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Abstract

With the increasing computational costs asso-
ciated with deep learning, automated hyperpa-
rameter optimization methods, strongly relying
on black-box Bayesian optimization (BO), face
limitations. Freeze-thaw BO offers a promis-
ing grey-box alternative, strategically allocating
scarce resources incrementally to different con-
figurations. However, the frequent surrogate
model updates inherent to this approach pose
challenges for existing methods, requiring re-
training or fine-tuning their neural network sur-
rogates online, introducing overhead, instability,
and hyper-hyperparameters. In this work, we
propose FT-PFN, a novel surrogate for Freeze-
thaw style BO. FT-PFN is a prior-data fitted
network (PFN) that leverages the transformers’
in-context learning ability to efficiently and re-
liably do Bayesian learning curve extrapolation
in a single forward pass. Our empirical analysis
across three benchmark suites shows that the pre-
dictions made by FT-PFN are more accurate and
10-100 times faster than those of the deep Gaus-
sian process and deep ensemble surrogates used
in previous work. Furthermore, we show that,
when combined with our novel acquisition mech-
anism (MFPI-random), the resulting in-context
freeze-thaw BO method (ifBO), yields new state-
of-the-art performance in the same three families
of deep learning HPO benchmarks considered in
prior work.
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1. Introduction
Hyperparameters are essential in deep learning (DL) to
achieve strong model performance. However, due to the
increasing complexity of these models, it is becoming more
challenging to find promising hyperparameter settings, even
with the help of hyperparameter optimization (HPO, Sec-
tion 3.1) tools (Feurer & Hutter, 2019; Bischl et al., 2023).
Traditional HPO techniques using Bayesian Optimization
(BO) are unsuitable for modern DL because they treat the
problem as a black box, making it computationally expen-
sive, requiring a full model training for each evaluation.

Recent research in HPO has shifted towards multi-fidelity
methods (Li et al., 2017; 2020a; Falkner et al., 2018; Klein
et al., 2020; Li et al., 2020b; Awad et al., 2021), utilizing
lower fidelity proxies (e.g., training for fewer steps, using
less data, smaller models) and only evaluating the most
promising hyperparameter settings at the full fidelity. While
these methods have potential, they often use coarse-grained
fidelity spaces and rely on the rank correlation of perfor-
mances across fidelities. Moreover, they do not always fully
utilize the anytime nature of algorithms such as checkpoint-
ing, continuation, and extrapolation. As a result, these meth-
ods struggle to allocate computational resources efficiently,
leading to suboptimal performance in many scenarios.

The freeze-thaw BO method (Section 3.2), originally pro-
posed by Swersky et al. (2014), is a promising approach to
efficiently allocate computational resources by pausing and
resuming the evaluation of different hyperparameter config-
urations. This method is an improvement over traditional
grey-box methods as it dynamically manages resources, and
recent implementations (Wistuba et al., 2022; Kadra et al.,
2023) hold the state-of-the-art in the low-budget regime (∼
20 full function evaluations). However, these contemporary
implementations have limitations. In particular, they rely on
online learning to update the surrogate model at each step
which can lead high computational overhead, instability, and
complexity in managing additional hyper-hyperparameters.
Moreover, they also suffer from strong assumptions about
learning curves, which may not be applicable in all scenar-
ios, resulting in overly confident incorrect predictions.
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Figure 1. Comparison of freeze-thaw surrogate model predictions, given the same set of hyperparameters (HPs) and their partial learning
curves. The Ground truth curves show the real learning curves with dots (·) indicating the points observed as training set or
context for all the surrogates. ifBO uses FT-PFN as its surrogate, which requires no refitting but instead uses the training dots as context
for inferring the posterior predictive distribution of the model performance obtained at step b using any set of given HPs. Surrogates
used in prior art, using Deep Power Laws Ensembles (DPL) and Deep Kernel Gaussian Process (DyHPO) respectively, are trained on
the training set till convergence and then used to extrapolate the given partial curves. The bottom row shows for each surrogate, the
probabilistic performance predictions made at step 50 (last step in top row), with the stars (⋆) indicating the true value of the curve.

In this work, we leverage prior-data fitted networks (Müller
et al., 2022, PFNs) (Section 3.3), a Transformer-based meta-
learning approach to Bayesian inference, to enhance freeze-
thaw BO through in-context learning. Our PFN model
(FT-PFN) infers the task-specific relationship between hy-
perparameter settings and their learning curves in a single
forward pass, eliminating the need for online training during
the search. Figure 1 compares learning curves extrapola-
tion, including uncertainty, by our model (FT-PFN) and
two baselines. Beyond demonstrating superior extrapola-
tion quality, our model directly addresses key challenges in
traditional HPO methods, lowering computational overhead
and stabilizing the optimization process. The contributions
of this paper are as follows:

• We propose FT-PFN (Section 4.1), a new surrogate
model for freeze-thaw BO, replacing online learning
with in-context learning using PFNs. We train a single
instance of FT-PFN model exclusively on synthetic
data, generated from a curve prior designed to mimic
realistic HPO learning curves.

• We empirically show that FT-PFN outperforms exist-
ing surrogates, at point prediction and posterior dis-
tribution approximation, while being over an order of
magnitude faster, and despite never having been trained
on real HPO data (Section 5.1).

• We combine FT-PFN with a novel acquisition func-
tion (MFPI-random, Section 4.2) and find that the
resulting in-context freeze-thaw method (ifBO) yields

a new state-of-the-art performance on three bench-
mark suites for HPO for deep learning (LCBench,
Taskset, PD1).

The code for the surrogate PFN training and reproducing
experiments from this paper, is available at: https://
github.com/automl/ifBO.

2. Related Work
Multi-fidelity hyperparameter optimization uses low-
cost approximations of the objective function, for example,
by evaluating only a few epochs of model training. A no-
table approach in this category is Hyperband (Li et al., 2017),
which iteratively allocates a similar budget to various can-
didate hyperparameter settings and retains only the most
promising ones, to be evaluated at a higher budget. Hy-
perband was extended for efficient parallelization (Li et al.,
2020a), Bayesian optimization (Falkner et al., 2018) and
evolutionary search (Awad et al., 2021) and to incorporate
user priors (Mallik et al., 2023a). However, a key limitation
of these multi-fidelity approaches is that they do not allow
the continuation of previously discarded runs in the light
of new evidence, resulting in a waste of computational re-
sources. Additionally, their effectiveness heavily depends
on a good manual choice of fidelity levels and a strong cor-
relation between the ranks of hyperparameter settings at low
and high fidelities (e.g., no crossings of learning curves).

A promising research direction to mitigate these limi-
tations involves predicting performance at higher fideli-
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ties. Domhan et al. (2015) addressed this by proposing
a Bayesian learning curve extrapolation (LCE) method.
Then, Klein et al. (2017) extended the latter approach to
jointly model learning curves and hyperparameter values
with Bayesian Neural Networks. Non-Bayesian versions of
LCE have also been explored by Chandrashekaran & Lane
(2017) and Gargiani et al. (2019). Despite the robust extrap-
olation capabilities of these LCE methods, fully leveraging
them in guiding HPO remains a challenge.

Freeze-Thaw Bayesian Optimization offers a promising
solution to address the limitations of standard multi-fidelity
and LCE-based HPO. Its ability to pause and resume opti-
mization runs enables the efficient management of computa-
tional resources and ensures solid anytime performance. As
a BO method, it incorporates a surrogate model to predict
performance at higher fidelities and relies on the acquisition
function to guide the search. The freeze-thaw concept was
introduced by Swersky et al. (2014), who used a Gaussian
process with exponential decay kernel for modeling learn-
ing curves and an entropy search acquisition function. Wis-
tuba et al. (2022) recently proposed DyHPO, an improved
version that uses a learned deep kernel combined with a
multi-fidelity-based Expected Improvement (EI) acquisi-
tion. Most recently, Kadra et al. (2023) introduced DPL,
another surrogate model that utilizes a deep ensemble of
power laws and EI at the maximum budget as acquisition
function. These Freeze-Thaw BO methods substantially
improve upon standard multi-fidelity approaches, showing
particularly strong performance in low-budget settings. Nev-
ertheless, these methods share a common challenge: The
necessity for online training of a surrogate model during
the search, which can be computationally intensive and may
cause optimization instabilities.

In-context Learning (ICL) is an exciting new learning
paradigm that offers a promising alternative to online learn-
ing methods. A key advantage of ICL is that it does not
require retraining/fine-tuning the model with new data, but
instead, the data is fed to the model as a contextual prompt.
ICL first gained a lot of interest with the rise of Transformer-
based models like large language models (Radford et al.,
2019, LLMs) and has since also been explored as an end-to-
end approach to black box HPO (Chen et al., 2022).

Prior data fitted networks, proposed by Müller et al.
(2022), are transformer-based models that are trained to do
in-context Bayesian prediction. They have been successfully
used as an in-context classifier for tabular data (Hollmann
et al., 2023), an in-context surrogate model for black-box
HPO (Müller et al., 2023), an in-context model for Bayesian
learning curve extrapolation (Adriaensen et al., 2023), and
an in-context time-series forecaster (Dooley et al., 2023).
Our approach draws on and expands these prior works to

create an efficient in-context surrogate model for freeze-
thaw BO.

3. Preliminaries
We now discuss some preliminaries that we build on more
formally, introducing our notation along the way.

3.1. Hyperparameter Optimization (HPO)

Consider an iterative machine learning training pipeline
with configurable hyperparameters λ ∈ Λ. E.g., when
training a neural network using gradient descent we could
configure the learning rate, weight decay, dropout rate,
etc. Let f(λ, bλ) be some measure of downstream perfor-
mance (e.g., validation accuracy) of the model obtained,
using hyperparameter settings λ, after bλ iterations of train-
ing, that we would like to maximize. HPO aims to find
a hyperparameter setting producing the best model, i.e.,
λ∗: (λ∗, ·) ∈ argmaxλ∈Λ,1≤b≤B f(λ, b), within the limited
total optimization budget of B iterations. Note that in mod-
ern deep learning the budget available for HPO often does
not allow us to execute more than a few full training runs. In
this setting, the crux of HPO lies in allocating these limited
training resources to the most promising hyperparameter
settings, i.e., to find an allocation {bλ}λ∈Λ with bλ ≥ 0 and∑

λ∈Λ bλ ≤ B that maximizes maxλ∈Λ, 1≤b≤bλ f(λ, b).

3.2. Freeze-Thaw Bayesian Optimization

As discussed above, Swersky et al. (2014) proposed to ad-
dress this challenge by following a fine-grained dynamic
scheduling approach, allocating resources to configurations
(and observing their performance) “one step at a time”. Here,
one “step” corresponds to 1b ≥ 1 iterations of model train-
ing (e.g., one epoch). Further, assume the maximum num-
ber of steps allocated to any single configuration λ to be
limited to bmax (i.e., training runs are limited to bmax ·1b it-
erations ≈ training compute per configuration). Algorithm 1
shows the freeze-thaw Bayesian optimization framework
that uses its history H , i.e., the various partial learning
curves observed thus far in the current partial allocation,
to fit a dynamic Bayesian surrogate model M that proba-
bilistically extrapolates the partially seen performance of
configuration λ beyond bλ (Algorithm 1, line 6). Following
the BO framework, it decides which of these to continue (or
start if bλ = 0) using a dynamic acquisition policy A trad-
ing off exploration and exploitation (Algorithm 1, line 7).
The crucial difference with traditional black box Bayesian
Optimization lies in that resources in the freeze-thaw frame-
work are allocated one step, rather than one full training run,
at the time. Note, this framework assumes training to be
preemptive, i.e., that we can stop (freeze) a model training,
and continue (thaw) it later; this assumption is reasonable in
modern DL where checkpointing is common practice. Also
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Algorithm 1 Freeze-thaw Bayesian Optimization. Blue
comments detail ifBO specifics.
Input: Λ: configuration space,

f: measure of model performance to be maximized,
1b: iterations of model training per freeze-thaw step,
bmax: maximal steps for any configuration λ ∈ Λ,
B: total HPO budget in iterations of model training.

Components:
M: the dynamic surrogate model (FT-PFN),
A: the dynamic acquisition policy (MFPI-random, Alg. 2)

Output: λ∗∈ Λ, obtaining the best observed performance

Procedure: HPO(Λ, f , 1b, bmax, B):

1: bλ′ ← 0, ∀λ′ ∈ Λ
2: λ ∼ U(Λ) initial random sample
3: bλ ← 1b

4: H ← {(λ, bλ, f(λ, bλ)} evaluate f (train λ for first step)

5: while |H| · 1b < B do
6: TrainM on H FT-PFN requires no model fitting
7: λ←−A(Λ,M, H,bmax) select λ to thaw
8: bλ ← bλ + 1b thaw λ for one step
9: y ← f(λ, bλ) evaluate f

10: H ← H ∪ {(λ, bλ, y)}
11: end while

12: return λ∗: (λ∗, ·) ∈ argmaxλ∈Λ, 1≤b≤bλ
f(λ, b)

note, that black box BO can be recovered as a special case,
by setting bmax, the maximum number of steps allocated to
any single configuration, to one, and 1b to the maximum
budget available for any single training run.

For simplicity, in the remainder, we assume the budget step
1b is set to 1, and the output of f to be bounded in [0, 1].

3.3. Prior-data Fitted Networks (PFNs)

As briefly discussed in Section ??, PFNs (Müller et al.,
2022) are neural networks qθ that are trained to do Bayesian
prediction for supervised learning in a single forward pass.
More specifically, let D = Dtrain∪{(xtest, ytest)} be a dataset
used for training; the PFN’s parameters θ are optimized to
take Dtrain and xtest as inputs and make predictions that
approximate the posterior predictive distribution (PPD) of
the output label ytest:

qθ(xtest, Dtrain) ≈ P(ytest |xtest, Dtrain),

in expectation over datasets D sampled from a prior p(D)
over datasets. At test time, the PFN does not update its
parameters given a training dataset Dtrain, but rather takes
Dtrain as a contextual input, predicting the labels of un-
seen examples through in-context learning. The PFN is
pretrained once for a specific prior p(D) and used in down-
stream Bayesian prediction tasks without further fine-tuning.
More specifically, it is trained to minimize the cross-entropy
for predicting the hold-out example's label ytest, given xtest

and Dtrain:

ℓθ = E[9log qθ(ytest|xtest, Dtrain)]

with {(xtest, ytest)} ∪Dtrain ∼ p(D)
(1)

Müller et al. (2022) proved that this training procedure co-
incides with minimizing the KL divergence between the
PFN's predictions and the true PPD.

4. In-Context Freeze-Thaw BO (ifBO)
In this section, we describe ifBO, the in-context learning
variant of the freeze-thaw framework that we propose as
an alternative for the existing online learning implementa-
tions (Wistuba et al., 2022; Kadra et al., 2023). As can be
seen in Algorithm 1 (line 6), the critical difference lies in
the fact that we do not need to refit our surrogate model after
every allocation step. By skipping the online refitting stage,
we reduce computational overhead, code complexity, and
hyper-hyperparameters. Note that within the freeze-thaw
BO framework described in Section 3.2, our method is fully
characterized by our choice of surrogate model (Section 4.1)
and dynamic acquisition policy (Section 4.2).

4.1. Dynamic Surrogate Model (FT-PFN)

We propose FT-PFN a prior-data fitted network (Müller
et al., 2022, PFNs) trained to be used as an in-context dy-
namic surrogate model in the freeze-thaw framework. As
described in Section 3.3, PFNs represent a general meta-
learned approach to Bayesian prediction, characterized by
the data used for meta-training. Following previous works
using PFNs (Müller et al., 2022; Hollmann et al., 2023;
Müller et al., 2023; Adriaensen et al., 2023; Dooley et al.,
2023), we train the PFN only on synthetically generated
data, allowing us to generate virtually unlimited data and
giving us full control over any biases therein. We aim to
train FT-PFN on artificial data (D) that resembles the real
performance data we observe in the context of freeze-thaw
Bayesian optimization, i.e., a collection of learning curves
of training runs for the same task, but using different hyper-
parameter settings, i.e.,⋃

λ∈Λ

{(
(λ, 1), f(λ, 1)

)
, . . . ,

(
(λ,bmax), f(λ,bmax)

)}

Prior desiderata: From a Bayesian perspective, we want
to generate data from a prior data model that captures our
beliefs on the relationship between hyperparameters λ, train-
ing budget b, and model performance f(λ, b). While one
could design such prior for a specific HPO scenario, our goal
here is to construct a generic prior, resulting in an FT-PFN
surrogate for general HPO. To this end, we leverage general
beliefs, e.g., we expect learning curves to be noisy, but to
exhibit an improving, convex, and converging trend; curves
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Figure 2. Diagram for the prior data model described in Section 4.1
that was used to generate data for meta-training FT-PFN. On the
left, we have the randomly initialized neural network πconfig that
models the relationship between a hyperparameter setting λ and
its learning curve (shown in pink), whose output parameterizes a
curve model πcurve that is a linear combination of K (=2 in this
illustration) basis functions (shown in red and blue) with added
λ-specific Gaussian noise with variance σ2.

on the same task are expected to have similar start, satura-
tion, and convergence points; and training runs using similar
hyperparameter settings to produce similar learning curves.

Prior data model: Following Klein et al. (2017) and
Kadra et al. (2023), we model the performance curve of
a hyperparameter λ using a parametric curve model πcurve,
whose parameters are sampled from an another prior model
πconfig taking the hyperparameter λ as input (see Figure 2).
Following Domhan et al. (2015) and Adriaensen et al.
(2023), we define πcurve as a weighted combination of K
basis functions fk, with additive Gaussian noise. Thus, the
parameters of πcurve include E (the set of parameters and
weight of all basis functions), along with σ2 (noise). As for
πconfig, we adopt a neural network with weights θ. Unlike
previous works, we do not train the weights θ of this neural
network. Instead, we randomly initialize the network, to
represent a task-specific relationship between hyperparame-
ters and their learning curves, which we then use to generate
data for training FT-PFN. This can be viewed as generat-
ing samples from a Bayesian Neural Network (BNN) prior,
meta-training FT-PFN to emulate LCNet-like (Klein et al.,
2017) BNN inference through in-context learning.

Formally, we define the performance of a hyperparameter λ
at a training time t as follows:

πcurve(λ, t) ∼ N
(
fcomb(t; E), σ2

)
(2)

with fcomb(t; E) = y0 + (y∞ − y0) ·
K∑

k=1

wkfk(t; Ψk)

and (σ2, (y∞, w1, . . . , wK ,Ψ1, . . . ,ΨK)︸ ︷︷ ︸
E

) ∼ πconfig(λ; θ),

where y0 is the initial model performance1, and y∞ that
at convergence. wk is the weight of basis curve fk, and
Ψk its basis function specific parameters. In this work, we
adopt four different basis functions (K = 4), each having
four parameters, resulting in a total of 22 (= |E| + 1) pa-
rameters depending on λ through πconfig. Our four basis
functions subsume the power law model used by Kadra
et al. (2023), all three basis functions used by Adriaensen
et al. (2023), and 9 of the 11 basis functions originally pro-
posed by Domhan et al. (2015).2 Furthermore, unlike those
considered in previous works, our basis functions can have
a breaking point (Caballero et al., 2023) at which conver-
gence stagnates or performance diverges, resulting in a more
heterogeneous and realistic model.

To sample a collection of curves on the same task from our
prior data model, we (i) sample their hyperparameters from
a unit hypercube; (ii) initialize πconfig as in (Müller et al.,
2023); then (iii) apply Equation 2 to obtain the performance
of each hyperparameter λ at a given training time t. To
reduce the entropy of this prior (and PFN training time),
we assume the training time t to be normalized in [0, 1]. In
practice, we also sample a maximum training time bmax per
task and define tb = b

bmax
for b ∈ [1,bmax]. Further details

about meta-training FT-PFN can be found in Appendix A,
including the basis curves, their parameters, and illustrations
of samples from our learning curve prior (Appendix A.1); a
detailed description of the procedure we use for generating
our meta-training data (Appendix A.2); and the architecture
and hyperparameters used (Appendix A.3).

4.2. Dynamic Acquisition Policy (MFPI-random)

Following the Freeze-Thaw Bayesian Optimization frame-
work (Section 3.2), we continue training the configura-
tion that maximizes some acquisition function (AF), i.e.,
argmaxλ∈Λ AF(λ). Conceptually, we would like to con-
tinue the training that is most likely to quickly produce a
model performing substantially better than the best model
obtained thus far. This notion can be formalized as an acti-
vation function,

MFPI(λ;h, T ) = P(M(λ, min(bλ+h,bmax)) > T ) (3)

which evaluates to the predicted likelihood that a candidate
configuration λ ∈ Λ after h more steps of training obtains
a model exceeding the T performance threshold. Here,
M is the trained surrogated model, and the extrapolation
horizon 1 ≤ h ≤ bmax is a parameter controlling the trade-
off between immediate and long-term gains, i.e. what is
quick enough, and the threshold fbest ≤ T < 1 a parameter
controlling the trade-off between high and low risk/gain, i.e.,
what improvement is substantial. Note that for h = bmax and

1Note that y0 /∈ E as we assume it to be independent of λ.
2Our model excludes the two unbounded basis curves.
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T = fbest, we recover the Probability of Improvement (PI)
acquisition function (Mockus et al., 1978). The values we
choose for these hyper-hyperparameters will affect which
configuration gets continued (see Figure 6, Appendix A.4).
Their optimal settings depend on the desired freeze-thaw
behavior and are not straightforward to determine. It might
even be beneficial to adjust them dynamically during the
run. Instead of using a fixed performance threshold T or a
fixed extrapolation horizon h (Wistuba et al., 2022; Kadra
et al., 2023), we explore a range of possible thresholds and
horizons by randomizing these. Such random sampling
procedure is undertaken every freeze-thaw BO iteration
and is akin to an AF selection from a portfolio of different
MFPIs. We posit that this hedging with a portfolio of AFs
(portfolio of Equation 3 with different h, T ) in each iteration
benefits freeze-thaw setups where queries are more granular
than standard BO. The result is a simple, parameter-free AF
with a balanced exploration-exploitation trade-off,

MFPI-random(λ) = MFPI(λ;hrand, T rand)

with hrand ∼ U(1,bmax) and

T rand = fbest + τ rand · (1− fbest)

with log10(τ
rand) ∼ U(−4,−1)

(4)

Further details, as well as pseudo code (Algorithm 2) can
be found in Appendix A.4.

5. Experiments
In this section, we compare ifBO to state-of-the-art multi-
fidelity freeze-thaw Bayesian optimization methods. To this
end, we first assess FT-PFN in terms of the quality and cost
of its prediction (Section 5.1). Then, we assess our approach,
which combines FT-PFN with our MFPI-random acqui-
sition function, on HPO tasks (Section 5.2). Finally, we
conduct an ablation study on acquisition function used in
ifBO (Section 5.3).

We conduct our experiments on three benchmarks:
LCBench (Zimmer et al., 2021), PD1 (Wang et al., 2021),
and Taskset (Metz et al., 2020). These benchmarks, cov-
ering different architectures (Transformers, CNNs, MLPs)
and tasks (NLP, vision, tabular data), are commonly used
in the HPO literature. A detailed overview of the tasks
included in each benchmark is presented in Appendix B.

Our main baselines are both other recent freeze-thaw ap-
proaches: DyHPO (Wistuba et al., 2022) and DPL (Kadra
et al., 2023). We reimplement the above two baselines in
order to allow ablation of the online learning surrogates
with different acquisition functions. Refer to Appendix C
for more details.

5.1. Cost and Quality of Predictions

In this section, we compare the predictive capabilities of
FT-PFN to that of existing surrogate models, including the
deep Gaussian process of DyHPO (Wistuba et al., 2022) and
the deep ensemble of power laws model of DPL (Kadra et al.,
2023). We also consider a variant of FT-PFN trained on
the same prior, but not taking the hyperparameters as input
(referred to as “no HPs”). This variant bases its predictions
solely on a set of partially observed learning curves.

Evaluation procedure: From a given benchmark, we sam-
ple both a set of partial curves, where each curve has its own
set of target epochs. The selection process is strategically
designed to encompass a wide range of scenarios, vary-
ing from depth-first approaches, which involve a smaller
number of long curves, to breadth-first approaches, where
multiple shorter curves are explored. Additional details on
the sampling strategy can be found in Appendix A.2. To
assess the quality of the predictions, we utilize two metrics:
log-likelihood (log-score, the higher the better), measuring
the approximation of the posterior distribution (∼ uncer-
tainty calibration), and mean squared error (the lower the
better), measuring the accuracy of point predictions. We
also report the runtime, accounting for fitting and infer-
ence of each surrogate. The evaluation was run on a single
Intel Xeon 6242 CPU.

Results discussion: Table 1 presents the log-likelihood
and MSE (Mean Squared Error) for each approach relative
to the context sample size. As expected, we observe an
increase in log-likelihood and a decrease in MSE as the
context size get larger. Notably, FT-PFN and its No HPs
variant significantly outperform DPL and DyHPO in terms
of log-likelihood. DPL in particular has low log-likelihood
values, corresponding to a poor uncertainty estimate such
as being overly confident in incorrect predictions. This may
be due to the very low ensemble size (= 5) adopted by
(Kadra et al., 2023) compounded by their strong power law
assumption. On the other hand, DyHPO struggles with low
log-likelihood due to its inability to extrapolate beyond a
single step effectively. Regarding MSE, FT-PFN generally
surpasses the baselines in LCBench and PD1, performing
comparably to DPL on Taskset.

Beyond the impressive log-likelihood and MSE results, our
approach also yield significant speed advantages over the
baseline methods. Importantly, FT-PFN maintains supe-
riority in quality and speed for inferences with more than
1000 samples as a context without not being trained in this
regime. Depending on the context sample size, our method
achieves speedups ranging from 10× to 100× faster than
DPL and DyHPO.
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Table 1. Comparison of FT-PFN, a variant of FT-PFN that excludes hyperparameters, DyHPO and DPL across three benchmarks. Values
represent the median over tasks of the log-likelihood and mean squared error (MSE) as well as the runtime of predictions.

LCBench PD1 Taskset Runtime (s)

# samples Method Log-likelihood MSE Log-likelihood MSE Log-likelihood MSE

DPL −14.577 0.007 −13.384 0.043 −26.011 0.005 17.686
400 DyHPO −0.481 0.042 −0.573 0.104 −0.465 0.009 16.860

FT-PFN (no HPs) 1.649 0.008 0.983 0.028 2.860 0.005 0.215
FT-PFN 1.876 0.005 0.925 0.030 2.934 0.004 0.225
DPL −13.291 0.007 −11.721 0.037 −21.779 0.005 33.480

800 DyHPO −0.426 0.031 −0.510 0.088 −0.419 0.008 64.809
FT-PFN (no HPs) 1.701 0.007 1.103 0.024 2.835 0.005 0.527
FT-PFN 2.044 0.004 1.072 0.025 2.975 0.004 0.541
DPL −11.983 0.007 −11.017 0.035 −20.350 0.004 41.956

1000 DyHPO −0.368 0.012 −0.457 0.071 −0.381 0.008 59.949
FT-PFN (no HPs) 1.763 0.007 1.120 0.024 2.877 0.005 0.687
FT-PFN 2.118 0.004 1.133 0.024 3.016 0.004 0.719
DPL −11.333 0.007 −10.353 0.033 −17.760 0.004 56.576

1400 DyHPO −0.361 0.011 −0.438 0.061 −0.374 0.008 112.168
FT-PFN (no HPs) 1.733 0.007 1.225 0.021 2.874 0.005 1.084
FT-PFN 2.137 0.003 1.201 0.022 3.042 0.004 1.130
DPL −9.182 0.007 −9.263 0.035 −13.712 0.004 73.435

1800 DyHPO −0.365 0.009 −0.437 0.058 −0.381 0.008 166.491
FT-PFN (no HPs) 1.753 0.006 1.251 0.019 2.858 0.005 1.635
FT-PFN 2.199 0.003 1.192 0.022 3.057 0.004 1.715

5.2. Assessment of HPO performance

In this section, we present an extensive empirical compari-
son, showing the merits of our method on HPO tasks across
a variety of tabular benchmarks (see, Appendix B) in the
low budget regime. Additionally to DPL and DyHPO, we
include Hyperband, ASHA, Gaussian process-based FT-BO
(using DyHPO’s one-step EI acquisition function) and uni-
form random search, as baselines (see, Appendix C). Each
algorithm is allocated a total budget of 1000 steps for every
task, which corresponds to 20 full trainings on LCBench
and Taskset with each task being repeated 10 times with
different seeds, each time starting from a different random
configuration (see Algorithm 1). For PD1 tasks have vary-
ing maximum steps allowed (bmax), but for consistency and
fair aggregation across benchmarks, we applied the same
HPO budget of 1000 here too. We report two complemen-
tary metrics: The normalized regret, capturing performance
differences, and the average rank of each method, capturing
the relative order. Formally, the normalized regret corre-
sponds to a [0, 1] normalization of the observed error w.r.t
to the best (lowest) and worst (highest) errors recorded by
all algorithms on the task.

Results discussion: Figure 3 presents the comparative
results per benchmark family. The results validate the supe-
riority of freeze-thaw approaches (ifBO, DyHPO, and DPL)
compared to standard approaches (Hyperband, ASHA, and

random search) for low-budget settings. Most notably, these
results establish the promise of ifBO, which either outper-
forms (on LCBench and Taskset) or competes closely
(on PD1) with DPL and DyHPO. ifBO is also consistently
the best on average rank across all benchmarks (see Ap-
pendix D.2, Figure 8). Appendix F (Figures 12-17) offers a
closer look at the raw error metrics for each algorithm per
task. These detailed results collectively confirm the robust-
ness of ifBO for HPO tasks, showing its ability to compete
if not outperform the most competitive baselines.

5.3. Ablation on Acquisition

In this section, we evaluate how ifBO performs in combi-
nation with other acquisition functions and aim to assess to
what extent our novel acquisition function described in Sec-
tion 4.2 contributes to its HPO success. To this end, we com-
pare against ifBO variants combining FT-PFN with the
EI-based acquisitions used in prior-art (Wistuba et al., 2022;
Kadra et al., 2023), i.e., EI(one step) predicting one
step in the future (DyHPO), and EI(max) predicting at the
highest budget bmax (DPL). We also include their PI counter-
parts PI(one step) and PI(max), as well as variants
of MFPI-random that only vary the prediction horizon,
PI(random horizon) with T = 0, or only vary the
threshold, PI(max, random-T) with h = bmax. Apart
from the methods compared, the experimental setup is iden-
tical to that in Section 5.2.
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Figure 3. Comparison of our method against state-of-the-art baselines on all 3 benchmarks. First row shows normalized regret aggregated
across multiple tasks in each benchmark (See Appendix B for benchmark details, and the results per task can be found in Appendix F).
Second row shows the average ranks of each method.
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Figure 4. Results of an ablation study of the acquisition function in ifBO on each benchmark family. First row shows normalized regret
aggregated across multiple tasks in each benchmark (Appendix B). Second row shows the average ranks of each method.

Results discussion: Figure 4 shows the comprehensive
results for our ifBO variants for each of the benchmarks,
in terms of average ranks and average normalized regrets,
aggregated across all tasks. Generally, we find that per-
formance varies strongly between acquisitions, suggest-
ing this choice is at least as important for HPO success
as our surrogate’s superior predictive quality. In particu-
lar, we find that combinations with the EI-based acquisi-
tions EI(one step) and EI(max) proposed in prior-

art, are amongst the worst-performing variants, both in
terms of rank and regret. For example, EI(max) fails on
LCBench and PD1, while EI(one step) fails on PD1
and Taskset. Curiously, these trends do not seem to ex-
tend to our baselines, e.g., DPL using EI(max) performs
strongly on LCBench and DyHPO using EI(one step)
performs strongly on PD1. We conjecture that this failure
is related to the (justified) lack of confidence FT-PFN has
about its predictions, as is evident by the superior log-scores
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in Table 1. As a result, the predicted posterior will be
heavy-tailed, resulting in the high EI values for those con-
figurations our predictions are least confident for. While
this drives exploration, in the very low budget regime, it
can easily lead to a catastrophic failure to exploit. Overall,
we find that while some variants are successful at specific
tasks in early stages of the optimization, none exhibit the
same robustness in performance across benchmarks, making
MFPI-random the clear winner.

We perform comparable ablation studies for DPL and
DyHPO, as detailed in Appendix D.3, to demonstrate the
benefits of randomizing the horizon and the threshold.

6. Conclusion
In this paper, we proposed FT-PFN a novel surrogate
for freeze-thaw Bayesian optimization. We showed that
the point and uncertainty estimates produced by FT-PFN
through in-context learning are superior to those obtained
by fitting/training recently proposed deep Gaussian pro-
cess (Wistuba et al., 2022) and deep power law ensem-
ble (Kadra et al., 2023) models, while being over an order
of magnitude faster. We presented the first-ever empirical
comparison of different freeze-thaw implementations. Our
results confirm the superiority of these HPO methods, in the
low-budget regime, and show that our in-context learning
approach is competitive with the state-of-the-art.

Despite our promising results, we admit that attaining the
sample efficiency required to scale up to modern deep learn-
ing (e.g., LLM pretraining) remains a challenging endeavor.
Future work should attempt to extend our approach to take
advantage of additional sources of prior information, e.g.,
to do in-context meta-learning, leveraging learning curves
on related tasks (Ruhkopf et al., 2022); to incorporate user
priors (Müller et al., 2023; Mallik et al., 2023a); and addi-
tional information about the training process (e.g., gradient
statistics). An alternative to scaling up is scaling in parallel.
Here, we expect our in-context learning approach to reduce
the overhead further, as the online learning/refitting stage
occurs on the critical path, while in-context learning during
prediction can easily be parallelized. Finally, the current
FT-PFN model has some limitations. First, it requires the
performance metric and each hyperparameter value to be
normalized in [0, 1]; and supports up to 10 hyperparameters.
While we believe that this is reasonable, future work build-
ing systems should push these limits, train larger models, on
more data, and explore ways to scale to larger context sizes.
In summary, there is a lot left unexplored, and we hope that
the relative simplicity, efficiency, and public availability of
our method, lowers the threshold for future research in this
direction.
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A. Further Details about ifBO
A.1. The Learning Curve Prior

In this section, we continue the discussion of our learning curve prior defined by Equation 2:

πcurve(λ, t) ∼ N
(
fcomb(t; E), σ2

)
with fcomb(t; E) = y0 + (y∞ − y0) ·

K∑
k=1

wkfk(t; Ψk)

and (σ2, (y∞, w1, . . . , wK ,Ψ1, . . . ,ΨK)︸ ︷︷ ︸
E

) ∼ πconfig(λ; θ)

Note that σ2 and E are all outputs of the same neural network πconfig. Due to the symmetry of this network, when
marginalizing over λ and θ, all these parameters would have the same distribution. This is undesirable. To impose
parameter-specific marginal distributions, we (i) estimate the empirical CDF of marginal output distribution; (ii) apply it to
each output to obtain a new output with U(0, 1) marginal distribution; (iii) apply the icdf of the parameter-specific target
marginal distribution. Specifically, let u1, u2, u3 ∼ U(0, 1) be three i.i.d. uniform random variables that are hyperparameter
independent and like θ are sampled once per task, then the non-basis curve specific parameters of our curve model are
(marginally) distributed as follows:

y∞ ∼ U(y0, ymax) with y0 = min(u1, u2) and ymax =

{
max(u1, u2) if u3 ≤ 0.25

1.0 if u3 > 0.25

log(σ) ∼ N (−5, 1) wk =
Wk

W
with Wk ∼ Gamma(1, 1) and W =

K∑
k=1

Wk

Each of the basis curves takes the form

fk(t; Ψk) = f ′
k(xt; Ψk) with xt =

{
t if t ≤ xλ

sat,k

rλsat,k(t− xsat,k) + xsat,k if t > xλ
sat,k

where each fk has the following four parameters Ψk:

αk The skew of the curve, determining the convergence rate change over time.

xsat,k, ysat,k The point at which model performance saturates and the convergence rate is suddenly reduced.

rsat,k The reduced convergence rate after saturation, which can be negative, modeling divergence.

and f ′
k(xt, θk) is a [0,1] bounded monotonic growth function. The formulas for these growth functions, alongside the target

distributions of their parameters, are listed in Table 2.

Finally, note that given these choices, we have fcomb(t, E) ∈ [0, 1] and we clip the Gaussian noise in πcurve(λ, t) in the same
range. As a consequence, if performance does not naturally fall in this range, it must be normalized before passing it to
FT-PFN. Examples of collections of curves generated using this prior can be found in Figure 5.

Reference name Formula f ′
k(xt; Ψk) Prior p(Ψk)

pow4 1− ((ϵ
−1
α1
1 − 1) ∗ xt

xsat,1
+ 1)−α1 ln(α1) ∼ N (1, 1) log10(xsat,k) ∼ N (0, 1), ∀ k

exp4 1− (ϵ2)
(

xt
Xsat,2

)α2

ln(α2) ∼ N (0, 1) log1 0(ϵ) ∼ U(−3, 0), ∀ k
ilog4 1− ln(α3)

ln((α
1
ϵ3
3 −α3)

xt
Xsat,3

+α3)

ln(α3 − 1) ∼ N (−4, 1) ysat,k = y∞ − ϵ · (y∞ − y0), ∀ k

hill4 1− 1
(

xt
Xsat,4

)α4 ( 1
ϵ4

−1)+1
ln(α4) ∼ N (0.5, 0.25) 1− rsat,k ∼ Exp(1), ∀ k

Table 2. The formulas for each of the four basis functions in our curve prior. Note that each of them are normalized to start at 0, converge
to 1, and pass through the saturation point.
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Figure 5. Twenty-one i.i.d. samples of the FT-PFN prior, i.e., synthetically generated collections of learning curves for the same task
using different hyperparameter configurations. In these examples, we consider 3 hyperparameters that are mapped onto the color of the
curves, such that runs using similar hyperparameters, have similarly colored curves. We observe correlations, in varying degrees, between
curves on the same task, especially with similar hyperparameter configurations.

14



In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter Optimization

A.2. Meta-training Data Generating Procedure

A single meta-training example in our setting corresponds to a training set Dtrain and test set Dtest, where
Dtrain =

⋃
λ∈Λ

{(
(λ, b

bmax
), πcurve(λ,

b
bmax

)
)}bλ

b=1
corresponds to the (synthetic) partial learning curves observed thus far

(i.e., the analog of H at test time) and Dtest ⊆
⋃

λ∈Λ{((λ,
b

bmax
), πcurve(λ,

b
bmax

))}bmax
b=bλ

the extrapolation targets we want
FT-PFN to predict. To keep the input size of FT-PFN fixed we choose |Dtrain|+ |Dtest| = N = 1, 000 and vary the size
of |Dtrain| ∼ U(0, N − 1). As bmax varies in practice, we sample it log-uniformly in [1, N ]. Note that in the special case
bmax = 1, we train FT-PFN for black box BO. Λ = {λi}Ni=1 is our synthetic configuration space with λi ∼ U(0, 1)m, with
|λi| = m ∼ U(0,M) the dimensionality of our configuration space. We determine bλ by sampling a bag of |Dtrain| elements
from Λ proportionally to weights {wλ}λ∈Λ that follow a Dirichlet distribution with log10(α) ∼ U(−4,−1) resulting in
heterogeneous budget allocations that vary from breadth-first to depth-first.3 We use the same weights to sample another bag
of |Dtest| determining the number of extrapolation targets for each λ, where each target b is chosen U(bλ, bmax). Finally, to
generate the corresponding performance observation/target, we first instantiate the random variables that are task-specific
but do not depend on λ, i.e., y0, ymax and the architecture and weights θ of the neural network πconfig; and subsequently
obtain πcurve(λ,

b
bmax

) using Equation 2.

Limitations: With these modeling choices come some limitations. First, FT-PFN is trained for HPO budgets B ≤ N =
1, 000; requires the performance metric f and each hyperparameter value to be normalized in [0,1]; and supports up to
M = 10 hyperparameters.

A.3. Architecture and Hyperparameters

Following Müller et al. (2022), we use a sequence Transformer (Vaswani et al., 2017) for FT-PFN and treat each tuple
(λ, t, πcurve(λ, t)) (for train) and (λ, t) (for test) as a separate position/token. We do not use positional encoding such that
we are permutation invariant. FT-PFN outputs a discretized approximation of the PPD, each output corresponding to the
probability density of one of the equal-sized bins. We set the number of bins/outputs to 1,000. For the transformer, we use 6
layers, an embedding size of 512, four heads, and a hidden size of 1,024, resulting in a total of 14.69M parameters. We use a
standard training procedure for all experiments, minimizing the cross-entropy loss from Equation 1 on 2.0M synthethic
datasets generated as described in Section A.2, using the Adam optimizer (Kingma et al., 2015) (learning rate 0.0001, batch
size 25) with cosine annealing (Loshchilov & Hutter, 2017) with a linear warmup over the first 25% epochs of the training.
Training took roughly 8 GPU hours on an RTX2080 GPU and the same FT-PFN is used in all experiments described in
Section 5, without any retraining/fine-tuning.

A.4. Acquisition function

Algorithm 2 describes the acquisition procedure MFPI-random, used in ifBO. In each iteration of ifBO (L5-L11 in
Algorithm 1), Algorithm 2 is invoked once taking as input the configuration space Λ, the surrogate model M, the observed
history H , and the maximal training steps bmax of a configuration. First, the random horizon hrand and the scaled factor of
improvement τ rand (and thereby T rand) are sampled once in every execution of the algorithm (L2-L3). This process can
be seen as instantiating an acquisition function from a portfolio of multi-fidelity PIs. The choice of PI, the multi-fidelity
component of extrapolating hyperparameters, and the random selection of an acquisition behaviour lends the naming
of this acquisition function, MFPI-random. Then, for each candidate hyperparameter λ ∈ Λ, the performance of the
hyperparameter at a total step of bλ + hrand is inferred, using the surrogate M. Finally, the candidate with the highest
obtained PI score is returned as the candidate solution to query next in the main Algorithm 1 loop. Figure 6 illustrates the
behavior of MFPI-random w.r.t some values of hrand and T rand, with FT-PFN as a surrogate.

3We adopt the same strategy to generate benchmark tasks for our evaluation of prediction quality described in Section 5.1.
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Figure 6. Illustration of the MFPI acquisition (Equation 3). (Left) The figure shows a collection of partial learning curves and their
corresponding continuations predicted by our FT-PFN model. Here again, we consider 3 hyperparameters whose values are mapped
onto the color of the curves. (Right)The figure shows the color of the curve continued (i.e., maximizing MFPI) for different values of
the horizon and threshold parameters. Note that the ranges shown (and scale used), match those sampled uniformly by MFPI-random
(Equation 4) and consequently, the likelihood of continuing a specific curve is proportional to the surface area covered in this image by its
corresponding color. Finally, note that the bright red color corresponds to starting a new curve.

Algorithm 2 MFPI-random
Input: configuration space Λ,

probabilistic surrogateM,
history of observations H ,
maximal steps bmax

Output: λ ∈ Λ, hyperparameter to evaluate next

Procedure MFPI-random(Λ,M, H , bmax):

1: fbest ← max {y}(·,·,y)∈H best score seen in H

2: hrand ∼ U(1, bmax) random horizon
3: T rand = fbest + 10τ

rand
· (1− fbest) with τ rand ∼ U(−4,−1) random threshold scaling

4: return argmax
λ∈Λ

P(M(λ, min(bλ + hrand, bmax);H) > T rand) to perform in-context learning we pass H as input to FT-PFN

B. Benchmarks
Below, we enumerate the set of benchmarks we have considered. These benchmark cover a variety of optimization scenarios,
including the model being optimized, the task for which it’s being trained on, and the training metric with which to
optimize hyperparameters with respect to. Notably, each of these benchmarks are tabular, meaning that the set of possible
configurations to sample from is finite.

This choice of benchmarks is largely dictated by following the existing benchmarks used in prior work, especially the two pri-
mary baselines with which we compare to, DyHPO and DPL. These benchmarks were provided using mf-prior-bench4.

• LCBench (Zimmer et al., 2021) [DyHPO, DPL] - We use all 35 tasks available which represent the 7 integer and float
hyperparameters of deep learning models from AutoPyTorch. Each task represents the 1000 possible configurations,
trained for 52 epochs on a dataset taken from the AutoML Benchmark (Gijsbers et al., 2019). We drop the first epoch
as suggested by the original authors.

4https://github.com/automl/mf-prior-bench
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Table 3. The 7 hyperparameters for all LCBenchtasks.

name type values info

batch size integer [16, 512] log
learning rate continuous [0.0001, 0.1] log
max dropout continuous [0.0, 1.0]
max units integer [64, 1024] log
momentum continuous [0.1, 0.99]
num layers integer [1, 5]
weight decay continuous [1e-05, 0.1]

• Taskset (Metz et al., 2020) [DyHPO, DPL] This set benchmark provides 1000 diverse task on a variety of deep
learning models on a variety of datasets and tasks. We choose the same 12 tasks as used in the DyHPO experimentation
which consists of NLP tasks with purely numerical hyperparameters, mostly existing on a log scale. We additionally
choose a 4 hyperparameter variant and an 8 hyperparameter variant, where the 4 hyperparameter variant is a super set
of the former. This results in 24 total tasks that we use for the Taskset benchmark.

One exception that needs to be considred with this set of benchmarks is that the optimizers must optimize for is the
model’s log-loss. This metric has no upper bound, which contrasts to all other benchmarks, where the bounds of the
metric are known a-priori. We note that in the DyHPO evaluation setup, they removed diverging curves as a benchmark
preprocessing step, essentially side-stepping the issue that the response function for a given configuration mays return
nans or out-of-distribution values. As our method requires bounded metrics, we make the assumption that a practitioner
can provide a reasonable upper bound for the log loss that will be observed. By clampling to this upper bound, this
effectively shrinks the range of values that our method will observe. As we are in a simulated benchmark setup, we
must simulate this a-priori knowledge. We take the median value of at epoch 0, corresponding to the median log loss of
randomly initialized configurations that have not yet taken a gradient step. Any observed value that is nan or greater
will then be clamped to this upper bound before being fed to the optimizer.

Table 4. The 4 hyperparameter search space for Taskset.

name type values info

beta1 continuous [0.0001, 1.0] log
beta2 continuous [0.001, 1.0] log
epsilon continuous [1e-12, 1000.0] log
learning rate continuous [1e-09, 10.0] log

Table 5. The 8 hyperparameter search space for Taskset.

name type values info

beta1 continuous [0.0001, 1.0] log
beta2 continuous [0.001, 1.0] log
epsilon continuous [1e-12, 1000.0] log
learning rate continuous [1e-09, 10.0] log
exponential decay continuous [9e-07, 0.0001] log
l1 continuous [1e-09, 10.0] log
l2 continuous [1e-09, 10.0] log
linear decay continuous [1e-08, 0.0001] log

• PD1 (Wang et al., 2021) [DPL] These benchmarks were obtained from the output generated by HyperBO (Wang et al.,
2021) using the dataset and training setup of (Gilmer et al., 2021). We choose a variety of tasks including the tuning of
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large vision ResNet (Zagoruyko & Komodakis, 2016) models on datasets such as CIFAR-10, CIFAR-100 (Krizhevsky,
2009) and SVHN (Liao & Carneiro, 2022) image classification datasets, along with training a ResNet (He et al., 2016)
on the ImageNet (Russakovsky et al., 2015) image classification dataset. We also include some natural language
processing tasks, notable transformers train on the LM1B (Chelba et al., 2013) statistical language modelling dataset,
the XFormer (Lefaudeux et al., 2022) trained on the WMT15 German-English (Bojar et al., 2015) translation dataset
and also a transformer trained to sequence prediction for protein modelling on the uniref50 dataset. Lastly, we also
include a simple CNN trained on the MNIST (Deng, 2012) and Fashion-MNIST (Xiao et al., 2017) datasets.

Notably, all of these benchmarks share the same 4 deep learning hyperparameters given in table 6.

Table 6. The 4 hyperparameters for all PD1tasks.

name type values info

lr decay factor continuous [0.01, 0.99]
lr initial continuous [1e-05, 10.0] log
lr power continuous [0.1, 2.0]
opt momentum continuous [1e-05, 1.0] log

Each benchmark ranges in the size of their learning curves, depending on the task, ranging from 5 to 1414. For each
task, there are different variant based on a pair of dataset and batchsize. In total we evaluate our method on the 16 PD1
tasks below.

– WideResnet - Tuned on the CIFAR10, CIFAR100 datasets, each with a constant batch size of 256 and 2048. Also
included is the SVHN dataset with a constant batch size 256 and 1024.

– Resnet - Tuned on ImageNet with three constant batch sizes, 256, 512, and 1024.
– XFormer - Tuned with a batch size of 2048 on the LM1B statistical language modelling dataset.
– Transfomer Language Modelling - Tuned on the WMT15 German-English dataset with a batch size of 64.
– Transformer Protein Modelling - Tuned on the uniref50 dataset with a batch size of 128.
– Simple CNN - Tuned on MNIST and Fashion-MNIST with constant batch sizes of 256 and 2048 for each of them.

C. Baselines
To use ifBO in practice for an HPO task, please refer to NePS5. All our baselines were developed into the NePS framework
that we forked and copied into our setup. Below, we describe the basic configuration of these baselines that were included in
our experiments.

All baseline implementations can be found under neps in our experiment code available at: https://github.com/
automl/ifBO/tree/icml-2024.

C.1. General baselines

We chose random search based algorithms as baselines for the different benchmarks. This additionally also shows the utility
of the different fidelity scheduling algorithms in HyperBand and ASHA which traverses the fidelity space in progressive
geometric intervals, relying on strong performance correlation at these fidelity checkpoints. For these baselines, we chose
the existing implementations in NePS, benchmarked in previously published work (Mallik et al., 2023b).

Random Search Simply searches uniformly random in the hyperparameter space. The fidelity is set to the bmax as
specified by each benchmark instance (see, Appendix B). Therefore, as an example, a budget of 1000 freeze-thaw steps, will
be equivalent to 20 full random search evaluations for LCBench and Taskset tasks.

HyperBand The NePS implementation follows the algorithm described in Li et al. (2018) and uses the early stopping
hyper-hyperparameter, as η = 3. The bmin is either 1 or as specified by the benchmark instances. Similarly for bmax.

5https://automl.github.io/neps/latest/
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ASHA The NePS implementation follows the algorithm described in Li et al. (2020b) and uses the early stopping
hyper-hyperparameter, as η = 3. The bmin is either 1 or as specified by the benchmark instances. Similarly for bmax.

C.2. Freeze-thaw baselines

Here we describe the set of freeze-thaw BO algorithms. We note that due to experimental framework (optimizer-benchmark
interfacing and analysis) related differences, performing ablation studies on the original implementations of DyHPO and
DPL were not straightforward. For consistency and reducing confounding factors, all experiments were performed with
implementations in the same experimental framework. Each of the algorithms were implemented in our custom NePS
framework.

Freeze-Thaw with GPs This algorithm is designed to take one unit step per configuration in the fidelity space. The first 3
samples are selected uniformly random, as influenced by the seed. Subsequently, a Gaussian Process (GP) is fit on the joint
hyperparameter and fidelity space to predict the loss, as a surrogate model. This baseline uses the greedy MF-EI acquisition
function from Wistuba et al. (2022). The GP here uses a standard 5/2-Matérn kernel with a lengthscale of 1.0.

DyHPO This implementation follows the exact details given in Wistuba et al. (2022) and their publicly available code6.
For a quick hyper-hyperparameter glance, refer here: https://github.com/automl/ifBO/blob/icml-2024/
src/pfns_hpo/pfns_hpo/configs/algorithm/dyhpo-neps-v2.yaml

DPL This implementation follows the exact details given in Kadra et al. (2023) and their publicly available code7. For a
quick hyper-hyperparameter glance, refer here: https://github.com/automl/ifBO/blob/icml-2024/src/
pfns_hpo/pfns_hpo/configs/algorithm/dpl-neps-max.yaml

D. Further Ablations
D.1. Effectiveness of modeling curve divergence

As detailed in Section A.1, our curve prior is capable to model learning curve with diverging behavior. This capability is
novel compared to the related works (Adriaensen et al., 2023; Klein et al., 2017; Kadra et al., 2023; Domhan et al., 2015),
which are restricted to monotonic curves only. In Figure 7, we empirically show that modeling diverging curves yields a
better surrogate model in terms of both extrapolation and HPO.
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Figure 7. Comparison of the relative ranks of the performance gained by modeling divergences in ICL-FT-PFN. The plots, showing the
average ranks across all the benchmarks (LCBench, PD1, and TaskSet), confirm the merits of capturing diverging curves both in terms of
the quality of the predictions (log-likelihood, left) and HPO performances (regret, right).

6https://github.com/releaunifreiburg/DyHPO/tree/main
7https://github.com/releaunifreiburg/DPL/tree/main
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D.2. Pairwise comparison of freeze-thaw approaches

For a fine-grained assessment of the performance of ifBO, we present a pairwise comparison with the main freeze-thaw
approaches including DPL and DyHPO. This is to visualize the relative gain of performance compared to each baseline,
which may have been hidden from Figure 5.2. As shown in Figure 8, our approach dominates consistently DPL and DyHPO
after ≈ 150 steps of HPO run.

Figure 8. Comparison of relative ranks when aggregated over all benchmark families, showing strong anytime performance in both
pairwise comparisons and also overall among freeze-thaw algorithms.

D.3. Acquisition function ablation of the baselines

In this section, our objective is to explore the impact of incorporating randomization into the acquisition function on the
baseline methods (DPL and DyHPO). For this purpose, we assess each baseline across four distinct acquisition functions
(Figure 9). The variants include: (ours), where both the horizon and the threshold for improvement are randomly selected,
similar to the approach in ifBO; (one-step), where the horizon and threshold for improvement are chosen as in DyHPO;
(at max), where the selection criteria for the horizon and threshold follow the methodology in DPL; and (random horizon),
where the horizon is randomly determined, and the threshold is set to the best value observed.

The results presented in Figure 9 confirm that the randomization technique markedly enhances the performance of methods
capable of extending learning curves over many steps, such as ifBO and DPL. Furthermore, please note that only the greedy
one-step acquisition function is effective for DyHPO, given that it is specifically designed for one-step ahead predictions.

Figure 9. Relative ablation over the horizon and threshold parameters of a multi-fidelity AF. For each algorithm, we take the AF designed
into the original algorithm and ablate over the two variables: extrapolation horizon and the best performance threshold.

D.4. Comparison of freeze-thaw approaches with MFPI-random

In Figure 10, we present a comparison of freeze-thaw approaches—including ours, DPL, and DyHPO—when employing our
acquisition function (MFPI-random). Despite all models utilizing the same acquisition function, our model significantly
outperforms those of DPL and DyHPO. This clearly indicates the crucial role our prior in achieving the final performance.
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Figure 10. Comparison of freeze-thaw approaches (ifBO, DPL, and DyHPO) when using our acquisition (MFPI-random) with their
specific surrogate models. The plots represent the average ranks over all benchmarks (LCBench, PD1, and Taskset). This ablation confirms
that our novel surrogate (and not only our novel acquisition function) contributes significantly to the HPO performance of ifBO.

E. Aggregate plots over time
Figure 11 plots Figure 3(bottom) but with the x-axis as cumulative wallclock time from the evaluation costs returned by the
benchmark for each hyperparameter for every unit step. The overall conclusions remain over our HPO budget of 1000 steps.
ifBO is on average anytime better ranked than the freeze-thaw HPO baselines.
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Figure 11. Comparing relative rank over wallclock time (in s) over different benchmark families and the aggregated result overall. ifBO
is on average better than the baselines, DyHPO and DPL, except for the TaskSet benchmark family where DPL starts the best but ifBO
improves with more budget.

F. Per-task HPO Plots
In Section 3.1, we presented HPO results on each of these three benchmarks in a comprehensive form, averaging rank and
normalized regrets across every task in the suite. These averages may hide / be susceptible to outliers. For completeness,
Figures 12-17 provide regret plots for every task in the benchmark, averaged across the 10 seeds. We find that our method
consistently performs on par, or better than the best previous best HPO method, especially in later stages of the search,
without notable outliers.
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Figure 12. Per-task HPO results on LCBench
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Figure 13. Per-task HPO results on LCBench (cont.)
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Figure 14. Per-task HPO results on LCBench (cont.)
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Figure 15. Per-task HPO results on PD1
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Figure 16. Per-task HPO results on Taskset
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Figure 17. Per-task HPO results on Taskset (cont.)
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