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Abstract

We study stochastic gradient descent (SGD) with gradient clipping on convex
functions under a generalized smoothness assumption called (L0, L1)-smoothness.
Using gradient clipping, we establish a high probability convergence rate that
matches the SGD rate in the L smooth case up to polylogarithmic factors and
additive terms. We also propose a variation of adaptive SGD with gradient clipping,
which achieves the same guarantee. We perform empirical experiments to examine
our theory and algorithmic choices.

1 Introduction

Gradient clipping is a common method for stabilizing neural network training. Despite its wide use,
little thought is given to the choice of the clipping threshold, with many works fixing it at 1 without
attempting to tune it [3, 5, 34, 35, 2, 20, 21]. In pursuit of a theory-driven threshold choice, recent
research tries to better understand the benefits of gradient clipping.

Experiments suggest that clipping is effective in situations where small changes in input can lead
to significant variations in gradient norms [44, 43]. This observation has led Zhang et al. [44] to
formally define this behavior as the following “relaxed” smoothness property.
Definition 1. A twice-differentiable function f : Rd → R is (L0, L1)-smooth if for every x ∈ Rd it
holds that ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥.

In words, (L0, L1)-smoothness allows the Hessian norm to increase linearly in the gradient norm.
This is opposed to the traditional smoothness property, which says that the Hessian norm is bounded
by a constant, coinciding with the new definition for L1 = 0. Building on this definition, Zhang
et al. [44] show instances where clipped SGD outperforms standard SGD. Specifically, they denote
M = sup{∥∇f(x)∥ | f(x) < f(x0)}, and show that the complexity of SGD with a fixed stepsize
is larger than the complexity of SGD with gradient clipping by a factor of L1M (assuming both
algorithms are initialized at x0). This factor can be very large: in particular, it may be exponential in
L1R0, where R0 is the initial distance from the optimum (see Appendix G).

The connection between (L0, L1)-smoothness and gradient clipping has led researchers to attempt to
characterize the complexity of (L0, L1)-smooth optimization, mainly in terms of the dependence on
L1. The non-convex setting is well understood: the state-of-the-art rate of gradient norm convergence
comprises of the rate for L0-smooth functions and additional low-order terms that depend on L1.
This holds for both clipped GD [38] and clipped SGD [37] (see Section 2 for details).

Motivation for studying the convex setting. Despite being originally motivated by the behavior
of (non-convex) neural networks, generalized smoothness is also compelling to study in the convex
setting. There are several instances where convex analysis closely aligns with empirical behavior;
among them are AdaGrad-based algorithms and the momentum technique, in which theory preceded
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practice [29, 7, 32]. Furthermore, a body of work show that neural networks have convex-like behavior
[14, 46, 22]. From a theoretical perspective, it allows to examine whether the pattern observed for
gradient norm convergence—an L0-smooth rate with low-order L1-dependent terms—also holds for
optimality gap convergence.

These considerations have motivated recent work to study the convex, (L0, L1)-smooth setting
[15, 18, 11, 38, 37, 24]. For clipped GD, [11, 38, 37, 24] prove an optimality gap convergence rate
following the aforementioned pattern. However, prior work does not provide a corresponding result in
the stochastic setting (we discuss a concurrent work by Lobanov and Gasnikov [23] in Section 2). The
difficulty of the stochastic, convex regime stems from the fact that clipping biases stochastic gradients.
Bias is arguably more challenging in the convex setting than in the non-convex setting: the former
intimately relies on stochastic gradients being unbiased, while for the latter it suffices to average
enough stochastic gradient such that the noise drops below the required degree of stationarity [15].
This is potentially the reason previous studies of the convex setting [18, 15] proved convergence only
in the deterministic regime.

Our contribution. In this work, we analyze gradient clipping in the convex, stochastic, (L0, L1)-
smooth setting with light-tailed noise. Our contributions are as follows.

• We show that the pattern of an L0-smooth convergence rate with L1-dependent low-order terms
extends to the stochastic convex setting. For clipped SGD with σ-sub-Gaussian gradient noise, we
prove a sub-optimality bound of O

(
log(T/δ)L0R

2
0

T + log2(T/δ)σR0√
T

)
that holds with probability at

least 1− δ for T = Ω(log
(
T
δ

)
L2
1R

2
0). That is, we bound the stochastic gradient query complexity

of achieving optimality gap ϵ with probability at least 1 − δ by Õ
(

L0R
2

ϵ +
σ2R2

0

ϵ2 + (L1R0)
2
)

,

where Õ(·) hides factors poly-logarithmic in 1
δϵ . This matches the best known bounds for (fixed

step-size) SGD in the L0-smooth case, which are Ω
(

L0R
2

ϵ +
σ2R2

0

ϵ2

)
[16]. Our bound depends on

L1 only through an additive term, with no implicit dependence on exp(L1R0).

• We show the same complexity bound for two variations of SGD: adaptive SGD [25] with clipping,
and SGD with a variable stepsize which we refer to as “implicit clipping.”

• We show that, to achieve the bounds above, precise knowledge of the parameter L1 is not required:
simply replacing L1 by the conservative choice Õ(T 1/2/R0) suffices. This result does not appear
in papers studying the deterministic regime.

• We perform numerical experiments to test the impact of gradient clipping for SGD on convex,
(L0, L1)-smooth functions, and assess the empirical effect of some of our algorithmic choices.

To address the bias of stochastic gradients that is introduced by clipping, we employ a double sampling
technique that uses two independent stochastic gradient samples in each update: one to estimate the
direction of the update, and another to estimate its magnitude. This technique is necessary in order to
apply some of the probabilistic tools we use, which assume sequences of unbiased random variables,
but our empirical analysis suggests it might not be helpful in practice. We elaborate on this technique
in the analysis as well as in the experiments.

The paper organization is as follows. In Section 2 we survey related work. In Section 3 we outline
our algorithmic framework and prove our theoretic results. In Section 4 we describe our experiments
and discuss their results. In Section 5 we provide a short conclusion.

2 Related work

Generalized smoothness definitions. Zhang et al. [44] first introduced the concept of (L0, L1)-
smoothness as in Definition 1. Zhang et al. [43], Gorbunov et al. [11], Vankov et al. [38] provide useful
equivalent definitions. Li et al. [18] introduce an even more general notion of smoothness: given a non-
decreasing continuous function ℓ, they define ℓ-smoothness as the property ∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥).
Yu et al. [42] extend ℓ-smoothness to ℓ∗-smoothness by allowing the choice of a non-euclidean norm.
In this work, we focus on (L0, L1)-smoothness.
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Algorithms for (L0, L1)-smooth optimization. Most prior work [44, 43, 30, 15, 11, 38, 24, 37]
consider GD/SGD with gradient clipping, where the stepsize is of the form η′ min

{
1, c

∥g∥

}
or

η′ c
∥g∥+c , where g is a (possibly stochastic) gradient. Zhang et al. [44], Vankov et al. [38] show that

these two forms are closely related. While we focus on clipping methods, other methods are also
analyzed under (L0, L1)-smoothness, such as normalized stepsizes [45, 4, 41], Polyak stepsizes
[33, 11, 38], coordinate descent methods [24], adaptive SGD [8, 39, 13] and Adam [17, 12, 40].

Gradient clipping for (L0, L1)-smooth functions. The non-convex regime was the first to be
explored. Zhang et al. [44] provide the first theoretical demonstration of the advantage of clipped
GD, and Koloskova et al. [15], Vankov et al. [38], Tyurin [37] subsequently improve the bounds
to O

(√
L0∆/T + L1∆/T

)
. Clipped SGD is considered under several noise assumptions. Zhang

et al. [44, 43] consider σ-bounded gradient noise with probability 1. Zhang et al. [44] prove a rate
of O

(
(∆′)2/T 1/4 + (L0 + L1σ)∆

′/T 1/2 + L1∆
′/T
)
, where ∆′ = ∆+(L0+L1σ)σ

2+σL2
0/L1.

Zhang et al. [43] prove a rate of O
(
L0σ

2∆/T 1/4
)

for T = Ω
(
L4
1/L

3
0

)
. While the former has no

conditions on T , the latter has better dependency on the problem parameters. Li et al. [18], Koloskova
et al. [15] consider σ-bounded gradient noise variance. Li et al. [18] prove a rate that has a dependency
on the initial gradient norm, and Koloskova et al. [15] show an unavoidable bias term when considering
all clipping thresholds at once. Tyurin [37] consider light-tailed noise, and using a batch size of
O
(
σ2T 2

)
, obtain a rate of O

(
L1∆/T +

√
L0∆/T

)
.

The convex regime recently received much attention. Koloskova et al. [15], Li et al. [18] prove
a convergence rate for clipped GD where the dominating term is O

(
(L0 +ML1)R

2
0/T

)
, where

M is the maximal gradient norm among the iterates. Yu et al. [42] extend the result of Li et al.
[18] to Mirror Descent. As discussed in the introduction, the term M may be exponential in L1R0.
Gorbunov et al. [11], Vankov et al. [38] independently prove a convergence rate of O

(
L0R

2
0/T

)
with additive factors of L2

1R
2
0 and min

{
L2
1R

2
0, L1R0 log(∆T )

}
, respectively. Lobanov et al. [24]

show that in some initial phase of the algorithm, clipped GD enjoys linear convergence. Gorbunov
et al. [11], Vankov et al. [38] both propose acceleration methods; The former has an exponential
dependency on R0, and the latter requires to solve a one-dimensional optimization problem in each
iteration.

In the stochastic convex case, Gorbunov et al. [11] consider finite-sum functions, with an additional
assumption that all the functions share a common minimizer. They show a convergence rate of
O
(
L0R

2
0/T

)
in expectation for T = Ω

(
nL2

1R
2
0

)
, where n is the number of functions. In concurrent

and independent work, Lobanov and Gasnikov [23] present a general framework and study both
first- and zero-order methods. Assuming bounded noise variance, they obtain bounds for arbitrary
clipping thresholds, and prove linear convergence in some special cases. However, their rate of
convergence depends on M and ∆, both of which may be exponential in L1R0. Another concurrent
and independent work [42] studies Stochastic Mirror Descent on ℓ∗-smooth functions. Under a
noise variance assumption that generalizes over affine noise, they prove a high-probability, anytime
convergence bound. Their rate, too, has an implicit exponential dependence on L1R0.

To the best of our knowledge, our work provides the first rate of convergence for stochastic, convex,
(L0, L1)-smooth optimization without exponential dependence on L1R0, and with a leading-order
term independent of L1. For the case of σ = 0, our results match the state-of-the-art rate from the
deterministic regime up to a logarithmic factor.3 Our results hold with high probability, and the
dependence on 1/δ is poly-logarithmic.

Adaptive SGD for (L0, L1)-smooth functions. Faw et al. [8], Wang et al. [39] consider adaptive
SGD for non-convex functions with an affine variance assumption. In the context of bounded variance,
their rates translate to (L1∆+σ)2/δ2T + σ(L1∆+σ)/δ2

√
T . In a similar setting, Hong and Lin [12] prove

a rate that is logarithmic in 1/δ, but polynomial in the dimension.

Our work on adaptive methods has several differences from the above. First, we analyze a clipped
variation of adaptive SGD. Second, we consider convex functions and assume a stronger noise
assumption. Third, our rate simultaneously has a poly-logarithmic dependence on 1/δ, is not

3Note that the work of Lobanov et al. [24] is not directly comparable to ours: in the regime L0 > 0, their
linear convergence does not hold asymptotically, but rather for some initial phase of the run.

3



dimension-dependent, and has a weaker dependence on L1. Lastly, as for clipped SGD, we match the
state-of-the-art result from the deterministic setting up to a logarithmic factor.

3 Analysis

Notation. Throughout the paper, ∥·∥ is the Euclidean norm, ⟨·, ·⟩ is the Euclidean dot product,
ProjX (·) is the Euclidean projection onto the set X and B(x, r) is the Euclidean ball of radius r
centered at x. We denote log+(·) := 2 + log(·), Rt := ∥xt − x⋆∥ and ∆t := f(xt)− f(x⋆).

Problem setting. We consider the optimization problem

minimize
x∈Rd

f(x)

where the function f satisfies the following.
Assumption 1. The function f : Rd → R is convex, and f attains a minimum at some x⋆ ∈ Rd with
distance at most R from the initialization.
Assumption 2. The function f is twice-differentiable4 and (L0, L1)-smooth (see Definition 1).

We remark that the distance bound R is only required for our analysis of Clipped Adaptive SGD.
Specifically, Theorem 1 does not require it (and does not require the corresponding projection operator
present in Algorithm 1).

We assume access to a stochastic first-order oracle G that satisfies E[G(x) | x] = ∇f(x) for any
x ∈ Rd. We consider two different noise assumptions.
Assumption 3 (Bounded noise). The oracle G satisfies

P(∥G(x)−∇f(x)∥2 ≤ σ2) = 1.

Assumption 4 (Sub-Gaussian noise). The oracle G satisfies

E
[
exp
(
∥G(x)−∇f(x)∥2/σ2

)]
≤ exp(1).

Notes on our assumptions. In Assumption 1, the existence of a minimum is required for a technical
step in our main high-probability argument (Lemma 8). The bound R allows us to analyze AdaGrad-
like algorithms without explicitly constraining the objective’s domain, thereby letting us use a
fundamental lemma on (L0, L1)-smoothness (Lemma 1). Assumption 4 is a standard light-tail noise
enabling high-probability bounds [44, 43, 37]. We conduct most of our analysis under a stronger
bounded noise assumption (Assumption 3) and then use a reduction [1] to lift our result to hold under
the weaker Assumption 4. It is sometimes possible to prove high probability bounds under even more
relaxed moment-bound assumptions [6, 9, 10, 26, 27, 31]; doing so in our setting is an interesting
topic for future work.

Algorithms. Our proposed methods are applications of Algorithm 1, which has three parameters:

1. Clipping rule αt: in most settings, αt = min
{
1, c

∥gc
t∥

}
for some stochastic gradient gct and

threshold c.
2. “Unclipped” step size ηt: the product of ηt and αt constitutes the SGD step size.
3. Threshold c: we say that clipping occurs whenever ∥gct∥ ≥ c. We intentionally define this

separately from αt to allow applications of the algorithm to set αt = 1.

A key aspect of Algorithm 1 is that it uses “double sampling,” querying the oracle twice in each
iteration. The two queries are on the same point but are independent from each other. One sample is
used to compute the “unclipped” step size ηt and the clipping rule αt, and the other sample determines
the direction of the gradient step. This enables analyzing E[ηtαtgt] by conditioning on the clipping
result without incurring a bias in gt. We remark that this method is also used in Yang et al. [41], who
analyze normalized SGD for non-convex functions.

4The twice-differentiability assumption can be relaxed by using a smoothness definition such as in Koloskova
et al. [15], for which the smoothness lemmas we rely on still apply.
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Algorithm 1: Clipped SGD With Double Sampling

Input: Initialization x0 ∈ Rd, gradient oracle G and bound R on ∥x0 − x⋆∥.
Parameters: Clipping rule αt, “unclipped” step size ηt and threshold c.

1 T1, T2 ← ∅
2 for t = 0, 1, 2, . . . do
3 gct ← G(xt)
4 compute αt and ηt using gct
5 if c ≤ ∥gct∥ then T1 = T1 ∪ {t} else T2 = T2 ∪ {t}
6 gt ← G(xt)
7 xt+1 = ProjB(x0,R)(xt − ηtαtgt) ▷ projection only required for variants of Adaptive SGD

8 if |T2| ≠ ∅ then x̄ = 1
|T2|

∑
t∈T2

xt else x̄ = x0

9 return x̄

Another non-standard aspect of Algorithm 1 is the way it chooses which iterates to average for the
final result. The algorithm tracks the sets T1 and T2, which correspond to iterations where clipping
occurs/does not occur, respectively. These sets are considered when deciding the return value: if
T2 ̸= ∅ then we return x̄ = 1

|T2|
∑

t∈T2
xt, and otherwise we return the initial point x̄ = x0; our

proofs show that |T2| ≥ T
2 with high probability.

Table 1: Definition of our methods as applications of Algorithm 1. Under Assumption 3 (bounded

noise) we set σ′ := σ. Under Assumption 4 (light tails) we set σ′ := 3
√
log
(
T
δ

)
σ.

step size ηt clipping rule αt threshold c

standard 1
16 min

{
1

11L0
, 1

L0+
σ′√T
R0

}
min

{
1, c

∥gc
t∥

}
1
L1

max
{
10L0,

√
T

R0
σ′
}

implicit 1
8

(
L0 + ∥gct∥L1 +

σ′√T
R0

)−1

1 1
L1

max
{
10L0,

√
T

R0
σ′
}

conservative 1
16 min

{
1

11L0
, 1

L0+
σ′√T
R0

}
min

{
1, c

∥gc
t∥

}
64
√
log+

(
T
δ

)
R0√
T
max

{
10L0,

√
T

R0
σ′
}

adaptive R
(∑t

i=0 α
2
i ∥gi∥2

)− 1
2

min
{
1, c

∥gc
t∥

}
1
L1

max
{
10L0,

√
T
R σ′

}
adaptive +

conservative R
(∑t

i=0 α
2
i ∥gi∥2

)− 1
2

min
{
1, c

∥gc
t∥

}
15
√
log+

(
T
δ

)
R√
T
max

{
10L0,

√
T
R σ′

}
Table 1 presents our different methods, that is, the different applications of Algorithm 1. We provide
a short description of each method:

1. “Standard clipping” is an extension of the common clipping stepsizes from the deterministic
(L0, L1)-smooth setting [44, 43, 38]. Indeed, for σ = 0, when ignoring constants, we have
ηtαt = min

{
1
L0

, 1
L1∥gc

t∥

}
.

2. “Implicit clipping” is the method that prior work refers to as a “normalized step size” or “smoothed
clipping” [44, 11]. In this method, αt = 1 and ηt is a function of gct .

3. “Conservative clipping” is a method that is independent of L1. This method stems from the proof
of Theorem 1, which requires T ≥ log+

(
T
δ

)
(64L1R0)

2, thereby limiting L1. We use this to
modify standard clipping by replacing L1 with its limit.

4. “Adaptive clipping” is a version of adaptive SGD with two changes: clipping is applied according
to αt, and the gradient norms in the denominator are also clipped using α1, ..., αt.

5. “Adaptive + conservative clipping” is a similar method that is independent of L1.
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3.1 Clipped SGD

Theorem 1. Let f : Rd → R and suppose Assumptions 1, 2 and 4 hold. Let δ ∈ (0, 1/2) and let x̄
be the output of Algorithm 1 when run for T ≥ log+

(
T
δ

)
(64L1R0)

2 steps under one of the first 3
rows of Table 1. Then with probability at least 1− 2δ, the optimality gap f(x̄)− f(x⋆) is

O

 log+
(
T
δ

)(
L0R

2
0 +

√
log
(
T
δ

)
σR0

√
T
)

T

.

We remark that Theorem 1 also holds when R =∞. That is, the projection is not required for the
first 3 methods from Table 1.

Proof sketch. In the sketch, we first prove the desired rate under Assumption 3 and with probability
at least 1 − δ. To obtain the desired rate under Assumption 4 with probability at least 1 − 2δ, we
apply a reduction from Attia and Koren [1], which we elaborate on at the end of the sketch.

We begin by presenting the main outline of the proof, in which we state two claims that will be proven
immediately following the outline. To maintain conciseness, we defer the full details to Appendices C
and D. We start with the first claim.

Claim 1. With probability at least 1− δ,

T−1∑
t=0

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0.

Separating the clipped and unclipped iterations, we get∑
t∈T2

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0 −
∑
t∈T1

ηtαt∆t.

We now observe that clipped iterations make large progress, as stated in the following claim.

Claim 2. If t ∈ T1 then ηtαt∆t ≥ 4 log+
(
T
δ

)
R2

0/T .

Therefore, with probability at least 1− δ,∑
t∈T2

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0 − 4 log+
(
T
δ

)
R2

0

|T1|
T

.

This implies |T1| ≤ T
2 and therefore |T2| ≥ T

2 . In particular, this shows that the output of the
algorithm is x̄ = 1

|T2|
∑

t∈τ2
xt.

In unclipped iterations we have ∥gct∥ ≤ c. The norm ∥gct∥ appears only in the denominator of
ηtαt, so we can bound ηtαt from below by substituting ∥gct∥ with c. Thus, we show that ηtαt ≥
1
16

(
11L0 +

σ
√
T

R0

)−1

:= γ (see details in Lemma 7). By this we have

γ
∑
t∈T2

∆t ≤
∑
t∈T2

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0.

Dividing by γ|T2| and using the bound on |T2|, we have

1

|T2|
∑
t∈T2

∆t ≤
64
(
11L0 +

σ
√
T

R0

)
log+

(
T
δ

)
R2

0

T
.

Using Jensen’s inequality completes the proof.
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Proof sketch of Claim 2 (full proof is in Lemmas 6 and 7). Consider iterations where t ∈ T1, that is,
iterations where ∥gct∥ > c: By our choice of threshold we have c ≥ 6σ. Therefore, for the sample to
be above the threshold, the gradient norm must dominate over the noise, implying ∥gct∥ ≈ ∥∇f(xt)∥.
A known property of (L0, L1)-smooth functions is that for any x ∈ Rd,

∥∇f(x)∥2 ≤ 2(L0 + ∥∇f(x)∥L1)(f(x)− f(x⋆)).

Substituting x = xt, using our choice of αt and ηt, and substituting ∥gct∥ ≈ ∥∇f(xt)∥, we get

∥gct∥2 ≤ 2(L0 + ∥gct∥L1)∆t ≤ (2ηtαt)
−1∆t.

Multiplying by 2(ηtαt)
2, we get

ηtαt∆t ≥ 2(ηtαt∥gct∥)
2
.

Clipping implies

ηtαt∥gct∥
(i)
≈ ηtc

(ii)

≥ 2
√

log+
(
T
δ

) R0√
T
,

where (i) is an equality in the case αt = min
{
1, c

∥gc
t∥

}
and (ii) is due to the choice of ηt and c.

Combining the last two inequalities, we get the bound ηtαt∆t ≥ 8 log+
(
T
δ

)R2
0

T .

Proof sketch of Claim 1 (full proof is in Lemma 8). We split the signal from the noise by expressing
the sum

∑T−1
t=0 ηtαt⟨∇f(xt), xt − x⋆⟩ as

T−1∑
t=0

ηtαt⟨gt, xt − x⋆⟩︸ ︷︷ ︸
S1

+

T−1∑
t=0

ηtαt⟨∇f(xt)− gt, xt − x⋆⟩︸ ︷︷ ︸
S2

.

To bound S2, we use techniques from Attia and Koren [1]. The random variables ηtαt and gt are
independent conditionally on xt due to the double sampling, and therefore the elements of S2 form a
martingale difference sequence w.r.t. ξt = (xt, g

c
t ). This allows us to bound S2 using a martingale

concentration bound and standard analysis. We get that with probability at least 1− δ,

S2 ≤
(
1

8
+

5

16
log

(
T

δ

))
R2

0 +
1

8

T−1∑
t=0

η2tα
2
t ∥gt∥2.

To bound S1, we use standard analysis and show that

S1 ≤
R2

0

2
+

1

2

T−1∑
t=0

η2tα
2
t ∥gt∥2.

By the convexity of f and the above displays we find that, with probability at least 1− δ,

T−1∑
t=0

ηtαt∆t ≤
T−1∑
t=0

ηtαt⟨∇f(xt), xt − x⋆⟩

≤ S1 + S2 ≤
1

2
log+

(
T
δ

)
R2

0 +
3

4

T−1∑
t=0

η2tα
2
t ∥gt∥2.

To bound η2tα
2
t ∥gt∥2, we consider the cases of high noise and low noise: when ∥gt∥ ≥ 6σ, like

in clipped iterations, we have ∥gt∥ ≈ ∥∇f(xt)∥ and therefore η2tα
2
t ∥gt∥2 ≤ 1

2ηtαt∆t. when

∥gt∥ ≤ 6σ, we use ηtαt ≤ R0

8σ
√
T

and get η2tα
2
t ∥gt∥2 ≤

R2
0

T .

Plugging everything in and rearranging, we have that with probability at least 1− δ,

T−1∑
t=0

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0.
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Obtaining the result for light-tailed noise. Let G be an unbiased gradient oracle with σ-sub-
Gaussian noise. Attia and Koren [1, Appendix A] show that there exists an unbiased gradient oracle

G̃ with 3
√
log
(
T
δ

)
σ-bounded noise that, with probability at least 1− δ, has the exact same output

as G throughout the entire algorithm. Therefore, with probability at least 1− δ, we have the same

guarantee as when assuming 3
√
log
(
T
δ

)
σ-bounded noise. By using a union bound, we get that the

desired guarantee holds under σ-sub-Gaussian noise with probability at least 1− 2δ.

3.2 Clipped Adaptive SGD

Theorem 2. Assume the setting of Theorem 1 under one of the last 2 rows of Table 1. Then with
probability at least 1− 2δ, the optimality gap f(x̄)− f(x⋆) is

O

 log+
(
1
δ

)(
L0R

2 +
√
log
(
T
δ

)
σR
√
T
)

T

.

The proof shares the main ideas of the proof of Theorem 1. The main difference is that analyses of
AdaGrad-like stepsizes handle the stepsize in a very specific manner. In our case, use it we show that

T−1∑
t=0

αt⟨gt, xt − x⋆⟩ ≤ 2R

√√√√T−1∑
i=0

α2
i ∥gi∥2.

Therefore, for the rest of the proof, we analyze
∑T−1

t=0 αt∆t instead of
∑T−1

t=0 ηtαt∆t.

4 Experiments

Our work introduces several non-standard algorithmic choices that facilitate our theoretical analysis.
We conduct experiments in order to assess the empirical effect of those choices. Specifically, we aim
to shed some light on the following questions:

1. Does gradient clipping help in stochastic, convex, (L0, L1)-smooth optimization?
2. Is double-sampling better than single sampling?
3. Does the average of iterates from T2 perform better than the average of all iterates?
4. How does “adaptive clipping” compare to “standard clipping”? How does it compare to adaptive

SGD with no clipping?

We perform linear regression on the California Housing dataset [28] and the Parkinsons Telemon-
itoring dataset [36] (the latter is in Appendix H) using the loss function f(w) = ∥Xw − y∥4. For
algorithms with a fixed stepsize, we set η to a variable lr which we tune. For algorithms with a
time-dependent stepsize, we express ηt as a function of the clipping threshold c and multiply the result
by a factor of lr which we tune. For each tested method, we tune both lr and c (when applicable)
using a two-level, two-dimensional grid search. We defer to Appendix H for additional details on the
definitions of ηt and the tuning process. We also perform similar synthetic experiments on a function
of the form f(w) = ∥Aw∥4 (Appendix H). The code for reproducing the experiments is available at
github.com/formll/clipped-sgd-under-generalized-smoothness.

Comparison of clipping methods. Figure 1a compares the output of Algorithm 1 for the methods
of standard, implicit and adaptive clipping (rows 1, 2 and 4 in Table 1). The three methods show
similar dynamics and converge to a nearly identical optimality gap.

Figures 1b and 1c compare SGD, adaptive SGD, Algorithm 1 with standard clipping (clipped SGD)
and Algorithm 1 with adaptive clipping (clipped adaptive SGD). For SGD and adaptive SGD, we plot
the sub-optimality of the average of all iterates, set αt = 1 and set ηt as in their clipped counterparts.
The figure shows overall similar performance. In SGD the clipped method performs a bit worse.
In Adaptive SGD the difference between clipping and no clipping is more substantial, in favor of
clipping.
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Figure 1: Sub-optimality of SGD variants as a function of the number of stochastic gradients used,
when training a quartic-loss linear regression model on the California Housing dataset. We plot the
median across 10 runs, with a shaded region showing the inter-quartile range.
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Figure 2: Ablations of Algorithm 1. Figures 2a and 2b compares single and double sampling by
plotting sub-optimality as a function of gradient and iteration budget, respectively. Figure 2c compares
different averaging methods. We plot the median across 10 runs and shade the inter-quartile range.

Comparison of theory with empirical results. We test the effect of our double-sampling approach,
as it originated from analytical considerations and not from practice. Figure 2a plots the sub-
optimality of standard clipping in two versions: one as presented in the paper, and another that uses
a single sample in each iteration. Note that the x-axis is the number of stochastic gradients, so the
latter version ran for twice as many iterations. There seem to be no advantage to double-sampling,
suggesting it might not be necessary in order to prove convergence in the stochastic convex regime.
Figure 2b plots a comparison in terms of iteration complexity, where single sampling still achieves
better sub-optimality.

We move on to investigate our algorithmic choice of defining the output as x̄ = 1
|T2|

∑
t∈T2

xi.
Figure 2c compares the sub-optimality of x̄ to the sub-optimality of the average across all iterates
(both are with standard clipping). We see that x̄ achieves slightly better sub-optimality, supporting
our choice.

5 Conclusion

In this paper, we analyze stochastic gradient descent with gradient clipping on convex, (L0, L1)-
smooth functions. We prove a high-probability convergence rate for clipped SGD, and introduce a
clipped variation of adaptive SGD that has a similar rate.

There are various possible directions for future work. First, since the double-sampling approach is
not supported by empirical data, it is interesting to study convergence without it. Another direction
is extending our analysis to a more generalized smoothness assumption such as ℓ-smoothness [18].
Lastly, exploring tuning-free methods that require no knowledge on problem parameters could be of
both theoretical and practical interest.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims and contributions are stated in the abstract and are detailed in
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our assumptions in Section 3 and the relation between
theory and empirical observations in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our paper details all our assumption and provides detailed proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code necessary for reproducing our experiments, and provide
details on data preparation and parameter tuning in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code, which automatically downloads the data and runs the
experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details on the data and parameter tuning is in Appendix H. There is no test set
since measuring generalization is irrelevant in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The plots are accompanied by intervals outlining the 25 and 75 percentile.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The requirements are listed in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There ar eno societal impacts of the work in this paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The algorithms and code we provide pose no risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The relevant information is in Appendix H.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is the only asset we provide, and it is documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used only for writing, editing or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Lemmas for (L0, L1)-Smooth Functions

Lemma 1. Let f : Rd → R and suppose Assumption 2 holds. Then for any x ∈ Rd,

∥∇f(x)∥2 ≤ 2(L0 + L1∥∇f(x)∥)(f(x)− f(x⋆)).

Koloskova et al. [15, Lemma A.2] prove this by simply using Zhang et al. [43, Lemma A.3], which
assumes the (L0, L1)-smoothness definition we use.

Lemma 2. Let f : Rd → R and suppose Assumption 2 holds. Then for any x ∈ Rd,

∥∇f(x)∥ ≤ max

{
3L1(f(x)− f(x⋆)), 6

L0

L1

}
.

Proof. Denote ∆ := f(x)− f(x⋆). Lemma 1 shows that

∥∇f(x)∥2 − 2L1∆∥∇f(x)∥ − 2L0∆ ≤ 0.

This is a quadratic inequality in ∥∇f(x)∥. Since L0, L1,∆ and ∥∇f(x)∥ are non-negative, the
solution is less than the parabola’s largest root. Therefore,

∥∇f(x)∥ ≤ 1

2

(
2L1∆+

√
4L2

1∆
2 + 8L0∆

)
= L1∆+

√
L2
1∆

2 + 2L0∆ ≤ 2L1∆+
√
2L0∆.

If L2
1∆

2 ≥ 2L0∆ then we get

∥∇f(x)∥ ≤ 2L1∆+
√

L2
1∆

2 = 3L1∆.

If L2
1∆

2 < 2L0∆: Without loss of generality, we assume ∆ > 0 (since for ∆ = 0 the result is
immediate from Lemma 1), and therefore ∆ < 2L0/L

2
1. Consequently,

∥∇f(x)∥ ≤ 2
√

2L0∆+
√

2L0∆ = 3
√
2L0∆ ≤ 3

√
4L2

0/L
2
1 = 6L0/L1.

Overall, we have

∥∇f(xt)∥ ≤ max

{
3L1∆, 6

L0

L1

}

B Lemmas on Probability

To achieve high probability bounds, we use the following concentration inequality, which is a corollary
of Li and Orabona [19, Lemma 1].
Lemma 3. Assume that Z1, Z2, ..., ZT is a martingale difference sequence with respect to
ξ1, ξ2, ..., ξT (i.e., E[Zt | ξ1, . . . , ξt−1] = 0) and that |Zt| ≤ σt for all 1 ≤ t ≤ T , where σt

is a sequence of random variables such that σt is measurable with respect to ξ1, ξ2, . . . , ξt−1. Then,
for any fixed λ > 0 and δ ∈ (0, 1), with probability at least 1− δ, we have

T∑
t=1

Zt ≤
3

4
λ

T∑
t=1

σ2
t +

1

λ
ln

1

δ
.

To handle the light tails assumption, we use a reduction from sub-Gaussian noise to bounded noise
presented by Attia and Koren [1, Appendix A]. The reduction can be formally stated as follows.
Lemma 4. Let G be an unbiased oracle satisfying Assumption 4. Then for any x0, ..., xT−1 and any
δ ∈ (0, 1), there exists an unbiased oracle G̃ such that

(i) G̃ satisfies Assumption 3 for σ̃ := 3σ
√

log
(
T
δ

)
.

(ii) With probability at least 1− δ, for all t = 0, . . . , T − 1 it holds that G̃(xt) = G(xt).
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C Lemmas for proving Theorem 1

Lemma 5. The value of ηtαt is always smaller under “standard clipping” than under “implicit
clipping.” Additionally, if 2 log+

(
T
δ

)
(64L1R0)

2 ≤ T , then it is always smaller under “conservative
clipping” than under “standard clipping.”

Proof. First, let us compare conservative clipping and standard clipping: The definition of ηt is
equivalent in both methods. Due to the assumption on T , the threshold c is smaller in conservative
clipping than in standard clipping. This immediately leads to the stated relationship regarding ηtαt.

Now let us compare standard clipping and implicit clipping: For the rest of the proof, let ηt, αt and c
be defined as in standard clipping. Observe that

ηt = min

{
1

11L0
,

1

L0 +
σ
√
T

R0

}
=

1

L0 +max
{
10L0,

σ
√
T

R0

} =
1

L0 + cL1

and

ηt = min

{
1

11L0
,

1

L0 +
σ
√
T

R0

}
= min

{
1

11L0
,

1

L0 +
σ
√
T

R0

,
1

σ
√
T

R0

}
= min

{
ηt,

R0

σ
√
T

}
.

Together we get

ηt = min

{
1

L0 + cL1
,

R0

σ
√
T

}
.

Consider the case of unclipped iterations, which satisfy αt = 1 and c > ∥gct∥. In this case,

ηtαt = ηt =
1

16
min

{
1

L0 + cL1
,

R0

σ
√
T

}
≤ 1

16
min

{
1

L0 + ∥gct∥L1
,

R0

σ
√
T

}
.

Now consider the case of clipped iterations, which satisfy αt =
c

∥gc
t∥

and c ≤ ∥gct∥. In this case,

ηtαt =
1

16
αt min

{
1

L0 + cL1
,

R0

σ
√
T

}
≤ 1

16
αt min

{
1

(c/∥gct∥)L0 + cL1
,

R0

σ
√
T

}
=

1

16
αt min

{
1

(c/∥gct∥)
1

L0 + ∥gct∥L1
,

R0

σ
√
T

}
≤ 1

16
min

{
αt

1

(c/∥gct∥)
1

L0 + ∥gct∥L1
,

R0

σ
√
T

}
=

1

16
min

{
1

L0 + ∥gct∥L1
,

R0

σ
√
T

}
.

Therefore, both cases satisfy

ηtαt =
1

16
min

{
1

L0 + ∥gct∥L1
,

1
σ
√
T

R0

}
=

1

16

1

max
{
L0 + ∥gct∥L1,

σ
√
T

R0

}
≤ 1

16

1

1
2

(
L0 + ∥gct∥L1 +

σ
√
T

R0

) =
1

8

1

L0 + ∥gct∥L1 +
σ
√
T

R0

.

Lemma 6. Let f : Rd → R and suppose Assumptions 1 to 3 hold. Additionally, assume that

ηtαt ≤ 1
8

(
L0 + ∥gct∥L1 +

σ
√
T

R0

)−1

and 6σ ≤ c ≤ ∥gct∥. Then for any g ∈ G(xt),

η2tα
2
t ∥g∥2 ≤

1

2
ηtαt∆t.
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Proof. By our assumptions, we have 6σ ≤ ∥gct∥. This implies σ ≤ (1/5)∥∇f(xt)∥, as otherwise

∥gct∥ ≤ ∥gct −∇f(xt)∥+ ∥∇f(xt)∥ < σ + 5σ = 6σ.

Therefore, every oracle query satisfies

∥∇f(xt)− G(xt)∥ ≤ σ ≤ (1/5)∥∇f(xt)∥.
By the triangle inequalities, we obtain

(4/5)∥∇f(xt)∥ ≤ ∥G(xt)∥ ≤ (6/5)∥∇f(xt)∥. (1)

Therefore,

(ηtαt)
−1 ≥ 8

(
L0 + ∥gct∥L1 +

σ
√
T

R

)
≥ 8(L0 + ∥gct∥L1) (2)

(1)
≥ 8(L0 + (4/5)∥∇f(xt)∥L1) ≥ 8(4/5)(L0 + ∥∇f(xt)∥L1).

By applying the smoothness property stated in Lemma 1, we obtain

η2tα
2
t ∥Gt(xt)∥2

(2)
≤ 1

8(4/5)
ηtαt

(
1

L0 + ∥∇f(xt)∥L1

)
∥Gt(xt)∥2

(1)
≤ (6/5)2

8(4/5)
ηtαt

(
1

L0 + ∥∇f(xt)∥L1

)
∥∇f(xt)∥2 ≤

1

2
ηtαt∆t.

Lemma 7. Assume that the expression ηtαt is between its value under “conservative clipping” and
its value under “implicit clipping”. Additionally, assume that the threshold c is no less than its value
under “conservative clipping”. Then

(i) c ≥ ∥gct∥ implies ηtαt ≥ 1
16

(
11L0 +

σ
√
T

R0

)−1

;

(ii) c ≤ ∥gct∥ implies ηtαt∆t ≥ 8 log+
(
T
δ

)R2
0

T .

Proof. Consider iterations where c ≥ ∥gct∥. In this case, under the choice of ηt and αt in “conserva-
tive clipping”, we have

ηtαt = ηt =
1

16
min

{
1

11L0
,

1

L0 +
σ
√
T

R0

}
≥ 1

16

1

11L0 +
σ
√
T

R0

.

Due to Lemma 5, this lower bound applies to any choice of ηt and αt that matches our setting.

Consider iterations where c ≤ ∥gct∥. In this case we have σ ≤ (1/5)∥∇f(xt)∥: otherwise,

∥gct∥ ≤ ∥gct −∇f(xt)∥+ ∥∇f(xt)∥ < σ + 5σ = 6σ ≤ c ≤ ∥gct∥,
where the last two inequalities are by our assumptions on c. Therefore Lemma 6 applies, and therefore

1

2
ηtαt∆t

(i)

≥ η2tα
2
t ∥gct∥2

(ii)

≥

(
1

16
min

{
1

11L0
,

1

L0 +
σ
√
T

R0

}
min

{
1,

c

∥gct∥

}
∥gct∥

)2

(iii)
=

(
1

16
min

{
1

11L0
,

1

L0 +
σ
√
T

R0

}
· c

)2

(iv)

≥

(
1

16
min

{
1

11L0
,

1

L0 +
σ
√
T

R0

}
· 64
√
log+

(
T
δ

) R0√
T

max

{
10L0,

σ
√
T

R0

})2

,

where (i) uses Lemma 6, (ii) uses the assumption on ηtαt, (iii) uses c ≤ ∥gct∥ and (iv) uses the
value of c under “conservative clipping”.
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From this point we are done with our assumptions and only use pure algebra:

· · · ≥

(
1

16
min

{
1

11L0
,

1

L0 +
σ
√
T

R0

}
· 64
√
log+

(
T
δ

) R0√
T

max

{
10L0,

σ
√
T

R0

})2

= 16 log+
(
T
δ

)R2
0

T

(
min

{
1

11L0
,

1

L0 +
σ
√
T

R0

}
max

{
10L0,

σ
√
T

R0

})2

≥ 16 log+
(
T
δ

)R2
0

T

min

10L0

11L0
,

1
2

(
10L0 +

σ
√
T

R0

)
L0 +

σ
√
T

R0


2

≥ 16 log+
(
T
δ

)R2
0

T

(
min

{
10

11
,
1

2

})2

= 4 log+
(
T
δ

)R2
0

T
.

Lemma 8. Let f : Rd → R and suppose Assumptions 1 to 3 hold. Assume Algorithm 1 is run with

parameters satisfying ηtαt ≤ 1
8

(
L0 + ∥gct∥L1 +

σ
√
T

R0

)−1

. Then for any δ ∈ (0, 1), with probability
at least 1− δ,

T−1∑
t=0

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0.

Proof. We remark that the first section of the proof follows techniques used in Attia and Koren [1,
Lemma 2].

Define Zt := ηtαt⟨∇f(xt)− gt, xt − x⋆⟩. Recall from Algorithm 1 that ηt and αt are deterministic
given gct . Then the sequence Z0, . . . , ZT−1 is a martingale difference sequence with respect to
ξi−1 := (xi, g

c
i ):

E[Zt | xt, g
c
t ] = ηtαt⟨∇f(xt)− E[gt | xt, g

c
t ], xt − x⋆⟩ = 0.

Define Rmax,t := max
0≤s≤t

{Rs}. Each Zt satisfies

|Zt| ≤ ηtαt∥∇f(xt)− gt∥∥xt − x⋆∥ ≤ ηtαtσRt ≤
1

8

(
σ
√
T

R0

)−1

σRmax,t ≤
R0Rmax,t

8
√
T

.

Therefore, by Lemma 3, for any t ∈ [T ], λ > 0 and δ ∈ (0, 1), with probability at least 1 − δ
T it

holds that
t−1∑
s=0

ηsαs⟨∇f(xs)− gs, xs − x⋆⟩ ≤ 3

4
λ

t−1∑
s=0

R2
0R

2
max,s

64T
+

1

λ
log

(
T

δ

)
≤ 1

64
λR2

0R
2
max,t−1 +

1

λ
log

(
T

δ

)
.

By applying a union bound and choosing λ := 4R−2
0 , we get that with probability at least 1− δ,

∀t = 1, . . . , T :

t−1∑
s=0

ηsαs⟨∇f(xs)− gs, xs − x⋆⟩ ≤ 1

16
R2

max,t−1 +
1

4
log

(
T

δ

)
R2

0. (3)

Define C := 2
((

1 + 1
2 log

(
T
δ

))
R2

0 +
∑T−1

t=0 η2tα
2
t ∥gt∥2

)
. We show by induction on t that, when

(3) holds, R2
max,t ≤ C for all 0 ≤ t < T . For t = 0 we have R2

max,0 = R2
0 ≤ C. Let us assume

correctness for 0, . . . , t− 1. This implies R2
max,t−1 ≤ C, so to prove the induction step, it suffices to
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show R2
t ≤ C. By unfolding the definitions of R0, . . . , Rt and using common projection algebra, we

have

R2
t ≤ R2

0 − 2

t−1∑
s=0

ηsαs⟨gs, xs − x⋆⟩+
t−1∑
s=0

η2sα
2
s∥gs∥2

(i)

≤ R2
0 − 2

t−1∑
s=0

ηsαs⟨gs, xs − x⋆⟩+
t−1∑
s=0

η2sα
2
s∥gs∥2 + 2

t−1∑
s=0

ηsαs⟨∇f(xs), xs − x⋆⟩

= R2
0 + 2

t−1∑
s=0

ηsαs⟨∇f(xs)− gs, xs − x⋆⟩+
t−1∑
s=0

η2sα
2
s∥gs∥2

(3)
≤ 1

8
R2

max,t−1 +

(
1 +

1

2
log

(
T

δ

))
R2

0 +

t−1∑
s=0

η2sα
2
s∥gs∥2

≤ 1

8
R2

max,t−1 +
C

2
≤ C,

where (i) holds since, by convexity and the optimality of x⋆,

0 ≤ −(f(x⋆)− f(xs)) ≤ −⟨∇f(xs), x
⋆ − xs⟩ = ⟨∇f(xs), xs − x⋆⟩.

By applying the bound on R2
max,t to Equation (3) we obtain that

T−1∑
t=0

ηtαt⟨∇f(xt)− gt, xt − x⋆⟩ ≤ 1

8

((
1 +

1

2
log

(
T

δ

))
R2

0 +

T−1∑
t=0

η2tα
2
t ∥gt∥2

)
+

1

4
log

(
T

δ

)
R2

0

=

(
1

8
+

5

16
log

(
T

δ

))
R2

0 +
1

8

T−1∑
t=0

η2tα
2
t ∥gt∥2.

Moving on, a standard analysis shows that

T−1∑
t=0

ηtαt⟨gt, xt − x⋆⟩ ≤ R2
0

2
+

1

2

T−1∑
t=0

η2tα
2
t ∥gt∥2.

By summing the two inequalities and using convexity, we get

T−1∑
t=0

ηtαt∆t ≤
T−1∑
t=0

ηtαt⟨∇f(xt), xt − x⋆⟩

≤
(
5

8
+

5

16
log

(
T

δ

))
R2

0 +
3

4

T−1∑
t=0

η2tα
2
t ∥gt∥2

≤ 1

2
log+

(
T
δ

)
R2

0 +
3

4

T−1∑
t=0

η2tα
2
t ∥gt∥2.

When σ ≥ (1/5)∥∇f(xt)∥, we have

∥gt∥ ≤ ∥gt −∇f(xt)∥+ ∥∇f(xt)∥ ≤ σ + 5σ = 6σ

and therefore

η2tα
2
t ∥gt∥2 ≤ (6σηtαt)

2 ≤
(
6σ

8

(
σ
√
T

R0

)−1
)2

≤ R2
0

T
.

When σ < (1/5)∥∇f(xt)∥, Lemma 6 shows that

η2tα
2
t ∥gt∥2 ≤

1

2
ηtαt∆t.
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Using these two inequalities, we get

T−1∑
t=0

ηtαt∆t ≤
1

2
log+

(
T
δ

)
R2

0 +
3

4

T−1∑
t=0

(
1

2
ηtαt∆t +

R2
0

T

)

≤ 1

2
log+

(
T
δ

)
R2

0 +
1

2

T−1∑
t=0

ηtαt∆t +R2
0

≤ log+
(
T
δ

)
R2

0 +
1

2

T−1∑
t=0

ηtαt∆t.

By rearranging the terms and multiplying by 2, we get

T−1∑
t=0

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0.

D Proof of Theorem 1

Theorem 1. Let f : Rd → R and suppose Assumptions 1, 2 and 4 hold. Let δ ∈ (0, 1/2) and let x̄
be the output of Algorithm 1 when run for T ≥ log+

(
T
δ

)
(64L1R0)

2 steps under one of the first 3
rows of Table 1. Then with probability at least 1− 2δ, the optimality gap f(x̄)− f(x⋆) is

O

 log+
(
T
δ

)(
L0R

2
0 +

√
log
(
T
δ

)
σR0

√
T
)

T

.

Proof. We begin with a comment about the light tail assumption, and then continue with the proof.

Light-tailed noise vs. bounded noise. The rest of the proof is written under a modified setting: It
uses Assumption 3 (bounded noise) instead of Assumption 4 (light-tailed noise), and it adjusts ηt and

c by replacing instances of 3
√
log
(
T
δ

)
σ with σ. The proof obtains a bound that holds with probability

at least 1− δ. By Lemma 4, with probability at least 1− δ, using an oracle that satisfies Assumption 4

results in the same output as using an oracle that satisfies Assumption 3 with σ′ = 3
√

log
(
T
δ

)
σ. By

using a union bound, we get that the desired bound holds under Assumption 4 with probability at
least 1− 2δ.

Proof under Assumption 3. By Lemma 8 we have

∑
t∈T1

ηtαt∆t ≤
T−1∑
t=0

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0.

The criteria for belonging to T1, together with Lemma 7, show that this implies

8 log+
(
T
δ

)R2
0

T
|T1| ≤ 2 log+

(
T
δ

)
R2

0.

From this, it follows that |T1| ≤ T
2 , and therefore |T2| ≥ T

2 .

Similarly, by Lemma 8 we have

∑
t∈T2

ηtαt∆t ≤
T−1∑
t=0

ηtαt∆t ≤ 2 log+
(
T
δ

)
R2

0.
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The criteria for belonging to T2, together with Lemma 7, show that this implies

1

16

(
11L0 +

σ
√
T

R0

)−1 ∑
t∈T2

∆t ≤ 2 log+
(
T
δ

)
R2

0.

From this, it follows that

1

|T2|
∑
t∈T2

∆t ≤
32 log+

(
T
δ

)
R2

0

(
11L0 +

σ
√
T

R0

)
|T2|

≤
64 log+

(
T
δ

)(
11L0R

2
0 + σR0

√
T
)

T
,

where the last inequality uses the lower limit on |T2|.
From the definition of ∆t, and by Jensen’s inequality, we obtain

f

(
1

|T2|
∑
t∈T2

xt

)
− f(x⋆) ≤

64 log+
(
T
δ

)(
11L0R

2
0 + σR0

√
T
)

T
.

Recall from Algorithm 1 that |T2| ≥ T
2 implies x̄ = 1

|T2|
∑

t∈T2
xt. Therefore the proof is complete.

E Lemmas for proving Theorem 2

Lemma 9. Let f : Rd → R and suppose Assumptions 1 to 3 hold. Assume Algorithm 1 is run with
step size ηt =

R√∑t
i=0 α2

i ∥gi∥2
and clipping rule αt = min

{
1, c

∥gc
t∥

}
. Then for any threshold c,

T−1∑
t=0

αt⟨gt, xt − x⋆⟩ ≤ 2R

√√√√T−1∑
i=0

α2
i ∥gi∥2.

Proof. Since 1/ηt is non-decreasing in t, a standard analysis shows that ‘’

T−1∑
t=0

αt⟨gt, xt − x⋆⟩ ≤
T−1∑
t=0

R2
t −R2

t+1

2ηt
+

1

2

T−1∑
t=0

ηtα
2
t ∥gt∥2

≤ R2
0

2η0
+

1

2

T−1∑
t=1

R2
t

(
1

ηt
− 1

ηt−1

)
+

1

2

T−1∑
t=0

ηtα
2
t ∥gt∥2

≤ R2

2η0
+

R2

2

T−1∑
t=1

(
1

ηt
− 1

ηt−1

)
+

1

2

T−1∑
t=0

ηtα
2
t ∥gt∥2

≤ R2

2ηT−1
+

1

2

T−1∑
t=0

ηtα
2
t ∥gt∥2.

Define St :=
∑t

i=0 α
2
i ∥gi∥2 and S−1 = 0. Observe that ηt = R√

St
. Then we have

1

2

T−1∑
t=0

ηtα
2
t ∥gt∥2 =

1

2

T−1∑
t=0

ηt(St − St−1) =
R

2

T−1∑
i=0

St − St−1√
St

=
R

2

T−1∑
i=0

(√
St −

√
St−1

)√St +
√
St−1√

St

≤ R

2

T−1∑
i=0

2
(√

St −
√
St−1

)
= R

√
ST−1.
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Therefore,

T−1∑
t=0

αt⟨gt, xt − x⋆⟩ ≤ 2R

√√√√T−1∑
i=0

α2
i ∥gi∥2.

Lemma 10. Let f : Rd → R and suppose Assumptions 1 to 3 hold. Additionally, assume 6σ ≤ c
and c ≤ ∥gct∥. Then for any g ∈ G(xt),

α2
t ∥g∥2 ≤ 4(L0 + cL1)αt∆t.

Proof. Our assumptions imply 6σ ≤ ∥gct∥, which in turn implies σ ≤ (1/5)∥∇f(xt)∥: otherwise,
∥gct∥ ≤ ∥gct −∇f(xt)∥+ ∥∇f(xt)∥ < σ + 5σ = 6σ ≤ ∥gct∥.

Therefore, every oracle query to xt satisfies
∥∇f(xt)− G(xt)∥ ≤ σ ≤ (1/5)∥∇f(xt)∥. (4)

By the triangle inequalities, we obtain
(4/5)∥∇f(xt)∥ ≤ ∥G(xt)∥ ≤ (6/5)∥∇f(xt)∥. (5)

Therefore,

α2
t ∥gt∥2

(5)
≤ (6/5)2α2

t ∥∇f(xt)∥2 (6)
(i)

≤ (6/5)2α2
t · 2(L0 + ∥∇f(xt)∥L1)∆t

(5)
≤ (6/5)2

(4/5)
α2
t · 2(L0 + ∥gct∥L1)∆t

≤ 4(αtL0 + αt∥gct∥L1)αt∆t

(ii)

≤ 4(L0 + cL1)αt∆t,

where (i) uses Lemma 1 and (ii) uses the definition of αt.

Lemma 11. Assume the setting of Lemma 10, and assume that the threshold c is no less than its
value under “conservative + adaptive clipping”. Additionally, assume that log+

(
1
δ

)
(15L1R)

2 ≤ T .
Then

αt∆t ≥
1

4

c

L1
≥ 80

T

(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
.

Proof. By Lemma 10 we have that Equation (5) applies. Therefore,

∥∇f(xt)∥ ≥
∥gct∥
6/5

≥ c

6/5
≥ 8L0

L1
,

and together with Lemma 2 we get ∥∇f(xt)∥ ≤ 3L1∆t. This leads to

αt∆t =
c

∥gct∥
∆t ≥

1

6/5

c

∥∇f(xt)∥
∆t ≥

1

6/5

c

3L1∆t
∆t ≥

1

4

c

L1
.

By our assumptions on c, we have
1

4

c

L1
≥ 15

√
log+

(
1
δ

) R√
T
c

≥ 15
√
log+

(
1
δ

) R√
T
· 15
√

log+
(
1
δ

) R√
T

max

{
10L0,

√
T

R
σ

}

= 256 log+
(
1
δ

)R2

T
max

{
10L0,

√
T

R
σ

}

≥ 125 log+
(
1
δ

) 1
T

(
10L0R

2 + σR
√
T
)

≥ 80

T

(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
,

where the last two inequalities are purposefully loose for later convenience.
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Lemma 12. Assume the setting of Lemma 9. Then for any δ ∈ (0, 1), with probability at least 1− δ,
T−1∑
t=0

αt∆t ≤ 32(L0 + cL1)R
2 + 9 log+

(
1
δ

)
σR
√
T .

If we also assume the setting of Lemma 10, then
T−1∑
t=0

αt∆t ≤ 25
(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
.

Proof. The proof first uses a martingale concentration inequality and Lemma 9 to obtain a high-
probability bound, and then continues to bound the stochastic gradient norms.

Define Zt := αt⟨∇f(xt)− gt, xt − x⋆⟩. Recall from Table 1 that αt is deterministic given gct . Then
the sequence Z0, ..., ZT−1 is a martingale difference sequence with respect to ξi−1 = (xi, g

c
i ):

E[Zt | xt, g
c
t ] = αt⟨∇f(xt)− E[gt | xt, g

c
t ], xt − x⋆⟩ = 0.

Each Zt satisfies

|Zt| ≤ αt∥∇f(xt)− gt∥∥xt − x⋆∥ ≤ αtσRt ≤ σRt ≤ σR.

Therefore, by applying Lemma 3 with λ′ :=
(
4σR
√
T
)−1

we have that for any δ ∈ (0, 1), with
probability at least 1− δ,

T−1∑
s=0

αs⟨∇f(xs)− gs, xs − x⋆⟩ ≤ 3

4
λ′

T−1∑
s=0

σ2R2 +
1

λ′ log
(
1
δ

)
≤ 3

4
λ′Tσ2R2 +

1

λ′ log
(
1
δ

)
≤ 3

16
σR
√
T + 4 log

(
1
δ

)
σR
√
T .

Recall that Lemma 9 bounds
∑T−1

t=0 αt⟨gt, xt − x⋆⟩. By summing that bound with our inequality,
and by applying the gradient inequality, we get

T−1∑
s=0

αs∆s ≤
T−1∑
s=0

αs⟨∇f(xs), xs − x⋆⟩

≤ 3

16
σR
√
T + 4 log

(
1
δ

)
σR
√
T + 2R

√√√√T−1∑
i=0

α2
i ∥gi∥2.

On iterations where σ ≥ (1/5)∥∇f(xt)∥, we have

α2
t ∥gt∥2 ≤ ∥gt∥2 ≤ (∥gt −∇f(xt)∥+ ∥∇f(xt)∥)2 ≤ (σ + 5σ)

2
= (6σ)

2
.

On iterations where σ < (1/5)∥∇f(xt)∥, we can repeat the arguments from Equations (4) to (6)
(note that they do not require the additional assumptions present in Lemma 10), and thus obtain

α2
t ∥gt∥2 ≤ 4(L0 + cL1)αt∆t.

The two cases imply that every iteration satisfies α2
t ∥gt∥2 ≤ 4(L0 + cL1)αt∆t + (6σ)

2. Therefore,

T−1∑
t=0

αt∆t ≤
3

16
σR
√
T + 4 log

(
1
δ

)
σR
√
T + 2R

√√√√T−1∑
i=0

(
4(L0 + cL1)αt∆t + (6σ)

2
)

=
3

16
σR
√
T + 4 log

(
1
δ

)
σR
√
T + 2R

√√√√4(L0 + cL1)

T−1∑
i=0

αt∆t + (6σ)
2
T

The rest of the proof is pure algebra, which we show separately in the subsequent lemma (Lemma 13).
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Lemma 13. If

T−1∑
t=0

αt∆t ≤
3

16
σR
√
T + 4 log

(
1
δ

)
σR
√
T + 2R

√√√√4(L0 + cL1)

T−1∑
i=0

αt∆t + (6σ)
2
T ,

then
T−1∑
t=0

αt∆t ≤ 25
(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
.

Proof. Denote A :=
∑T−1

t=0 αt∆t. Then we have

A ≤ 3

16
σR
√
T + 4 log

(
1
δ

)
σR
√
T + 2R

√
4(L0 + cL1)A+ (6σ)

2
T

≤

√(
3

16
σR
√
T + 4 log

(
1
δ

)
σR
√
T

)2

+ 2R

√
4(L0 + cL1)A+ (6σ)

2
T

≤

√
2

(
3

16
σR
√
T

)2

+ 2
(
4 log

(
1
δ

)
σR
√
T
)2

+ 2R

√
4(L0 + cL1)A+ (6σ)

2
T .

Squaring both sides leads to

A2 ≤

(√
2
(

3
16σR

√
T
)2

+ 2
(
4 log

(
1
δ

)
σR
√
T
)2

+ 2R

√
4(L0 + cL1)A+ (6σ)

2
T

)2

≤ 2

((
3
16σR

√
T
)2

+ 2
(
4 log

(
1
δ

)
σR
√
T
)2)

+ 2 · 4R2
(
4(L0 + cL1)A+ (6σ)

2
T
)

≤ 9

64

(
σR
√
T
)2

+ 4
(
4 log

(
1
δ

)
σR
√
T
)2

+ 32R2(L0 + cL1)A+ 8 · 36R2σ2T

= 32R2(L0 + cL1)A+
(
289 + 64 log2

(
1
δ

))(
σR
√
T
)2

.

This is a quadratic inequality (in A) of the form A2 ≤ bA+ c (b, c ≥ 0). In such cases, every solution
is less than or equal to the largest root of A2 − bA− c. Therefore,

A ≤ 1
2

(
b+

√
b2 + 4c

)
≤ 1

2

(
b+
√
b2 +

√
4c
)
≤ b+

√
c.

In our context, this leads to
T−1∑
t=0

αt∆t ≤ 32(L0 + cL1)R
2 +

√
289 + 64 log2

(
1
δ

)
· σR
√
T

≤ 32(L0 + cL1)R
2 +

(
17 + 8 log

(
1
δ

))
· σR
√
T

≤ 32(L0 + cL1)R
2 + 9 log+

(
1
δ

)
σR
√
T

From the assumption on c, we have

cL1R
2 ≤ 1

L1
max

{
10L0,

√
T

R
σ

}
· L1R

2 ≤ 10L0R
2 + σR

√
T .

Therefore,
T−1∑
t=0

αt∆t ≤ 32
(
L0R

2 + 10L0R
2 + σR

√
T
)
+ 9 log+

(
1
δ

)
σR
√
T

≤ 352L0R
2 + 25 log+

(
1
δ

)
σR
√
T

≤ 25
(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
.
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F Proof of Theorem 2

Theorem 2. Assume the setting of Theorem 1 under one of the last 2 rows of Table 1. Then with
probability at least 1− 2δ, the optimality gap f(x̄)− f(x⋆) is

O

 log+
(
1
δ

)(
L0R

2 +
√
log
(
T
δ

)
σR
√
T
)

T

.

Proof. We begin with a comment about the light tail assumption, and then continue with the proof.

Light-tailed noise vs. bounded noise. The rest of the proof is written under a modified setting: It
uses Assumption 3 (bounded noise) instead of Assumption 4 (light-tailed noise), and it adjusts ηt and

c by replacing instances of 3
√
log
(
T
δ

)
σ with σ. The proof obtains a bound that holds with probability

at least 1− δ. By Lemma 4, with probability at least 1− δ, using an oracle that satisfies Assumption 4

results in the same output as using an oracle that satisfies Assumption 3 with σ′ = 3
√

log
(
T
δ

)
σ. By

using a union bound, we get that the desired bound holds under Assumption 4 with probability at
least 1− 2δ.

Proof under Assumption 3. Consider iterations that satisfy t ∈ T1, that is, iterations where
c ≤ ∥gct∥. By Lemma 11 we have

αt∆t ≥
80

T

(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
.

Therefore, together with Lemma 12, we get that with probability at least 1− δ,

80

T

(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
|T1| ≤

∑
t∈T1

αt∆t

≤
T−1∑
t=0

αt∆t

≤ 25
(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)

From this it follows that |T1| ≤ T
2 , and therefore |T2| ≥ T

2 .

Similarly, by Lemma 12 we have,

∑
t∈T2

∆t ≤
T−1∑
t=0

αt∆t ≤ 25
(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
.

Dividing by |T2|, using the bound we obtained on |T2| and using Jensen’s inequality, we get

f

(
1

|T2|
∑
t∈T2

xt

)
− f(x⋆) ≤ 1

|T2|
∑
t∈T2

∆t ≤
25
(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
,

|T2|

≤
50
(
15L0R

2 + log+
(
1
δ

)
σR
√
T
)
,

T
.

Recall from Algorithm 1 that |T2| ≥ T
2 implies x̄ := 1

|T2|
∑

t∈T2
xt. Therefore the proof is complete.
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G The potentially exponential dependence of ∥∇f(x)∥ and f(x)− f(x⋆) on
L1∥x− x⋆∥

Let L0, L1 ∈ R+ and let f(x) = L0

L2
1
cosh(L1x). We will show that f is (L0, L1)-smooth. The first

and second derivatives are

f ′(x) =
L0

L1
sinh(L1x) ; f

′′(x) = L0 cosh(L1x).

For any x ∈ R, by basic properties of cosh and sinh, it holds that

|f ′′(x)| = L0 cosh(L1x) = L0

(
e−L1x + sinh(L1x)

)
= L0e

−L1x + L1f
′(x).

When x ≥ 0 we have e−L1x ≤ 1 and f ′(x) = |f ′(x)|. Therefore,

|f ′′(x)| ≤ L0 + L1|f ′(x)|.

When x < 0 we have e−L1(−x) ≤ 1 and f ′(−x) = |f ′(x)|. Therefore,

|f ′′(−x)| ≤ L0 + L1|f ′(x)|,

and since f ′′ is an even function, the same holds for |f ′′(x)|. In both cases we end up with the
inequality that defines (L0, L1)-smoothness.

Let us discuss, in the context of the above f , quantities that appear in bounds of related work. Let
x0 ∈ R. The minimizer of f is x⋆ = 0, therefore ∥x0 − x⋆∥ = |x0|. The gradient norm at x = x0

satisfies

∥∇f(x0)∥ =
L0

L1
| sinh(L1x0)| =

L0

L1
sinh(L1|x0|) ≥

L0

2L1
(exp(L1|x0|)− 1)

=
L0

2L1
(exp(L1∥x0 − x⋆∥)− 1).

Additionally, the sub-optimality at x = x0 satisfies

f(x0)− f(x⋆) =
L0

L2
1

(cosh(L1x0)− 1) =
L0

L2
1

(cosh(L1|x0|)− 1)

≥ L0

2L2
1

(exp(L1|x0|)− 2) =
L0

L2
1

(exp(L1∥x0 − x⋆∥)− 2).

Both quantities demonstrate an exponential dependence on L1∥x0 − x⋆∥.

H Experiments

We present additional implementation details, results of the experiments on second dataset, and
results obtained with synthetic data (not modeled as a regression task).

H.1 Implementation details of real-data experiments

Data and computational resources. Our experiments use the California Housing dataset [28] and
the Parkinsons Telemonitoring dataset [36], which are published under “CC0” and “CC-BY 4.0”
licenses, respectively. All experiments provided in this paper were run on Google Colab (with a free
account) using an NVIDIA T4 GPU.

Data preprocessing. The data preparation begins by obtaining the dataset (X, y), where X ∈ Rn×d

represents n samples with d features per sample, and y ∈ Rn represents the targets. Missing data
in numerical features is replaced with the mean value, and missing data in categorical features is
replaced with the most frequent value. Numeric features, as well as the targets, are standardized
to have zero mean and unit variance, and categorical features are encoded as one-hot vectors. The
samples are then shuffled. Finally, a column 1⃗ ∈ Rn×1 is prepended to X in order to have a bias
term in the regression task.
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Figure 3: Sub-optimality of SGD variants as a function of the number of stochastic gradients used,
when training a quartic loss linear regression model on the Parkinsons Telemonitoring dataset. We
plot the median across 10 runs, with a shaded region showing the inter-quartile range.
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Figure 4: Ablations of Algorithm 1. Figures 4a and 4b compares single and double sampling by
plotting sub-optimality as a function of gradient and iteration budget, respectively. Figure 4c compares
different averaging methods. We plot the median across 10 runs, with a shaded region showing the
inter-quartile range.

Stepsize and clipping threshold tuning. We determine the clipping threshold c of each method by
tuning it, avoiding reliance on theoretical quantities from the definitions in Table 1. Similarly, we
modify the parameter ηt by replacing theoretical quantities with some tunable variable, which we
denote as lr. For methods with a fixed stepsize, we simply set η = lr. For methods based on Adaptive
SGD we set ηt = lr · (

∑t
i=0 α

2
i ∥gi∥2)−1/2, and for “implicit clipping” we set ηt = lr · c/(c+ ∥gct∥)

(see Section 3.1 on Zhang et al. [44] for intuition).

We tune lr and c by performing a two-level, two-dimensional grid search. In the first-level grid, the
values are geometrically spaced by a factor of 10: The values for c are (102, . . . , 107). The values
for lr are (10−10, . . . , 10−5) for SGD, (10−7, . . . , 10−2) for clipped SGD, and (10−3, . . . , 102)
for both Adaptive SGD and clipped Adaptive SGD. We verify that the best candidate is never at
the edge of the grid. Denoting the best candidate as (lr1, c1), the second-level grid is defined as{
(lr, c) | lr ∈ ( 14 lr

1, 1
2 lr

1, lr1, 2lr1, 4lr1), c ∈ ( 14c
1, 1

2c
1, c1, 2c1, 4c1)

}
.

H.2 Additional experiments

Parkinsons Telemonitoring dataset. We repeat the experiments presented in Section 4 on the
Parkinsons Telemonitoring dataset [36]. The results are displayed in Figures 3 and 4 There are
two notable distinctions between the results here and the results in Section 4: In Figure 3c, clipped
Adaptive SGD performs worse than the others, which show similar performance. In Figure 4c, the
two averaging methods seem identical.

Synthetic data. We perform the same experiments, but instead of a regression-like objective,
we use the function f : R20 → R given by f(x) = ∥Ax∥4, where A = diag(1/20, 1/19, . . . , 1).
We use the stochastic gradient oracle G(x) = ∇f(x) + ξ, where ξ has iid Gaussian entries and
σ2 = Var∥ξ∥2 = 4 · 103. We set T = 1000 and x0 = 1.75 · 1⃗, where 1⃗ is a vector of all ones.
For each tested method, we plot the median across 100 runs, with a shaded region showing the
inter-quartile range. We define the stepsize of each method as kηtαt: The values of αt and ηt, unless
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Figure 5: Sub-optimality of SGD variants as a function of the number of stochastic gradients used,
on the loss f(x) = ∥Ax∥4 with synthetic noise. We plot the median across 100 runs, with a shaded
region showing the inter-quartile range.
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Figure 6: Ablations of Algorithm 1. Figures 6a and 6b compares single and double sampling by
plotting sub-optimality as a function of gradient and iteration budget, respectively. Figure 6c compares
different averaging methods. We plot the median across 100 runs, with a shaded region showing the
inter-quartile range.

stated otherwise, are set according to Table 1, leveraging our knowledge of the function f , the time T
and the noise norm variance σ2. The value k is a scalar parameter that we tune: We first perform
an initial grid search over (0.01, 0.1, 1, 10, 100). Denoting the best value as x, we then perform a
second grid search over 1

4x,
1
2x, x, 2x, 4x. In both searches, we verify that the optimal value is never

at the edge of the grid. The results are displayed in Figures 5 and 6. Here, too, there are only a few
distinctions compared to the results in Section 4: In Figure 6b, using single sampling results in the
same iteration complexity as using double sampling. In Figure 6c, the difference between the two
averaging methods is substantial in favor of the method from Algorithm 1.
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