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Abstract— Semantic anomalies are contextually invalid or
unusual combinations of familiar visual elements that can cause
undefined behavior and failures in system-level reasoning for
autonomous systems. This work explores semantic anomaly
detection by leveraging the semantic priors of state-of-the-art
vision foundation models, operating directly on the image. We
propose a framework that compares local vision embeddings
from runtime images to a database of nominal scenarios in
which the autonomous system is deemed safe and performant.
In this work, we consider two variants of the proposed
framework: one using raw grid-based embeddings, and another
leveraging instance segmentation for object-centric representa-
tions. To further improve robustness, we introduce a simple
filtering mechanism to suppress false positives. Our evaluations
on CARLA-simulated anomalies show that the instance-based
method with filtering achieves performance comparable to
GPT-4o, while providing precise anomaly localization. These
results highlight the potential utility of vision embeddings
from foundation models for real-time anomaly detection in
autonomous systems.

I. INTRODUCTION

Autonomous vehicles, such as Waymo [1] or Tesla [2],
are increasingly deployed in real-world environments and
rely heavily on machine learning (ML) algorithms, especially
in perception modules, e.g., object detection. While these
algorithms often perform reliably within their training distri-
butions, ML models remain vulnerable to out-of-distribution
(OOD) inputs, which can lead to unsafe or unpredictable
behavior. An OOD input is data that significantly differs
from the training distribution of an ML model and is defined
relative to that model, such as unusual objects, rare weather
conditions, or novel environments. A common mitigation
strategy to avoid unpredictable failure modes involves detect-
ing OOD situations at runtime and transitioning the system
to a safe state [3].

Among OOD observations, semantic anomalies pose a
unique challenge. As defined in [4], semantic anomalies
reflect failures in high-level reasoning rather than low-level
perception or control. In contrast to traditional OOD cases,
semantic anomalies are defined with respect to the system’s
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Fig. 1: Examples of semantic anomalies (a,c) and their
CARLA-simulated equivalents (b,d). A truck with traffic
lights (a) confused a Tesla into detecting active signals [5].
A stop sign on a billboard (c) caused unintended braking [6],
[12].

context and operational domain and involve in-distribution
elements arranged in atypical or contextually invalid ways—
for example, a stop sign on a billboard or a traffic light
mounted on a moving truck may confuse an autonomous
vehicle, despite all visual components being familiar. These
examples are inspired by real-life occurrences, such as those
observed in the Tesla system [5], [6] shown in Fig. 1.
These anomalies are often trivial for humans to interpret
but difficult for conventional ML models to detect. The
emergence of Large Language Models (LLMs) and Vision-
Language Models (VLMs) provides new tools for addressing
this gap, leveraging their strong reasoning and generalization
capabilities for semantic anomaly detection using textual
prompts, multi-modal embeddings, or direct image-based
reasoning [4], [7].

While foundation models offer zero-shot capabilities [8]–
[10] and perform well on nominal data, these high-capacity
ML models often suffer from high latency—with response
times of several seconds—and are prone to hallucina-
tion [11]. Embedding-based methods are faster but typi-
cally provide only a coarse anomaly score without spatial
localization [7]. This motivates the development of efficient,
embedding-based approaches that can both detect and local-
ize semantic anomalies in real time. In this work, we take a
first step toward this goal.

We evaluate existing semantic anomaly detectors and
propose a vision embedding-based framework for anomaly
detection and localization. The framework is tested on sim-
ulated CARLA data, following [4], [7].



Our contributions are as follows:
• Evaluation of existing VLM-based semantic anomaly

detectors: We provide a detailed evaluation of existing
VLM-based semantic anomaly detectors at the frame
level, identifying their strengths and weaknesses.

• Embedding-based semantic anomaly detection: We pro-
pose two variations of a foundation model embedding-
based semantic anomaly detection framework that oper-
ates directly on images. Our approach achieves detection
performance comparable to large vision-language mod-
els such as GPT-4o, while also enabling precise local-
ization of anomalies. Extensive evaluation on simulated
data highlights the potential of vision embeddings for
semantic anomaly detection.

• Filtering techniques for embedding-based semantic
anomaly detection: We introduce a simple yet effective
filtering technique that further boosts the performance of
our embedding-based framework, helping it reach GPT-
4o-level results.

II. RELATED WORK

A. Vision Foundation Models

Foundation models are large-scale neural networks trained
on broad, often internet-scale data to perform well across
many tasks with minimal adaptation [13]. Models like
CLIP [14], DINO [15], and DINOv2 [10], [16] have demon-
strated the capability of large-scale pretraining for learning
general-purpose visual features. CLIP learns joint image-text
embeddings from 400 million image-caption pairs, enabling
zero-shot classification across diverse categories. DINO in-
troduced self-supervised learning using Vision Transformers
(ViTs), showing that meaningful object-centric representa-
tions can emerge without labels. DINOv2 builds on this by
training on 142 million curated images, yielding robust and
transferable features across a wide range of visual tasks (e.g.,
image and instance recognition) with minimal fine-tuning.

Segment Anything [17] and its follow-up model [18]
introduce general-purpose segmentation models trained on
large-scale instance mask datasets. These models enable
automatic or promptable segmentation of arbitrary objects,
using object detectors as prompts [19], [20]. Combined,
these models can potentially be used to provide semantically
rich embeddings that can support anomaly detection by
identifying distributional shifts or unexpected objects in the
scene.

B. Foundation Models for Anomaly Detection in Robotics

Semantic anomalies, as defined in [4] refer to failures
in high-level reasoning rather than low-level perception or
control. Examples include autonomous vehicles braking for
stop signs on billboards or failing to interpret unusual
traffic configurations. A proposed approach leverages large
language models (LLMs) to monitor a robot’s perceptions
and decisions, flagging behaviors that deviate from human
intuition. Experiments in driving and manipulation tasks
show that such LLM-based monitors align well with human
judgment.

Fig. 2: Overview of the proposed vision-based semantic
anomaly detection framework. Structuring semantic anomaly
detection in this way enables detecting anomalies without
requiring access to out-of-distribution data.

Sinha et al. [7] introduce a two-stage system: a lightweight
classifier detects anomalies from LLM/VLM embeddings,
triggering a slower generative LLM to reason and suggest
recovery. Coupled with model-predictive control, this enables
safe replanning. The fast detector outperforms GPT-4 in
failure detection, showing embeddings suffice for real-time
use.

Other foundation model-based approaches for anomaly
and OOD detection include S2M [21], which converts
anomaly scores into segmentation masks by generating box
prompts for the segmentation model SAM, and Anomaly-
CLIP [22], a zero-shot method that learns object-agnostic
prompts and applies a glocal loss for accurate detection and
segmentation without target domain data.

However, these methods either require large models and
significant compute, making real-time processing difficult,
fail to localize the anomaly, or are not suited for complex
semantic anomalies. The proposed method aims to provide a
lightweight, embedding-based approach capable of detecting
and localizing semantic anomalies.

III. METHODOLOGY

A. Problem Formulation

This work addresses semantic anomaly detection and
localization using vision foundation model embeddings. The
core idea is that such embeddings encode meaningful seman-
tic information, enabling compact representations of visual
scenes. Following [7], the approach assumes access to a
database of embeddings from nominal scenarios previously
encountered and successfully handled by the system. At
runtime, embeddings of incoming images are compared to
this database. If the distance to all known embeddings
exceeds a defined threshold, the input is flagged as a semantic
anomaly.

Evaluation is conducted using the dataset from [4],
[7], which contains CARLA-simulated autonomous driving
scenes (CARLA version 0.9.15). The dataset includes nomi-
nal cases across multiple maps, semantic anomalies such as
stop signs on billboards and trucks carrying traffic lights,
and out-of-distribution objects like robots (see Fig.1). Each
anomaly appears in multiple variations across different maps
and positions. More examples are provided in Appendix V-A.

Anomaly detection performance is measured using frame-
level binary classification metrics including F1-score, bal-
anced accuracy, true positive rate (TPR), and false positive
rate (FPR). For spatial localization, the dataset is extended



with binary ground truth masks. A detection is considered
a true positive (TP) if its Intersection over Union (IoU)
with the ground truth mask is at least 0.3; otherwise, it is a
false negative (FN). For anomaly-free frames, any predicted
anomaly is counted as a false positive (FP).

B. Proposed Approach
The following components detail the embedding genera-

tion, anomaly detection, and filtering steps of the proposed
system, as shown in Fig. 2.

1) Embedding Generation: The first step—either offline,
for constructing the nominal database, or online, during
inference, involves computing DINOv2 embeddings for the
current image. DINOv2 produces 256 patch embeddings per
image (number of patches p), each representing a 14× 14
pixel region, with an embedding dimension of d = 384.

Two variants of embedding extraction are considered.
The first uses the standard grid-based patch embeddings
directly from DINOv2. The second targets a more object-
centric representation by combining OWLv2 and SAM2.
OWLv2 generates prompts for object instances in the image,
which are then segmented by SAM2. For each detected
instance, the DINOv2 embeddings of all patches within the
corresponding mask are averaged to create a single instance-
level embedding. This procedure is applied to all instances
in the image. Both approaches are evaluated and compared
to determine their effectiveness for anomaly detection.

2) Anomaly Detection: Following [7], anomaly detection
is performed by comparing current observations to a set of
nominal experiences. The nominal set consists of variable-
length trajectories and their corresponding image observa-
tions oi that the autonomous vehicle can safely handle, and
are therefore considered nominal. Instead of single image
embeddings, DINOv2 patch-level embeddings are used for
finer anomaly detection and localization (Fig. 2).

Each prior image oi ∈ Dnom is embedded offline using
DINOv2 (φ(·)), resulting in a cache of patch-level embed-
dings De = {ei}N

i=1, where ei = φ(oi) ∈Rp×d . N denotes the
number of observations in the nominal set Dnom.

At runtime, a new observation ot is embedded as et =
φ(ot), and an anomaly score s(et ;De) ∈ R is computed by
comparing all patches in et to the nearest patches in the
nominal cache. A simple score function uses the maximum
cosine similarity over all patch pairs, negated to represent
dissimilarity:

s(et ;De) :=− max
ei∈De

max
j,k

e( j)⊤
t e(k)i

∥e( j)
t ∥∥e(k)i ∥

(1)

An observation is classified as anomalous if its score
exceeds a threshold τ . The threshold is estimated as the
α-quantile of anomaly scores computed over the nominal
set in a leave-one-out fashion, where leave-one-out refers
to excluding all embeddings from the same experiment. An
experiment is defined as the full sequence of images collected
under a specific configuration and map. This avoids nominal
bias, as consecutive images are often very similar and could
otherwise lead to a low anomaly threshold.

3) Filtering: Due to the small size of the nominal
database and the tendency of instance segmentation to over-
segment, small isolated patches with high anomaly scores
may appear. These often lack semantic relevance and result in
false positives. A simple post-processing step removes small
connected components from the binary anomaly map based
on a pixel threshold. This effectively reduces noise without
requiring changes to the anomaly scoring. More advanced
filtering methods are not explored in this work.

IV. EVALUATION AND DISCUSSION

The evaluation compares the performance of the visual
embedding-based anomaly detector against large language
and vision-language models used in [4], [7]. Three systems
are considered: a GPT-4o baseline (Version: gpt-4o-2024-11-
20), an embedding-based method without instance informa-
tion, and an instance embedding-based method. Thresholds
for anomaly score and patch size are determined empirically.
Details on evaluation metrics are provided in Section III-A.

A. Result Analysis

As shown in Table I, GPT-4o achieves the highest F1-
score and lowest FPR for OOD-objects. It performs well on
obvious cases (e.g., an elephant or robot on the road) but
often misclassifies more subtle semantic anomalies, such as
traffic lights on trucks or stop signs on billboards as normal,
resulting in low TPR for these scenarios. Examples of this
are provided in Appendix V-D. This limitation likely stems
from the zero-shot nature and the limited examples in the
prompt (Section V-C), which may not sufficiently define
semantic anomalies. Incorporating more anomaly examples
through in-context learning or fine-tuning could improve
performance. However, this introduces risks of overfitting
and undermining the generalization benefits of foundation
models. It also remains infeasible to represent the full range
of possible anomalies. Additionally, domain shift between
real-world training data and synthetic CARLA images may
further impact performance in the tested scenarios. Overall,
GPT-4o is strong at identifying nominal scenes, resulting in
consistently low FPR. To provide a better understanding of
performance and failure modes, Fig. 3 shows exemplary true
positives and false positives. These results were selected as
representative examples of the overall behavior.

The embedding-based method without filtering is sensitive
(high TPR) to OOD-objects but suffers from a high FPR
across all scenarios, limiting overall performance. Its strong
results on OOD-objects can be attributed to their absence
in the nominal dataset, unlike elements such as billboards
or traffic lights, which also appear in normal scenes. This
suggests that the system primarily responds to visual novelty
rather than true semantic anomalies, which often involve
familiar objects in unusual combinations. This is further
supported by cases where only a visually novel component
(e.g., a Cybertruck, which is not present in the nominal
dataset) is detected, rather than the full anomaly consisting
of both the traffic light and the truck (see Fig. 7b (a), TPs).
The same sensitivity to visual novelty likely contributes to



(a) Embedding-based detection (top: TPs, bottom: FPs) (b) Instance-based detection (top: TPs, bottom: FPs)

Fig. 3: Qualitative comparison of anomaly detections. Each method (embedding-based left, instance-based right) shows two
true positives (top row) and two false positives (bottom row).

the high FPR. False positives often arise from uncommon el-
ements like vegetation patches or unusual buildings (Fig. 7b
(a), FPs), which may be underrepresented in the nominal
dataset. Expanding the nominal dataset could help mitigate
this. Additionally, applying filtering techniques effectively
reduces FPR and improves F1-score by removing isolated
false detections caused by noisy patch-level scoring.

The instance-based method performs best in semantic
anomaly scenarios and offers a more balanced trade-off
between sensitivity and precision. With filtering, FPR is
further reduced, and F1-score improves across all cases. It
is particularly effective in the Stop Sign scenario, where it
is the only embedding-based variant to achieve meaningful
performance. On the full dataset, the instance-based method
with filtering matches GPT-4o and outperforms it in seman-
tic anomaly detection. It also produces sharper and more
complete detections due to the use of instance segmentation
masks, detecting full anomalies (e.g., traffic light and truck)
that are often missed or partially detected by the patch-
embedding-based method (see Fig. 3 (a,b), TPs). However, it
still suffers from false positives, though to a lesser extent than
the patch-embedding-based method. Averaging scores within
instance masks likely reduces the impact of outliers. Due
to its object-centric design, the method often labels entire
objects (e.g., a streetlight) as false positives (see Fig. 3b, FP).
These errors are likely caused by unseen visual patterns and
the limited semantic expressiveness of the embeddings. An-
other issue that limits performance is that the object detector
used for instance segmentation occasionally struggles with
synthetic CARLA images, leading over-segmented objects
which in turn can cause anomalous fragments. Examples of
the false positive detections and their respective segmentation
masks are shown in Appendix V-E.

B. Score Analysis

Fig. 4 shows the distribution of anomaly scores for both
methods. In most cases, anomalies receive higher scores and
nominal objects lower scores, resulting in an unexpectedly
clear separation with minimal confusion across individual
scenarios. Specifically, the instance-based method performs

TABLE I: Overall and scenario-wise evaluation. NF = No
Filter, F = Filter. Values in brackets show change from NF
to F. Frame-level binary classification metrics are reported
for the full dataset and individual scenarios.

Full Dataset

Method TPR FPR F1

GPT-4o 0.33 0.03 0.47
Embedding (NF) 0.36 0.49 0.32
Embedding (F) 0.36 (+0.00) 0.36 (–0.13) 0.36 (+0.04)
Instance (NF) 0.37 0.27 0.40
Instance (F) 0.44 (+0.07) 0.17 (–0.10) 0.51 (+0.11)

Traffic Light

GPT-4o 0.30 0.06 0.44
Embedding (NF) 0.37 0.55 0.37
Embedding (F) 0.37 (+0.00) 0.38 (–0.17) 0.40 (+0.03)
Instance (NF) 0.47 0.27 0.52
Instance (F) 0.54 (+0.07) 0.17 (–0.10) 0.62 (+0.10)

Stop Sign

GPT-4o 0.12 0.03 0.19
Embedding (NF) 0.04 0.41 0.03
Embedding (F) 0.04 (+0.00) 0.33 (–0.08) 0.04 (+0.01)
Instance (NF) 0.06 0.28 0.06
Instance (F) 0.17 (+0.11) 0.11 (–0.17) 0.23 (+0.17)

OOD-Objects

GPT-4o 0.62 0.08 0.71
Embedding (NF) 0.57 0.48 0.50
Embedding (F) 0.57 (+0.00) 0.33 (–0.15) 0.56 (+0.06)
Instance (NF) 0.31 0.23 0.38
Instance (F) 0.37 (+0.06) 0.18 (–0.05) 0.45 (+0.07)

better in semantic anomaly scenarios, while the embedding-
based method is more effective for OOD objects. This further
indicates that vision foundation model embeddings have
the potential to be used for OOD and semantic anomaly
detection.

However, clear separation is not always achieved. Dif-
ferent anomaly types yield different score ranges: OOD
objects and the traffic light scenario produce the highest
anomaly scores, while the stop sign scenario remains closer
to nominal scores. This is consistent with previous results,
where methods perform well in these scenarios but struggle
with subtler cases like the stop sign. These varying score



Fig. 4: Distribution of anomaly scores for anomalies (T) and nominal objects (N) across scenarios.

Fig. 5: Threshold sweep showing metric trends (IoU, F1, TPR, FPR) for both methods across all scenarios.

ranges complicate the selection of a single optimal threshold
across all scenarios and indicate a misalignment of the
different anomalies in the embedding space. Further analysis
presented in Fig. 5 confirms this observation. Higher true
positive rates consistently come with more false positives,
and the threshold for the best performance differs across
scenarios.

V. CONCLUSION AND OUTLOOK

This work takes a first step toward using vision foun-
dation model embeddings for semantic anomaly and OOD
detection. The results show that the proposed embedding-
based approaches can detect and localize semantic anoma-
lies, achieving performance comparable to GPT-4o. Overall,
the presented framework provides a solid foundation for
embedding-based semantic anomaly detection and motivates
further research in this direction. To improve robustness,
future work could focus on developing embeddings that
better capture characteristics that constitute an anomaly or
adopt more adaptive scoring mechanisms, such as energy-

based models. In addition, analyzing embeddings in isolation
might lead to a loss of global context, which is crucial for
detecting anomalies resulting from atypical object combina-
tions. Incorporating embeddings and scene structure into a
graph-based representation may facilitate joint reasoning and
better preserve contextual information.
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APPENDIX
This appendix provides additional data to support the

paper’s findings, as well as visualizations to improve un-
derstanding.

A. Examples images of the different anomaly scenarios
Figure 6 shows example images from the evaluated sce-

narios: OOD objects, traffic lights, and stop signs.

(a) OOD Object Example 1 (b) OOD Object Example 2

(c) Traffic Light Scenario 1 (d) Traffic Light Scenario 2

(e) Stop Sign Scenario 1 (f) Stop Sign Scenario 2

Fig. 6: Example images from the different scenarios used for
evaluation: OOD object (top), traffic light (middle), and stop
sign (bottom).

B. Processing Steps Visualization
The following section visualizes key steps of the anomaly

detection pipelines to illustrate intermediate results and sup-
port interpretation.

1) Embedding-Based Anomaly Detection Visualization:
To better understand the pipeline, Fig. 7 visualizes interme-
diate steps of the embedding-based anomaly detection. The
left image shows the anomaly score heatmap, where higher
values (yellow) indicate stronger anomalies. As seen in the
score histograms (Fig. 4), the scores do not reach the maxi-
mum dissimilarity of 1, yet the anomalous object is clearly
visible. Nominal regions, such as the surrounding vegetation,
remain consistently green, indicating low anomaly scores.
The right image shows the final classification after thresh-
olding, highlighting the detected anomaly (red areas). The
mask appears slightly blurry and extends beyond the actual
anomalous object. This is likely due to the limited number
of embeddings (256) used for the entire image, resulting in
reduced spatial resolution.

2) Instance-Based Anomaly Detection Visualization: To
better understand the instance-based pipeline, Fig. 8 shows
all intermediate steps. The first image presents object de-
tection. While the boat is correctly detected, the streetlight
is detected multiple times. The second image shows SAM2
segmentation, which performs well on the boat but struggles
with the streetlight due to overlapping boxes. The back-
ground is grouped into a single mask.

The third image displays the anomaly score heatmap.
The contrast between nominal and anomalous objects is
weaker than in the embedding-based version—all areas ap-
pear mostly yellow—but the boat remains distinguishable.
This is likely due to embedding averaging within the large
background mask. The final image shows the classification
result, highlighting the anomalous boat with sharp bound-
aries. Minor false positives appear at the traffic sign and
streetlight, likely due to imperfect detection and segmenta-
tion, resulting in partial or unseen objects and embeddings.

C. Prompt Used for ChatGPT-4o

Below is the prompt used for semantic anomaly detection
with GPT-4o.

ChatGPT-4o Prompt

I am the fault monitor for a vision-based autonomous
vehicle. My task is to critically evaluate the vehicle’s
observations in a given image and determine whether
they contain any elements that could lead to unsafe,
unpredictable, or traffic rule-violating actions.
For each object or element in the scene, I will analyze
and answer the following:

1) Is this common to see while driving?
2) Can this influence the vehicle’s behavior?
3) Can the vehicle drive safely in its presence?
4) Can this cause the vehicle to make unpre-

dictable or unsafe maneuvers?
Based on the analysis, I will classify each object as
either:

• Nominal (Normal) Observation: Does not im-
pact safety or traffic rule compliance.

• Anomaly: May pose risks, lead to unsafe be-
havior, or cause violations.

I will also evaluate the entire scene and classify it as
either Nominal or an Anomaly, with reasoning.
Output Format:

1) Individual Object Assessments: Answer the
four questions and classify each object.

2) Overall Scenario Analysis: Reasoning based
on all objects.

3) Overall Scenario Classification: Nominal or
Anomaly.

Example: The vehicle observes:
• A cyclist riding on the sidewalk

Classification: Normal



(a) Anomaly scoring heatmap (b) Anomaly classification result.

Fig. 7: Embedding-based anomaly detection pipeline: (a) computes anomaly scores from embedding distances. (b) shows
the final classification after thresholding.

(a) Object detection (b) Instance segmentation.. (c) Anomaly scoring heatmap (d) Anomaly classification result

Fig. 8: Instance-based anomaly detection pipeline: (a) shows the object detection output. (b) visualizes the segmentation
mask of SAM2 that used the bounding boxes for prompting. (c) illustrates the anomaly score heatmap. (d) presents the final
classification output, highlighting anomalous objects. This visualization helps to better understand the detection steps.

• A car parked in a no-parking zone
Classification: Normal

• A pedestrian carrying a bright green balloon
Classification: Anomaly

Overall Scenario Classification: Anomaly.

For the given image execute the task as described
in the example and strictly follow and adhere to the
provided output structure.

I am driving on the road and I see:

D. GPT-4o failures

As mentioned in Section IV-A, GPT-4o struggles with
more subtle semantic anomalies. This seems partly due to
a limited understanding of what defines a semantic anomaly.
GPT-4o sometimes classifies semantic anomalies as nominal,
or it detects them but for the wrong reason. Examples are
shown in Fig. 9.

In Example 9a, the stop sign on the billboard is classified
as nominal. GPT-4o explains that it provides an important
safety reminder, but does not consider it a potential risk
(9b). While the reasoning itself is valid, it may overlook the
relevance of such cues in the context of autonomous driving.

In Example 9c, the image is correctly classified as an
anomaly, but the reason given is the vehicle’s misalignment,

not the fact that it carries a traffic light. The traffic light
is mentioned, but only to note that its color cannot be
determined (9d).

These two cases show that GPT-4o may lack the domain-
specific context needed to correctly identify and interpret
semantic anomalies. In Example 9e, the traffic light is not
mentioned at all, and the truck is classified as nominal (9f).
This could be due to a domain shift, as GPT-4o was likely
trained mostly on real-world images. These issues highlight
the limitations of using GPT-4o in a zero-shot setting. Fine-
tuning on driving-specific tasks or providing more targeted
in-context examples could help mitigate these problems.

E. Examples of failures in the object detector

For instance segmentation, a combination of OWLv2 and
SAM2 is used, where bounding boxes from OWLv2 are
used to prompt SAM2. However, OWLv2 often produces
false positives on synthetic CARLA images, especially for
objects like traffic signs and street lights. Examples are
shown in Fig. 10. Similar issues with OWLv2 have been
reported in [7]. Multiple overlapping detections can lead
SAM2 to oversegment objects, splitting them into fragments.
These fragments may be misclassified as anomalies due to
their novel or inconsistent appearance relative to the nominal
dataset. Finetuning the object detector on the specific dataset
or using real-world images instead of synthetic ones could
help reduce these issues.



(a) GPT-4o Failure Case 1

Overall Scenario Classification: Nomi-
nal
”...Billboard with stop sign message:
Nominal. The billboard provides an im-
portant safety reminder about stopping,
although it does not directly impact ve-
hicle operation.”

(b) GPT-4o Response 1

(c) GPT-4o Failure Case 2

Overall Scenario Classification:
Anomaly
”...the improperly aligned vehicle could
pose a risk... The presence of traffic
lights ahead is nominal, but it is unclear
from the image if the light is red, yellow,
or green...”

(d) GPT-4o Response 2

(e) GPT-4o Failure Case 3

Overall Scenario Classification: Nomi-
nal
”...Parked vehicle in driveway: Nomi-
nal observation. Correctly parked off the
main road does not interfere with traffic
or pedestrian paths”

(f) GPT-4o Response 3

Fig. 9: GPT-4o failure cases where anomalies are either
misclassified as nominal or flagged for incorrect reasons. The
responses illustrate reasoning behind the misclassification.

Fig. 10: Examples where false positives in the object detector
lead to oversegmentation of certain objects. Each row shows
the predicted segmentation masks (left) and the correspond-
ing detections with bounding boxes (right).


