
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DO WGANS SUCCEED BECAUSE THEY MINIMIZE THE
WASSERSTEIN DISTANCE? LESSONS FROM DISCRETE
GENERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Since WGANs were first introduced, there has been considerable debate whether
their success in generating realistic images can be attributed to minimizing the
Wasserstein distance between the distribution of generated images and the train-
ing distribution. In this paper we present theoretical and experimental results that
show that WGANs do minimize the Wasserstein distance but the form of the dis-
tance that is minimized depends highly on the discriminator architecture and its
inductive biases. Specifically, we show that when the discriminator is convolu-
tional, WGANs minimize the Wasserstein distance between patches in the gener-
ated images and the training images, not the Wasserstein distance between images.
Our results leverage the advantages of discrete generators for which the Wasser-
stein distance between the generator distribution and the training distribution can
be computed exactly and the minima can be characterized analytically. We present
experimental results with discrete GANs that generate realistic fake images (com-
parable in quality to their continuous counterparts) and present evidence that they
are minimizing the Wasserstein distance between real and fake patches and not
the distance between real and fake images.

1 INTRODUCTION

In a seminal paper, (Arjovsky et al., 2017) showed the relationship between generative adversarial
networks (GANs) and the Wasserstein distance (W1) between two distributions. They argued that
when the data lies on a low dimensional manifold, the Wasserstein distance is a more sensible
optimization criterion compared to the KL divergence and showed that the Wasserstein distance can
be approximately optimized using an adversarial game between two neural networks: a generator
network and a critic network. The key difference between their method, Wasserstein GAN (WGAN),
and previous GANs is that the critic is regularized to be 1-Lipshitz, and a great deal of subsequent
research has focused on improved regularization techniques (Gulrajani et al., 2017; Miyato et al.,
2018; Anil et al., 2019). WGANs have been used in many applications and can give excellent sample
quality on different challenging image datasets (Radford et al., 2015; Isola et al., 2017; Brock et al.,
2018; Karras et al., 2020; Sauer et al., 2022; Pan et al., 2023).

In recent years, however, the connection between the success of GANs and the Wasserstein distance
has been questioned (Stanczuk et al., 2021; Fedus et al., 2018; Mallasto et al., 2019; Korotin et al.,
2022; Milne & Nachman, 2022). A first criticism is the extent to which WGANs indeed minimize
the Wasserstein distance. Several authors have shown that the approximating W1 using WGANs
can yield a poor approximation (Pinetz et al., 2019; Mallasto et al., 2019; Stanczuk et al., 2021;
Korotin et al., 2021). A second criticism is whether minimizing the Wasserstein distance between
two distributions is a sensible optimization criterion for generative models of images. Figure 1
shows a result from Mallasto et al. (2019): a model that does a much better job of minimizing an
empirical estimate of the Wasserstein distance actually produces results of much lower visual quality.
This had lead to an alternative view whereby ”GANs succeed because they fail to approximate the
Wasserstein distance” (Stanczuk et al., 2021) and that GANs should not be seen as minimizing a
loss function (Goodfellow et al., 2020; Fedus et al., 2017). Many papers had completely deserted
the distribution matching approach focusing on analyzing the adversarial game and its equilibrium
(Sidheekh et al., 2021; Farnia & Ozdaglar, 2020; Schäfer et al., 2019; Qin et al., 2020).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Gradient Clipping c-transform
Poor Batch Wasserstein Distance Good Batch Wasserstein Distance

Wasserstein GANs Work Because They Fail

Figure 7: Samples resulting from the training with a given
approximation method. c-transfrom on the top and gradient
penalty on the bottom. Based on (Mallasto et al., 2019b).

able to accurately estimate f⇤.

For the batch estimator

Ŵ1(p
⇤
n, p✓n) = max

kfkL1

�
Ex⇠p⇤

n
[f(x)]� Ex⇠p✓

n
[f(x)]

�
,

we have Ŵ1(p
⇤
n, p✓n) = W1(p

⇤
n, p✓n) and the sample com-

plexity is well known. As shown in (Weed & Bach, 2017),
for d-dimensional data, the expected error of the estimation
of the Wasserstein distance decreases as O(n�1/d), i.e.

Ep⇤
n⇠P⇤

n,

p✓
n⇠P✓

n

[|W1(p
⇤
n, p✓n)�W1(p

⇤, p✓)|] = O(n�1/d),

where P⇤
n and P✓

n denote the sets of all empirical measures
of n samples drawn from p⇤ and p✓, respectively. This
decay rate is very slow in high dimensions, and hence, even
if the optimal discriminator between p⇤n and p✓n is learned
perfectly, the loss function of WGAN is very far away from
the actual Wasserstein distance.

In the following sections, we argue that sample complexity
issues render the oracle estimator unrealistic and the mini-
batch estimator useless.

5.2. Empirical study of sample complexity issues

In this empirical study, we illustrate that the sample size
necessary for an accurate Wasserstein approximation is in-
feasible in the setting of high dimensional deep generative
modelling. To this aim, we examine the difference between
W1(p

⇤
n, p̃⇤n) and W1(p

⇤, p⇤) = 0 numerically where p⇤ is a
standard Gaussian measure in d dimensions, and p⇤n, p̃⇤n are
empirical measures of n samples drawn from p⇤. Note that
W1(p

⇤
n, p̃⇤n) decreases to 0 as n!1 and the convergence

is O(n�1/d).

The sample Wasserstein distance concentrates very well
around its expectation (Weed & Bach, 2017). Therefore,
the behaviour of the random variable W1(p

⇤
n, p̃⇤n) can be

understood by examining

Ep⇤
n⇠P⇤

n,p̃⇤
n⇠P⇤

n
[W1(p

⇤
n, p̃⇤n)],

where P⇤
n denotes the set of all empirical measures of n

samples drawn from p⇤.

According to the manifold hypothesis (Narayanan & Mitter,
2010) the distribution p⇤ which we want to learn is concen-
trated around a lower dimensional manifold M. According
to results in (Weed & Bach, 2017) the dimension of M,
known as the intrinsic dimension of p⇤, is relevant for the
sample complexity of the Wasserstein distance and may be
smaller than the dimension of the ambient Euclidean space.
The dimension of the manifold modeled by a GAN is at
most the dimension of its latent space Z (Arjovsky & Bot-
tou, 2017). Therefore, ideally we want to set the dimension

Wasserstein GANs Work Because They Fail

Figure 7: Samples resulting from the training with a given
approximation method. c-transfrom on the top and gradient
penalty on the bottom. Based on (Mallasto et al., 2019b).

able to accurately estimate f⇤.

For the batch estimator

Ŵ1(p
⇤
n, p✓n) = max

kfkL1

�
Ex⇠p⇤

n
[f(x)]� Ex⇠p✓

n
[f(x)]

�
,

we have Ŵ1(p
⇤
n, p✓n) = W1(p

⇤
n, p✓n) and the sample com-

plexity is well known. As shown in (Weed & Bach, 2017),
for d-dimensional data, the expected error of the estimation
of the Wasserstein distance decreases as O(n�1/d), i.e.

Ep⇤
n⇠P⇤

n,

p✓
n⇠P✓

n

[|W1(p
⇤
n, p✓n)�W1(p

⇤, p✓)|] = O(n�1/d),

where P⇤
n and P✓

n denote the sets of all empirical measures
of n samples drawn from p⇤ and p✓, respectively. This
decay rate is very slow in high dimensions, and hence, even
if the optimal discriminator between p⇤n and p✓n is learned
perfectly, the loss function of WGAN is very far away from
the actual Wasserstein distance.

In the following sections, we argue that sample complexity
issues render the oracle estimator unrealistic and the mini-
batch estimator useless.

5.2. Empirical study of sample complexity issues

In this empirical study, we illustrate that the sample size
necessary for an accurate Wasserstein approximation is in-
feasible in the setting of high dimensional deep generative
modelling. To this aim, we examine the difference between
W1(p

⇤
n, p̃⇤n) and W1(p

⇤, p⇤) = 0 numerically where p⇤ is a
standard Gaussian measure in d dimensions, and p⇤n, p̃⇤n are
empirical measures of n samples drawn from p⇤. Note that
W1(p

⇤
n, p̃⇤n) decreases to 0 as n!1 and the convergence

is O(n�1/d).

The sample Wasserstein distance concentrates very well
around its expectation (Weed & Bach, 2017). Therefore,
the behaviour of the random variable W1(p

⇤
n, p̃⇤n) can be

understood by examining

Ep⇤
n⇠P⇤

n,p̃⇤
n⇠P⇤

n
[W1(p

⇤
n, p̃⇤n)],

where P⇤
n denotes the set of all empirical measures of n

samples drawn from p⇤.

According to the manifold hypothesis (Narayanan & Mitter,
2010) the distribution p⇤ which we want to learn is concen-
trated around a lower dimensional manifold M. According
to results in (Weed & Bach, 2017) the dimension of M,
known as the intrinsic dimension of p⇤, is relevant for the
sample complexity of the Wasserstein distance and may be
smaller than the dimension of the ambient Euclidean space.
The dimension of the manifold modeled by a GAN is at
most the dimension of its latent space Z (Arjovsky & Bot-
tou, 2017). Therefore, ideally we want to set the dimension

Figure 1: When a WGAN generator is trained using gradient clipping, the approximation to Wasser-
stein distance is poor and a batch of generated faces have a higher Wasserstein distance to a batch
from the training set compared to when the “c-transform” method is used (Mallasto et al., 2019).
Nevertheless the visual quality is higher with the poor approximation.

A seemingly simple approach to answering the question of whether WGANs succeed because they
minimize W1 is to measure the Wasserstein distance between Pθ, the distribution over images that
is defined by the GANs, and Pdata, the true distribution, and to compare that distance to alternative
methods that minimize W1(P, Pdata). Unfortunately, exact calculation of W1(P,Q) where P,Q
are continuous distributions can only be done for a limited class of distributions. In previous works
(e.g. figure 1), an empirical approximation to W1(P,Q) was used, but this approximation is known
to be poor for high dimensional data such as images (Weed & Bach, 2019). Thus as long as we use
continuous, nonparametric distributions for the data and the generated images, it is impossible to
give a rigorous answer to the question of whether WGANs minimize W1.

In this paper we present an alternative approach that allows us to give a rigorous answer. We leverage
the advantages of discrete GANS. These GANS are identical to the standard GANs in which a noise
vector z is passed through a neural network fθ to generate an image. But in discrete GANs, the
noise vector z is sampled uniformly from M possible fixed noise vectors and thus the generator can
generate at most M possible images. Our work was motivated by our initial findings that when M is
sufficiently large, discrete GANs generate images that are of comparable quality to that of standard
GANs with the same architecture. Figure 2 shows images generated by a variant of FastGAN 1 that
we trained as a discrete GAN with M = 70, 000 fixed noise vectors. The results are comparable
in quality to training the same architecture with continuous noise vectors and similar results are
obtained with other values of M .

By using a discrete GAN we obtain the following advantages:

• We can exactly compute the Wasserstein distance between the GAN distribution Pθ and the
empirical distribution Pdata

• We can analytically characterize the optimal distribution Pθ that minimizes W1(Pθ, Pdata)
for different values of M .

• We can directly optimize W1(Pθ, Pdata) and compare these (locally) optimal solutions to
the ones found by WGANs.

In this paper we leverage these advantages of discrete GANs to provide theoretical and experimental
evidence that succesful WGANs do minimize the Wasserstein distance but the form of the distance
that is minimized depends highly on the discriminator architecture and its inductive biases. Specif-
ically, we show that when the discriminator is convolutional, WGANs minimize the Wasserstein
distance between patches in the generated images and the training images, not the Wasserstein dis-
tance between images.

2 EXACT COMPUTATION OF W1 IN DISCRETE SETTING AND
CHARACTERIZATION OF THE MINIMUM.

We start by reviewing the connection between Wasserstein distance and WGANs. The Wasserstein
distance W1(P,Q) between two distributions is defined as:

1See appendix B.2

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: (top:) Images generated by a discrete version of FastGAN trained on 128x128 images
from FFHQ with M = 70, 000. Even though the generator is discrete the visual quality is high and
comparable to that of the continuous generator. Similar results are obtained with different values of
M . (botttom:) the closest training example to each generated image.

W1(P,Q) = inf
γ∈Π(P,Q)

Ex,y∼γ∥x− y∥ (1)

where Π(P,Q) denotes the set of joint distributions whose marginal probabilities are P,Q. The
connection to GANs is more evident in the dual form:

W1(P,Q) = max
f∈F1

EP (f)− EQ(f) (2)

where F1 is the class of 1-Lipschitz bounded functions. Thus if we denote by P the distribution over
images defined by the generator and Q the training distribution, the minimization of W1(P,Q) can
be performed using an adversarial game in which the the generator attempts to decrease EP (f) −
EQ(f) and the discriminator, or critic f , attempts to increase EP (f)− EQ(f).

As mentioned in the introduction, the Wasserstein distance between arbitrary P,Q cannot be com-
puted efficiently and in this paper we leverage the advantages of discrete distributions for which
exact computation and optimization is possible.

Definition 2.1. (Discrete distribution) Given a set of N points {xi}Ni=1 we denote the discrete
distribution defined by these points by P{xi}(x) =

1
N δ(x− xi), where δ is the Dirac delta function.

Definition 2.2. (Discrete W1): Given a set of M points {xi} and a second set of N points {yi} the
Wasserstein distance between the discrete distributions defined by the two sets is given by:

W1(P{x}, P{y}) = min
π

∑

i,j

πij∥yi − xj∥ (3)

with πij a M ×N matrix whose elements are between 0 and 1 and satisfies
∑

i πij =
1
M ,

∑
j πij =

1
N .

Unlike the continuous case, the solution for the optimal transport matrix π can be done in polynomial
time so that W1(P{x}, P{y}) can be computed exactly. The connection to discrete GANs is described
in the following definition:

Definition 2.3. (Discrete W1 optimization problem). Given a set of of N points {yi} the discrete
W1 optimization problem is to find a set of M points {xj} such that W1(P{x}, P{y}) is minimal.

Figure 3 illustrates this problem. We approximate a training distribution with N examples (blue
circles) with a generated distribution with M examples (red asterisk). The figure shows numerical
solutions to this problem using an iterative algorithm that we call ”OT-Means”.

Algorithm (OT-Means). Repeat until convergence:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

M < N M = N M > N

-1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

-1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

-1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Figure 3: In the discrete Wasserstein minimization problem, we approximate a training distribution
with N examples (blue circles) with a generated distribution with M examples (red asterisk). In this
paper we present an algorithm (OT-means) for solving this problem and we characterize the optimal
solution. Specifically, we show that when M < N the optimal solution generates images that are
linear combinations of training examnples, whilo for M = N and M > N it copies the training
examples.

• Given the current estimate of the generated points {xj} set π to be the optimal transport
matrix betwen {xj}Mj=1 and the training set {yi}Ni=1

• Given π minimize:
xj = argmin

∑

i

πij∥yi − xj∥

This minimization is the geometric median problem and can be performed using iteratively
reweighted least squares (Weiszfeld, 1937).

It is easy to show that this algorithm decreases W1(P{x}, P{y}) at each iteration.

Figure 3 shows the output of OT-means on the same toy dataset with different values of M . It can
be seen that when M < N the optimal solution generates samples that are linear combinations of
training examples, while for M = N and M > N it copies the training examples. The following
theorem characterizes the solutions to the problem.

Theorem 2.4. For M = N or M > N, M
N = k the optimal solution to the discrete W1 optimization

problem is for the generator to copy the training examples. ForM < N , at any local minimum of
the problem, each generated sample is a linear combination of at least N/M training examples.

Proof. (sketch) The result for M = N or M = kN follows from the fact that W1 ≥ 0 and copying
the examples yields W1 = 0. The result for M < N follows by differentiating W1(P{x}, P{y})
with respect to a specific xj and setting the gradient to zero. See appendix A.1 for full proof.

Given these results, we can now rigorously answer the following question: is the success of the
discrete GAN shown in figure 2 due to minimizing W1 ? This GAN was trained with M = N =
70, 000 thus the optimal solution is to simply copy the training examples. But as can be seen, in
figure 2, the discrete GAN is not copying the training images and when we compute the exact W1

for this problem we see that is far from the optimal value of zero. As another example, consider the
discrete GAN shown in figure 4: here M = 10, 000 and N = 70, 000 so at any local minimum the
generated images should be a linear combination of at least 7 training images. Indeed when we run
OT-means with these values of M,N we obtain images of low quality (shown in the bottom of the
figure) even though the exact W1 is better. This is reminiscent of the Mallasto et al. (2019) result
in 1 but note that here we are using the exact W1 between two discrete distributions and avoiding
the intractable problem of approximating W1 between continuous distributions.

3 THE IMPORTANCE OF THE DISCRIMINATOR ARCHITECTURE

Given the dual form of W1 (equation 2), how do we explain the fact that WGANs do such a poor job
of minimizing W1? One possibility is that in the standard training of WGANs, the discriminator is
not optimized to convergence: the common practice is to iterate a few iterations of gradient descent

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Discrete FastGAN (M = 10K) (W1 ≈ 1.82e04):

OTMeans (M = 10K) (W1 ≈ 7.69e03)):

Figure 4: Top: results of discrete fastGAN with M = 10K so that M < N . The results are still
sharp and realistic. Bottom: OT means with the same M,N . This produces blurred images and yet
the exact W1 is lower.

for the generator and then a few iterations for the discriminator. Perhaps this use of iterative gradient
updates precludes the WGANs from optimizing W1 ? In this section we present evidence that this
is not the case. In fact, even with iterative gradient updates, WGANs can do an excellent job of
optimizing the Wasserstein distance, but the specific form of the distance that is being optimized is
heavily influenced by the architecture of the discriminator.

Figures 5,6 show experiments with fully connected discriminators. Fully connected discriminators
are interesting because they satisfy the universal approximation property Hornik et al. (1989): by
using a sufficiently wide fully connected network with the gradient penalty method of WGANs, the
discriminator should be able to implement any 1-Lipshitz function. In these figures, we considered
three toy datasets of N = 1000 images: (1) white squares on a black background (2) MNIST
and (3) face thumbnails (of size 64 × 64). We trained a discrete WGAN with a fully connected
discriminator on these datasets with different values of M . The generator network was also a fully
connected network and we used mini-batches of size 64. We also ran OT-means on the same data
and for the same values of M . We found that for a range of values of M , the discrete WGAN did an
excellent job of minimizing W1.

Figure 5 shows the results for M = 64. Recall that given theorem 2.4, any local minimum of the loss
should generate images that are linear combinations of at least 15 different training images. Indeed
when we look at the results of OT-means (in the middle column) we find that the generated images
are blurred, as expected. When we look at the results of the DiscreteWGAN-FC (right column)
we see that they are also blurred. Unlike results that are often shown in papers that use WGANs,
where the results are sharp and contain high resolution detail (e.g. figure 1), now the results are
visually similar to the results of OT-means. Perhaps most convincingly, when we measure the exact
W1 between the generated images and the training set, we see that the DiscreteWGAN-FC samples
achieve nearly the same W1 as the OT-means result.

Figure 6 shows a similar pattern of results for the case M = N . According to theorem 2.4, in
this setting the optimal W1 is obtained when the generator simply copies the training examples.
Indeed such a solution is found rapidly using OT-means. But more surprisingly, this solution is also
found using the Discrete GAN: even though the generator never has direct access to the training set
(only through a noisy gradient signal given by the discriminator) and is trained with mini-batches, it
manages to copy the training examples and achieves a W1 value that is close to the optimal value of
zero.

Taken together, these results show that WGANs can do an excellent job of minimizing W1, even
with iterative gradient updates. How then do we explain the failure of W1 minimization in successful

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Using Fully connected discriminator minimizes W1 almost as well as OT means. The
plots on the right compare both the optimization results and a batch of 64 training images to all train
images

Figure 6: Using Fully connected discriminator and M = N makes WGANs copy the data. Again,
this is almost as good as minimizing W1 with OT-means.

WGANs such as those shown in figures 1,2? As we now show, this is due to the fact that they use
convolutional discriminators.

3.1 CONVOLUTIONAL DISCRIMINATORS

The key assumption in the connection between WGANs and W1 is that the discriminator can ap-
proximate any 1-Lipshitz function. But what happens if the discriminator architecture has strong
inductive bias? Almost all discriminators used in practical GANs are convolutional. The following
theorems shows that for such discriminators, WGANs no longer minimize W1 between images but
rather between smaller image-patches.

We start by formally defining two convolutional architectures (see detailed description in the ap-
pendix B.1).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 7: Using convolutional discriminators with the same generator as above learns either global
patch statistics (with CNN-GAP) or local patch statistics (with CNN-FC). In all cases, the patch W1
that it finds is similar to directly optimizing the appropriate patch W1.

Definition 3.1. (CNN-GAP) We denote by CNN-GAP(S) a CNN in which all layers except the last
two are convolutional, followed by global average pooling (GAP) and a fully connected layer. The
receptive field of units in the layer before the global average pool is S.
Definition 3.2. (CNN-FC) We denote by CNN-FC(S) a CNN in which all layers except the last
layer are convolutional followed by fully connected layer and the receptive field of units in the layer
before last is S.

These two CNNs are abstractions of CNNs that are used in successful WGANs: CNN-GAP is an
abstraction of the patchGAN discriminator (Isola et al., 2017) and CNN-FC is an abstraction of the
DCGAN discriminator (Radford et al., 2015). More details in Appendix B.1.
Theorem 3.3. Training a WGAN with a CNN-GAP discriminator is equivalent to minimizing
W1(P̂θ, P̂data) where P̂θ, P̂data are the distribution over all patches of size S in the generated im-
ages and training images respectively.

Proof. (sketch) For this discriminator the output can be written as a sum of discriminators over
patches and by linearity of expectation EP (f), EQ(f) can be written as a sum of expectations over
patch distributions. Full proof in A.2

Theorem 3.4. Training a WGAN with a CNN-FC discriminator is equivalent to minimizing an

upper bound on W1(
ˆ

P i,j
θ ,

ˆ
P i,j
data) where ˆ

P i,j
θ

ˆ
P i,j
data are the distributions over all patches of size S in

the generated images and training images respectively at location (i, j). This bound holds for any
location (i, j).

Proof. (sketch) For this discriminator the output can be written as a weighted sum of discriminators
over patches at a specific location. By choosing the weights to be one only at one location and zero
everywhere else, we obtain a bound on the Wasserstein distance between fake and generated patches
at that location. Full proof in A.3.

Figure 7 (1st and 3rd left columns) shows the dramatic influence of the discriminator architecture
on the toy datasets that we showed in figure 5, Even though we are using exactly the same value
of M (64) and exactly the same training set and generator architecture, the Discrete GANs with
CNN discriminators generate completely different images compared to OTmeans (Fig. 5). While
the OTmeans results (and the discreteGANs with non convolutional discriminators) look blurred
and maintain global structure, the images generated by the GANs with convolutional discriminators

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 8: Top column: 20 randomly selected fake patches from a single location from a discrete
GAN with M = N = 70K. Second column: the most similar true patches from the same location
in the training set. Even though the generator never has direct access to the training images, it does
a good job of copying the training patches. The mean cosine distance to the nearest neighbor is
0.99. Bottom: comparisons of histograms of random projections of fake and true patches at the
same location. The histograms are almost perfectly aligned. The histogram of LSUNS patches at
the same location are shown for comparison.

look very different. For example, in the MNIST data, using a CNN-GAP discriminator causes the
WGAN to generate sharp digit parts, but the parts do not fit together to form a coherent digit. When
we use a CNN-FC discriminator, the parts need to appear in the correct location (e.g. the top of a ”9”
always appears in the top half of the generated image, not on the bottom) but the generated digits
may still lack global coherence (e.g. the bottom-rightmost generated digit). In order to directly
optimize patch W1 we can no longer use OT-means because the generated patches must satisfy the
constraint that they are taken from M images with overlap. As an alternative, we use SGD to train
the same generator network used by the discrete GANs but replace the WGAN training loss with an
estimate of the appropriate patch W1.

As mentioned in the introduction we use the discrete generators to avoid using minibatch-based
empirical estimates of W1. For image W1 we need to compute an optimal transport between M = 64
generated images and N training images and this is still feasible but for global patch W1 we need to
compute optimal transport between all patches in 64 images and all patches in the training images
and this is infeasible. We therefore used Sliced Wasserstein distance (SWD) Pitie et al. (2005);
Rabin et al. (2011); Bonneel et al. (2015) as a cheaper proxy.

The sliced Wasserstein distance is defined as the expected W1 value between 1-d projections of two
distributions into random directions. An unbiased approximation of this distance is computed from
k random directions. The efficiency of SWD stems from the fact that for one dimensional data, the
W1 can be computed by simply sorting the samples and so the distance between two samples of
size M can be computed in O(M logM). While in general SWD(P,Q) and W1(P,Q) may be
different, SWD shares with W1 the property that SWD(P,Q) = 0 if and only if P = Q. Thus by
minimizing patch SWD we are encouraging the patch distribution in the fake images to match the
patch distributions in the true images.

Figure 7 (2nd and 4th columns from the left) shows the results of direct optimization of patch SWD
on the same datasets and using the values of M . Unlike the OT-means results, matching patch
distributions yields images that preserve high frequency details and lack global structure. Clearly,
discrete GANs that use convolutional discriminators generate images similar to those obtained by
approximately minimizing patch distributions, not by minimizing image W1.

Not only are the results of discrete GANs with convolutional discriminators visually similar to direct
optimization, the patch SWD that they obtain is similar. For example, in the FFHQ thumbnails, the
discrete GAN achieves local SWD of 0.05 direct optimization achieves local SWD of 0.03 while
a random generator achieves local SWD above 0.25. Recall that SWD = 0 if and only if the
two distributions match so this is numerical evidence that the discrete GAN is doing a good job of
matching the local statistics.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 9: Evidence that the discrete DCGAN (2 leftmost plots) and FastGAN (2 rightmost plots)
is matching the local statistics in the generated image and the training images. Even though each
individual image is quite far from a training image, the local histograms of random projections of
patches from the true images and the generated images are almost identical.This is true for various
values of M including a continuous prior.

To summarize, our proofs show that theoretically WGANs with convolutional discriminators should
minimize patch W1 and not image W1 and our experiments with toy data shows that this is indeed
the case, even if we use iterative gradient training. We now ask, can the minimization of patch W1

explain the success of WGANs in realistic datasets?

4 DO SUCCESSFUL DISCRETE GANS MINIMIZE PATCH WASSERSTEIN
DISTANCE?

Local patch swd
DCGAN m=10K 0.044
DCGAN m=70K 0.040
DCGAN m=∞ 0.058
FastGAN m=10K 0.056
FastGAN m=70K 0.045
FastGAN m=∞ 0.033
OTMeans = 10K 0.099
AFHQ 0.145
Imagenet 0.181

Table 1: The local SWD between true FFHQ image patches and fake image patches for different
successful WGANs (averaged over locations). In all cases, the average local SWD is below 0.05. For
comparison, the average local SWD between OTmeans (M=10K) patches and true FFHQ patches is
around 0.1 while the average local SWD between ImageNet and FFHQ is around 0.18.

We trained discrete versions of FastGAN and DCGAN on N = 70, 000 FFHQ images of size
128 × 128. We varied the number of fixed noise vectors M and found that for both architectures,
the discrete GANs generate comparable results to the continuous counterparts (figures 2,4). See also
figure 13 in the appendix.

The preceding theory and experiments have told us what to expect if these successful discrete GANs
are minimizing Wasserstein distance. The easiest case is when M = N . For such a case, we expect
a discrete GAN to copy images from the training set if it is minimizing image W1 and to copy
patches from the training set if it is minimizing patch W1. Figure 8 (top) shows fake patches from
a single location generated by the discrete FastGAN from figure 2 and the bottom row shows the
closest match from the same location in the training set. Even though the generator never has direct
access to the training images, it does a good job of copying the training patches. The mean cosine
distance to the nearest neighbor is 0.99.

If the discrete GAN is minimizing patch W1 it is not enough for it to copy patches from the training
set: it should also maintain the same patch distribution. Consider for example a location where there
are only two possible patches in the training set: 60% are blue patches and 40% are green patches.
If the fake patches are 99% blue and 1% green, then the patch W1 would still be high (Elnekave
& Weiss, 2022). Only if the fake patches were also 60% blue and 40% green is the patch W1

minimal. To visualize how well the discrete GAN matches the local patch distribution we considered

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

histograms of random projections of the patches. As can be seen in three plots at the bottom of
figure 8 the histograms for fake patches and true patches are almost perfectly aligned. Thus the
discrete GAN is not only copying patches but also matching the local patch distribution. Even when
we consider the histograms corresponding to patches in the edges of the image for true and fake
images, the two histograms align quite well (see figure 12 in the appendix). Thus even for locations
that often correspond to the background, the discrete GAN is matching the local patch distribution
in the true and fake images.

When M < N then we cannot expect the discrete GANs to copy training patches but rather its
output should look like the output of OT-means on patches from a single location (see appendix C):
each generated patch is a linear combination of training patches and the local histograms of true and
fake patches at a location should match. Figure 9 shows that the local distribution is matched very
well for a discrete DCGAN with different values of M . Importantly, the matching also holds with
the continuous prior.

We summarize all of our experiments in table 1: for the two GAN architectures and for different
values of M , the local distributions at a particular location are well matched between the true images
and the generated images. As a reference we also compute the distance to a batches of 10K images
from ImageNet and from AFHQ (Choi et al., 2020): the average local SWD between AFHQ and
FFHQ is about 0.15 and 0.18 while the different WGANs consistently achieve a local SWD that is
about 0.04.

5 LIMITATIONS AND EXTENSIONS

Our theoretical results are based on simplifications of convolutional discriminators used in practice.
One major simplification is that we assume that the receptive field sizes are at most S and this
value of S determines the patch size used in patch W1. For practical CNNs, the theoretical limit on
the receptive field may be very large, but the effective receptive field size is still small (Brendel &
Bethge, 2019) and the CNN can be well-approximated as if the receptive field size was much smaller
than the theoretical limit. A second simplification is that we implicitly assumed that the CNNs do
not use any padding when performing convolutions (and this was also the case in the GANs that we
trained for the toy data). When padding is used, patches at different image locations can actually be
distinguished even with a patch-based discriminator (e.g. (Isola et al., 2017),(Shaham et al., 2019))
so even a CNN-GAP discriminator will optimize a patch distance that is location-dependent.

Even though our use of the discrete setting allows us to exactly measure W1 between true and
fake images, it still leaves open the question of how small W1 needs to be in order for a method
to be described as ”successful” in minimizing W1. For this reason, we compare the results of the
WGANs to direct optimization of W1 and also visualize the histograms and measure their distance
using SWD.

The most significant limitation of our paper, of course, is our focus on discrete GANs while SOTA
GANs use a continuous prior. We note that most of our theoretical results do not require the GANs to
be discrete: working with discrete GANs allows us to empirically measure W1 and to rigorously de-
termine whether the predictions hold. In practice, we find that continuous GANs with convolutional
discriminators behave similarly to their discrete counterparts (with large M ).

6 DISCUSSION

The question that motivated this paper is whether WGANs suceeed because they optimize the
Wasserstein distance. We leveraged the discrete setting that allows us to compute the Wasserstein
distance exactly, to characterize its optima and to optimize it with alternative algorithms. Our results
indicate that the answer is ”yes” but the form of W1 that is being optimized depends on the architec-
ture of the discriminator. Specifically we have shown that when the discriminator is convolutional,
what is being minimized is the patch W1 and not the image W1.

A major advantage of having a well-defined loss function that is being optimized is the ability to
monitor learning algorithms and check for their convergence. We hope that our results will yield
WGAN learning algorithms that are considerably more stable than the current methods and require
less parameter tuning.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 291–301. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
anil19a.html.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 51(1):22–45, 2015.

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models
works surprisingly well on imagenet. arXiv preprint arXiv:1904.00760, 2019.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Ariel Elnekave and Yair Weiss. Generating natural images with direct patch distributions matching.
In European Conference on Computer Vision, pp. 544–560. Springer, 2022.

Farzan Farnia and Asuman Ozdaglar. Do gans always have nash equilibria? In International
Conference on Machine Learning, pp. 3029–3039. PMLR, 2020.

William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mohamed, and
Ian Goodfellow. Many paths to equilibrium: Gans do not need to decrease a divergence at every
step. arXiv preprint arXiv:1710.08446, 2017.

William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mohamed, and
Ian Goodfellow. Many paths to equilibrium: Gans do not need to decrease a divergence at every
step. In International Conference on Learning Representations, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and Evgeny
Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark.
Advances in Neural Information Processing Systems, 34:14593–14605, 2021.

Alexander Korotin, Alexander Kolesov, and Evgeny Burnaev. Kantorovich strikes back! wasserstein
gans are not optimal transport? Advances in Neural Information Processing Systems, 35:13933–
13946, 2022.

11

https://proceedings.mlr.press/v97/anil19a.html
https://proceedings.mlr.press/v97/anil19a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster and stabilized
gan training for high-fidelity few-shot image synthesis. In International Conference on Learning
Representations, 2020.

Anton Mallasto, Guido Montúfar, and Augusto Gerolin. How well do wgans estimate the wasserstein
metric? arXiv preprint arXiv:1910.03875, 2019.

Tristan Milne and Adrian I Nachman. Wasserstein gans with gradient penalty compute congested
transport. In Conference on Learning Theory, pp. 103–129. PMLR, 2022.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, and Christian
Theobalt. Drag your gan: Interactive point-based manipulation on the generative image mani-
fold. In ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11, 2023.

Thomas Pinetz, Daniel Soukup, and Thomas Pock. On the estimation of the wasserstein distance in
generative models. In Pattern Recognition: 41st DAGM German Conference, DAGM GCPR 2019,
Dortmund, Germany, September 10–13, 2019, Proceedings 41, pp. 156–170. Springer, 2019.

Francois Pitie, Anil C Kokaram, and Rozenn Dahyot. N-dimensional probability density function
transfer and its application to color transfer. In Tenth IEEE International Conference on Computer
Vision (ICCV’05) Volume 1, volume 2, pp. 1434–1439. IEEE, 2005.

Chongli Qin, Yan Wu, Jost Tobias Springenberg, Andy Brock, Jeff Donahue, Timothy Lillicrap,
and Pushmeet Kohli. Training generative adversarial networks by solving ordinary differential
equations. Advances in Neural Information Processing Systems, 33:5599–5609, 2020.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its applica-
tion to texture mixing. In International Conference on Scale Space and Variational Methods in
Computer Vision, pp. 435–446. Springer, 2011.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pp. 1–10, 2022.

Florian Schäfer, Hongkai Zheng, and Anima Anandkumar. Implicit competitive regularization in
gans. arXiv preprint arXiv:1910.05852, 2019.

Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model from
a single natural image. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 4570–4580, 2019.

Sahil Sidheekh, Aroof Aimen, and Narayanan C Krishnan. On characterizing gan convergence
through proximal duality gap. In International Conference on Machine Learning, pp. 9660–9670.
PMLR, 2021.

Jan Stanczuk, Christian Etmann, Lisa Maria Kreusser, and Carola-Bibiane Schönlieb. Wasser-
stein gans work because they fail (to approximate the wasserstein distance). arXiv preprint
arXiv:2103.01678, 2021.

Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of em-
pirical measures in wasserstein distance. 2019.

Endre Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés est minimum.
Tohoku Mathematical Journal, First Series, 43:355–386, 1937.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF THEOREM 2.4

To show that for M < N at any local minimum the generator must be a linear combination of at
least N/M training examples, we differentiate equation 3 with respect to a generated image xi and
setting the gradient to zero yields that xi must satisfy:

xi =
∑

j

wijyj

with wij a vector of weights that sums to one and wij ∝ πij∥xj−yi∥−1. Now since πij is a solution
to the optimal transport between M generated images and N training images, it is a non-negative
matrix that satisfies

∑
i πij = 1

N and
∑

j πij = 1
M . This implies that for each i there must be at

least N/M different indices j for which πij > 0 and this shows that y must be a linear combination
of at least N/M training images.

A.2 PROOF OF THEOREM 3.3

We can write the output of the critic for an input x as:

f(x) = WT 1

n

∑

i

h(pix)

where pix extracts the ith patch in image x, W are the weights in the final layer, and n is the number
of patches in the penultimate feature map.

Moving WT into the above sum and defining g(x) = WTh(x) where x is a patch we can rewrite
the image critic, f(x) as:

f(x) =
1

n

∑

i

g(Pix)

Recall that the critic f attempts to maximize EP (f) − EQ(f). By the linearity of the expectation
EQ(f) is equal to EQ̃(g) and likewise EPθ

(f) = EP̃θ
(g) where P̃ , Q̃ are the distributions over

patches in the true and fake images. Denoting by GAP1 the class of 1-Lipshitz functions that can
be implemented by a CNN-GAP architecture, this means that:

max
f∈GAP1

EPθ
(f)− EQ(f) = max

g∈G1

EP̃θ
(g)− EQ̃(g)

G1 is the class of functions that operate on S × S patches and can be implemented by the units in
the layer before the GAP.

A.3 PROOF OF THEOREM 3.4

We can write the output of the critic for an input x as:

f(x) =
∑

c

∑

i

wicfc(Pix) (4)

where Pix extracts the ith patch in image x, C is the number of channels and wic the weights in the
final layer.

Now define the function class CNN as all functions that can be implemented using equation 4 and
the subclass CNNk as the set of functions that can be implemented by equation 4 where wjc = 0
∀c, ∀j ̸= k. Since CNNi ⊂ CNN we have

max
f∈CNN

EPθ
(f)− EQ(f) ≥ max

f∈CNNi

EPθ
(f)− EQ(f)

and since for f ∈ CNNi f is only a function of the ith patch we can write:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 10: An illustration of the toy CNN used the experiments in figures 5-7. 3 Convolutional layers
are followed by two type of linear heads that project the feature map into a scalar. The annotation
RF stands for the receptive field of the previous layer.

max
f∈CNNi

EPθ
(f)− EQ(f) = max

i∈I,gi∈G
EP̃θ

(gi)− EQ̃(gi)

= max
i∈I

W patchesi
1 (Pθ, Q)

where again gi(x) is a critic for the ith patch: gi(x) =
∑

c wicfc(Pix).

B ARCHITECTURES

B.1 TOY CNNS

We bring here further details about CNN-GAP and CNN-FC architectures used in the the experiment
section. Both architectures start with 3 convolutional layers with kernel size 3, stride 2 and no
padding each followed by a RELU layer. These layers transform an 64x64x3 image to a 7x7x256
features map. The receptive field at this point, i.e, the size of the patch in the original images that
affect each pixel in this feature map is 15x15. CNN-GAP applies global average pooling to this
feature map that transforms it into a 1x1x256 layer that is later linearly projected into a scalar.
CNN-FC reshapes the feature map into a long vector of 7*7*256 that is linearly projected into a
scalar. Figure 10 illustrates the two architecture with their common backbone.

B.2 FASTGAN VARIANT

We experimented with FastGAN Liu et al. (2020) as an easy, fast to converge GAN model that
performs comparabely to SOTA GANs. In our experiments we simplified its architecture branching

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

real:

OTMeans Image:

OTMeans Patch:

-10000 -5000 0 5000
intensity

0

500

1000

1500

2000

2500

3000

co
un

ts

true
OTMeans Image
OTMeans Patch

0 50 100 150 200 250
intensity

0

200

400

600

800

1000

1200

co
un

ts

true
OTMeans Image
OTMeans Patch

Figure 11: The difference between minimizing image W1 and patch W1. When we minimize image
W1 and then extract small (20× 20) patches (middle row) the extracted patches look very different
from the training patches. When we minimize patch W1, i.e. the Wasserstein distance between
20×20 patches at that location in the true and fake images, the generated patches (bottom row) look
similar to real patches. The success in capturing the local patch distribution can be visualized by
comparing the histograms of random projections of the patches.

off this implementation 2. We removed the auto-encodeing brances of the discriminator so that both
the generator and the discriminator are simple feed-forward networks with skip connections.

C OTMEANS ON PATCHES

One reason to expect better results with the minimization of patch W1 is related to theorem 2.4:
minimizing image W1 causes the generator to either copy the training set or to generate images that
are linear combinations of several training images and will therefore be of poor visual quality. But if
we minimize patch W1 we can still generate images that are very different from the training images
by copying patches from the training set and combining them in novel ways. We can also generate
patches that are linear combination of training patches, but since the distribution of patches is simpler
in some sense than that of images, linear combinations of training patches do not necessarily have
to be blurred. Figure 11 illustrates this point. We minimized patch W1 by running OTmeans with
M = 10, 000 only on a small 20x20 patch in a location that corresponds to the left part of the mouth.
We then compared the generated patches to those obtained by running OTmeans on the full image
(hence minimizing image W1) and then extracting the patches. As can be seen in the figure, the
patches obtained by minimizing patch W1 are high-contrast and sharp, unlike the patches obtained
by minimizing image W1.

We can visualize how well the generated patches match the distribution of training patches by plot-
ting the histogram of random projections of the patches. As shown in the bottom of figure 11, when
we minimize image W1 the histograms of projections of generated patches are visibly different from
those of training patches at the same location. When we minimize the local patch W1, the histograms
match very well.

2https://github.com/odegeasslbc/FastGAN-pytorch/blob/main/models.py

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000
0

500

1000

1500

2000

2500
location: 1 1

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000
0

500

1000

1500

2000

2500

3000
location: 1 64

true
fake

-3000 -2000 -1000 0 1000 2000 3000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
location: 64 64

true
fake

Figure 12: Histograms of the same random projection for true and fake patches at different locations.
Note that the histograms are different between different locations but highly similar for true and fake
patches. This is true even for locations at the edge of the image.

D HISTOGRAMS AT DIFFERENT LOCATIONS

Figure 12 visualize how well the discrete GAN matches the local patch distribution we considered
histograms of random projections of the patches in additional 3 locations.

E RESULTS WITH DISCRETE SOTA ARCHITECTURES

We bring here the results of training discrete-WGANs with more capable architectures. As can
be seen, for both DCGAN Radford et al. (2015) and FastGAN Liu et al. (2020) the results with
two different discrete priors (M=10K,70K) are comparable to the results with normal prior (M=∞).
Each second row shows the data nearest neighbor to show there is not copying involved.

E.1 RESULTS WITH DISCRETE DCGAN

See generated images and data nearest neighbors in figure 13

E.2 RESULTS WITH DISCRETE FASTGAN

See generated images and data nearest neighbors in figure 14

F ADDITIONAL ABLATION EXPERIMENTS FOR REVIEWERS

F.1 RESULTS WITH CONVOLUTIONAL GENERATOR

In all of the experiments in the paper we used the same FC generator. We Repeat here the results
from figures 5 and 8 from the paper with a convolutional generator (DCGANRadford et al. (2015).
As can be seen in figure 15 the WGAN and direct optimization show similar behavior.

F.2 RESULTS WITH DIFFERENT GAN LOSSES

Our paper deals with WGANs. While the same can be done for all IPMs like Sobolev GANs and
MMD GANs it may not be directly applied to some other losses like the original or non-saturating
GAN losses. However, our experiments with Non-saturating GANs show (figure 16) similar results.

F.3 RESULTS WITH DIFFERENT PATCH SIZES

We have conducted experiments from figures 5,7 with different patch sizes. We used less convolu-
tional layers in the discriminator to get patch size=8 and the same number of layers (3) with kernel
size 4 (instead of 3) to get a patch size of 22. As can be seen in figure 17 observed that the rele-
vant patch size indeed changes as predicted. This figure compares WGANs trained with CNN-GAP
discriminators of different depth and thus different receptive fields. As can be seen, with a shal-
low discriminator the generated images preserve statistics of smaller patches. We will discuss these
results in the final version.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

M = 10, 000:

M = 70, 000:

M = ∞ :

Figure 13: Images generated with Discrete DCGAN for different values of M . For each value of
M we show five generated images and below them the closest image from the training set for each
generated image.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

M = 10, 000:

M = 70, 000:

M = ∞ :

Figure 14: Images generated with Discrete FastGAN variant for different values of M . For each
value of M we show five generated images and below them the closest image from the training set
for each generated image.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) FFHQ (b) Mnist (c) Squares

Figure 15: Comparing direct optimization in image/patch level with WGAN with FC/Convolutional
discriminator when the generator is convolutional

(a) FFHQ (b) Mnist (c) Squares

Figure 16: Results of training NS-GAN with FC/Convolutional discriminators. As can be seen, we
see the same trend as with WGAN where the discriminator architecture controls whether the statistic
being preserved is in the image or the patch level. The graphs also show metrics taken from the same
model trained with WGAN loss and of a direct optimization for reference.

(a) FFHQ (b) Mnist (c) Squares

Figure 17: Results of WGAN trained with with FC/Convolutional discriminator when in different
patch sizes. As can be seen, as the patch size grows the statistics of bigger patches is preserved.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Batch1:

Batch2:

Batch3:

Batch4:

Figure 18: Additional 4 batches of results from the model from figure 6 trained with M=N=1K on
FFHQ each batch’s top row shows fake images and the bottom row shows data nearest neighbors.

F.4 ADDITIONAL RESULTS WITH M=N

We bring here in figure 18 more results from the experiment of figure 6

20


	Introduction
	Exact computation of W1 in discrete setting and characterization of the minimum.
	The importance of the discriminator architecture
	Convolutional Discriminators

	Do successful discrete GANs minimize patch Wasserstein distance?
	Limitations and Extensions
	Discussion
	Proofs
	Proof of Theorem 2.4
	Proof of theorem 3.3
	Proof of Theorem 3.4

	Architectures
	Toy CNNs
	FastGAN Variant

	OTmeans on patches
	Histograms at different locations
	Results with discrete SOTA architectures
	Results with discrete DCGAN
	Results with discrete FastGAN

	Additional ablation experiments for reviewers
	Results with convolutional generator
	Results with different GAN losses
	Results with different patch sizes
	Additional results with M=N


