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Abstract

We investigate optimal transport (OT) for measures on graph metric spaces with
different total masses. To mitigate the limitations of traditional Lp geometry,
Orlicz-Wasserstein (OW) and generalized Sobolev transport (GST) employ Orlicz
geometric structure, leveraging convex functions to capture nuanced geometric
relationships and remarkably contribute to advance certain machine learning ap-
proaches. However, both OW and GST are restricted to measures with equal total
mass, limiting their applicability to real-world scenarios where mass variation is
common, and input measures may have noisy supports, or outliers. To address
unbalanced measures, OW can either incorporate mass constraints or marginal
discrepancy penalization, but this leads to a more complex two-level optimiza-
tion problem. Additionally, GST provides a scalable yet rigid framework, which
poses significant challenges to extend GST to accommodate nonnegative measures.
To tackle these challenges, in this work we revisit the entropy partial transport
(EPT) problem. By exploiting Caffarelli & McCann [12]’s insights, we develop a
novel variant of EPT endowed with Orlicz geometric structure, called Orlicz-EPT.
We establish theoretical background to solve Orlicz-EPT using a binary search
algorithmic approach. Especially, by leveraging the dual EPT and the underlying
graph structure, we formulate a novel regularization approach that leads to the
proposed Orlicz-Sobolev transport (OST). Notably, we demonstrate that OST can
be efficiently computed by simply solving a univariate optimization problem, in
stark contrast to the intensive computation needed for Orlicz-EPT. Building on
this, we derive geometric structures for OST and draw its connections to other
transport distances. We empirically illustrate that OST is several-order faster than
Orlicz-EPT. Furthermore, we show initial evidence on the advantages of OST for
measures on a graph in document classification and topological data analysis.

1 Introduction

Orlicz-Wasserstein (OW) extends Lp geometry by leveraging a specific class of convex functions
for Orlicz geometric structure. Intuitively, OW is an instance of optimal transport (OT), which
utilizes Orlicz metric as its ground cost [67, 32, 28, 3, 41]. Building on this foundation, OW has
proven instrumental in advancing certain machine learning approaches. For example, recent works
have leveraged OW to tackle challenging problems: Altschuler & Chewi [3] use OW as a metric
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shift for Rényi divergence, enabling novel differential-privacy-inspired techniques to overcome
longstanding challenges for fast convergence of hypocoercive differential equations, while Guha
et al. [28] employ OW metric to significantly improve Bayesian contraction rates in hierarchical
Bayesian nonparametric models by overcoming limitations raised from the usage of traditional OT
with Euclidean ground cost. However, OW’s high computational complexity, stemming from its
two-level optimization formula, poses a significant limitation. To address this challenge, Le et al.
[41] introduce generalized Sobolev transport (GST), a scalable variant of OW suitable for practical
application domains, especially for large-scale settings. Moreover, Orlicz geometric structure has
been successfully applied to various machine learning problems, including linear regression [4,
66], scalable approaches [21] for reinforcement learning, kernelized support vector machines, and
clustering. Additionally, Orlicz metrics play a crucial role in deriving deviation bounds for polynomial-
growth functions to approximate kernel derivatives [13], and have been used as regularization in OT
problems [46]. For in-depth studies on Orlicz functions, see [2, 60].

When dealing with input measures having different total masses, various approaches have been
proposed in the literature to address this challenge [30, 29, 6, 12, 25, 44, 57, 58, 26, 33, 45, 18, 8, 27,
63, 64, 56, 62, 15, 5, 48, 36, 24, 16, 65, 40, 52, 7, 14, 72]. These approaches for unbalanced measures
have proven effective in various domains, including color transfer [8], shape matching [8], image-
to-image translation [72], multi-label learning [26], positive-unlabeled learning [15], point-cloud
gradient flow [72], natural language processing [36, 40], topological data analysis (TDA) [36, 40],
generative modeling [5, 72], domain adaptation [5], and robust approaches for handling noisy
supports, outliers [26, 5, 48], or noisy ground cost [54, 42].

In this work, we focus on the OT problem with Orlicz geometric structure for unbalanced measures
supported on a graph metric space. On one hand, OW naturally extends OT’s flexibility to handle
unbalanced measures by incorporating either mass constraints or marginal difference penalization,
formulated as partial OT (POT) or unbalanced OT (UOT) respectively. However, these approaches
result in a more complex two-level optimization problem, analogous to POT/UOT with Orlicz
metric cost, which poses significant computational challenges. On the other hand, although GST
provides a scalable alternative to the computationally intensive OW, it still assumes equal-mass
input measures. Moreover, due to GST’s definition as an optimization over the critic function,
extending it to unbalanced measures is nontrivial. To address these limitations, we revisit the entropy
partial transport (EPT) problem [36, 40, 72] and leverage insights from Caffarelli & McCann [12] to
reformulate EPT as a standard complete OT problem. Then by carefully calibrating the corresponding
ground cost for its nonnegativity, we propose Orlicz-EPT and establish a theoretical foundation for
solving it by a binary search algorithmic approach. Furthermore, by exploiting the dual EPT and
underlying graph structure, we introduce a novel regularization approach, leading to Orlicz-Sobolev
transport (OST), which scales Orlicz-EPT for practical applications.

Contribution. In summary, our contributions are two-fold as follows:

• We revisit the EPT problem and leverage Caffarelli & McCann [12]’s insights to reformulate
EPT as a standard complete OT, leading to the development of the proposed Orlicz-EPT.
We establish its theoretical foundations, enabling a binary search algorithmic approach for
its computation. Additionally, we develop a novel regularization approach, resulting in
the proposed OST. We show that OST can be efficiently computed by simply solving a
univariate optimization problem, unlike the computationally intensive Orlicz-EPT.

• We derive geometric structures for OST and establish its connections to other transport
distances. Our empirical results demonstrate that OST is several-order faster than Orlicz-
EPT. We also provide initial evidence on the advantages of OST for document classification
and TDA.

Organization. In §2, we briefly review relevant background and notions. We revisit EPT problem
and propose Orlicz-EPT in §3. In §4, we introduce the computationally efficient OST. Then we derive
geometric structures for OST and draw its connections to other transport distances in §5. In §6, we
discuss related work. Empirical results are presented in §7, followed by concluding remarks in §8.
Proofs of key theoretical results and additional materials are deferred to the Appendices. Furthermore,
we have released code for our proposed approaches.2

2The code repository is on https://github.com/lttam/OST_OrliczEPT.
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2 Preliminaries

In this section, we introduce notations, and briefly review graph, and Orlicz functions.

Graph. We follow the graph setting as in [39]. Let V,E be the sets of nodes and edges respectively.
We consider a connected, undirected, and physical3 graph G = (V,E) with positive edge lengths
{we}e∈E . For continuous graph setting, we regard G as the set of all nodes in V and all points
forming the edges in E. We equip G with graph metric dG(x, y) which equals to the length of the
shortest path between x and y in G. Additionally, we assume that there exists a fixed root node
z0 ∈ V such that the shortest path connecting z0 and x is unique for any x ∈ G, i.e., the uniqueness
property of the shortest paths. We denote P(G) (resp.P(G×G)) as the set of all nonnegative Borel
measures on G (resp.G×G) with a finite mass. Let [x, z] be the shortest path connecting x and z in
G. For x ∈ G, edge e ∈ E, define the sets Λ(x) and γe as follows:

Λ(x) :=
{
y ∈ G : x ∈ [z0, y]

}
, γe :=

{
y ∈ G : e ⊂ [z0, y]

}
. (1)

Functions on graph. By a continuous function f on G, we mean that f : G → R is continuous
w.r.t. the topology on G induced by the Euclidean distance. Henceforth, C(G) denotes the set
of all continuous functions on G. Similar notation is used for continuous functions on G × G.
Given a positive scalar b > 0, then a function f : G → R is called b-Lipschitz w.r.t. dG if
|f(x)− f(y)| ≤ b dG(x, y) for every x and y in G.

A family of convex functions. We consider the collection of N -functions [2, §8.2] which are special
convex functions on R+. Hereafter, a strictly increasing and convex function Φ : [0,∞) → [0,∞) is
called an N -function if limt→0

Φ(t)
t = 0 and limt→+∞

Φ(t)
t = +∞.

Orlicz functional space. Given an N -function Φ and a nonnegative Borel measure ω on G, let
LΦ(G, ω) be the linear hull of the set of all Borel measurable functions f : G → R satisfying∫
G Φ(|f(x)|)ω(dx) < ∞. Then, LΦ(G, ω) is a normed space with the Luxemburg norm, defined as

∥f∥LΦ
:= inf

{
t > 0 |

∫
G
Φ

(
|f(x)|

t

)
ω(dx) ≤ 1

}
. (2)

3 Orlicz-EPT: Entropy Partial Transport with Orlicz Geometric Structure

In this section, we revisit the entropy partial transport (EPT) problem [36, 40, 72], then develop
Orlicz-EPT as a variant of EPT endowed with Orlicz geometric structure.

3.1 Entropy Partial Transport (EPT)

Let γ1, γ2 be the first and second marginals of γ ∈ P(G×G) respectively. For unbalanced measures
µ, ν ∈ P(G), we consider the set Π≤(µ, ν) := {γ : γ1 ≤ µ, γ2 ≤ ν}.4 Additionally, let f1, f2
be the Radon-Nikodym derivatives of γ1 w.r.t. µ and of γ2 w.r.t. ν respectively, i.e., γ1 = f1µ
(0 ≤ f1 ≤ 1, µ-a.e.) and γ2 = f2ν (0 ≤ f2 ≤ 1, ν-a.e.).

For convex and lower semicontinuous entropy functions F1, F2 : [0, 1] → (0,∞), and nonnegative
weight functions w1, w2 : G → [0,∞), we consider the weighted relative entropies F1(γ1|µ) :=∫
G w1(x)F1(f1(x))µ(dx), and F2(γ2|ν) :=

∫
G w2(x)F2(f2(x))ν(dx). For scalar b > 0, scalar

m ∈ [0, m̄] with m̄ := min{µ(G), ν(G)}, and graph metric dG as ground cost, the EPT problem is

Wm(µ, ν) := inf
γ∈Π≤(µ,ν), γ(G×G)=m

[
F1(γ1|µ) + F2(γ2|ν) + b

∫
G×G

dG(x, y)γ(dx,dy)
]
. (3)

Following [40, §3], by using entropy functions F1(s) = F2(s) := |s− 1| and considering a Lagrange
multiplier λ ∈ R conjugate to the constraint γ(G×G) = m, we instead study the problem

ETλ(µ, ν) = inf
γ∈Π≤(µ,ν)

Cλ(γ), (4)

3In the sense that V is a subset of Euclidean space Rn, and each edge e ∈ E is the standard line segment in
Rn connecting the two vertices of the edge e.

4γ1 ≤ µ means that γ1(B) ≤ µ(B) for all Borel set B ⊂ G, similarly for γ2 ≤ ν.
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where Cλ(γ) =
∫
G w1µ(dx) +

∫
G w2ν(dx) −

∫
G w1γ1(dx) −

∫
G w2γ2(dx) + b

∫
G×G[dG(x, y) −

λ]γ(dx,dy).5

EPT as a standard OT. Following Caffarelli & McCann [12]’s insights, we can reformulate prob-
lem (4) as the standard complete OT problem. However, it is not guarantee that the corresponding
standard OT has a nonnegative ground cost, e.g., see [12, 36, 40, 72]. Therefore, such OT reformula-
tion may not be applicable to derive corresponding OW as in [67, 32, 28, 3, 41] since N -function is
only defined for nonnegative domain (§2). Therefore, it is essential to carefully calibrate the ground
cost of the corresponding standard OT of EPT to ensure its nonnegativity.

Precisely, following [40, Theorem 3.1], we henceforth consider λ ≥ 0.6 Then let ŝ be a point outside
graph G, i.e., ŝ /∈ G, and extend graph metric cost dG on G to a new nonnegative cost function ĉ with
bλ-deviation on Ĝ := G ∪ {ŝ} as follows:

ĉ(x, y) :=


b dG(x, y) if x, y ∈ G,
w1(x) + bλ if x ∈ G and y = ŝ,
w2(y) + bλ if x = ŝ and y ∈ G,
bλ if x = y = ŝ.

(5)

For unbalanced measures µ, ν, we construct corresponding probability (balanced) measures µ̂ =
µ+ν(G)δŝ
µ(G)+ν(G) and ν̂ = ν+µ(G)δŝ

µ(G)+ν(G) . Let Π(µ̂, ν̂) :=
{
γ̂ ∈ P(Ĝ × Ĝ) : µ̂(U) = γ̂(U × Ĝ), ν̂(U) =

γ̂(Ĝ× U) for all Borel sets U ⊂ Ĝ
}

, then one can recast EPT (4) as a standard OT with cost ĉ.

Proposition 3.1. Consider the standard OT Wĉ between probability measures µ̂, ν̂ with cost ĉ,

Wĉ(µ̂, ν̂) := inf
γ̂∈Π(µ̂,ν̂)

∫
Ĝ×Ĝ

ĉ(x, y)γ̂(dx,dy), (6)

then we have
KT(µ, ν) := (µ(G) + ν(G)) (Wĉ(µ̂, ν̂)− bλ) = ETλ(µ, ν). (7)

The proof is placed in Appendix §A.2.1.

Thus, we have reformulated EPT (4) for unbalanced measures as a corresponding standard complete
OT (7) with nonnegative ground cost. Consequently, we bypass the technical challenges inherent
in unbalanced settings and can leverage abundant existing results and approaches in the standard
balanced setting for OT problems with unbalanced measures on a graph.
Remark 3.2 (Nonnegativity). Unlike existing approaches, e.g., as in [12, 36, 40, 72], the new ground
cost ĉ of the corresponding standard OT problem (7) for EPT is guaranteed to be nonnegative. Our
calibration is essential for developing the associated OW from its standard OT as in [67, 32, 28, 17].

3.2 Orlicz-EPT

Following the approaches in [67, 32, 28, 17], we define Orlicz-EPT, which is EPT endowed with an
Orlicz geometric structure, based on the standard OT problem (7) as follows:

OEΦ(µ, ν) := (µ(G) + ν(G)) (WΦ(µ̂, ν̂)− bλ), (8)

where WΦ(µ̂, ν̂) := inf γ̃∈Π(µ̂,ν̂) inf
[
t > 0 :

∫
Ĝ×Ĝ Φ

(
ĉ(x,y)

t

)
dγ̃(x, y) ≤ 1

]
.

It should be noted that, similar to OW, Orlicz-EPT (8) is derived from the standard OT problem (7),
which circumvents all challenges coming from the setting of unbalanced measures.

We next show that the objective function of Orlicz-EPT is monotone non-increasing w.r.t. t.
Proposition 3.3 (Monotonicity). Let Φ be an N -function, and let ĉ be the cost given by (5). For any
probability measures µ̂ and ν̂ on Ĝ, define

A(t; µ̂, ν̂) := inf
γ̃∈Π(µ̂,ν̂)

∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t

)
dγ̃(x, y) for t > 0. (9)

Then the function t ∈ (0,+∞) 7−→ A(t; µ̂, ν̂) is monotone non-increasing.

The proof is placed in Appendix §A.2.2.
5The relationship between Problem (3) and Problem (4) is established in [40, Theorem A.1].
6The dual EPT result is the foundation for developing Orlicz-Sobolev transport in §4, where λ is nonnegative.
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Computation. Observe that for a fixed t, A is a standard OT problem between µ̂ and ν̂ with
the cost function Φ

(
ĉ(·,·)
t

)
. For computational efficiency,7 we consider its corresponding entropic

regularization [20], and show that the monotonicity is preserved.
Proposition 3.4 (Entropic regularization). Define the entropic regularization of A as

Aε(t; µ̂, ν̂) := inf
γ̃∈Π(µ̂,ν̂)

[∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t

)
dγ̃(x, y)− εH(γ̃)

]
, (10)

where ε ≥ 0 and H is Shannon entropy defined by H(γ̃) := −
∫
Ĝ×Ĝ(log γ̃(x, y)− 1)dγ̃(x, y). Then

the function t ∈ (0,+∞) 7−→ Aε(t; µ̂, ν̂) is monotone non-increasing.

The proof is placed in Appendix §A.2.3.

In addition, we obtain the following upper and lower bounds for Aε.
Proposition 3.5 (Bounds). Let supp(·) be a set of supports of a measure, then we have

Aε

(
Wĉ(µ̂, ν̂)

Φ−1(1 + ε [H(µ̂) +H(ν̂)− 1])
; µ̂, ν̂

)
≥ 1, and Aε

(
Lµ̂,ν̂

Φ−1(1 + ε)
; µ̂, ν̂

)
≤ 1,

where Lµ̂,ν̂ := maxx∈supp(µ̂),y∈supp(ν̂) ĉ(x, y).

The proof is placed in Appendix §A.2.4.

Thanks to the monotonicity of Aε in Proposition 3.4 and the limits of Aε in Proposition 3.5, we
can leverage the binary search approach to compute the entropic regularized Orlicz-EPT, which
corresponds to the original Orlicz-EPT (8). Precisely, this entropic regularization is defined as

OEΦ,ε(µ, ν) := (µ(G) + ν(G)) (WΦ,ε(µ̂, ν̂)− bλ), (11)

where WΦ,ε(µ̂, ν̂) := inf γ̃∈Π(µ̂,ν̂) inf
[
t > 0 :

∫
Ĝ×Ĝ Φ

(
ĉ(x,y)

t

)
dγ̃(x, y)− εH(γ̃) ≤ 1

]
.

Discussions. Orlicz-EPT is a novel variant of EPT that incorporates Orlicz geometric structure.
Leveraging Caffarelli & McCann [12]’s insights and carefully calibrating the ground cost of the
corresponding standard OT to ensure its nonnegativity, we are able to bypass all challenges of
unbalanced measures and derive the proposed Orlicz-EPT from the standard OT, similar to OW [67].
We note that OEΦ,ε (11) performs binary search with quadratic complexity Aε (10), instead of
dealing with super-cubic complexity A (9) in OEΦ (8). Unfortunately, the two-level optimization
structure of OEΦ,ε still retains significant complexity, severely limiting its practical applications,
particularly in large-scale settings. To address this computational challenge, in the next section we
exploit the dual EPT and graph structure to develop a novel regularization approach, resulting in
the proposed Orlicz-Sobolev transport. This approach adopts the Orlicz geometric structure used in
Orlicz-EPT, but offers a much more efficient computation.

4 Orlicz-Sobolev Transport: A Scalable Variant of Orlicz-EPT

In this section, we leverage the dual EPT and underlying graph structure to develop a novel regular-
ization approach, resulting in the proposed Orlicz-Sobolev transport (OST).

Dual EPT. For b-Lipschitz w1, w2 (w.r.t. dG), from [40, Corollary 3.2], the dual EPT is

ETλ(µ, ν) = sup
f∈U

∫
G
f(µ− ν)− bλ

2

[
µ(G) + ν(G)

]
, (12)

where U :=
{
f ∈ C(G) : −w2 − bλ

2 ≤ f ≤ w1 +
bλ
2 , |f(x)− f(y)| ≤ b dG(x, y)

}
.

Let Ψ be the complement N -function of Φ and ω be a nonnegative Borel measure on G. Then let
WLΨ(G, ω) be the graph-based Orlicz-Sobolev space [41, Definition 3.1] associated to Ψ and ω.
Inspired by the approach of GST [41], we consider the critic function f ∈ U within WLΨ(G, ω).
Consequently, the b-Lipschitz constraint on the critic function f ∈ U is replaced by ∥f ′∥LΨ

≤ b.

7Entropic regularized OT reduces the computational cost of OT from super-cubic to quadratic complexity [20].
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For f ∈ WLΨ(G, ω), we have f(x) = f(z0) +
∫
[z0,x]

f ′(y)ω(dy),∀x ∈ G. Let 1 be the indicator
function. Then by using the generalized Hölder inequality [2, §8.11] and ∥f ′∥LΨ

≤ b, we can control
the integral part over the generalized graph derivative f ′ for f(x) as follows:∫

[z0,x]

f ′(y)ω(dy) ≤ 2 ∥f ′∥LΨ

∥∥1[z0,x]

∥∥
LΦ

≤ 2b
∥∥1[z0,x]

∥∥
LΦ

≤ 2b

Φ−1(1/ω(G))
, (13)

where the last inequality is due to the increasing property of N -function Φ. Therefore, instead of the
bounded constraint on the critic function f in U, we constraint only on f(z0).
Definition 4.1 (Orlicz-Sobolev transport (OST)). For α ∈ [0, 1

2 (bλ+ w1(z0) + w2(z0))], let Iα :=[
−w2(z0)− bλ

2 + α,w1(z0) +
bλ
2 − α

]
. The Orlicz-Sobolev transport for µ, ν ∈ P(G) is defined

OSΦ,α(µ, ν) := sup
f∈UΨ,α

[∫
G
f(x)µ(dx)−

∫
G
f(x)ν(dx)

]
, (14)

where UΨ,α :=
{
f ∈ WLΨ(G, ω) : ∥f ′∥LΨ

≤ b, f(z0) ∈ Iα
}

.

Intuitively, UΨ,α is the collection of all functions f expressed by f(x) = s+
∫
[z0,x]

h(y)ω(dy),∀x ∈
G, where s ∈ Iα, and ∥h∥LΨ

≤ b. The upper bound constraint on α is to ensure that Iα is nonempty.
When α = 0, Iα is the largest interval. Also, OST is an instance of the integral probability metric [49].

Computation. Given unbalanced measures µ, ν ∈ P(G), for brevity let us define

Θ :=

{
w1(z0) +

bλ
2 − α if µ(G) ≥ ν(G),

w2(z0) +
bλ
2 − α if µ(G) < ν(G).

(15)

Theorem 4.2 (Univariate optimization problem for OST). OST can be computed as follows

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ inf
k>0

1

k

(
1 +

∫
G
Φ (kb |µ(Λ(x))− ν(Λ(x))|)ω(dx)

)
. (16)

The proof is placed in Appendix §A.2.5.

We derive the discrete case for OST which provides an explicit expression for the integral in (63).
Corollary 4.3 (Discrete case). Let ω be the length measure of graph G, and assume that input
measures µ, ν are supported on nodes in V of graph G.8 Then, we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ inf
k>0

1

k

(
1 +

∑
e∈E

weΦ(kb |µ(γe)− ν(γe)|)

)
. (17)

The proof is placed in Appendix §A.2.6.

Therefore, OST can be efficiently computed by simply solving the univariate optimization prob-
lem (17), thanks to the proposed novel regularization for critic functions in UΨ,α.
Remark 4.4 (Non-physical graph). In §2, G is assumed to be a physical graph. Corollary 4.3 implies
that OST only depends on graph structure (V,E) and edge weights we when input measures are
supported on nodes in V of G. Hence, OST is applicable for non-physical graph G for such cases.
Remark 4.5 (Complementary pairs of N -functions). Corollary 4.3 also implies that one can compute
OST with N -function Φ without involving its complementary N -function Ψ (17), unlike its defini-
tion (14). The univariate optimization formula (17)) for OST requires that Ψ is finite-valued, which
is satisfied for any N -function Φ as it grows faster than linear.

Preprocessing for γe. Similar to the GST computation [41], we precompute set γe (1) for all edge e
in G. More concretely, we apply the Dijkstra algorithm to recompute the shortest paths from z0 to all
other vertices in V with complexity O(|E|+ |V | log |V |), where | · | denotes the set cardinality.

Sparsity. Observe that for every x ∈ supp(µ), its mass is gathered into µ(γe) if and only if
e ⊂ [z0, x] [41]. Let Eµ,ν :={e∈E | ∃z∈(supp(µ) ∪ supp(ν)), e ⊂ [z0, z]} ⊂ E. Then it suffices
to compute the summation only over edges e ∈ Eµ,ν in (17) for OST, i.e., screen out all edges
e ∈ E \ Eµ,ν .

8It can be extended for measures supported in G (see §B.2).
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5 Theoretical Properties

In this section, we leverage the computational efficiency of OST to derive its geometric structure and
explore its connections to other transport distances.

Geometric structures of OST.
Proposition 5.1 (Geometric structure). Let 0 ≤ α < bλ

2 +min{w1(z0), w2(z0)} and µ, ν, σ ∈ P(G).

i) OSΦ,α(µ+ σ, ν + σ) = OSΦ,α(µ, ν).

ii) OSΦ,α is a divergence,9 and OSΦ,α(µ, ν) ≤ OSΦ,α(µ, σ) +OSΦ,α(σ, ν).

iii) With an additional assumption w1(z0) = w2(z0), then OSΦ,α is a metric.

We next establish connections of OST with other transport distances, including GST [41], Sobolev
transport (ST) [39], unbalanced Sobolev transport (UST) [40].

Connection of OST with GST. Denote GSΦ for the GST with N -function Φ.
Proposition 5.2. For µ(G) = ν(G), b = 1, then OSΦ,α(µ, ν) = GSΦ(µ, ν).

Connection of OST with ST. Denote Sp for the p-order ST, for 1 < p < ∞.

Proposition 5.3. For µ(G) = ν(G), b = 1, and Φ(t) = (p−1)p−1

pp tp, then OSΦ,α(µ, ν) = Sp(µ, ν).

Connection of OST with UST. Denote USp,α for UST, for 1 < p < ∞.

Proposition 5.4. For N -function Φ(t) = (p−1)p−1

pp tp, then OSΦ,α(µ, ν) = USp,α(µ, ν).

Additionally, we investigate the limit case for N -function, i.e., Φ(t) = t,10 for OST and Orlicz-EPT.
Proposition 5.5 (Limit case for OST). For Φ(t) = t, and with the same assumptions as in Corol-
lary 4.3, then OST yields a closed-form expression as follows:

OSΦ,α(µ, ν) = b
∑
e∈E

we |µ(γe)− ν(γe)|+Θ|µ(G)− ν(G)|. (18)

Proposition 5.6 (Limit case for Orlicz-EPT). For Φ(t) = t, then we have OEΦ(µ, ν) = KT(µ, ν)
for every µ, ν ∈ P(G).

Proposition 5.7 (Relation of OST and Orlicz-EPT). For Φ(t) = t, length measure ω on G, b-Lipschitz
w1, w2 (w.r.t. dG), α = 0, and p = 1, then OSΦ,α(µ, ν) ≥ OEΦ(µ, ν) +

bλ
2 (µ(G) + ν(G)).

The proofs for these theoretical results (in §5) are respectively placed in §A.2.7–§A.2.13.

6 Related Works and Discussions

In this section, we discuss relations between our proposals with related works in the literature.

GST [41]. Proposition 5.2 shows that OST provably generalizes GST [41] for unbalanced measures.
We emphasize that GST is restricted for balanced measures and is defined as an optimization over the
critic function, making it nontrivial to directly extend it to accommodate unbalanced measures.

EPT [36, 40, 72]. Orlicz-EPT and OST are developed from the primal and dual EPT respectively.
Notably, the corresponding standard OT following [12] is not guarantee nonnegativity for ground
cost, see [12, 36, 40]. Additionally, Caffarelli & McCann [12]’s insights may not be applicable to
certain other UOT formulations, such as those proposed in [6, 26, 18, 63, 64, 27, 5, 48, 52]. The
calibration is essential to guarantee nonnegativity for ground cost of the corresponding standard OT
for EPT, paving ways to develop Orlicz-EPT. Similar to OW, Orlicz-EPT is derived from standard
OT, thereby circumventing the challenges associated with unbalanced measures. Furthermore, we
derive a novel regularization, resulting in the proposed OST with an efficient computation.

9OSΦ,α(µ, ν) ≥ 0, and OSΦ,α(µ, ν) = 0 if and only if µ = ν.
10Notice that Φ(t) = t is not an N -function due to its linear growth. It can be considered as the limit p → 1+

of the N -function Φ(t) = tp with p > 1.
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UST [40] and ST [39] Proposition 5.4 shows that OST provably generalizes UST to a more general
collection of N -functions. Consequently, OST also provably generalizes ST to unbalanced measures,
and to a more general set of N -functions (see Proposition 5.3).

Measures on a graph. We study OT problem between two unbalanced measures supported on
the same graph, a setting also explored in [40]. One should distinguish our considered problem
with the research lines on computing either distances/discrepancies [55, 74, 73, 22, 11, 47] or
kernels [10, 34, 53, 61] between two (different) input graphs.

7 Experiments

In this section, we illustrate that the computation of Orlicz-EPT is costly. Especially, OST is several-
order faster than Orlicz-EPT. Following the problem setups in [40], we evaluate OST for unbalanced
measures supported a given graph,11 and show initial evidences on its advantages for document
classification and topological data analysis (TDA).

Document classification. We use 4 real-world document datasets: TWITTER, RECIPE, CLASSIC,
and AMAZON as in [40], and summarize their characteristics in Figure 2. By regarding each word in
a document as a support with a unit mass, we represent each document as a nonnegative measure.
Consequently, the representations of documents with different lengths are measures with different
total mass. We apply the same word embedding procedure in [40] to map words into vectors in R300.

TDA. We consider orbit recognition on Orbit dataset [1], and object shape classification on MPEG7
dataset [35] as in [40]. We summarize these dataset characteristics in Figure 3. We use persistence
diagrams (PD), a multiset of 2-dimensional data points summarized topological features, to represent
objects of interest. We then consider each data point in PD as a support with a unit-mass, and
represent PD as nonnegative measures. As a result, PD having different numbers of topological
features are presented as measures with different total mass.12

Graph. Following [40], we use the graphs GLog and GSqrt [39, §5] for our experiments,13 which
empirically satisfy the assumptions in §2. Additionally, we set M = 104 for the number of nodes for
these graphs, except experiments on MPEG7 dataset with M = 103 due to its small size.

N -function. Following [41], we consider two N -functions: Φ1(t) = exp(t)− t− 1, and Φ2(t) =
exp(t2)− 1, and the limit case of N -functions, i.e., Φ0(t) = t.

Parameters. For simplicity, we follow the experimental setup in [40]. We set λ = b = 1, α = 0,
and consider the weight functions w1(x)=w2(x)=a1dG(z0, x) + a0 where a1=b and a0=1. The
entropic regularization ε is chosen from {0.01, 0.1, 1, 10}, typically via cross validation.

Optimization algorithm. For OST, we use fmincon MATLAB solver with trust-region-reflective
algorithm, for solving the univariate optimization problem (17).

SVM classification. For document classification and TDA, we use support vector machine (SVM)
with kernels exp(−t̄d̄(·, ·)), where d̄ is a distance/discrepancy (e.g., OST, Orlicz-EPT) for unbalanced
measures on a graph, and t̄ > 0. We regularize Gram matrices by adding a sufficiently large diagonal
term for indefinite kernels [20]. Additionally, we note that there are more than 29M pairs for AMAZON
which we need to evaluate distances/discrepancies for SVM in each run to illustrate the experiment
scale.14

Set up. We randomly split each dataset into 70%/30% for training and test, and use 10 repeats.
We basically choose hyper-parameters via cross validation. More concretely, we choose kernel
hyperparameter from {1/qs, 0.5/qs, 0.2/qs} with s = 10, 20, . . . , 90, where qs is the s% quan-
tile of a subset of distances observed on a training set; SVM regularization hyperparameter from
{0.01, 0.1, 1, 10}; root node z0 from a random 10-root-node subset of V in graph G. Note that
reported time consumption includes all preprocessing procedures, e.g., preprocessing for γe for OST.

11One should distinguish the considered problem, i.e., compare two input unbalanced measures supported in
the same graph, with either OT or Gromov-Wasserstein problem between two different input graphs (§6).

12We distinguish our problem setup with [41], where objects are represented as probability measures instead.
13Due to the space limitation, corresponding experimental results for graph GLog are placed in §B.3.
14See Table 1 in §B.2 for the details.
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7.1 Computation
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Figure 1: Time consumption.

We compare the time consumption of OST and Orlicz-EPT with Φ1,Φ2, and with the limit case Φ0.

Set up. We randomly sample 104 pairs of nonnegative measures on AMAZON dataset for evaluation.
We consider M = 103 for graphs, and ε = 0.1 for Orlicz-EPT.

Results. We illustrate the time consumptions on GSqrt in Figure 1. OST is several-order faster
than Orlicz-EPT, i.e., at least 250×, 13800×, 11200× for Φ0,Φ1,Φ2 respectively. Notably, for N -
functions Φ1,Φ2, Orlicz-EPT takes at least 2.6 days, while OST takes less than 21 seconds. Note
that for the limit case Φ0, Orlicz-EPT is equal to EPT on a graph (Proposition 5.6), and OST admits a
closed-form expression (Proposition 5.5) for a fast computation. Consequently, Orlicz-EPT and OST
with Φ0 is more computationally efficient than those with Φ1,Φ2.

7.2 Document Classification
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Figure 2: Document classification on graph GSqrt. For each dataset, the numbers in the parenthesis are
respectively the number of classes; the number of documents; and the maximum number of unique
words for each document.

Set up. We evaluate OST with Φ0,Φ1,Φ2 (§7.1), denote them as OST-Φi for i = 0, 1, 2. We
exclude Orlicz-EPT due to their heavy computations (§7.1). Additionally, following [40], we consider
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UOT [26, 63] with ground cost dG,15 and special cases with tree-structure graph. More concretely, we
randomly sample a tree from the given graph G, then consider the regularized EPT and d0, denoted
as d0-Tree and regEPT-Tree [36, Proposition 3.8, Equation (9)].

Results. We show SVM results and time consumptions of kernels on GSqrt in Figure 2. The
performances of OST with all Φ functions are comparable to UOT, but the computation of UOT
is more costly than OST. Additionally, OST outperforms d0-Tree and regEPT-Tree. However,
the computations of OST-Φ1, OST-Φ2 are more expensive while the computation of OST-Φ0 is
comparative to those fast-computational variants of UOT on tree (i.e., d0-Tree and regEPT-Tree).
Moreover, OST-Φ1 and OST-Φ2 improve performances of OST-Φ0, but their computational time is
several-order higher, which may imply that Orlicz geometric structure in OST may be helpful for
document classification. The performances of UOT also agree with observations in [40].

7.3 Topological Data Analysis (TDA)
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Figure 3: TDA on graph GSqrt. For each dataset, the numbers in the parenthesis are respectively the
number of PD; and the maximum number of points in PD.

Set up. Similarly, we evaluate OST-Φ0, OST-Φ1, OST-Φ2, UOT, d0-Tree, and regEPT-Tree for TDA.

Results. We illustrate SVM results and time consumptions of kernels on GSqrt in Figure 3. The
performances of OST with all Φ functions compare favorably with other transport distance approaches.
Especially, the performances of OST-Φ1 and OST-Φ2 compare favorably with those of OST-Φ0, but it
comes with higher computational cost (i.e., OST-Φ0 has a closed-form expression (Proposition 5.5)),
which may imply that Orlicz geometric structure may be also helpful for TDA tasks.

8 Conclusion

In this work, we propose novel approaches to extend OW/GST for unbalanced measures on a
graph. Building on the EPT problem and leveraging Caffarelli & McCann [12]’s insights, we
derive Orlicz-EPT by recasting it as a standard OT with a carefully calibrated ground cost, thereby
bypassing challenges raised from unbalanced measures. Furthermore, by exploiting dual EPT and
the underlying geometric structure, we formulate a novel regularization, resulting in the proposed
OST, which is efficient in computation. It provably suffices to compute OST by simply solving a
univariate optimization problem, unlike the computationally intensive Orlicz-EPT. Moreover, we
illustrate empirical evidence on the advantages of OST in document classification and topological
data analysis.

15Séjourné et al. [63, 65] derived a debiased version for (Sinkhorn-based) UOT which may be helpful in
applications [40, §B.3.3]. It has the same computational complexity as UOT, and is also empirically indefinite.
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Supplement to “An Efficient Orlicz-Sobolev Approach for
Transporting Unbalanced Measures on a Graph”

In this appendix, we provide further theoretical results and detailed proofs in §A. Additionally,
we give brief reviews on related notions used in our work, together with further discussions, and
empirical results in §B.

A Detailed Proofs and Further Theoretical Results

In this section, we provide further theoretical results, and detailed proofs for all the theoretical results.

A.1 Further Theoretical Results

We investigate special cases for OST, alternative upper limit for Aε, and the limit case of N -function
for entropic regularized Orlicz-EPT.

A.1.1 Special Cases for OST

We exam the special cases of OST when graph G is a tree.

Proposition A.1 (Relation of OST and a variant of regularized EPT). Under the same assumptions
as in Proposition 5.5, and assume in addition that graph G is a tree, then

OSΦ,α(µ, ν) = dα(µ, ν),

where dα is a variant of the regularized EPT in [36, Equation (9)].

The proof is placed in Appendix §A.2.14.

Proposition A.2 (Relation of OST and standard OT). Under the same assumptions as in Proposi-
tion A.1, and assume in addition that µ(G) = ν(G) and b = 1, then

OSΦ,α(µ, ν) = WdG(µ, ν),

where WdG is the standard OT with graph metric ground cost dG.

The proof is placed in Appendix §A.2.15.

A.1.2 Upper Limit of Aε w.r.t. Entropic Regularized OT

With a technical assumption that entropic regularized input is nonnegative for N -function Φ,16 we
derive an alternative upper limit of Aε w.r.t. entropic regularized OT as summarized in the following
proposition.

Proposition A.3 (Upper bound w.r.t. entropic regularized OT). We have

Aε

(Wĉ,ε(µ̂, ν̂) +
ε
2 (H(µ̂) +H(ν̂))

Φ−1(1 + ε [H(µ̂) +H(ν̂)− 1])
; µ̂, ν̂

)
≥ 1,

where Wĉ,ε(µ̂, ν̂) is the entropic regularized OT between probability measures µ̂, ν̂ with ground cost
ĉ, defined as

Wĉ,ε(µ̂, ν̂) := inf
γ̃∈Π(µ̂,ν̂)

[∫
Ĝ×Ĝ

ĉ(x, y)γ̃(dx, dy)− εH(γ̃)

]
. (19)

The proof is placed in Appendix §A.2.16.

A.1.3 Limit Case for Entropic Regularized Orlicz-EPT

We consider the limit case for N -function, i.e., Φ(t) = t, for OEΦ,ε, similar to Proposition 5.6 for
the original Orlicz-EPT.

16The technical assumption is specified in the proof (§A.2.16).
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Proposition A.4 (Limit case for entropic regularized Orlicz-EPT). For Φ(t) = t, and µ, ν ∈ P(G),
we have

OEΦ,ε(µ, ν) = (µ(G) + ν(G)) (Wĉ,ε(µ̂, ν̂)− bλ), (20)

where Wĉ,ε is the entropic regularized optimal transport (see Equation (19)).

The proof is placed in Appendix §A.2.17.

A.2 Detailed Proofs

A.2.1 Proof for Proposition 3.1

Proof. Consider the cost function c̃ on Ĝ as follows:

c̃(x, y) :=


b(dG(x, y)− λ) if x, y ∈ G,
w1(x) if x ∈ G and y = ŝ,
w2(y) if x = ŝ and y ∈ G,
0 if x = y = ŝ.

(21)

Additionally, for unbalanced measures µ, ν, we construct corresponding balanced measures µ̃ :=
µ+ ν(G)δŝ and ν̃ := ν + µ(G)δŝ where measures µ̃, ν̃ have the same total mass (µ(G)+ν(G)). Let
Π̃(µ̃, ν̃) :=

{
γ̃ ∈ P(Ĝ × Ĝ) : µ̃(U) = γ̃(U × Ĝ), ν̃(U) = γ̃(Ĝ × U) for all Borel sets U ⊂ Ĝ

}
,

then following [40, Lemma A.8], we have

ETλ(µ, ν) = Wc̃(µ̃, ν̃), (22)

where Wc̃(µ̃, ν̃) is a standard complete OT between two balanced measures µ̃ and ν̃ (i.e., having the
same total mass µ(G) + ν(G)), with cost c̃, defined as

Wc̃(µ̃, ν̃) := inf
γ̃∈Π̃(µ̃,ν̃)

∫
Ĝ×Ĝ

c̃(x, y)γ̃(dx,dy).

Moreover, from Equation (22), we have

ETλ(µ, ν) = Wc̃(µ̃, ν̃)

= (µ(G) + ν(G))Wc̃(µ̂, ν̂) (23)
= (µ(G) + ν(G)) (Wĉ(µ̂, ν̂ − bλ) (24)
= KT(µ, ν),

where the equality in Equation (24) is due to c̃(x, y) = ĉ(x, y)− bλ for all x, y ∈ Ĝ.

Hence, the proof is completed.

A.2.2 Proof for Proposition 3.3

Proof. From the definition, we have

A(t; µ̂, ν̂) := inf
γ̃∈Π(µ̂,ν̂)

∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t

)
dγ̃(x, y). (25)

Let 0 < t1 ≤ t2 < ∞, denote γ̃∗
t1 , γ̃

∗
t2 as the optimal transport plans of A(t1; µ̂, ν̂),A(t2; µ̂, ν̂)

respectively. Then, we have

A(t2; µ̂, ν̂) =

∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t2

)
dγ̃∗

t2(x, y)

≤
∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t2

)
dγ̃∗

t1(x, y)

≤
∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t1

)
dγ̃∗

t1(x, y)

= A(t1; µ̂, ν̂),

where the second inequality is due to the strictly increasing property of the N -function Φ.

Hence, the proof is completed.
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A.2.3 Proof for Proposition 3.4

Proof. The result is followed by the same reasoning as in the proof for Proposition 3.3 where we
leverage the strictly increasing property of the N -function Φ and the optimal transport plans for Aε.

More concretely, let 0 < t1 ≤ t2 < ∞, denote γ̃∗
t1 , γ̃

∗
t2 as the optimal transport plans of

Aε(t1; µ̂, ν̂),Aε(t2; µ̂, ν̂) respectively. Then, we have

Aε(t2; µ̂, ν̂) =

∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t2

)
dγ̃∗

t2(x, y)− εH(γ̃∗
t2)

≤
∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t2

)
dγ̃∗

t1(x, y)− εH(γ̃∗
t1)

≤
∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t1

)
dγ̃∗

t1(x, y)− εH(γ̃∗
t1)

= Aε(t1; µ̂, ν̂).

Hence, the proof is completed.

A.2.4 Proof for Proposition 3.5

Proof. We provide the proof for the lower and upper limits for Aε as follows:

For lower limit. From the definition in Equation (10), we have

Aε

(
Lµ̂,ν̂

Φ−1(1 + ε)
; µ̂, ν̂

)
= inf

γ̃∈Π(µ̂,ν̂)

[∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)
Lµ̂,ν̂

Φ−1(1+ε)

)
dγ̃(x, y)− εH(γ̃)

]
.

Additionally, since N -function Φ is strictly increasing, we have

Φ

(
ĉ(x, y)
Lµ̂,ν̂

Φ−1(1+ε)

)
≤ Φ(Φ−1(1 + ε)) = 1 + ε.

For convenience, given any γ̃ ∈ Π(µ̂, ν̂), we define

H̄(γ) := −
∫
Ĝ×Ĝ

log γ̃(x, y)dγ̃(x, y). (26)

From the definition of H in Proposition 3.4, for any γ̃ ∈ Π(µ̂, ν̂), we have

H(γ̃) = −
∫
Ĝ×Ĝ

log γ̃(x, y)dγ̃(x, y) + 1 ≥ 1,

where the inequality is followed by using [19, Lemma 2.1.1] (i.e., H̄(γ) ≥ 0).

Thus, we have

Aε

(
Lµ̂,ν̂

Φ−1(1 + ε)
; µ̂, ν̂

)
≤ (1 + ε)− ε ≤ 1. (27)

The proof for the lower limit is completed.

For upper limit. For any γ̃ ∈ Π(µ̂, ν̂), we have

T :=

∫
Ĝ×Ĝ

Φ

(
ĉ(x, y)

t

)
dγ̃(x, y)− εH(γ̃)

≥ Φ

(∫
Ĝ×Ĝ

(
ĉ(x, y)

t

)
dγ̃(x, y)

)
− εH(γ̃)

= Φ

(
1

t

∫
Ĝ×Ĝ

ĉ(x, y)dγ̃(x, y)

)
− εH(γ̃),

where we use the Jensen’s inequality for the second row.
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Additionally, for any γ̃ ∈ Π(µ̂, ν̂), we have

H(γ̃) = H̄(γ̃) + 1

≤ H̄(µ̂) + H̄(ν̂) + 1

= H(µ̂) +H(ν̂)− 1,

where we apply [19, Theorem 2.2.1 and Theorem 2.6.5] for the inequality in the second row.

Thus, we have

T ≥ Φ

(
1

t

∫
Ĝ×Ĝ

ĉ(x, y)dγ̃(x, y)

)
− ε (H(µ̂) +H(ν̂)− 1) (28)

Taking the infimum of γ̃ in Π(µ̂, ν̂), we obtain

Aε (t; µ̂, ν̂) ≥ Φ

(
1

t
Wĉ(µ̂, ν̂)

)
− ε (H(µ̂) +H(ν̂)− 1) (29)

Therefore, by choosing t = Wĉ(µ̂,ν̂)
Φ−1(1+ε[H(µ̂)+H(ν̂)−1]) , then we have

Aε

(
Wĉ(µ̂, ν̂)

Φ−1(1 + ε [H(µ̂) +H(ν̂)− 1])
; µ̂, ν̂

)
≥ 1.

The proof for the upper limit is completed.

A.2.5 Proof for Theorem 4.2

Proof. For f ∈ WLΦ(G, ω), as in Equation (63), we have

f(x) = f(z0) +

∫
[z0,x]

f ′(y)ω(dy), ∀x ∈ G.

Thus, following the Definition 4.1, we have

OSΦ,α(µ, ν) = supf(z0)∈Iα
f(z0)(µ(G)− ν(G)) +

supf∈WLΨ(G,ω),∥f ′∥LΨ
≤b

∫
G

(∫
[z0,x]

f ′(y)ω(dy)
)
(µ(x)− ν(x)) dx

Thus, we can rewrite OSΦ,α(µ, ν) as follows:

OSΦ,α(µ, ν) = sup
f∈WLΨ(G,ω),∥f ′∥LΨ

≤b

∫
G

(∫
[z0,x]

f ′(y)ω(dy)

)
(µ(x)− ν(x)) dx+Θ|µ(G)− ν(G)|

= sup
f∈WLΨ(G,ω),∥f ′∥LΨ

≤b

∫
G

(∫
[z0,x]

f ′(y)ω(dy)

)
(µ(x)− ν(x)) dx+Θ|µ(G)− ν(G)|,

(30)

where recall that Θ is defined in Equation (15).

Additionally, recall that the indicator function of the shortest path [z0, x] is as follows:

1[z0,x](y) =

{
1 if y ∈ [z0, x]

0 otherwise.
(31)

We rewrite the objective function for the first term of OSΦ,α(µ, ν) in Equation (30) as follows:∫
G

(∫
[z0,x]

f ′(y)ω(dy)

)
(µ(x)− ν(x)) dx =

∫
G

∫
G
1[z0,x](y) f

′(y) (µ(x)− ν(x))ω(dy)dx

=

∫
G

[∫
G
1[z0,x](y) (µ(x)− ν(x)) dx

]
f ′(y)ω(dy)

(32)

=

∫
G
[µ(Λ(y))− ν(Λ(y))] f ′(y)ω(dy), (33)
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where we apply the Fubini’s theorem to interchange the order of integration for the second row, and
use the definition of Λ in Equation (1) for the last row. Consequently, following [60, Proposition 10,
pp.81] and notice that ∥bf ′∥LΨ

= b ∥f ′∥LΨ
for b > 0, we have

sup
f∈WLΨ(G,ω),∥f ′∥LΨ

≤b

∫
G

(∫
[z0,x]

f ′(y)ω(dy)

)
(µ(x)− ν(x)) dx

= sup
f∈WLΨ(G,ω),∥ 1

b f
′∥

LΨ
≤1

∫
G
b [µ(Λ(y))− ν(Λ(y))]

[
1

b
f ′(y)

]
ω(dy)

=
∥∥∥f̃∥∥∥

Φ
, (34)

where f̃(x) := b (µ(Λ(x))− ν(Λ(x))) ,∀x ∈ G, and we write
∥∥∥f̃∥∥∥

Φ
for the Orlicz norm of f̃ with

N -function Φ [60, Definition 2, pp.58] (i.e., see a review in Equation (58) in §B.1.3).

Moreover, following [60, Theorem 13, pp.69], we also have

∥f̃∥Φ = inf
k>0

1

k

(
1 +

∫
G
Φ
(
k
∣∣∣f̃(x)∣∣∣)ω(dx)) . (35)

Hence, putting these Equations (30), (34), (35) together, we have

OSΦ,α(µ, ν) = inf
k>0

1

k

(
1 +

∫
G
Φ (kb |µ(Λ(x))− ν(Λ(x))|)ω(dx)

)
+Θ|µ(G)− ν(G)|. (36)

The proof is completed.

A.2.6 Proof for Corollary 4.3

Proof. Following Theorem 4.2, we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ inf
k>0

1

k

(
1 +

∫
G
Φ (kb |µ(Λ(x))− ν(Λ(x))|)ω(dx)

)
, (37)

We next follow the same reasoning as in [41, Corollary 3.4] to compute the integral in (37) by an
explicit expression.

For an edge e between two nodes u, v ∈ V of graph G, then u, v are also two data points in Rn as G
is a physical graph. For convenience, denote ⟨u, v⟩ as the line segment in Rn connecting the two data
points u, v, and (u, v) as the same line segment but without its two end-points. Therefore, we have
e = ⟨u, v⟩.
Additionally, for any x ∈ (u, v), we have y ∈ G \ (u, v) belongs to Λ(x) if and only if y ∈ γe (see
Equation (1) for the definitions of Λ(x) and γe). Thus, we have

Λ(x) \ (u, v) = γe. (38)

Consider the case where ω is the length measure of graph G, we have ω({x}) = 0 for every x ∈ G.
Consequently,∫

G
Φ (kb |µ(Λ(x))− ν(Λ(x))|)ω(dx) =

∑
e=⟨u,v⟩∈E

∫
(u,v)

Φ (kb |µ(Λ(x))− ν(Λ(x))|)ω(dx). (39)

Additionally, for measures µ, ν supported on nodes V of G, and using Equation (38), then we have

|µ(Λ(x))− ν(Λ(x))| = |µ(Λ(x) \ (u, v))− ν(Λ(x) \ (u, v))| = |µ(γe)− ν(γe)| ,

for every edge e = ⟨u, v⟩ ∈ E of graph G.
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Therefore, we can rewrite the identity (39) as follows:∫
G
Φ (kb |µ(Λ(x))− ν(Λ(x))|)ω(dx) =

∑
e=⟨u,v⟩∈E

∫
(u,v)

Φ (kb |µ(γe)− ν(γe)|)ω(dx).

=
∑

e=⟨u,v⟩∈E

Φ (kb |µ(γe)− ν(γe)|)
∫
(u,v)

ω(dx)

=
∑
e∈E

we Φ (kb |µ(γe)− ν(γe)|) .

By combining it with (37), we obtain

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+
∑
e∈E

we Φ (kb |µ(γe)− ν(γe)|) .

Hence, the proof is completed.

A.2.7 Proof for Proposition 5.1

Proof. The proof for each property on geometric structure of OST is as follows:

i) The result is directly followed from Equation (14) in Theorem 4.2 with the observation that
|µ(G)− ν(G)| = |(µ+ σ)(G)− (ν + σ)(G)|

and
|µ(Λ(x))− ν(Λ(x))| = |(µ+ σ)(Λ(x))− (ν + σ)(Λ(x))| .

ii) From Definition 4.1, choosing f = 0, then f ∈ UΨ,α, and for any µ, ν ∈ P(G), we have that
OSΦ,α(µ, ν) ≥ 0.

Assume that OSΦ,α(µ, ν)(µ, ν) = 0. Then, from Theorem 4.2, we obtain

Θ|µ(G)− ν(G)|+ inf
k>0

1

k

(
1 +

∫
G
Φ (kb |µ(Λ(x))− ν(Λ(x))|)ω(dx)

)
= 0.

Additionally, for 0 ≤ α < bλ
2 +min{w1(z0), w2(z0)}, we have Θ > 0. Consequently, we must have

µ(G) = ν(G) and inf
k>0

1

k

(
1 +

∫
G
Φ (kb |µ(Λ(x))− ν(Λ(x))|)ω(dx)

)
= 0.

Thus, µ(Λ(x)) = ν(Λ(x)),∀x ∈ G.

By applying [40, Lemma A.9],17 it leads to µ = ν.

Moreover, from Definition 4.1, we also have OSΦ,α(µ, µ) = 0.

Furthermore, for any feasible function f ∈ UΨ,α, we have∫
G
f(x)µ(dx)−

∫
G
f(x)ν(dx) =

[ ∫
G
f(x)µ(dx)−

∫
G
f(x)σ(dx)

]
+[ ∫

G
f(x)σ(dx)−

∫
G
f(x)ν(dx)

]
≤ OSΦ,α(µ, σ) +OSΦ,α(σ, ν).

Therefore, by taking the infimum for f ∈ UΨ,α, it implies that
OSΦ,α(µ, ν) ≤ OSΦ,α(µ, σ) +OSΦ,α(σ, ν).

Hence, OSΦ,α satisfies the triangle inequality.

iii) With an additional assumption w1(z0) = w2(z0), then for any function f ∈ UΨ,α, we also have
(−f) ∈ UΨ,α.

Therefore, from Definition 4.1, we obtain OSΦ,α(µ, ν) = OSΦ,α(ν, µ).

Thus, together with results in ii), we have OSΦ,α is a metric.

17In §B.1.6 (Lemma B.3), we review the Lemma A.9 in Le et al. [40].
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A.2.8 Proof for Proposition 5.2

Proof. For µ(G) = ν(G) and b = 1, then following Theorem 4.2 for OST and [41, Theorem 3.3] for
GST, we have

OSΦ,α(µ, ν) = inf
k>0

1

k

(
1 +

∫
G
Φ (k |µ(Λ(x))− ν(Λ(x))|)ω(dx)

)
= GSΦ(µ, ν).

The proof is completed.

A.2.9 Proof for Proposition 5.3

Proof. For µ(G) = ν(G), b = 1, by applying Proposition 5.2, we have

OSΦ,α(µ, ν) = GSΦ(µ, ν), (40)

where we recall that GSΦ is the GST for balanced measures on a graph.

Additionally, for 1 < p < ∞ and N -function Φ(t) = (p−1)p−1

pp tp, by leveraging [41, Proposition
4.4] for the connection between GST and ST, we have

GSΦ(µ, ν) = Sp(µ, ν). (41)

Therefore, by combining Equations (40) and (41), we obtain

OSΦ,α(µ, ν) = Sp(µ, ν).

The proof is completed.

A.2.10 Proof for Proposition 5.4

Proof. For N -function Φ(t) = (p−1)p−1

pp tp with 1 < p < ∞, from Theorem 4.2, we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+

infk>0
1
k

(
1 +

∫
G

(p−1)p−1

pp kpbp |µ(Λ(x))− ν(Λ(x))|p ω(dx)
)
. (42)

For convenience, for k > 0, let

T (k) :=
1

k
+

(p− 1)p−1

pp
kp−1bp

∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx),

i.e., the objective function of the univariate optimization problem for OSΦ,α.

We next consider two cases:

Case 1:
∫
G |µ(Λ(x))− ν(Λ(x))|p ω(dx) = 0. Then, we have

inf
k>0

T (k) = inf
k>0

1

k
= 0.

Consequently, from Equation (42), we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)| = b
[ ∫

G
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

] 1
p

+ Θ|µ(G)− ν(G)|

= USp,α(µ, ν).

Case 2:
∫
G |h(x)|p ω(dx) ̸= 0. Then, we have

lim
k→0+

T (k) = lim
k→+∞

T (k) = +∞.

Therefore, Equation (42), we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ T (k0), (43)
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for some finite number k0 ∈ (0,+∞) satisfying T ′(k0) = 0.

Additionally, we have

T ′(k) = − 1

k2
+
(p− 1

p

)p
kp−2bp

∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx).

Consequently, by solving the equation T ′(k0) = 0 w.r.t. k0, we obtain

k0 =
1

p−1
p b

(∫
G |µ(Λ(x))− ν(Λ(x))|p ω(dx)

) 1
p

.

Therefore, by plugging this value of k0 into T , we have

T (k0) =
1

k0

(
1 +

(p− 1)p−1

pp
kp0b

p

∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

)
=

p− 1

p
b

(∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

) 1
p

×(
1 +

(p− 1)p−1

pp
1

(p−1)p

pp bp
(∫

G |µ(Λ(x))− ν(Λ(x))|p ω(dx)
)bp ∫

G
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

)

= b

(∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

) 1
p

.

Thus, by plugging this value of T (k0) into Equation (43), we obtain

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ b

(∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

) 1
p

= USp,α(µ, ν).

Hence, we have shown that OSΦ,α(µ, ν) = USp,α(µ, ν) in both cases.

The proof is completed.

A.2.11 Proof for Proposition 5.5

Proof. Following Corollary 4.3, we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ inf
k>0

1

k

(
1 +
∑
e∈E

weΦ(kb |µ(γe)− ν(γe)|)

)
.

For Φ(t) = t, then we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ inf
k>0

1

k

(
1 +
∑
e∈E

wekb |µ(γe)− ν(γe)|

)

= Θ|µ(G)− ν(G)|+ inf
k>0

1

k
+
∑
e∈E

web |µ(γe)− ν(γe)|

= Θ|µ(G)− ν(G)|+ b
∑
e∈E

we |µ(γe)− ν(γe)| .

Hence, the proof is completed.
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A.2.12 Proof for Proposition 5.6

Proof. From Equation (8), we have
OEΦ(µ, ν) = (µ(G) + ν(G)) (WΦ(µ̂, ν̂)− bλ).

For Φ(t) = t, we further have

WΦ(µ̂, ν̂) = inf
γ̃∈Π(µ̂,ν̂)

inf
[
t > 0 :

∫
Ĝ×Ĝ

(
ĉ(x, y)

t

)
dγ̃(x, y) ≤ 1

]
Then, the infimum (t∗, γ̃∗) satisfies∫

Ĝ×Ĝ

(
ĉ(x, y)

t∗

)
dγ̃∗(x, y) = 1.

Therefore, we obtain t∗ =
∫
Ĝ×Ĝ ĉ(x, y)dγ̃∗(x, y) = Wĉ(µ̂, ν̂).

Hence, we have
OEΦ(µ, ν) = (µ(G) + ν(G)) (Wĉ(µ̂, ν̂)− bλ)

= KT(µ, ν).

The proof is completed.

A.2.13 Proof for Proposition 5.7

Proof. For Φ(t) = t, p = 1, from Theorem 4.2, we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ inf
k>0

1

k

(
1 +

∫
G
kb |µ(Λ(x))− ν(Λ(x))|ω(dx)

)
= Θ|µ(G)− ν(G)|+ inf

k>0

1

k
+ b

∫
G
|µ(Λ(x))− ν(Λ(x))|ω(dx)

= Θ|µ(G)− ν(G)|+ b

∫
G
|µ(Λ(x))− ν(Λ(x))|ω(dx)

= USp,α(µ, ν).

Additionally, for Φ(t) = t, from Proposition 5.6, we have
OEΦ(µ, ν) = KT(µ, ν).

With additional assumptions that λ ≥ 0 and the nonnegative weight functions w1, w2 are b-Lipschitz
w.r.t. dG, then by applying [40, Corollary 3.2], we have

OEΦ(µ, ν) = KT(µ, ν) = ETλ(µ, ν).

Consequently, for α = 0, and the length measure ω on G, then following [40, Proposition 5.2], we
have

OSΦ,α(µ, ν) ≥ OEΦ(µ, ν) +
bλ

2
(µ(G) + ν(G)).

The proof is completed.

A.2.14 Proof for Proposition A.1

Proof. From Proposition 5.5, we have

OSΦ,α(µ, ν) = Θ|µ(G)− ν(G)|+ b
∑
e∈E

we |µ(γe)− ν(γe)| (44)

= US1,α(µ, ν). (45)
For the case when G is a tree, then following [40, Proposition 5.3 i)], we further have

US1,α(µ, ν) = dα(µ, ν). (46)
Thus, from Equations (44) and (46), we have

OSΦ,α(µ, ν) = dα(µ, ν).

The proof is completed.
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A.2.15 Proof for Proposition A.2

Proof. From Equation (44) in the proof of Proposition A.1, we have

OSΦ,α(µ, ν) = US1,α(µ, ν). (47)

Additionally, when G is a tree, and with an additional assumption that µ(G) = ν(G), by applying [40,
Proposition 5.3 ii)], and notice that p = 1 and b = 1, we obtain

US1,α(µ, ν) = WdG(µ, ν), (48)

where recall that WdG is the standard optimal transport with graph metric ground cost dG.

Hence, from Equations (47) and (48), we get

OSΦ,α(µ, ν) = WdG(µ, ν).

The proof is completed.

A.2.16 Proof for Proposition A.3

Proof. Following [19, Theorem 2.2.1] and definition of conditional entropy [19, Equation 2.10], for
any γ̃ ∈ Π(µ̂, ν̂), we have

H̄(γ̃) ≥ 1

2
(H̄(µ̂) + H̄(ν̂)) (49)

H̄(γ̃) + 1 ≥ 1

2
(H̄(µ̂) + H̄(ν̂)) + 1 (50)

H(γ̃) ≥ 1

2
(H(µ̂) +H(ν̂)), (51)

where we recall that H̄ and H are defined in Equation (26) and in Proposition 3.4 respectively.

Therefore, as in the proof for Proposition 3.5 in §A.2.4, from Equation (28), we have

T ≥ Φ

(
1

t

∫
Ĝ×Ĝ

ĉ(x, y)dγ̃(x, y)

)
− ε (H(µ̂) +H(ν̂)− 1) (52)

≥ Φ

(
1

t

[∫
Ĝ×Ĝ

ĉ(x, y)dγ̃(x, y)− εH(γ̃) +
ε

2
(H(µ̂) +H(ν̂))

])
− ε (H(µ̂) +H(ν̂)− 1)

(53)

where we assume that the entropic regularized input of N -function Φ is nonnegative in the second
row (Equation (53)), i.e.,∫

Ĝ×Ĝ
ĉ(x, y)dγ̃(x, y)− εH(γ̃) +

ε

2
(H(µ̂) +H(ν̂)) ≥ 0,

for any γ̃ ∈ Π(µ̂, ν̂).

Taking the infimum of γ̃ in Π(µ̂, ν̂), we obtain

Aε (t; µ̂, ν̂) ≥ Φ

(
1

t

[
Wε(µ̂, ν̂) +

ε

2
(H(µ̂) +H(ν̂))

])
− ε (H(µ̂) +H(ν̂)− 1) (54)

Therefore, by choosing t =
Wε(µ̂,ν̂)+

ε
2 (H(µ̂)+H(ν̂))

Φ−1(1+ε[H(µ̂)+H(ν̂)−1]) , then we have

Aε

( Wε(µ̂, ν̂) +
ε
2 (H(µ̂) +H(ν̂))

Φ−1(1 + ε [H(µ̂) +H(ν̂)− 1])
; µ̂, ν̂

)
≥ 1.

The proof is completed.
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A.2.17 Proof for Proposition A.4

Proof. We use the same reason as in the proof for Proposition 5.6. From Equation (11), we have

OEΦ,ε(µ, ν) := (µ(G) + ν(G)) (WΦ,ε(µ̂, ν̂)− bλ).

For Φ(t) = t, we further have

WΦ,ε(µ̂, ν̂) = inf
γ̃∈Π(µ̂,ν̂)

inf

[
t > 0 :

∫
Ĝ×Ĝ

(
ĉ(x, y)

t

)
dγ̃(x, y)− εH(γ̃) ≤ 1

]
Then, let γ̃∗

ε is the optimal solution for the entropic regularized OT

Wĉ,ε(µ̂, ν̂) = inf
γ̃∈Π(µ̂,ν̂)

[∫
Ĝ×Ĝ

ĉ(x, y)γ̃(dx, dy)− εH(γ̃)

]
.

Thus, for the infimum (t∗, γ̃∗
ε ), we have∫

Ĝ×Ĝ

(
ĉ(x, y)

t∗

)
dγ̃∗

ε (x, y) = 1.

Therefore, we obtain

t∗ =

∫
Ĝ×Ĝ

ĉ(x, y)dγ̃∗
ε (x, y) = Wĉ,ε(µ̂, ν̂).

Hence, we have
OEΦ,ε(µ, ν) = (µ(G) + ν(G)) (Wĉ,ε(µ̂, ν̂)− bλ) .

The proof is completed.

B Brief Reviews, Further Discussions and Empirical Results

In this section, we give brief reviews on important related notions to our proposed approaches. We
next give further discussions on several aspects, and provide further empirical results.

B.1 Brief Reviews

We provide brief reviews on important related notions to our proposed approaches.

B.1.1 Sobolev Transport (ST)

We briefly review main notions for Sobolev transport (ST) [39] for probability measures on a graph.

Lp functional space. For a nonnegative Borel measure ω on G, denote Lp(G, ω) as the space of
all Borel measurable functions f : G → R such that

∫
G |f(y)|pω(dy) < ∞. For p = ∞, we instead

assume that f is bounded ω-a.e. Then, Lp(G, ω) is a normed space with the norm defined by

∥f∥Lp(G,ω) :=

(∫
G
|f(y)|pω(dy)

) 1
p

for 1 ≤ p < ∞,

and for p = ∞,

∥f∥L∞(G,ω) := inf {t ∈ R : |f(x)| ≤ t for ω-a.e. x ∈ G} .

Functions f1, f2 ∈ Lp(G, ω) are considered to be the same if f1(x) = f2(x) for ω-a.e. x ∈ G.

Graph-based Sobolev space [39]. Let ω be a nonnegative Borel measure on G, and let 1 ≤ p ≤ ∞.
A continuous function f : G → R is said to belong to the Sobolev space W 1,p(G, ω) if there exists a
function h ∈ Lp(G, ω) satisfying

f(x)− f(z0) =

∫
[z0,x]

h(y)ω(dy), ∀x ∈ G. (55)

Such function h is unique in Lp(G, ω) and is called the generalized graph derivative of f w.r.t. the
measure ω. The generalized graph derivative of f ∈ W 1,p(G, ω) is denoted f ′ ∈ Lp(G, ω).
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Sobolev transport [39]. Let ω be a nonnegative Borel measure on G. Given 1 ≤ p ≤ ∞, and let p′
be its conjugate, i.e., the number p′ ∈ [1,∞] satisfying 1

p + 1
p′ = 1. For probability measures µ, ν

supported on graph G, the p-order Sobolev transport (ST) [39, Definition 3.2] is defined as

Sp(µ, ν) :=

{
sup

[∫
G f(x)µ(dx)−

∫
G f(x)ν(dx)

]
s.t. f∈ W 1,p′

(G, ω), ∥f ′∥Lp′(G,ω) ≤ 1,
(56)

where we write f ′ for the generalized graph derivative of f , W 1,p′
(G, ω) for the graph-based Sobolev

space on G, and Lp′
(G, ω) for the Lp functional space on G.

B.1.2 Length measure

We briefly review the length measure on graph G in [39].

Definition B.1 (Length measure [39]). Let ω∗ be the unique Borel measure on G such that the
restriction of ω∗ on any edge is the length measure of that edge. That is, ω∗ satisfies:

i) For any edge e connecting two nodes u and v, we have ω∗(⟨x, y⟩) = (t− s)we whenever
x = (1 − s)u + sv and y = (1 − t)u + tv for s, t ∈ [0, 1) with s ≤ t, where recall that
⟨x, y⟩ denotes the line segment in e connecting x and y.

ii) For any Borel set G ⊂ G, we have

ω∗(G) =
∑
e∈E

ω∗(G ∩ e).

Lemma B.2 (ω∗ is the length measure on graph [39]). Suppose that G has no short cuts, i.e., any
edge e is a shortest path connecting its two end-points. Then, ω∗ is a length measure in the sense that

ω∗([x, y]) = dG(x, y)

for any shortest path [x, y] connecting x, y. Particularly, ω∗ has no atom in the sense that ω∗({x}) =
0 for every x ∈ G.

B.1.3 Orlicz functions

We describe a brief review on Orlicz functions as summarized in [41] for completeness. Please
see [2, 60], for in-depth studies on Orlicz functions.

A family of convex functions. We consider the collection of N -functions [2, §8.2] which are special
convex functions on R+. Hereafter, a strictly increasing and convex function Φ : [0,∞) → [0,∞) is
called an N -function if limt→0

Φ(t)
t = 0 and limt→+∞

Φ(t)
t = +∞.

Examples of N -functions. Some popular examples for N -functions [2, §8.2] are

1. Φ(t) = tp with 1 < p < ∞.

2. Φ(t) = exp(t)− t− 1.

3. Φ(t) = exp(tp)− 1 with 1 < p < ∞.

4. Φ(t) = (1 + t) log(1 + t)− t.

For Luxemburg norm. For Luxemburg norm (see Equation (2)) for Orlicz functional space, the
infimum in its definition is attained [2, §8.9].

Complementary function. For N -function Φ, its complementary function Ψ : R+ → R+ [2, §8.3]
is the N -function, defined as follows

Ψ(t) = sup [at− Φ(a) | a ≥ 0] , for t ≥ 0. (57)
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Examples of complementary pairs of N -functions. Some popular complementary pairs of N -
functions [2, §8.3], [60, §2.2] are as follows:

1. Φ(t) = tp

p and Ψ(t) = tq

q where q is the conjugate of p, i.e., 1
p + 1

q = 1 and 1 < p < ∞.

2. Φ(t) = exp(t)− t− 1 and Ψ(t) = (1 + t) log(1 + t)− t.
3. For the N -function Φ(t) = exp(tp)− 1 with 1 < p < ∞, its complementary N -function

yields an explicit for, but not simple [60, §2.2], see [41, §A.8] for the detailed derivation of
the complementary N -function.

Young inequality. Let Φ,Ψ be a pair of complementary N -functions, then we have

st ≤ Ψ(s) + Φ(t).

Orlicz norm. Besides the Luxemburg norm, the Orlicz norm [60, §3.3, Definition 2] is also a
popular norm for LΦ(G, ω), defined as

∥f∥Φ := sup
{∫

G
|f(x)g(x)|ω(dx) |

∫
G
Ψ(|g(x)|)ω(dx) ≤ 1

}
, (58)

where Ψ is the complementary N -function of Φ.

Computation for Orlicz norm. By applying [60, §3.3, Theorem 13], we can rewrite the Orlicz
norm as follows:

∥f∥Φ = inf
k>0

1

k

(
1 +

∫
G
Φ(k |f(x)|)ω(dx)

)
.

Therefore, one can use any second-order method, e.g., fmincon solver in MATLAB (with trust region
reflective algorithm), for solving the univariate optimization problem.

Equivalence [2, §8.17] [50, §13.11]. The Luxemburg norm is equivalent to the Orlicz norm. In
fact, we have

∥f∥LΦ
≤ ∥f∥Φ ≤ 2 ∥f∥LΦ

. (59)

Connection between Lp and LΦ functional spaces. When the convex function Φ(t) = tp, for
1 < p < ∞, we have

Lp(G, ω) = LΦ(G, ω).

Generalized Hölder inequality. Let Φ,Ψ be a pair of complementary N -functions, then general-
ized Hölder inequality w.r.t. Luxemburg norm [2, §8.11] is as follows:∣∣∣∣∫

G
f(x)g(x)ω(dx)

∣∣∣∣ ≤ 2 ∥f∥LΦ
∥g∥LΨ

. (60)

Additionally, we have the generalized Hölder inequality w.r.t. Luxemburg norm and Orlicz norm [50,
§13.13] is as follows: ∣∣∣∣∫

G
f(x)g(x)ω(dx)

∣∣∣∣ ≤ ∥f∥LΦ
∥g∥Ψ . (61)

B.1.4 Wasserstein Distance and Orlicz Wasserstein (OW)

We briefly review p-Wasserstein distance with graph metric cost, and the Orlicz Wasserstein (OW)
for probability measures on a graph.

Wasserstein distance with graph metric cost. Given 1 ≤ p < ∞, and probability measures µ and
ν supported on graph G, then the p-order Wasserstein distance is defined as follows:

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
G×G

dG(x, y)
pγ(dx,dy)

) 1
p

,

where Π(µ, ν) :=
{
γ ∈ P(G×G) : γ1 = µ, γ2 = ν

}
, and γ1, γ2 are the first and second marginals

of γ respectively.
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Orlicz Wasserstein (OW). Following Guha et al. [28, Definition 3.2], the OW with the N -function
Φ for probability measures µ, ν supported on graph G is defined as follows:

WΦ(µ, ν) = inf
π∈Π(µ,ν)

inf
[
t > 0 :

∫
G×G

Φ

(
dG(x, z)

t

)
dπ(x, z) ≤ 1

]
, (62)

where recall that Π(µ, ν) is the set of all couplings between µ and ν.

B.1.5 Generalized Sobolev transport (GST)

We briefly review main results on generalized Sobolev transport (GST) [41] for probability measures
on a graph.

Graph-based Orlicz-Sobolev space [41]. Let Φ be an N -function and ω be a nonnegative Borel
measure on graph G. A continuous function f : G → R is said to belong to the graph-based
Orlicz-Sobolev space WLΦ(G, ω) if there exists a function h ∈ LΦ(G, ω) satisfying

f(x)− f(z0) =

∫
[z0,x]

h(y)ω(dy), ∀x ∈ G. (63)

Such function h is unique in LΦ(G, ω) and is called the generalized graph derivative of f w.r.t. the
measure ω. This generalized graph derivative of f is denoted as f ′.

Generalized Sobolev transport (GST) [41]. Let Φ be an N -function and ω be a nonnegative Borel
measure on G. For probability measures µ, ν on a graph G, the generalized Sobolev transport (GST)
is defined as follows:

GSΦ(µ, ν) :=

{
sup

∣∣∣ ∫G f(x)µ(dx)−
∫
G f(x)ν(dx)

∣∣∣
s.t. f ∈ WLΨ(G, ω), ∥f ′∥LΨ

≤ 1,

where Ψ is the complementary function of Φ (see (57)).

B.1.6 Unbalanced Sobolev transport (UST)

We give a brief review on main results of unbalanced Sobolev transport (UST) [40] for measures on a
graph, possibly having different total masses.

The regularized set Uα
p′ for critic function [40]. For 1 ≤ p ≤ ∞ and 0 ≤ α ≤ 1

2 [bλ+ w1(z0) +

w2(z0)], let Uα
p′ be the collection of all functions f ∈ W 1,p′

(G, ω) satisfying

f(z0) ∈ Iα =
[
− w2(z0)−

bλ

2
+ α,w1(z0) +

bλ

2
− α

]
and

∥f ′∥Lp′ (G,ω) ≤ b.

Equivalently, Uα
p′ is the collection of all functions f of the form

f(x) = s+

∫
[z0,x]

h(y)ω(dy) (64)

with s ∈ Iα and with h : G → R being some function satisfying

∥h∥Lp′ (G,ω) ≤ b.

Unbalanced Sobolev transport (UST) [40]. Let ω be a nonnegative Borel measure on graph G.
Given 1 ≤ p ≤ ∞ and 0 ≤ α ≤ 1

2 [bλ+ w1(z0) + w2(z0)]. For unbalanced measures µ, ν ∈ P(G),
the unbalanced Sobolev transport (UST) is defined as follows

USp,α(µ, ν) := sup
f∈Uα

p′

[∫
G
f(x)µ(dx)−

∫
G
f(x)ν(dx)

]
.

For simplicity, we also use USp for the p-order UST when the context for α is clear.

28



Equal measures on a graph [40].
Lemma B.3 (Lemma A.9 in [40]). For unbalanced measures µ, ν ∈ P(G), then µ = ν if and only if
µ(Λ(x)) = ν(Λ(x)) for every x in G.

B.1.7 Regularized EPT and Distance dα

We briefly review main results for the regularized EPT and distance dα in [36] for probability
measures on tree T .

Regularized set of critic functions [36]. Let Lα be a collection of all functions f of the form

f(x) = s+

∫
[r,x]

g(y)ω(dy),

where r is the tree root, and s is a constant in the interval
[
−w2(r)− bλ

2 + α,w1(r) +
bλ
2 − α

]
and

with ∥g∥L∞(T ) ≤ b.

Regularized EPT [36]. For unbalanced measures µ, ν supported on tree T , the regularized EPT is
defined as follows:

ẼT
α

λ(µ, ν) := sup

{∫
T
f(µ− ν) : f ∈ Lα

}
− bλ

2

[
µ(T ) + ν(T )

]
. (65)

Following [36, Proposition 3.8], we have

ẼT
α

λ(µ, ν) =

∫
T
|µ(Λ(x))− ν(Λ(x))|ω(dx)− bλ

2

[
µ(T ) + ν(T )

]
+
[
wi(r) +

bλ

2
− α

]
|µ(T )− ν(T )|

with i := 1 if µ(T ) ≥ ν(T ) and i := 2 if µ(T ) < ν(T ).

Distance dα [36]. We briefly review the definition of distance dα in [36]

dα(µ, ν) := ẼT
α

λ(µ, ν) +
bλ

2

[
µ(T ) + ν(T )

]
. (66)

Following [36, Proposition 3.10], the distance dα is a metric.

B.2 Further Discussions

We give further discussions and details for various aspects in our work. For completeness, we recall
important discussions on the graph in [39] (for Sobolev transport for probability measures), since
these discussions and results are also applied and/or easily adapted for our proposed approaches.

Further details for the computation of Orlicz-EPT and OST. We describe further details for the
computation for Orlicz-EPT and OST.

• For Orlicz-EPT. Following the theoretical ground derived for the computation of the entropic
regularized Orlicz-EPT, i.e., the objective function is monotone non-increasing (Proposition 3.4),
and the lower and upper limits for the objective functions (Proposition 3.5), one can compute the
entropic regularized Orlicz-EPT by a binary search algorithmic approach. For completeness, we
straightforwardly describe the pseudo-code for it in Algorithm 1. Additionally, notice that we can
leverage Proposition A.3 in §A.1.2 to alternatively set the initial value for tℓ in Algorithm 1 (line 3).

• For OST. For popular N -function, it is easy to derive its gradient and Hessian for the objec-
tive function of the univariate optimization problem. Therefore, in our experiments, we leverage
the fmincon MATLAB solver with the trust-region-reflective algorithm to solve the univariate
optimization problem for OST computation.
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Algorithm 1 Compute entropic regularized Orlicz-EPT OEΦ,ε

Input: Input measures µ, ν, function Φ, graph G, parameters b, λ, ε, and stopping threshold ε̄
Output: entropic regularized Orlicz-EPT OEΦ,ε(µ, ν)

1 Construct Ĝ = G ∪ {ŝ} and corresponding nonnegative cost function ĉ (§3)
2 Construct corresponding probability measures µ̂ = µ+ν(G)δŝ

µ(G)+ν(G) and ν̂ = ν+µ(G)δŝ
µ(G)+ν(G) .

3 Set tr =
Lµ̂,ν̂

Φ−1(1+ε) and tℓ =
Wĉ(µ̂,ν̂)

Φ−1(1+ε[H(µ̂)+H(ν̂)−1])

4 while tr − tℓ > ε̄ do
5 Set tm = tℓ+tr

2
6 Compute fm = Aε(tm; µ̂, ν̂)
7 if fm ≤ 1 then
8 Set tr = tm
9 if fm == 1 then

10 Break

else
11 Set tℓ = tm

12 Return OEΦ,ε(µ, ν) = (µ(G) + ν(G)) (tr − bλ)
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<latexit sha1_base64="VOnbl60hTMjCvOJlPUuA+w3jEp4=">AAAB7HicdVDLSgMxFM3UV62vqks3wVZwVZIqfeyKblxWcNpCO5RMmmlDM5khyQhl6De4caGIWz/InX9jpq2gogcuHM65l3vv8WPBtUHow8mtrW9sbuW3Czu7e/sHxcOjjo4SRZlLIxGpnk80E1wy13AjWC9WjIS+YF1/ep353XumNI/knZnFzAvJWPKAU2Ks5JbZ8LI8LJZQBSGEMYYZwfUasqTZbFRxA+LMsiiBFdrD4vtgFNEkZNJQQbTuYxQbLyXKcCrYvDBINIsJnZIx61sqSci0ly6OncMzq4xgEClb0sCF+n0iJaHWs9C3nSExE/3by8S/vH5igoaXchknhkm6XBQkApoIZp/DEVeMGjGzhFDF7a2QTogi1Nh8CjaEr0/h/6RTreBa5eK2WmpdreLIgxNwCs4BBnXQAjegDVxAAQcP4Ak8O9J5dF6c12VrzlnNHIMfcN4+Afq2jig=</latexit>e4

<latexit sha1_base64="smWdovvSi1dubhjyUH5j/rwdygI=">AAAB7HicdVDLSgMxFM3UV62vqks3wVZwVZKKfeyKblxWcNpCO5RMmmlDM5khyQhl6De4caGIWz/InX9jpq2gogcuHM65l3vv8WPBtUHow8mtrW9sbuW3Czu7e/sHxcOjjo4SRZlLIxGpnk80E1wy13AjWC9WjIS+YF1/ep353XumNI/knZnFzAvJWPKAU2Ks5JbZ8LI8LJZQBSGEMYYZwfUasqTZbFRxA+LMsiiBFdrD4vtgFNEkZNJQQbTuYxQbLyXKcCrYvDBINIsJnZIx61sqSci0ly6OncMzq4xgEClb0sCF+n0iJaHWs9C3nSExE/3by8S/vH5igoaXchknhkm6XBQkApoIZp/DEVeMGjGzhFDF7a2QTogi1Nh8CjaEr0/h/6RTreBa5eK2WmpdreLIgxNwCs4BBnXQAjegDVxAAQcP4Ak8O9J5dF6c12VrzlnNHIMfcN4+Afw7jik=</latexit>e5 <latexit sha1_base64="XwMOEVaJfhE32GyTUO63uq0Lp1w=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYCJ4CjsR8rgFvXiMYB6QLGF2MpsMmZ1dZmaFsOQbvHhQxKsf5M2/cTaJoKIFDUVVN91dfiy4Nq774aytb2xubed28rt7+weHhaPjjo4SRVmbRiJSPZ9oJrhkbcONYL1YMRL6gnX96XXmd++Z0jySd2YWMy8kY8kDTomxUrvEhtXSsFB0y67rYoxRRnCt6lrSaNQruI5wZlkUYYXWsPA+GEU0CZk0VBCt+9iNjZcSZTgVbJ4fJJrFhE7JmPUtlSRk2ksXx87RuVVGKIiULWnQQv0+kZJQ61no286QmIn+7WXiX14/MUHdS7mME8MkXS4KEoFMhLLP0YgrRo2YWUKo4vZWRCdEEWpsPnkbwten6H/SqZRxtXx5Wyk2r1Zx5OAUzuACMNSgCTfQgjZQ4PAAT/DsSOfReXFel61rzmrmBH7AefsE/cCOKg==</latexit>e6

<latexit sha1_base64="3fY4xJFG7Hop18TS3TFA1vr2c4c=">AAAB7HicdVDLSgNBEJz1GeMr6tHLYCJ4CjsR8rgFvXiMYB6QLGF20psMmZ1dZmaFsOQbvHhQxKsf5M2/cTaJoKIFDUVVN91dfiy4Nq774aytb2xubed28rt7+weHhaPjjo4SxaDNIhGpnk81CC6hbbgR0IsV0NAX0PWn15nfvQeleSTvzCwGL6RjyQPOqLFSuwTDWmlYKLpl13UJITgjpFZ1LWk06hVSxySzLIpohdaw8D4YRSwJQRomqNZ94sbGS6kynAmY5weJhpiyKR1D31JJQ9Beujh2js+tMsJBpGxJgxfq94mUhlrPQt92htRM9G8vE//y+okJ6l7KZZwYkGy5KEgENhHOPscjroAZMbOEMsXtrZhNqKLM2HzyNoSvT/H/pFMpk2r58rZSbF6t4sihU3SGLhBBNdREN6iF2oghjh7QE3p2pPPovDivy9Y1ZzVzgn7AefsE/0WOKw==</latexit>e7

<latexit sha1_base64="yK35aSg/BvO+vv1flia0C73NWb0=">AAAB7HicdVBNSwMxEM36WetX1aOXYCt4KkmFdnsrevFYwW0L7VKyabYNzWaXJCuUpb/BiwdFvPqDvPlvzLYVVPTBwOO9GWbmBYng2iD04aytb2xubRd2irt7+weHpaPjjo5TRZlHYxGrXkA0E1wyz3AjWC9RjESBYN1gep373XumNI/lnZklzI/IWPKQU2Ks5FXY0K0MS2VURQhhjGFOcKOOLGk23Rp2Ic4tizJYoT0svQ9GMU0jJg0VROs+RonxM6IMp4LNi4NUs4TQKRmzvqWSREz72eLYOTy3ygiGsbIlDVyo3ycyEmk9iwLbGREz0b+9XPzL66cmdP2MyyQ1TNLlojAV0MQw/xyOuGLUiJklhCpub4V0QhShxuZTtCF8fQr/J51aFderl7e1cutqFUcBnIIzcAEwaIAWuAFt4AEKOHgAT+DZkc6j8+K8LlvXnNXMCfgB5+0TANmOLA==</latexit>e8

<latexit sha1_base64="psgeWjcJp8OD7XbOKqlwAStxpHY=">AAAB7HicdVDLSgNBEJz1GeMr6tHLYCJ4CjsR8rgFvXiMYB6QLGF20psMmZ1dZmaFsOQbvHhQxKsf5M2/cTaJoKIFDUVVN91dfiy4Nq774aytb2xubed28rt7+weHhaPjjo4SxaDNIhGpnk81CC6hbbgR0IsV0NAX0PWn15nfvQeleSTvzCwGL6RjyQPOqLFSuwTDRmlYKLpl13UJITgjpFZ1LWk06hVSxySzLIpohdaw8D4YRSwJQRomqNZ94sbGS6kynAmY5weJhpiyKR1D31JJQ9Beujh2js+tMsJBpGxJgxfq94mUhlrPQt92htRM9G8vE//y+okJ6l7KZZwYkGy5KEgENhHOPscjroAZMbOEMsXtrZhNqKLM2HzyNoSvT/H/pFMpk2r58rZSbF6t4sihU3SGLhBBNdREN6iF2oghjh7QE3p2pPPovDivy9Y1ZzVzgn7AefsEAl6OLQ==</latexit>e9

<latexit sha1_base64="LKau2mQ5iGbgGH1zJUdCMrJc/CE=">AAAB73icdVDJSgNBEK2JW4xb1KOXxkTwFLojZLkFvXiMYBZIhtDT6SRNeha7e4Qw5Ce8eFDEq7/jzb+xJ4mgog8KHu9VUVXPi6TQBuMPJ7O2vrG5ld3O7ezu7R/kD4/aOowV4y0WylB1Paq5FAFvGWEk70aKU9+TvONNr1K/c8+VFmFwa2YRd306DsRIMGqs1C3yQULwvDjIF3AJY0wIQSkh1Qq2pF6vlUkNkdSyKMAKzUH+vT8MWezzwDBJte4RHBk3ocoIJvk81481jyib0jHvWRpQn2s3Wdw7R2dWGaJRqGwFBi3U7xMJ9bWe+Z7t9KmZ6N9eKv7l9WIzqrmJCKLY8IAtF41iiUyI0ufRUCjOjJxZQpkS9lbEJlRRZmxEORvC16fof9Iul0ildHFTLjQuV3Fk4QRO4RwIVKEB19CEFjCQ8ABP8OzcOY/Oi/O6bM04q5lj+AHn7RMroY9r</latexit>e10
<latexit sha1_base64="FXQmD2GYpjDWQBKMeal34Oe407A=">AAAB73icdVDJSgNBEK2JW4xb1KOXxkTwFLojZLkFvXiMYBZIhtDT6SRNeha7e4Qw5Ce8eFDEq7/jzb+xJ4mgog8KHu9VUVXPi6TQBuMPJ7O2vrG5ld3O7ezu7R/kD4/aOowV4y0WylB1Paq5FAFvGWEk70aKU9+TvONNr1K/c8+VFmFwa2YRd306DsRIMGqs1C3yQULIvDjIF3AJY0wIQSkh1Qq2pF6vlUkNkdSyKMAKzUH+vT8MWezzwDBJte4RHBk3ocoIJvk81481jyib0jHvWRpQn2s3Wdw7R2dWGaJRqGwFBi3U7xMJ9bWe+Z7t9KmZ6N9eKv7l9WIzqrmJCKLY8IAtF41iiUyI0ufRUCjOjJxZQpkS9lbEJlRRZmxEORvC16fof9Iul0ildHFTLjQuV3Fk4QRO4RwIVKEB19CEFjCQ8ABP8OzcOY/Oi/O6bM04q5lj+AHn7RMtJ49s</latexit>e11

<latexit sha1_base64="4eHfZ3pcQRDAtYnQhU1JBLqxAW4=">AAAB73icdVDLSgMxFM3UV62vqks3wVZwVZIR+tgV3bisYB/QDiWTZtrQTGZMMkIZ+hNuXCji1t9x59+YaSuo6IELh3Pu5d57/FhwbRD6cHJr6xubW/ntws7u3v5B8fCoo6NEUdamkYhUzyeaCS5Z23AjWC9WjIS+YF1/epX53XumNI/krZnFzAvJWPKAU2Ks1CuzYYrdeXlYLKEKQghjDDOCa1VkSaNRd3Ed4syyKIEVWsPi+2AU0SRk0lBBtO5jFBsvJcpwKti8MEg0iwmdkjHrWypJyLSXLu6dwzOrjGAQKVvSwIX6fSIlodaz0LedITET/dvLxL+8fmKCupdyGSeGSbpcFCQCmghmz8MRV4waMbOEUMXtrZBOiCLU2IgKNoSvT+H/pONWcLVyceOWmperOPLgBJyCc4BBDTTBNWiBNqBAgAfwBJ6dO+fReXFel605ZzVzDH7AefsELq2PbQ==</latexit>e12
<latexit sha1_base64="QKjYFZRd6Hu2cf7q/drmJDiAnf8=">AAAB73icdVDLSgNBEJz1GeMr6tHLYCJ4CjsJ5HELevEYwTwgWcLspJMMmZ1dZ2aFsOQnvHhQxKu/482/cTaJoKIFDUVVN91dfiS4Nq774aytb2xubWd2srt7+weHuaPjtg5jxaDFQhGqrk81CC6hZbgR0I0U0MAX0PGnV6nfuQeleShvzSwCL6BjyUecUWOlbgEGCSnPC4Nc3i26rksIwSkh1YprSb1eK5EaJqllkUcrNAe59/4wZHEA0jBBte4RNzJeQpXhTMA82481RJRN6Rh6lkoagPaSxb1zfG6VIR6FypY0eKF+n0hooPUs8G1nQM1E//ZS8S+vF5tRzUu4jGIDki0XjWKBTYjT5/GQK2BGzCyhTHF7K2YTqigzNqKsDeHrU/w/aZeKpFIs35TyjctVHBl0is7QBSKoihroGjVRCzEk0AN6Qs/OnfPovDivy9Y1ZzVzgn7AefsEMDOPbg==</latexit>e13

<latexit sha1_base64="07D77Kg5wjQNNBv8PyMiSIHpV4A=">AAAB73icdVBNS0JBFL3Pvsy+rJZthjRoJTMWfuykNi0NMgV9yLxx1MF5H83MC+Thn2jTooi2/Z12/ZvmqUFFHbhwOOde7r3Hi6TQBuMPJ7Oyura+kd3MbW3v7O7l9w9udRgrxlsslKHqeFRzKQLeMsJI3okUp74nedubXKZ++54rLcLgxkwj7vp0FIihYNRYqVPk/YScz4r9fAGXMMaEEJQSUq1gS+r1WpnUEEktiwIs0ezn33uDkMU+DwyTVOsuwZFxE6qMYJLPcr1Y84iyCR3xrqUB9bl2k/m9M3RilQEahspWYNBc/T6RUF/rqe/ZTp+asf7tpeJfXjc2w5qbiCCKDQ/YYtEwlsiEKH0eDYTizMipJZQpYW9FbEwVZcZGlLMhfH2K/ie35RKplM6uy4XGxTKOLBzBMZwCgSo04Aqa0AIGEh7gCZ6dO+fReXFeF60ZZzlzCD/gvH0CMbmPbw==</latexit>e14

<latexit sha1_base64="ohEokdS69CttbfP2pjhXNC7B1zg=">AAAB73icdVBNS0JBFL3Pvsy+rJZthjRoJTNGfuykNi0NMgV9yLxx1MF5H83MC+Thn2jTooi2/Z12/ZvmqUFFHbhwOOde7r3Hi6TQBuMPJ7Oyura+kd3MbW3v7O7l9w9udRgrxlsslKHqeFRzKQLeMsJI3okUp74nedubXKZ++54rLcLgxkwj7vp0FIihYNRYqVPk/YScz4r9fAGXMMaEEJQSUq1gS+r1WpnUEEktiwIs0ezn33uDkMU+DwyTVOsuwZFxE6qMYJLPcr1Y84iyCR3xrqUB9bl2k/m9M3RilQEahspWYNBc/T6RUF/rqe/ZTp+asf7tpeJfXjc2w5qbiCCKDQ/YYtEwlsiEKH0eDYTizMipJZQpYW9FbEwVZcZGlLMhfH2K/ie35RKplM6uy4XGxTKOLBzBMZwCgSo04Aqa0AIGEh7gCZ6dO+fReXFeF60ZZzlzCD/gvH0CMz+PcA==</latexit>e15

<latexit sha1_base64="yRVv0PvsxjrFJdiwbJE/6rgwmSE=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5CkpR+3ohePFawttKVstpt26WYTdjdiKf0NXjwo4tUf5M1/46atoKIPBh7vzTAzz485U9pxPqzM2vrG5lZ2O7ezu7d/kD88ulVRIgltkYhHsuNjRTkTtKWZ5rQTS4pDn9O2P7lM/fYdlYpF4kZPY9oP8UiwgBGsjdQq3g/qxUG+4Nj1WsUrV5BjO07V9dyUeNVyqYxco6QowArNQf69N4xIElKhCcdKdV0n1v0ZlpoRTue5XqJojMkEj2jXUIFDqvqzxbFzdGaUIQoiaUpotFC/T8xwqNQ09E1niPVY/fZS8S+vm+ig1p8xESeaCrJcFCQc6Qiln6Mhk5RoPjUEE8nMrYiMscREm3xyJoSvT9H/5Naz3YpduvYKjYtVHFk4gVM4Bxeq0IAraEILCDB4gCd4toT1aL1Yr8vWjLWaOYYfsN4+ATJ8jkw=</latexit>x9

<latexit sha1_base64="NpLzsuz0WqkffQK5sQSSwWs+ZSM=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5Ckpa23ohePFewHtKVsttt26WYTdjdiCf0NXjwo4tUf5M1/46atoKIPBh7vzTAzz484U9pxPqzM2vrG5lZ2O7ezu7d/kD88aqkwloQ2SchD2fGxopwJ2tRMc9qJJMWBz2nbn16lfvuOSsVCcatnEe0HeCzYiBGsjdQs3g/c4iBfcOyLWsUrV5BjO07V9dyUeNVyqYxco6QowAqNQf69NwxJHFChCcdKdV0n0v0ES80Ip/NcL1Y0wmSKx7RrqMABVf1kcewcnRlliEahNCU0WqjfJxIcKDULfNMZYD1Rv71U/MvrxnpU6ydMRLGmgiwXjWKOdIjSz9GQSUo0nxmCiWTmVkQmWGKiTT45E8LXp+h/0vJst2KXbrxC/XIVRxZO4BTOwYUq1OEaGtAEAgwe4AmeLWE9Wi/W67I1Y61mjuEHrLdPJlSORA==</latexit>x1

<latexit sha1_base64="nTZ5vQ8MKAUrOCNBjzFMTwqndI4=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5Ckpa23ohePFewHtKVsttt26WYTdjdiCf0NXjwo4tUf5M1/46atoKIPBh7vzTAzz484U9pxPqzM2vrG5lZ2O7ezu7d/kD88aqkwloQ2SchD2fGxopwJ2tRMc9qJJMWBz2nbn16lfvuOSsVCcatnEe0HeCzYiBGsjdQs3g+84iBfcOyLWsUrV5BjO07V9dyUeNVyqYxco6QowAqNQf69NwxJHFChCcdKdV0n0v0ES80Ip/NcL1Y0wmSKx7RrqMABVf1kcewcnRlliEahNCU0WqjfJxIcKDULfNMZYD1Rv71U/MvrxnpU6ydMRLGmgiwXjWKOdIjSz9GQSUo0nxmCiWTmVkQmWGKiTT45E8LXp+h/0vJst2KXbrxC/XIVRxZO4BTOwYUq1OEaGtAEAgwe4AmeLWE9Wi/W67I1Y61mjuEHrLdPJ9mORQ==</latexit>x2

<latexit sha1_base64="h72RzMomKvCKdZiAFyAq396N+1E=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5Ckpa23ohePFewHtKVsttt26WYTdjdiCf0NXjwo4tUf5M1/46atoKIPBh7vzTAzz484U9pxPqzM2vrG5lZ2O7ezu7d/kD88aqkwloQ2SchD2fGxopwJ2tRMc9qJJMWBz2nbn16lfvuOSsVCcatnEe0HeCzYiBGsjdQs3g9KxUG+4NgXtYpXriDHdpyq67kp8arlUhm5RklRgBUag/x7bxiSOKBCE46V6rpOpPsJlpoRTue5XqxohMkUj2nXUIEDqvrJ4tg5OjPKEI1CaUpotFC/TyQ4UGoW+KYzwHqifnup+JfXjfWo1k+YiGJNBVkuGsUc6RCln6Mhk5RoPjMEE8nMrYhMsMREm3xyJoSvT9H/pOXZbsUu3XiF+uUqjiycwCmcgwtVqMM1NKAJBBg8wBM8W8J6tF6s12VrxlrNHMMPWG+fKV6ORg==</latexit>x3
<latexit sha1_base64="sCcjts9FNNrpzHvBi8Qcmakra8s=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LLaCp5Ckoa23ohePFUxbaEPZbDft0s0m7G7EEvobvHhQxKs/yJv/xk1bQUUfDDzem2FmXpAwKpVlfRiFtfWNza3idmlnd2//oHx41JFxKjDxcMxi0QuQJIxy4imqGOklgqAoYKQbTK9yv3tHhKQxv1WzhPgRGnMaUoyUlrzq/dCtDssVy7xo1h23Di3Tshq2Y+fEabg1F9payVEBK7SH5ffBKMZpRLjCDEnZt61E+RkSimJG5qVBKkmC8BSNSV9TjiIi/Wxx7ByeaWUEw1jo4gou1O8TGYqknEWB7oyQmsjfXi7+5fVTFTb9jPIkVYTj5aIwZVDFMP8cjqggWLGZJggLqm+FeIIEwkrnU9IhfH0K/ycdx7TrZu3GqbQuV3EUwQk4BefABg3QAtegDTyAAQUP4Ak8G9x4NF6M12VrwVjNHIMfMN4+ASrjjkc=</latexit>x4

<latexit sha1_base64="Nkh78FEExIDZ0V8Phx3J35M2Wgg=">AAAB7HicdVBNT8JAEJ36ifiFevSyEUw8kbYg4I3oxSMmFkigIdtlgQ3bbbO7NRLCb/DiQWO8+oO8+W/cAiZq9CWTvLw3k5l5QcyZ0rb9Ya2srq1vbGa2sts7u3v7uYPDpooSSahHIh7JdoAV5UxQTzPNaTuWFIcBp61gfJX6rTsqFYvErZ7E1A/xULABI1gbySvc984LvVzeLl7UKm65guyibVcd10mJWy2XysgxSoo8LNHo5d67/YgkIRWacKxUx7Fj7U+x1IxwOst2E0VjTMZ4SDuGChxS5U/nx87QqVH6aBBJU0Kjufp9YopDpSZhYDpDrEfqt5eKf3mdRA9q/pSJONFUkMWiQcKRjlD6OeozSYnmE0MwkczcisgIS0y0ySdrQvj6FP1Pmm7RqRRLN26+frmMIwPHcAJn4EAV6nANDfCAAIMHeIJnS1iP1ov1umhdsZYzR/AD1tsnLGiOSA==</latexit>x5

<latexit sha1_base64="VSyJFobKQmL8PQukRqW0HcrMMs0=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LLaCp5CkJa23ohePFUxbaEPZbDft0s0m7G7EEvobvHhQxKs/yJv/xk1bQUUfDDzem2FmXpAwKpVlfRiFtfWNza3idmlnd2//oHx41JFxKjDxcMxi0QuQJIxy4imqGOklgqAoYKQbTK9yv3tHhKQxv1WzhPgRGnMaUoyUlrzq/dCtDssVy7xouk7dhZZpWQ3bsXPiNOq1OrS1kqMCVmgPy++DUYzTiHCFGZKyb1uJ8jMkFMWMzEuDVJIE4Skak76mHEVE+tni2Dk808oIhrHQxRVcqN8nMhRJOYsC3RkhNZG/vVz8y+unKmz6GeVJqgjHy0VhyqCKYf45HFFBsGIzTRAWVN8K8QQJhJXOp6RD+PoU/k86jmm7Zu3GqbQuV3EUwQk4BefABg3QAtegDTyAAQUP4Ak8G9x4NF6M12VrwVjNHIMfMN4+AS3tjkk=</latexit>x6

<latexit sha1_base64="jGR++zVAvhZWqoZD4lS1Rgb3nnA=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LLaCp5Ckpam3ohePFUxbaEPZbDft0s0m7G7EEvobvHhQxKs/yJv/xk1bQUUfDDzem2FmXpAwKpVlfRiFtfWNza3idmlnd2//oHx41JFxKjDxcMxi0QuQJIxy4imqGOklgqAoYKQbTK9yv3tHhKQxv1WzhPgRGnMaUoyUlrzq/dCtDssVy7xoNpx6A1qmZbm2Y+fEceu1OrS1kqMCVmgPy++DUYzTiHCFGZKyb1uJ8jMkFMWMzEuDVJIE4Skak76mHEVE+tni2Dk808oIhrHQxRVcqN8nMhRJOYsC3RkhNZG/vVz8y+unKmz6GeVJqgjHy0VhyqCKYf45HFFBsGIzTRAWVN8K8QQJhJXOp6RD+PoU/k86jmk3zNqNU2ldruIoghNwCs6BDVzQAtegDTyAAQUP4Ak8G9x4NF6M12VrwVjNHIMfMN4+AS9yjko=</latexit>x7
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Figure 4: A geodetic graph illustration. The set of nodes V has 10 nodes, i.e., V = {x1, x2, . . . , x10}.
The set of edges E has 15 edges, i.e., E = {e1, e2, . . . , e15} where each edge weight/length is set
to one, i.e., wej = 1, for 1 ≤ j ≤ 15. For any xi, xj , there is a unique shortest path between them,
with a length 2. Let x1 be the unique-path root node (i.e., z0 = x1) and G̃ be a subgraph containing 3
nodes {x6, x8, x9} and 2 edges {e12, e15}, then we have Λ(x6) = γ(e6) = G̃.

Further discussion on Orlicz-EPT and OST. Following Proposition 5.2, we can view OST as an
extension of GST [41] for handling unbalanced measures, and Orlicz-EPT as an extension of OW [67]
for unbalanced measures. Notably, when the input measures have equal mass (i.e., µ(G) = ν(G)),
and b = 1 , Orlicz-EPT reduces to OW. Furthermore, Orlicz-EPT shares the same computational
complexity as OW, as shown in Equation (8). It is worth noting that GST is a scalable variant of OW
for balanced measures, in the same sense, OST can be seen as a scalable variant of Orlicz-EPT.

As a result, Orlicz-EPT is applicable for all applications of OW and extends OW to handle unbalanced
input measures, whereas OST may not reserve all the properties of OW.

Like OW, Orlicz-EPT involves a two-level optimization problem, limiting its applicability to small-
scale domains. In contrast, OST, similar to GST, is scalable and can be applied to large-scale
domains.

Illustrations for notations on a graph. We illustrate notions on a graph in our work in Figure 4.

Geodetic graph. Recall that for a graph, for every pairs of nodes, the shortest path between them
is unique, then it is called geodetic graph [39]. Therefore, geodetic graphs are special examples
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satisfying the uniqueness property of the shortest paths (§2). We give an illustration of geodetic graph
in Figure 4.

Path length. As discussed in [39], we can compute a path length connecting any two points
x, y ∈ G, where the points x, y are not necessary to be nodes in V (but even for any point on an edge
as well). Indeed, for the points x, y ∈ Rn belonging to the same edge e = ⟨u, v⟩, connecting two
nodes u, v ∈ V . We have

x = (1− s)u+ sv,

y = (1− t)u+ tv,

for some scalars t, s ∈ [0, 1]. Thus, the length of the path connecting x, y along the edge e (i.e., the
line segment ⟨x, y⟩) can be computed by |t− s|we.

Consequently, the length for an arbitrary path in G can be computed by breaking down into pieces
over edges, and then summing over their corresponding lengths [39].

Extension to measures supported on G. For the discrete case, similar to ST [39], OST (17) is
extendable for measures with finite supports on G, i.e., measures which may have supports on edges,
by following the strategy to compute a path length for points in G. Precisely, we break down edges
containing supports into pieces, and then sum over their corresponding values, instead of the sum
over edges as in (17) for OST.

About the uniqueness property of the shortest paths on G. As discussed in [39], note that edge
length is a real nonnegative scale, we ∈ R+ for any edge e ∈ E in G., it is almost surely that every
node in V can be regarded as unique-path root node since with a high probability, lengths of paths
connecting any two nodes in graph G are different.

Moreover, for some special graph, e.g., a grid of nodes, there is no unique-path root node for such
graphs. However, by perturbing each node (or also perturbing edge lengths in case G is a non-physical
graph) with a small deviation, the perturbed graph will satisfy the unique-path root node assumption.

For continuous case, when measures are extended to support on G, and input measures are fully
supported, then for some finite special nodes where there are multiple shortest paths, we fix one of
the shortest paths to those points, and treat it as the chosen shortest path for those special points.
However, for practical applications, the number of supports are finite, which bypasses the mentioned
issue.

For the given graph setting. As in [39], we assume that the graph metric space is given. The
question to learn an optimal graph metric structure from data is not considered in this work and leave
for future investigation.

Measures on a graph. In this work, we consider OT problem for two input unbalanced measures
supported on the same graph. See [40] for the same problem setting.

The proposed approaches, Orlicz-EPT and OST, are for input unbalanced measures, i.e., to compute
the distance between two unbalanced measures, on the same graph. We distinguish our considered
problem to the following related problems:

• Compute distances/discrepancies between two (different) input graphs. For examples, [55, 22]
compute distance/discrepancy between two (different) input graphs. They are essentially different to
our considered problem which computes distance between two input probability measures supported
on the same graph. In particular, Le et al. [38] consider a variant of Gromov-Wasserstein problem for
two input probability measures, but possibly supported on different tree metric spaces.

• Compute kernels between two (different) input graphs. Graph kernels are kernel functions
between two input (different) graphs to assess their similarity. See [10, 34, 53] for comprehensive
reviews on graph kernels. Essentially, it is different to our proposed approaches to compute distances
between two input unbalanced measures on the same graph.

For (variational) OT problems on a graph. OT problems for measures supported on a graph metric
space have been explored in previous studies [39–41]. Additionally, Le et al. [43] have recently
studied a variational OT problem, e.g., Sobolev IPM where the critic function is constrained within
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a unit ball of Sobolev norm involving both the critic function and its gradient, for graph-based
measures. Notably, graph metrics extend tree metrics, which are utilized in scalable optimal transport
methods like tree-sliced Wasserstein (TSW) [37, 70, 68, 71, 69]. TSW, in turn, generalizes the
popular sliced-Wasserstein (SW) approach [59, 9, 51]. The graph structure offers greater flexibility
and degrees of freedom compared to the tree structure in TSW and the line structure in SW. For a
more in-depth discussion on the motivation for OT on a graph, please refer to [39].

Persistence diagrams for TDA. Persistence diagrams (PD) are multisets of data points in R2,
containing the birth and death time respectively of topological features (e.g., connected component,
ring, or cavity), extracted by algebraic topology methods (e.g., persistence homology) [23].

Graphs GLog and GSqrt [39]. For completeness, we review the construction for graphs GLog and
GSqrt in [39]. We utilize the farthest-point clustering method to cluster supports of measures into
at most M clusters. Then, let the vertex set V be the collection of centroids of these clusters, i.e.,
graph vertices. For edges, we randomly select (M logM) edges, and M3/2 edges for graphs GLog,
and GSqrt respectively. Let Ẽ be the set of those randomly sampled edges. For each edge e, its edge
length/weight we is computed by Euclidean distance between the two corresponding end points (i.e.,
corresponding nodes of edge e). Let nc be the number of connected components in G̃(V, Ẽ). We
randomly add (nc − 1) more edges between these nc connected components to form a connected
graph G from G̃. Let Ec be the set of these (nc − 1) added edges, and denote set E = Ẽ ∪ Ec, then
G(V,E) is the constructed graph.

Further discussion on graphs in experiments. For all datasets, except MPEG7 dataset, GSqrt
consists of 10K nodes and 1 million edges, while GLog comprises 10K nodes and 100K edges. Due to
the smaller size of the MPEG7 dataset, we constructed GSqrt with 1K nodes and 32K edges, and GLog
with 1K nodes and 7K edges.

Datasets and Computational Devices. For the datasets in our experiments, one can contact the
authors of Sobolev transport [39] to access to them. Additionally, all of our experiments are run on
commodity hardware.

In our experiments, we demonstrate the effectiveness of our approach in document classification on
four real-world datasets and topological data analysis (TDA), including orbit recognition for linked
twist maps, i.e., a discrete dynamical system modeling flows in DNA microarrays [31], and object
shape recognition in MPEG7. These evaluations on document classification and TDA are often used
for tasks involving comparing measures on a graph, see [39, 41]. We believe that such experimental
coverage is rich and diverse enough.

Hyperparameter validation. We use the same validation as in [40]. Precisely, we further randomly
split the training set into 70%/30% for validation-training and validation with 10 repeats to choose
hyper-parameters for the experiments.

Further discussion on hyperparameters. The performance of OST/Orlicz-EPT typically depends
on the choice of the N -function Φ, similar to how kernel functions impact performance in kernel-
dependent machine learning frameworks. In our experiments with N-functions Φ1 and Φ2 (§7), we
observed slightly different performances. Similar findings have been reported for GST [41].

Determining the optimal N -function Φ for OST/Orlicz-EPT in a given task is an open problem that
warrants further investigation. We leave it for future work. As an interim solution, cross-validation
can be used to select Φ from a set of candidate functions.

Regarding the regularization weight b, we used b = 1 in our experiments based on the results in
Propositions 5.2 and 5.3, as well as for simplicity. This choice of b is supported by theoretical results
on EPT on a graph [40, Lemma A.6, Remark 4.8] and has been used in previous experiments for
EPT [36, 40].

For α, from the result in Proposition 5.7 and for simplicity, we use α = 0 for experiments. Such
value for α is also supported by theoretical results of EPT on a graph [40, Lemma 4.4, Proposition
5.2] and used in experiments for EPT [36, 40]. Additionally, recall that Iα is the largest interval
when α = 0.
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Table 1: The number of pairs for SVM.
Datasets #pairs
TWITTER 4394432
RECIPE 8687560
CLASSIC 22890777
AMAZON 29117200
Orbit 11373250
MPEG7 18130

The number of pairs for kernel SVM [41]. Denote Ntr, Nte for the number of measures used
for training and test respectively. For the kernel SVM training, the number of pairs for computing
the distances is (Ntr − 1) × Ntr

2 . For the test, the number of pairs for computing the distances is
Ntr ×Nte. Thus, for each run, the number of pairs for computing the distances for both training and
test is totally Ntr × (Ntr−1

2 +Nte). In Table 1, we summarize the number of pairs which we need to
evaluate distances/discrepancies for SVM in each run to illustrate the experimental scale, e.g., more
than 29M pairs for AMAZON.

Debiased approaches for (Sinkhorn-based) UOT [63, 65]. We review the discussion and evalua-
tion in [40] for the debiased approaches for (Sinkhorn-based) UOT in [63, 65], with the same setup
as in our experiments. As noted in the main text, the debiased version for Sinkhorn-based approach
for UOT [26, 63] which may be helpful for applications, and the debiased version is empirically
indefinite. Both the UOT and its debiased version have the same computational complexity.

Empirical results for the debiased version [63, 65] are given in [40, Figures 41–44]. As in [40], the
debiased version improve performances of UOT in some datasets, especially for datasets in TDA
tasks (Orbit and MPEG7). For document datasets, performances of the debiased version and UOT are
comparative, i.e., the role of debias property is not clear for advantages in applications.

Broader impacts. In this work, we propose novel approaches to extend OW/GST for unbalanced
measures on a graph. The proposed Orlicz-EPT is directly derived from standard OT, bypassing chal-
lenges raised from unbalanced measures, as in OW. Additionally, we formulate a novel regularization
approach, resulting in the proposed OST, which is efficient in computation. Therefore, our proposals
pave the ways to use OT approach endowed with Orlicz geometric structure for applications with
unbalanced measures, which is common in real-world scenarios. To our knowledge, there is no
foresee negative social impacts for our research.

B.3 Further Empirical Results

Further empirical results on graph GLog. We provide corresponding results as in §7 for
graph GLog.

• In Figure 5, we compare the time consumption of OST and Orlicz-EPT with Φ0,Φ1,Φ2 on
graph GLog.

• In Figure 6, we illustrate the SVM results and time consumptions of kernels on document
classification with graph GLog.

• In Figure 7, we illustrate the SVM results and time consumptions of kernels on TDA with
graph GLog.

Further empirical results for different hyperparameters b and α. We carry out more additional
experiments for different b, α. The results for average accuracy, and the standard deviation (in the
parentheses) are as follows:

• For document classification.

• We present further SVM results for document classification on TWITTER dataset with graph
GSqrt and different hyperparameters b and α in Tables 2 and 3 respectively.

• We present further SVM results for document classification on TWITTER dataset with graph
GLog and different hyperparameters b and α in Tables 4 and 5 respectively.
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Figure 5: Time consumption on graph GLog.
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Figure 6: Document classification on graph GLog.

• For TDA.

• We present further SVM results for TDA on MPEG7 dataset with graph GSqrt and different
hyperparameters b and α in Tables 6 and 7 respectively.

• We present further SVM results for TDA on MPEG7 dataset with graph GLog and different
hyperparameters b and α in Tables 8 and 9 respectively.

We observe that turning these hyperparameters b and α, e.g., via cross-validation, may help to improve
the performances further.

Table 2: SVM results for document classification on TWITTER dataset with graph GSqrt and different
hyperparameter b.

Φ0 Φ1 Φ2

b = 0.5 71.66± 0.63 72.03± 0.56 72.12± 0.57
b = 2 71.54± 0.49 72.15± 0.42 72.28± 0.34
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Figure 7: TDA on graph GLog.

Table 3: SVM results for document classification on TWITTER dataset with graph GSqrt and different
hyperparameter α.

Φ0 Φ1 Φ2

α = 0.1 71.48± 0.43 72.34± 0.55 72.64± 0.50
α = 0.2 71.64± 0.50 72.12± 0.36 72.27± 0.30

Table 4: SVM results for document classification on TWITTER dataset with graph GLog and different
hyperparameter b.

Φ0 Φ1 Φ2

b = 0.5 70.97± 0.29 71.74± 0.33 71.78± 0.41
b = 2 71.58± 0.41 71.92± 0.16 71.96± 0.22

Table 5: SVM results for document classification on TWITTER dataset with graph GLog and different
hyperparameter α.

Φ0 Φ1 Φ2

α = 0.1 71.57± 0.23 71.87± 0.36 72.04± 0.28
α = 0.2 71.59± 0.35 71.74± 0.22 71.95± 0.19

Table 6: SVM results for TDA on MPEG7 dataset with graph GSqrt and different hyperparameter b.
Φ0 Φ1 Φ2

b = 0.5 66.67± 3.45 71.67± 5.40 68.83± 3.09
b = 2 65.00± 3.58 69.13± 3.87 67.33± 3.55

Table 7: SVM results for TDA on MPEG7 dataset with graph GSqrt and different hyperparameter α.
Φ0 Φ1 Φ2

α = 0.1 66.43± 4.81 70.47± 4.51 68.50± 4.54
α = 0.2 66.82± 4.01 68.43± 4.63 69.17± 3.60

Table 8: SVM results for TDA on MPEG7 dataset with graph GLog and different hyperparameter b.
Φ0 Φ1 Φ2

b = 0.5 65.87± 5.68 67.00± 5.60 68.67± 5.61
b = 2 65.93± 5.11 68.91± 6.00 66.17± 4.60

Table 9: SVM results for TDA on MPEG7 dataset with graph GLog and different hyperparameter α.
Φ0 Φ1 Φ2

α = 0.1 65.94± 4.19 67.83± 5.83 66.46± 4.58
α = 0.2 65.84± 5.45 69.61± 5.56 69.86± 5.22
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The proposed Orlicz-EPT is presented in §3, where we revisit the EPT problem,
leverage Caffarelli & McCann [12]’s insights to reformulate EPT as a corresponding standard
OT. By carefully calibrating the ground cost of the corresponding standard OT, we guarantee
that its ground cost is nonnegative, which is essential to develop Orlicz-EPT, a variant of EPT
with Orlicz geometric structure, since the N -function is only defined on the nonnegative
domain. Additionally, we provide theoretical background to solve Orlicz-EPT by a binary
search approach.
Additionally, we present the proposed Orlicz-Sobolev transport (OST) in §4. By leveraging
the dual EPT and the underlying graph structure, we derive a novel regularization for the
critic function, to develop the proposed OST. We prove that OST can be computed by simply
solving a univariate optimization problem.
Furthermore, in §5, we derive geometric structures for OST, and show its connections to
other transport distances. In §7, we empirically illustrate that OST is several-order faster than
Orlicz-EPT. We also show evidences on the advantages of OST for unbalanced measures on
a graph for document classification and TDA.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We consider OT problem for unbalanced measures supported on a graph metric
space.
For Orlicz-EPT, we show that it is directly derived from a standard OT, with a guarantee on
the nonnegativity for its ground cost via calibration, similar to OW approach (derived from
corresponding standard OT with nonnegative ground cost [67]). Therefore, we can bypass
all challenges raised from unbalanced measures. We develop theoretical backgrounds to
solve it by a binary search approach. However, Orlicz-EPT is still a two-level optimization
problem, it has a high computational cost, illustrated in §7.
For OST, it is efficient in computation by simply solving a univariate optimization problem
(§4). Although OST is a regularized approach, we theoretically show that OST generalize
GST for unbalanced measures on a graph (Proposition 5.2).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Detailed proofs of theoretical results are placed in Appendix §A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we provide detailed setup for our experiments in §7. We discuss further details
in Appendix B.2. We also submit the code together with our submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Details of the experiments are given in §7. We use public datasets for our
experiments. Code is submitted together with the submission. We also discuss further details
in Appendix B.2.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see §7, Appendix B.2.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see reported empirical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix §B.2, where we describe that all experiments are carried
on commodity hardware.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: The research in our submission is to advance the machine learning field. To
our knowledge, there is no foresee harmful consequences.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see Appendix §B.2, where we describe that our research aims to advance
to the machine learning field. The proposed OST has an efficient computation, which may
help to reduce the computational cost. To our knowledge, there is no foresee negative social
impacts for our research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please see §7, where we give proper credit/citation to the original owners.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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