–98, 2013.

Teh, Y. W., Newman, D., and Welling, M. A collapsed vari-
ational bayesian inference algorithm for latent dirichlet
allocation. In Proc. of the 19th International Conference
on Neural Information Processing Systems, 2006.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation- and translation-equivariant neural networks for
3d point clouds, 2018.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong,
X., and Bronstein, M. M. Understanding over-squashing
and bottlenecks on graphs via curvature. International
Conference on Learning Representations, 2022.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph Attention Networks. Interna-
tional Conference on Learning Representations, 2018.

Villani, C. Optimal Transport, Old and New. Springer,
2009.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,
G., Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. arXiv preprint arXiv:1909.01315, 2019.

Wang, Y., Yi, K., Liu, X., Wang, Y. G., and Jin, S. ACMP:
Allen-Cahn message passing with attractive and repulsive
forces for graph neural networks. In International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=4fZc_79Lrqs.

Wu, Q., Chen, Y., Yang, C., and Yan, J. Energy-based
out-of-distribution detection for graph neural networks.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=zoz7Ze4STUL.

Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X.,
Li, Z., Luo, X., Chen, K., Jiang, H., and Zheng, M. Push-
ing the boundaries of molecular representation for drug
discovery with the graph attention mechanism. Jour-
nal of Medicinal Chemistry, pp. 8749–8760, 2020. doi:
10.1021/acs.jmedchem.9b00959.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Yang, X., Yan, M., Pan, S., Ye, X., and Fan, D. Simple and
efficient heterogeneous graph neural network. In AAAI
Conference on Artificial Intelligence, 2023.

Ye, Z., Liu, K. S., Ma, T., Gao, J., and Chen, C. Curvature
graph network. Proceedings of the 8th International

11

https://doi.org/10.1145/3442381.3450095
https://doi.org/10.1145/3442381.3450095
https://doi.ieeecomputersociety.org/10.1109/ICDM50108.2020.00058
https://doi.ieeecomputersociety.org/10.1109/ICDM50108.2020.00058
https://openreview.net/forum?id=4fZc_79Lrqs
https://openreview.net/forum?id=4fZc_79Lrqs
https://openreview.net/forum?id=zoz7Ze4STUL
https://openreview.net/forum?id=zoz7Ze4STUL
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Graph Neural Networks with a Distribution of Parametrized Graphs

Conference on Learning Representations (ICLR 2020),
April 2020.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD
’18, pp. 974–983, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. ISBN 9781450355520.
doi: 10.1145/3219819.3219890. URL https://doi.
org/10.1145/3219819.3219890.

Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. Graph
transformer networks. In Proc. of the 33rd International
Conference on Neural Information Processing Systems,
2019.

Zhang, Y., Pal, S., Coates, M., and Üstebay, D. Bayesian
graph convolutional neural networks for semi-supervised
classification. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence. AAAI Press, 2019.
ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.
33015829. URL https://doi.org/10.1609/
aaai.v33i01.33015829.

Zhao, K., Kang, Q., Song, Y., She, R., Wang, S., and Tay,
W. P. Graph neural convection-diffusion with heterophily.
In Proc. International Joint Conference on Artificial In-
telligence, Macao, China, Aug 2023.

Zhao, X., Chen, F., Hu, S., and Cho, J.-H. Uncertainty
aware semi-supervised learning on graph data, 2020.

12

https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1609/aaai.v33i01.33015829
https://doi.org/10.1609/aaai.v33i01.33015829

Graph Neural Networks with a Distribution of Parametrized Graphs

This appendix contains details about notations, datasets, implementation, for chemical datasets, out-of-distribution (OOD)
detection, model complexity, and mathematical proofs referenced in the main text of the paper.

A. List of notations
For easy reference, we list the most used notations in Table 5.

Table 5. List of notations
Graph, Vertex set, Edge set G (with subscripts), V, E

Adjacency matrix A (with subscripts)

Nodes v, v′

Shift operator S, Sλ

Sample parameter space Λ

Sample parameter λ (with subscripts), λ

Distributions on the sample space µ (with subscripts)

Density functions p, q (with subscripts)

GNN model parameters θ

Features and labels x,y, ŷ,X

Loss ℓ(·, ·), LX(λ,x;θ)

GNN model Ψ

Number of GNN layers K

B. Graph Regression Task on Chemical Datasets
Conventional molecular graph representations mirror a molecule’s Lewis structure, with atoms as nodes and chemical
bonds as edges. This representation falls short in capturing variations in molecular properties resulting from different
three-dimensional (3D) spatial arrangements when molecules share the same topology, as seen in cases like cis-trans isomers.
Moreover, molecules inherently possess uncertainty due to their quantum mechanical properties, particularly concerning
electron orbitals. Hence, using a distribution of graphs for learning in such cases is a sensible choice.

The process of generating different molecular graphs begins with the acquisition of coarse 3D coordinates of the atoms
in a molecule using RDKit1. Following that, the interatomic Euclidean distances between all atoms within the molecule
are calculated. A parameter, λ is then introduced to define a threshold range, [0, λ], for determining node connections and
generating multiple graph instances. The notion of employing thresholding based on the interatomic distance between nodes
in molecular graphs has been previously documented in works such as (Shui & Karypis, 2020) and (Shen et al., 2023). The
former introduced a cut-off distance hyperparameter to construct heterogeneous molecular graphs. Meanwhile, our approach
aligns more closely with the latter, where the Vietoris-Rips complex and thresholding are used to form a series of Gλ graphs.
However, in (Shen et al., 2023), they utilized five non-overlapping, manually adjusted intervals for thresholding and adopted
a computationally intensive multi-channel configuration to learn from the five generated graphs. There are also works such
as (Thomas et al., 2018), where molecules are treated as 3D point clouds and a radius is set to specify interacting vertices.

The graph construction process may involve adding new edges, connecting distant nodes, or removing existing edges. Ideally,
the model should prioritize “useful” graph realizations and assign a low probability to less beneficial ones, effectively
discarding them.

1A cheminformatics tool. https://www.rdkit.org

13

Graph Neural Networks with a Distribution of Parametrized Graphs

Table 6. Graph regression task on molecular datasets. Average test rmse reported, the lower the better.

Random split Scaffold split
Datasets FreeSolv ESOL Lipophilicity FreeSolv ESOL Lipophilicity

GCN 1.157 ± 0.215 0.652 ± 0.073 0.707 ± 0.030 2.618 ± 0.298 0.876 ± 0.037 0.760 ± 0.009
GAT 1.873 ± 0.522 0.837 ± 0.101 0.704 ± 0.058 2.942 ± 0.591 0.907 ± 0.034 0.777 ± 0.037

Weave 1.497 ± 0.251 0.798 ± 0.088 0.789 ± 0.059 3.129 ± 0.203 1.104 ± 0.063 0.844 ± 0.031
MPNN 1.388 ± 0.404 0.703 ± 0.075 0.640 ± 0.025 2.975 ± 0.775 1.117 ± 0.058 0.735 ± 0.019

AttentiveFP 1.275 ± 0.289 0.673 ± 0.085 0.719 ± 0.042 2.698 ± 0.297 0.855 ± 0.029 0.762 ± 0.022
GIN 1.678 ± 0.494 0.792 ± 0.097 0.716 ± 0.073 2.957 ± 0.696 0.990 ± 0.057 0.770 ± 0.021

EM-GCN∗ 0.936 ± 0.162 0.606 ± 0.041 0.639 ± 0.028 2.189 ± 0.128 0.834 ± 0.027 0.743 ± 0.013

B.1. Baselines and Datasets

MoleculeNet2 is a popular benchmark for molecular machine learning, encompassing multiple datasets to be tested on a
diverse of molecular properties. For our evaluation, we specifically selected the datasets FreeSolv, ESOL, and Lipophilicity,
all of which are designed for graph regression tasks.

We compared our approach against standard models for molecular properties prediction that do not incorporate transfer
learning from a larger dataset such as Zinc153. The selected baseline models for this comparison included Weave (Kearnes
et al., 2016), MPNN (Gilmer et al., 2017b), AttentiveFP (Xiong et al., 2020), GIN (Xu et al., 2019), as well as the standard
GCN and GAT models. For EMGNN, a GNN model that generalizes GCN with a degree-1 convolutional filter Pλ(Sλ) (refer
to Section 2.2) is utilized as the backbone of our model. As such, we name the resulting model EM-GCN∗. The sample
space Λ spans the range [1, 10]Å and Λ̂ is the discretized space with 0.05 increments.

B.2. Experimental Results

In Table 6, the average test root mean square error (rmse) over ten runs with standard deviation is reported for the graph
regression task, where the molecular properties of molecular graphs are to be predicted. The result shown is for the case of
q(·) = pt(·). We observe that EM-GCN∗ frequently performed better than the baselines. This may be due to the training
process of EM-GCN∗, which exposes it to diverse graph realizations, allowing it to capture non-covalent interactions that are
critical for characterizing the physical properties of molecules. In contrast, the baselines employ the conventional molecular
graph representation. We note that our framework does not explicitly incorporate bond angles but it does expose the model to
graphs with a broad range of connectivities. This exposure indirectly integrates geometric information, as the latent variable
constructs graphs with bond lengths falling within specific ranges. This provides our model with additional 2D information
regarding interatomic distances, which may offer insights into the underlying 3D structure.

C. Datasets and Implementation Details
All datasets used in this paper are publicly available and open-source.

C.1. Heterogeneous Datasets

The characteristics of the three heterogeneous benchmark datasets are as summarized in Table 7. In the DBLP https:
//dblp.uni-trier.de/ dataset, the research areas of the authors are to be predicted. Meanwhile, in the ACM
http://dl.acm.org/ and IMDB https://www.imdb.com/interfaces/ datasets, the categories of papers
and genres of movies are to be determined, respectively. The datasets are publicly available at https://github.com/
seongjunyun/Graph_Transformer_Networks.

In the DBLP dataset, there are three distinct node types (Paper (P), Author (A), Conference (C)) and two edge types (PA,
PC). The ACM dataset also comprises three node types (Paper (P), Author (A), and Subject (S)) and two edge types (PA,
PS).

2https://moleculenet.org/datasets-1
3A database of purchasable drug-like compounds; https://zinc.docking.org/tranches/home/

14

https://dblp.uni-trier.de/
https://dblp.uni-trier.de/
http://dl.acm.org/
https://www.imdb.com/interfaces/
https://github.com/seongjunyun/Graph_Transformer_Networks
https://github.com/seongjunyun/Graph_Transformer_Networks

Graph Neural Networks with a Distribution of Parametrized Graphs

Table 7. Heterogeneous datasets. The number of A-B edges is equal to the number of B-A edges thus omitted.

Edge types (A-B) # of A-B # Edges # Edge types # Features

DBLP Paper - Author 19645 67946 4 334Paper - Conference 14328

ACM Paper - Author 9936 25922 4 1902Paper - Subject 3025

IMDB Movie - Director 4661 37288 4 1256Movie - Actor 13983

C.2. Homogenous Datasets

The utilized homogeneous graph datasets include Cora, Citeseer, Pubmed, Texas, Cornell and Wisconsin. The first three
mentioned datasets citation networks where the nodes represent documents and the edges denote citation linkages (Kipf &
Welling, 2017). On the other hand, the latter three datasets are heterophilic, featuring connections between dissimilar nodes.
We consider the edges as undirected. The statistics and parameters of the datasets are summarized in Table 8.

Table 8. Statistics and parameters of homogeneous graph datasets.

Nodes # Edges # Features # Classes Threshold τ

Cora 2708 5429 1433 7 0.5
Citeseer 3327 4732 3703 6 0.6
Pubmed 19717 44338 500 3 0.9
Texas 183 295 1703 5 0.6

Cornell 183 280 1703 5 0.6
Wisconsin 251 466 1703 5 0.6

C.3. Chemical Datasets

The selected datasets, FreeSolv, ESOL, and Lipophilicity, are intended for graph regression tasks. In FreeSolv, the task
involves estimating solvation energy. In ESOL, the objective is to estimate solubility. Lastly, Lipophilicity is for the
estimation of lipophilicity. These are important molecular properties in the realm of physical chemistry and provide insights
into how molecules interact with solvents.

• FreeSolv. The dataset contains experimental and calculated hydration-free energy of 642 small neural molecules in
water.

• ESOL (for Estimated SOLubility). ESOL consists of water solubility data for 1128 compounds.

• Lipophilicity. This dataset contains experimental results of the octanol/water distribution coefficient of 4200 compounds,
namely logP at pH 7.4, where P refers to the partition coefficient. Lipophilicity refers to the ability of a compound to
dissolve in fats, oils and lipids.

C.4. Hyperparameters, Code and Implementation Tips

The models were trained on a server equipped with four NVIDIA RTX A5000 GPUs for hardware acceleration. As the
parameter spaces are small for the datasets used in the paper, we apply the standard Metropolis-Hastings algorithm for
MCMC. The code is available at https://github.com/amblee0306/EMGNN.git.

Heterogeneous node classification. The Simple-HGN model was obtained from the CogDL library (Cen et al., 2023),
SeHGNN from their code repository (https://github.com/ICT-GIMLab/SeHGNN). Meanwhile, GAT was sourced
from the DGL library (Wang et al., 2019) and GCN is from https://github.com/tkipf/pygcn.

15

https://github.com/amblee0306/EMGNN.git
https://github.com/ICT-GIMLab/SeHGNN
https://github.com/tkipf/pygcn

Graph Neural Networks with a Distribution of Parametrized Graphs

The hidden units are set to 64 for all models. The hyperparameters of SeHGNN and Simple-HGN are as in the respective
repository. For fair comparison, GAT and GCN are evaluated on the entire graph ignoring the types. Specifically for our
model, the number of MCMC iterations Nmc is set to be 15000, the T denoting the number of EM iterations and T ′ is tuned
by searching on the following search spaces: [10, 15, 20, 25, 30].

Homogeneous node classification. The BGCN model was obtained from its code repository at https://github.
com/huawei-noah/BGCN/tree/master. Likewise, for RSGNN, the model was sourced from its code repository
located at https://github.com/EnyanDai/RSGNN. As for the ACM-GCN+ model, it was acquired from its code
repository (https://github.com/SitaoLuan/ACM-GNN). The hyperparameters used for evaluating the models
align with those specified in their respective repositories if provided.

Unlike heterogeneous graphs, during implementation, once λ = (λ1, λ2) is determined in MCMC, we still need to draw a
graph Gλ according to λ. The graph Gλ is stored for later use.

In the context of our model, Nmc is set to be 15000, the T and T ′ is tuned by searching on the following search spaces:
[10, 15, 20, 25, 30]. The choice of the threshold τ (see Section 5.2) is tabulated in Table 8. Notice that the threshold τ is
chosen such that E′ for each dataset is neither too small or too big.

Graph regression on molecular datasets. The experiments on this task were facilitated using the DGL-LifeSci library
(Li et al., 2021b) which provided the code and hyperparameters for the baseline models. For fair comparisons, all the models
were evaluated using the canonical features as documented at https://lifesci.dgl.ai/generated/dgllife.
utils.CanonicalAtomFeaturizer.html. Specifically for our model, Nmc is set to 18000, T and T ′ is tuned by
searching on the following search spaces: [10, 15, 20, 25, 30].

D. Complexity
We discuss the complexity of EM-GCN, focusing on the steps involving MCMC. The complexity of the remaining steps
depends mainly on the chosen base model, e.g., GCN. We mainly compare with BGCN and RSGNN, which share certain
common features with our model.

In the E-step, where MCMC is executed, the model parameters remain fixed. Identical inputs to the “frozen” model
consistently produce the same LX(λ,θ). Hence, to expedite MCMC iterations for a specific θ, we precompute, store and
reuse LX(λ,θ), Gλ for all λ ∈ Λ, using a space complexity of O(|Λ|(|E| + |V |)), compared to BGCN’s O(|E| + |V |)
and RSGNN’s O(|V |2). Therefore, the space complexity of EM-GCN is higher than that of BGCN in general. It is lower
than RSGNN for sparse graphs if |V | ≫ |Λ|, i.e., the size of the (discretized) sample space is much smaller than the number
of nodes.

As such, our model takes a comparatively lower training time than RSGNN and BGCN. The theoretical time complexity of our
model is O(K|Λ|·|E|+Nmc) for Nmc MCMC iterations and K GCN layers (we consider only the message passing operation
in GCN layers). On the other hand, the time complexity of RSGNN with κ MLP layers is O(|V |d′d+ (κ− 1)Nd2 +K|E|)
and BGCN is O(K|E|+Nb|V |2Nc) for Nb MMSBM iterations, Nc classes, d′ feature size and d hidden dimension. Time
complexity does not include extra time taken for backpropagation in models with more parameters like BGCN and RSGNN.

We show the explicit run-times (in seconds) for the models compared in Table 9, with the same software and hardware
configurations. We see that EM-GCN is much faster than both BGCN and RSGNN.

Table 9. Run-time (in sec.) comparison among different models

Cora Citeseer Pubmed

BGCN 328.14 ± 2.18 323.55 ± 4.86 1446.91 ± 31.31
RSGNN 147.09 ± 4.68 164.83 ± 1.71 341.52 ± 3.06

EM-GCN 86.06 ± 1.39 65.19 ± 14.27 102.18 ± 2.63

16

https://github.com/huawei-noah/BGCN/tree/master
https://github.com/huawei-noah/BGCN/tree/master
https://github.com/EnyanDai/RSGNN
https://github.com/SitaoLuan/ACM-GNN
https://lifesci.dgl.ai/generated/dgllife.utils.CanonicalAtomFeaturizer.html
https://lifesci.dgl.ai/generated/dgllife.utils.CanonicalAtomFeaturizer.html

Graph Neural Networks with a Distribution of Parametrized Graphs

E. Node-level Out-of-distribution Detection
To demonstrate the versatility of our model, we apply it to OOD detection tasks. We specifically target two types of OOD
nodes: nodes with random feature interpolation and nodes from Left-Out classes. Our experimental configurations remain
consistent with those outlined in (Wu et al., 2023). Although our model is not explicitly designed for node-level OOD
detection (as there are no specific elements in our approach targeting features or labels), we observe that it has competitive
performance compared to most benchmarks, as evidenced by its AUROC, AUPR, and FPR95 scores. Moreover, our model
achieves results comparable to the top-performing baseline, GNNSAFE (Wu et al., 2023). Our model also demonstrates
strong performance on in-distribution (ID) data, which aligns with the objective of the OOD task: to identify OOD test
samples without sacrificing accuracy within the ID data.

We also apply a simple modification of EM-GCN to integrate it with the Energy-Based Model (EBM). Specifically, we
utilize the same output logits from EM-GCN and incorporate them into equation (5) of (Wu et al., 2023) to compute the
energy score for OOD detection during inference. This modification results in improvements on the Leave-out classes task,
surpassing the performance of GNNSAFE. However, similar enhancements are not observed in the case of random features,
which could be an area of investigation in the future. Experimental results can be seen in Table 10. For EMGNN, the GCN
backbone is employed, thus named EM-GCN.

Table 10. OOD detection task on Cora dataset. Performance measured by AUROC/AUPR/FPR95. For AUROC and AUPR, higher values
indicate better performance, while for FPR95, lower values are better. In-distribution testing accuracy (ID-ACC) is reported for calibration.

Cora (Random Feature) Cora (Left-Out Classes)
Model AUROC(↑) AUPR(↑) FPR95(↓) ID-ACC AUROC(↑) AUPR(↑) FPR95(↓) ID-ACC
MSP 85.39 73.70 64.88 75.30 91.36 78.03 34.99 88.92
ODIN 49.88 26.96 100.00 75.00 49.80 24.27 100.00 88.92

Mahalonabis 49.93 31.95 99.93 74.90 67.62 42.31 90.77 88.92
Energy 86.15 74.42 65.81 76.10 91.40 78.14 41.08 88.92
GKDE 82.79 66.52 68.24 74.80 57.23 27.50 88.95 89.87
GPN 85.88 73.79 56.17 77.00 90.34 77.30 27.42 91.46

GNNSAFE 93.18 87.83 44.21 75.76 92.92 82.46 31.49 89.15
EM-GCN 92.09 83.15 37.87 82.33 90.24 81.44 51.89 91.42

EM-GCN (EBM) - - - - 93.43 83.56 29.24 90.91

F. Related Work
This section provides an overview of related work, specifically on the selected baseline models and their relevance to our
model. On the aspect of heterogeneous graphs, GTN (Yun et al., 2019) emphasized that disregarding the type information of
such graphs and treating them as homogeneous is suboptimal. To address this, they devised a method to learn new graph
structures using multiple candidate (edge type-specific) adjacency matrices and attention mechanisms. Their work is relevant
to ours because, akin to GTN, we consider the given graph suboptimal. However, instead of learning new meta-path-related
graph structures that introduce connections between unconnected nodes in the original graph, our setup and approach focus
on the information transmission rates in such graphs.

On the other hand, concerning homogeneous graphs, given that our model focuses on learning from a distribution of graphs,
it makes sense to compare against methods that alter the observed one, albeit in different ways. As such, DropEdge (Rong
et al., 2020) and RSGNN (Dai et al., 2022) were considered. In the case of DropEdge, edges in the given graph were
randomly dropped at a manually selected rate in each epoch. This process generated different copies of the original graph,
diversifying the input data used to train the model. Consequently, DropEdge was deemed capable of overcoming overfitting
and oversmoothing.

Meanwhile, for RSGNN, the model trained a link predictor to rewire the observed graph, eliminating or down-weighting
noisy edges (connecting nodes with dissimilar features) and adding edges to densify the graphs. This was done to ensure the
model is robust to noise and to address the issue of label sparsity by connecting more unlabeled nodes to labeled ones. In (Ji
et al., 2023c), a two-stage scheme is proposed to enhance the performance of existing GNN models, where the second stage
involves edge drop along estimated class boundaries.

Our work also shares a close connection with BGCN (Zhang et al., 2019), a work employing a Bayesian formulation tailored

17

Graph Neural Networks with a Distribution of Parametrized Graphs

to address uncertainty in graphs. In their framework, the model parameters were treated as random variables, incorporating a
prior distribution. Additionally, BGCN interpreted the observed graph as an instantiation from a parametric family of random
graphs. Specifically, it adopted the assortative mixed membership stochastic block model (aMMSBM) as the underlying
graph model.

G. Theoretical Discussions
G.1. Discussions and the Proof of Theorem 1

Assume the parameter sample space Λ is a metric space, whose metric is d(·, ·). Define the Wasserstein space P(Λ) to be
the space of (Borel) probability distributions on X with finite mean and variance.

Given µ1, µ2 in P(Λ), the Wasserstein metric W (µ1, µ2) is defined by

W (µ1, µ2)
2 = inf

γ∈Γ(µ1,µ2)

∫
d(λ, λ′)2 dγ(λ, λ′),

where Γ(µ1, µ2) is the set of couplings of µ1, µ2, i.e., the collection of probability measures on Λ× Λ whose marginals are
µ1 and µ2, respectively.

Intuitively, the Wasserstein metric is the minimum amount of “work” required to transform one probability distribution into
the other, where the “work” is the sum of the product of the amount of probability mass to be moved and the distance that it
must be moved. It is well-known that W (·, ·) makes P(Λ) a metric space (Villani, 2009; Ji et al., 2023a;b).

Recall that for each λ ∈ Λ there is an associated graph shift operator Sλ ∈Mn(R), where n is the size of the node set V .
This means that we have a parameterization map

p : Λ→Mn(R), λ 7→ Sλ,

and Mn(R) is endowed with the operator norm denoted by ∥·∥.

We analyze the following fundamental GNN model. For each graph shift operator Sλ, it defines a GNN layer according to
(1), where the aggregation “AGGR” is achieved by multiplying the input features by Sλ. We further assume that the matrix
W k in (1) depends only on θ and the “ReLU” function is used for the activation σ. For a K, let Ψ(λ, ·;θ) be the resulting
K-layer GNN, where θ is the estimated parameters of the model. For any input features x, we have the expected output
zµ = Eλ∈µ[Ψ(λ,x;θ)]. Therefore, assuming x,θ are fixed, we have the following feature map

f : P(Λ)→ Rn, µ 7→ zµ = Eλ∈µ[Ψ(λ,x;θ)].

In general, if ϕ : X1 → X2 is a map between metric spaces with respective metrics d1(·, ·) and d2(·, ·), then it is called
Hölder continuous if for some constants C,α > 0, we have d2

(
ϕ(x1), ϕ(x2)

)
≤ Cd1(x1, x2)

α, x, y ∈ X1. Ignoring the
scalar C, we may also say that ϕ is α-Hölder continuous to emphasize the exponent.

We can now state the following precise version of Theorem 1.

Theorem 3. Let K be the number of GNN layers. If the parameterization p : Λ → Mn(R) is α-Hölder continuous and
bounded, then the feature map f : P(Λ)→ Rn is β-Hölder continuous for β = 2Kα/(Kα+ 2). Moreover, if the activation
σ is bounded, e.g., tanh, sigmoid, then we can remove the condition that p is bounded.

Proof. As p is Hölder continuous, there is C,α > 0 such that ∥Sλ − Sλ′∥ ≤ Cd(λ, λ′)α. Moreover, by the assumption,
there is an upper bound B on the norms of the image of p.

For each λ ∈ Λ, the k-th GNN layer for k ≤ K takes the form y 7→ σ(SλyW
k), where W k is determined by the fixed

model parameters θ. As the activation function σ is 1-Lipshitz, we have

∥σ(SλyW
k)− σ(Sλ′yW k)∥ ≤ ∥W k∥∥y∥∥Sλ − Sλ′∥ ≤ C1∥y∥d(λ, λ′)α, (12)

where C1 is the constant C∥W k∥. Taking y as the output of the previous layer, we may repeat (12) and obtain

∥Ψ(λ,x;θ)−Ψ(λ′,x;θ)∥ ≤ C2d(λ, λ
′)Kα, (13)

18

Graph Neural Networks with a Distribution of Parametrized Graphs

where C2 is a constant independent of λ, λ′.

Moreover, due to the norm upper bound B of Sλ for any λ ∈ Λ, there is an upper bound B1 of Ψ(λ,x;θ) independent of λ.
If the activation σ is bounded, then the same boundedness conclusion holds without assuming p is bounded as the last layer
ends with the bounded function σ.

To prove the theorem, consider µ1, µ2 ∈ P(Λ). Let γ ∈ Γ(µ1, µ2) be a distribution on Λ× Λ such that

W (µ1, µ2)
2 =

∫
d(λ, λ′)2 dγ(λ, λ′). (14)

As the marginals of γ are µ1 and µ2 respectively, we may express ∥f(µ1)− f(µ2)∥ as

∥f(µ1)− f(µ2)∥ = ∥Eλ∈µ1
[Ψ(λ,x;θ)]− Eλ∈µ2

[Ψ(λ,x;θ)]∥

=∥
∫

Ψ(λ,x;θ) dµ1(λ)−
∫

Ψ(λ′,x;θ) dµ2(λ
′)∥

=∥
∫

Ψ(λ,x;θ)−Ψ(λ′,x;θ) dγ(λ, λ′)∥.

Let a > 0 be a number to be determined later. By (14), the Chebyshev inequality implies that the γ-measure of the set
Σa = {(λ, λ′) | d(λ, λ′) ≥ a} is bounded by W (µ1, µ2)/a

2. With this, we estimate ∥f(µ1)− f(µ2)∥ as follows

∥f(µ1)− f(µ2)∥ ≤
∫
∥Ψ(λ,x;θ)−Ψ(λ′,x;θ)∥ dγ(λ, λ′)

=

∫
Σa

∥Ψ(λ,x;θ)−Ψ(λ′,x;θ)∥ dγ(λ, λ′) +

∫
Λ×Λ\Σa

∥Ψ(λ,x;θ)−Ψ(λ′,x;θ)∥ dγ(λ, λ′)

≤
∫
Σa

2B1 dγ(λ, λ
′) +

∫
Λ×Λ\Σa

C2d(λ, λ
′)Kα dγ(λ, λ′)

≤2B1W (µ1, µ2)
2

a2
+ C2a

Kα.

Minimizing the right-hand-side (by taking its derivative w.r.t. a), we have a = C3W (µ1, µ2)
2/(Kα+2), where C3 =

[4B1/(C2Kα)]1/(Kα+2). Plugging in the expression of a into the estimation, we have

∥f(µ1)− f(µ2)∥ ≤
2B1

C2
3

W (µ1, µ2)
2−4/(Kα+2) + C2C

Kα
3 W (µ1, µ2)

2Kα/(Kα+2).

Therefore, f is β-Hölder continuous for β = 2Kα/(Kα+ 2).

G.2. The Proof of Theorem 2

The proof is a refinement of the proof of (Hardt et al., 2016, Theorem 3.12). As LX is assumed to be convex, we observe that
in the expression for JΛT ′ (θ̂), a term is convex if p(λi) ≥ p0(λi) and concave otherwise. Therefore, we need to separate
these two cases when performing gradient descent.

We follow the proof of (Hardt et al., 2016, Theorem 3.12), and highlight necessary changes. By (Hardt et al., 2016,
Theorem 2.2), it suffices to show that the algorithm A is ϵ-uniformly stable (Hardt et al., 2016, Definition 2.1). Let
Λ1 = {λ1,1, . . . , λ1,T ′} and Λ2 = {λ2,1, . . . , λ2,T ′} be two sample sequences of λ that differ in only a single sample.
Consider the gradient updates Γ1,1, . . . ,Γ1,T ′ and Γ2,1, . . . ,Γ2,T ′ . Let θ̂1,t′ and θ̂2,t′ , t

′ ≤ T ′ be the corresponding outputs
of the algorithm A.

Introduce f(λ,θ) = p(λ)−p0(λ)
q(λ) LX(λ,θ). As LX(λ, ·) is convex, α-Lipschitz and β-smooth, f(λ,θ) is αγ-Lipschitz,

βγ-smooth. Moreover, it is convex if p(λ) ≥ p0(λ).

Write δt′ for ∥θ̂1,t′ − θ̂2,t′∥. Using the fact that f(λ, ·) is (αγ)-Lipschitz, by (Hardt et al., 2016, Lemma 3.11), we have for
any t0 ≤ T ′

E
(
|f(λ, θ̂1,T ′)− f(λ, θ̂2,T ′)|

)
≤ t0

T ′ + αγE(δT ′ | δt0 = 0).

19

Graph Neural Networks with a Distribution of Parametrized Graphs

We need an estimation of E(δT ′ | δt0 = 0). For convenience, for any t′ ≥ t0, let ∆t′ = E(δt′ | δt0 = 0).

Observe that at step t′, with probability 1 − 1/n, the samples selected are the same in both Λ1 and Λ2. Moreover, with
probability (1− 1/n)b1, the common sample is convex, so we can apply (Hardt et al., 2016, Lemma 3.7.2). With probability
(1− 1/n)(1− b1), the common sample is non-convex, and (Hardt et al., 2016, Lemma 3.7.1) is applicable. With probability
1/n, the selected samples are different and Γ1,t′ and Γ2,t′ are respectively |p(λ)−p0(λ)|

q(λ) αat′ -bounded, by (Hardt et al., 2016,
Lemma 3.3).

Therefore, by linearity of expectation and (Hardt et al., 2016, Lemma 2.5), we may estimate:

∆t+1 ≤ (1− 1

n
)
(
b1 + (1− b1)(1 + at′βγ)

)
∆t′ +

1

n
∆t′

+
αat′

n
Eλ1,t′ ,λ2,t′

(|p(λ1,t′)− p0(λ1,t′)|
q(λ1,t′)

+
|p(λ2,t′)− p0(λ2,t′)|

q(λ2,t′)

)
= (1− 1

n
)
(
b1 + (1− b1)(1 + at′βγ)

)
∆t′

+
1

n
∆t′ +

2b2αat′

n

≤ (1− 1

n
)
(
b1 + (1− b1)(1 +

cβγ

t′
)
)
∆t′

+
1

n
∆t′ +

2b2αc

nt′

=
(
1 + (1− 1

n
)(1− b1)

cβγ

t′
)
∆t′ +

2c(b2α)

nt′

≤ exp
(
(1− 1

n
)(1− b1)

cβγ

t′
)
∆t′ +

2c(b2α)

nt′

= exp
(
(1− 1

n
)
c
(
(1− b1)βγ

)
t′

)
∆t′ +

2c(b2α)

nt′
.

Then, by the same argument as in the proof of (Hardt et al., 2016, Theorem 3.12), we have the algorithm A is ϵ-uniformly
stable for any

ϵ ≤ C
(b22α2

T ′

) 1
βγc(1−b1)+1 ,

for some constant C independent of T ′ and α.

H. Miscellaneous Discussions
H.1. The Intuition of Typicality (cf. (6))

Λ

X

Figure 5. An illustration of the typicality assumption.

As illustrated in Fig. 5, we are interested in taking the average, formally the expectation w.r.t. a distribution π0, of a function
over Λ×X. The function is illustrated by the red surface in Fig. 5. The “typicality” assumption on X ∈ X requires that there
is a distribution p0,X such that the above average over Λ× X is (approximately) the same as the average, i.e., expectation

20

Graph Neural Networks with a Distribution of Parametrized Graphs

w.r.t. p0,X, over the “line” Λ× {X}. Intuitively, “typicality” says that the cross-section of the function at X displays the
same pattern as the function on the entire domain Λ × X. Hence, statistics on the entire domain can be estimated from
observations on the cross-section Λ× {X}.

As we have mentioned in Remark 1, “typicality” allows us to simplify the optimization problem. For future work, we are
also interested in solving the optimization with a weaker assumption.

H.2. The Dominant Component of (9)

Figure 6. Plot of ϱ across t EM iterations

In Section 4.1, we use −η(t)Eλ∼p0

(
LX(λ,θ)

)
to approximate logC(θ). To justify this, we provide numerical evidence

that the dominant component of (9) is −η(t)Eλ∼p0

(
LX(λ,θ)

)
, based on Section 5.1. The above assertion is supported by

assessing the ratio

ϱ =
ρ

−η(t)Eλ∼p0

(
LX(λ,θ)

) ,
where ρ =

var(exp(−η(t)LX(λ,θ)))

2
(
Eλ∼p0

exp(−η(t)LX(λ,θ))
)2 .

We plot the ϱ values for the heterogeneous graph datasets on EM-GCN[uut] over multiple t iterations in Figure 6. We
found that ϱ consistently exhibits small absolute values, supporting the postulation that −η(t)Eλ∼p0

(
LX(λ,θ)

)
is the main

component in (9).

21

