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Abstract

With the increasing computational costs asso-
ciated with deep learning, automated hyperpa-
rameter optimization methods, strongly relying
on black-box Bayesian optimization (BO), face
limitations. Freeze-thaw BO offers a promis-
ing grey-box alternative, strategically allocating
scarce resources incrementally to different con-
figurations. However, the frequent surrogate
model updates inherent to this approach pose
challenges for existing methods, requiring re-
training or fine-tuning their neural network sur-
rogates online, introducing overhead, instability,
and hyper-hyperparameters. In this work, we
propose FT-PFN, a novel surrogate for Freeze-
thaw style BO. FT-PFN is a prior-data fitted
network (PFN) that leverages the transformers’
in-context learning ability to efficiently and re-
liably do Bayesian learning curve extrapolation
in a single forward pass. Our empirical analysis
across three benchmark suites shows that the pre-
dictions made by FT-PFN are more accurate and
10-100 times faster than those of the deep Gaus-
sian process and deep ensemble surrogates used
in previous work. Furthermore, we show that,
when combined with our novel acquisition mech-
anism (MFP I-random), the resulting in-context
freeze-thaw BO method (i £BO), yields new state-
of-the-art performance in the same three families
of deep learning HPO benchmarks considered in
prior work.
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1. Introduction

Hyperparameters are essential in deep learning (DL) to
achieve strong model performance. However, due to the
increasing complexity of these models, it is becoming more
challenging to find promising hyperparameter settings, even
with the help of hyperparameter optimization (HPO, Sec-
tion 3.1) tools (Feurer & Hutter, 2019; Bischl et al., 2023).
Traditional HPO techniques using Bayesian Optimization
(BO) are unsuitable for modern DL because they treat the
problem as a black box, making it computationally expen-
sive, requiring a full model training for each evaluation.

Recent research in HPO has shifted towards multi-fidelity
methods (Li et al., 2017; 2020a; Falkner et al., 2018; Klein
et al., 2020; Li et al., 2020b; Awad et al., 2021), utilizing
lower fidelity proxies (e.g., training for fewer steps, using
less data, smaller models) and only evaluating the most
promising hyperparameter settings at the full fidelity. While
these methods have potential, they often use coarse-grained
fidelity spaces and rely on the rank correlation of perfor-
mances across fidelities. Moreover, they do not always fully
utilize the anytime nature of algorithms such as checkpoint-
ing, continuation, and extrapolation. As a result, these meth-
ods struggle to allocate computational resources efficiently,
leading to suboptimal performance in many scenarios.

The freeze-thaw BO method (Section 3.2), originally pro-
posed by Swersky et al. (2014), is a promising approach to
efficiently allocate computational resources by pausing and
resuming the evaluation of different hyperparameter config-
urations. This method is an improvement over traditional
grey-box methods as it dynamically manages resources, and
recent implementations (Wistuba et al., 2022; Kadra et al.,
2023) hold the state-of-the-art in the low-budget regime (~
20 full function evaluations). However, these contemporary
implementations have limitations. In particular, they rely on
online learning to update the surrogate model at each step
which can lead high computational overhead, instability, and
complexity in managing additional hyper-hyperparameters.
Moreover, they also suffer from strong assumptions about
learning curves, which may not be applicable in all scenar-
ios, resulting in overly confident incorrect predictions.
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Figure 1. Comparison of freeze-thaw surrogate model predictions, given the same set of hyperparameters (HPs) and their partial learning
curves. The Ground truth curves show the real learning curves with dots (+) indicating the points observed as training set or
context for all the surrogates. 1 £BO uses FT—PFN as its surrogate, which requires no refitting but instead uses the training dots as context
for inferring the posterior predictive distribution of the model performance obtained at step b using any set of given HPs. Surrogates
used in prior art, using Deep Power Laws Ensembles (DPL) and Deep Kernel Gaussian Process (DyHPO) respectively, are trained on
the training set till convergence and then used to extrapolate the given partial curves. The bottom row shows for each surrogate, the
probabilistic performance predictions made at step 50 (last step in top row), with the stars () indicating the true value of the curve.

In this work, we leverage prior-data fitted networks (Miiller
et al., 2022, PFNs) (Section 3.3), a Transformer-based meta-
learning approach to Bayesian inference, to enhance freeze-
thaw BO through in-context learning. Our PFN model
(FT-PFN) infers the task-specific relationship between hy-
perparameter settings and their learning curves in a single
forward pass, eliminating the need for online training during
the search. Figure 1 compares learning curves extrapola-
tion, including uncertainty, by our model (FT-PFN) and
two baselines. Beyond demonstrating superior extrapola-
tion quality, our model directly addresses key challenges in
traditional HPO methods, lowering computational overhead
and stabilizing the optimization process. The contributions
of this paper are as follows:

* We propose FT-PFN (Section 4.1), a new surrogate
model for freeze-thaw BO, replacing online learning
with in-context learning using PFNs. We train a single
instance of FT-PFN model exclusively on synthetic
data, generated from a curve prior designed to mimic
realistic HPO learning curves.

* We empirically show that FT-PFN outperforms exist-
ing surrogates, at point prediction and posterior dis-
tribution approximation, while being over an order of
magnitude faster, and despite never having been trained
on real HPO data (Section 5.1).

* We combine FT-PFN with a novel acquisition func-
tion (MFPI-random, Section 4.2) and find that the
resulting in-context freeze-thaw method (1 £BO) yields

a new state-of-the-art performance on three bench-
mark suites for HPO for deep learning (LCBench,
Taskset, PD1).

The code for the surrogate PFN training and reproducing
experiments from this paper, is available at: https://
github.com/automl/ifBO.

2. Related Work

Multi-fidelity hyperparameter optimization uses low-
cost approximations of the objective function, for example,
by evaluating only a few epochs of model training. A no-
table approach in this category is Hyperband (Li et al., 2017),
which iteratively allocates a similar budget to various can-
didate hyperparameter settings and retains only the most
promising ones, to be evaluated at a higher budget. Hy-
perband was extended for efficient parallelization (Li et al.,
2020a), Bayesian optimization (Falkner et al., 2018) and
evolutionary search (Awad et al., 2021) and to incorporate
user priors (Mallik et al., 2023a). However, a key limitation
of these multi-fidelity approaches is that they do not allow
the continuation of previously discarded runs in the light
of new evidence, resulting in a waste of computational re-
sources. Additionally, their effectiveness heavily depends
on a good manual choice of fidelity levels and a strong cor-
relation between the ranks of hyperparameter settings at low
and high fidelities (e.g., no crossings of learning curves).

A promising research direction to mitigate these limi-
tations involves predicting performance at higher fideli-
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ties. Domhan et al. (2015) addressed this by proposingreate an ef cient in-context surrogate model for freeze-
a Bayesian learning curve extrapolation (LCE) methodthaw BO.

Then, Klein et al. (2017) extended the latter approach to

jointly model learning curves and hyperparameter value%_ Preliminaries

with Bayesian Neural Networks. Non-Bayesian versions of

LCE have also been explored by Chandrashekaran & Lan@/e now discuss some preliminaries that we build on more
(2017) and Gargiani et al. (2019). Despite the robust extragformally, introducing our notation along the way.

olation capabilities of these LCE methods, fully leveraging

them in guiding HPO remains a challenge. 3.1. Hyperparameter Optimization (HPO)

Freeze-Thaw Bayesian Optimization offers a promising C_onS|der an iterative machine learning training pipeline
with con gurable hyperparameters 2 . E.g., when

solution to address the limitations of standard multi- delity raining a neural network using aradient d ntw Id

and LCE-based HPO. Its ability to pause and resume opﬂ—an gratheu Ia rr?in Or tus V\? ? ﬂt s esge;- etcro?

mization runs enables the ef cient management of computa(—:0 gure the fearning rate, weig ecay, dropout rate,
c. Letf( ;b ) be some measure of downstream perfor-

tional resources and ensures solid anytime performance. A%t S .

a BO method, it incorporates a surrogate model to predic@?nce (e.g., validation ac;curacy) of.the model obt_auned,
performance at higher delities and relies on the acquisitionfjsIng hyperparametgr sett|ngsgfte_rb |terat|on§ of train-
function to guide the search. Tleeze-thavwconcept was ing, that we would “ke. to maximize. HPO aims to nd_
introduced by Swersky et al. (2014), who used a Gaussiaft hype.rparameter setting prodgcmg t'he. best quel, 1.€.,
process with exponential decay kernel for modeling learn- (5)2argmax, ;; g f(;b), within the limited

ing curves and an entropy search acquisition function. Wist-Ot":lI optimization budget d iterations. Note that in mod-

tuba et al. (2022) recently proposB¢HPQ an improved ern deep learning the budget available for HPO often does
version that uses a learned deep kernel combined with Qt aIIovy us to execute more t.han.afew fuI!trammg runs. In
multi- delity-based Expected Improvement (EI) acquisi-t Is setting, the crux of HPO lies in aIngatmg these limited
tion. Most recently, Kadra et al. (2023) introducBéL, training resources to the most promising hyperparameter
another surrogate model that utilizes a deep ensemble @angs' Le., o ndan gllo_catlohb g2 wihb ] Oand
power laws and EI at the maximum budget as acquisition 2 b B thatmaximizesnax 2 ;1 » b f(;b).
function. These Freeze-Thaw BO methods substantiall
improve upon standard multi- delity approaches, showing

particularly strong performance in low-budget settings. Nevas discussed above, Swersky et al. (2014) proposed to ad-
ertheless, these methods share a common challenge: Theess this challenge by following a ne-grained dynamic
necessity for online training of a surrogate model duringscheduling approach, allocating resources to con gurations
the search, which can be Computationally intensive and m%nd observing their performance) “one step at atime”. Here,
cause optimization instabilities. one “step” corresponds th, 1 iterations of model train-

ing (e.g., one epoch). Further, assume the maximum num-
In-context Learning (ICL) is an exciting new learning ber of steps allocated to any single con guratiorto be
paradigm that offers a promising alternative to online learntimited to by (i.€., training runs are limited tomay 1p it-
ing methods. A key advantage of ICL is that it does noterations training compute per con guration). Algorithm 1
require retraining/ ne-tuning the model with new data, but shows the freeze-thaw Bayesian optimization framework
instead, the data is fed to the model as a contextual promphat uses its history, i.e., the various partial learning
ICL rst gained a lot of interest with the rise of Transformer- curves observed thus far in the current partial allocation,
based models like large language models (Radford et ako t a dynamic Bayesian surrogate moddl that proba-
2019, LLMs) and has since also been explored as an end-tpilistically extrapolates the partially seen performance of
end approach to black box HPO (Chen et al., 2022). con guration beyondb (Algorithm 1, line 6). Following

the BO framework, it decides which of these to continue (or
Prior data tted networks, proposed by Niller et al.  startifb = 0) using a dynamic acquisition poliéy trad-
(2022), are transformer-based models that are trained to dag off exploration and exploitation (Algorithm 1, line 7).
in-context Bayesian prediction. They have been successfullyhe crucial difference with traditional black box Bayesian
used as an in-context classi er for tabular data (HollmannOptimization lies in that resources in the freeze-thaw frame-
et al., 2023), an in-context surrogate model for black-boxvork are allocated one step, rather than one full training run,
HPO (Miller et al., 2023), an in-context model for Bayesian at the time. Note, this framework assumes training to be
learning curve extrapolation (Adriaensen et al., 2023), anghreemptive, i.e., that we can stdpe€zé a model training,
an in-context time-series forecaster (Dooley et al., 2023and continuethaw) it later; this assumption is reasonable in
Our approach draws on and expands these prior works tmodern DL where checkpointing is common practice. Also

¥3.2. Freeze-Thaw Bayesian Optimization

3
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Algorithm 1 Freeze-thaw Bayesian Optimization. Blue andD yajn:
comments detaifBO speci cs.

Input. _: con guration space, = E[909 q (YtesiXtest Dirain)] 1)
f: measure of model performance to be maximized, with  f (Xtest Yiesd9 [ Dirain P(D)
1,: iterations of model training per freeze-thaw step,
bmax. maximal steps for any con guration2 Mdller et al. (2022) proved that this training procedure co-
c B: total HPO budget in iterations of model training. incides with minimizing the KL divergence between the
omponents: .
M - the dynamic surrogate mod&ET-PFN), PFN s predictions and the true PPD.
A the dynamic acquisition policyMFPI-random , Alg. 2)
Output: 2 , obtaining the best observed performance 4. In-Context Freeze-Thaw BO {fBO )
Procedure: HPO( , f, 1p, Pmax, B): In this section, we descri80O , the in-context learning

o variant of the freeze-thaw framework that we propose as

b OU 0,8 "2 initial rand | an alternative for the existing online learning implementa-

b R HALTandom sampie yong (Wistuba et al., 2022; Kadra et al., 2023). As can be
H f (:b ;f(;b )g evaluate (train  for rststep) ~ Seen in Algorithm 1 (line 6), the critical difference lies in

the fact that we do not need to re t our surrogate model after

bR

5: while jHj 1, <B do _ ) every allocation step. By skipping the online re tting stage,
6. TranM onH ~  FT-PEN requires nomodel tting v reduce computational overhead, code complexity, and
7: A ( ;M ;H; bma select tothaw h h N h ithin the f h

8 b + 1, thaw for one step yper-hyperparameters. Note that within the freeze-thaw
9 y f(:b) evaluaté ~ BO framework described in Section 3.2, our method is fully

b
(;
0: H HIf (;b ;y)g characterized by our choice of surrogate model (Section 4.1)
1. end while and dynamic acquisition policy (Section 4.2).

12: return ;) 2 argmax , . f(;b .
((i)Zagmax; .1 55 f(:b) 4.1. Dynamic Surrogate Model ET-PFN)

. We propose~T-PFN a prior-data tted network (Miller
note, that black box BO can be recovered as a special cas&, al., 2022, PFNs) trained to be used as an in-context dy-
by settingbmax, the maximum number of steps allocated to namic surrogate model in the freeze-thaw framework. As
any single con guration, to one, ari, to the maximum  gescribed in Section 3.3, PFNs represent a general meta-

budget available for any single training run. learned approach to Bayesian prediction, characterized by
For simplicity, in the remainder, we assume the budget stef1€ data used for meta-training. Following previous works
1 is setto 1, and the output bto be bounded iff; 1]. using PFNs (Miller et al., 2022; Hollmann et al., 2023;
Miuller et al., 2023; Adriaensen et al., 2023; Dooley et al.,
3.3. Prior-data Fitted Networks (PFNs) 2023), we train the PFN only osynthetically generated

data, allowing us to generate virtually unlimited data and
As brie y discussed in Sectio??, PFNs (Miller et al.,  giving us full control over any biases therein. We aim to
2022) are neural networles that are trained to do Bayesian train FT-PFN on arti cial data O) that resembles the real
prediction for supervised learning in a single forward passperformance data we observe in the context of freeze-thaw
More speci cally, letD = Dain[f (Xtest Yiespg be a dataset Bayesian optimization, i.e., a collection of learning curves
used for training; the PFN's parameterare optimized to  of training runs for the same task, but using different hyper-
take Dyain and Xeest @S inputs and make predictions that parameter settings, i.e.,
approximate the posterior predictive distribution (PPD) of

the outputlabeyrest GG D i (G bmadif( ba
g (Xtest Dtrain) ~ P(Ytest] Xtest D1rain); 2

in expectation over datasdissampled from a priop(D)  Prior desiderata: From a Bayesian perspective, we want
over datasets. At test time, the PFN does not update it generate data from a prior data model that captures our
parameters given a training dataBet,,, but rather takes beliefs on the relationship between hyperparametetisin-
Diain @s a contextual input, predicting the labels of un-ing budgetb, and model performandé ;b). While one
seen examples through-context learning The PFN is  could design such prior for a speci ¢ HPO scenario, our goal
pretrained once for a speci ¢ prige(D) and used in down- here is to construct a generic prior, resulting inFAiRPFN
stream Bayesian prediction tasks without further ne-tuningsurrogate for general HPO. To this end, we leverage general
More speci cally, it is trained to minimize the cross-entropy beliefs, e.g., we expect learning curves to be noisy, but to
for predicting the hold-out exampédabelys;, givenxist  €xhibit an improving, convex, and converging trend; curves
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whereyy is the initial model performanéeandy; that
at convergencewy is the weight of basis curvi, and
k its basis function speci c parameters. In this work, we

adopt four different basis functionk (= 4), each having

four parameters, resulting in a total of 22 (Ej + 1) pa-

rameters depending onthrough ¢ong. Our four basis

functions subsume the power law model used by Kadra

et al. (2023), all three basis functions used by Adriaensen

et al. (2023), and 9 of the 11 basis functions originally pro-

posed by Domhan et al. (2015urthermore, unlike those
Figure 2.Diagram for the prior data model described in Section 4.1ConSIdered in previous works, our basis functions can have

that was used to generate data for meta-traififigPFN. On the a breaking point (Caballero et aI._, 2023) at Wh!Ch _conver-

left, we have the randomly initialized neural netWOI’ang that gence stagnates or performance dlverges, resultlng Inamore

models the relationship between a hyperparameter settimgi ~ heterogeneous and realistic model.

its learning curve (shown in pink), whose output parameterizes

curve model cyve that is a linear combination &€ (=2 in this

illustration) basis functions (shown in red and blue) with added
-speci ¢ Gaussian noise with variancé.

%o sample a collection of curves on the same task from our
prior data model, we (i) sample their hyperparameters from
a unit hypercube; (i) initialize ¢on g as in (Muller et al.,
2023); then (iii) apply Equation 2 to obtain the performance
of each hyperparameterat a given training time. To

on the same task are expected to have similar start, saturgduce the entropy of this prior (and PFN training time),
tion, and convergence points; and training runs using similay’e assume the training tint¢o be normalized ifi0; 1]. In

hyperparameter settings to produce similar learning curvegractice, we also sample a maximum training tioagx per
task and de ney, = bi for b2 [1; bmad. Further details

Prior data model: Following Klein et al. (2017) and about.meta traln!nﬁT PFN can be found in Appgnd|x A
ncluding the basis curves, their parameters, and illustrations
Kadra et al. (2023), we model the performance curve o ! . . .
of samples from our learning curve prior (Appendix A.1); a

a hyperparameter using a parametric curve mod , . - .
yperp gap eJ.“"’e dFtalled description of the procedure we use for generating
whose parameters are sampled from an another prior mode

con g taking the hyperparameteras input (see Figure 2). our meta-training data (Appendix A.2); and the architecture

Following Domhan et al. (2015) and Adriaensen et al? nd hyperparameters used (Appendix A.3).

(2023), we de ne e as a weighted combination &f
basis function$ , with additive Gaussian noise. Thus, the

parameters of cure includeE (the set of parameters and Following the Freeze-Thaw Bayesian Optimization frame-
weight of all basis functions), along witt? (noise). As for  work (Section 3.2), we continue training the con gura-
cong, We adopt a neural network with weightsUnlike  tion that maximizes some acquisition function (AF), i.e.,
preViOUS WOI’kS, we do not train the Welghtﬂf this neural argmax , AF( ) Conceptua"y, we would like to con-
network. Instead, we randomly initialize the network, to tinye the training that isnost likelyto quickly produce a
represent a task-speci c relationship between hyperparamenodel performingubstantially bettethan the best model

ters and their learning curves, which we then use to generaigptained thus far. This notion can be formalized as an acti-
data for training=T-PFN. This can be viewed as generat-yation function,

ing samples from a Bayesian Neural Network (BNN) prior,
meta-training=T-PFN to emulatd_CNet -like (Klein et al., MFPI( ;h;T)= P(M (; min(b +h;bma)) >T) (3)
2017) BNN inference through in-context learning.

4.2. Dynamic Acquisition Policy MFPI-random )

which evaluates to the predicted likelihood that a candidate
con guration 2 afterh moresteps of training obtains

a model exceeding thé performance threshold. Here,
M is the trained surrogated model, and the extrapolation
horizonl h bpaxis a parameter controlling the trade-

Formally, we de ne the performance of a hyperparameter
at a training time as follows:

v 1) N feom(t; E); 2 (2) off between immediate and long-term gains, vehat is
% quick enoughand the thresholfl,est T < 1a parameter
With feoms(t:E) = Yo+ (V1 Yo) Wiefe(t; &) controlling the trade-off between high and low risk/gain, i.e.,
k=1 what improvement is substantidote that foth = b ,,5xand
and (% fyl TWypp it ;V\{§ P Kg) cong( 5 ); 'Note thatyo 2 E as we assume it to be independent of
E 20ur model excludes the two unbounded basis curves.
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T = fpesy We recover the Probability of Improvement (PI) 5.1. Cost and Quality of Predictions
acquisition function (Mockus et al., 1978). The values we

h for th h -h t ill affect whi . ! .
choose for fhese hyper-hyperparameters wil atiect whic T-PFN to that of existing surrogate models, including the

con guration gets continued (see Figure 6, Appendix A.4). eep Gaussian processifHPO(Wistuba et al., 2022) and

Their optimal settings depend on the desired freeze-tha\a1
behavior and are not straightforward to determine. It mightt e deep ensemble of power laws modeDéil_(Kadra etal.,

even be bene cial to adjust them dynamically during thet2h023)‘ we glsobc?n5|:jterl(a ve:rr]larrl]t BT-PFN tralned on i
run. Instead of using a xed performance thresholdr a € same prior, but not taking the hyperparameters as inpu

xed extrapolation horizorh (Wistuba et al., 2022; Kadra (referred to as “no HPs"). This variant bases its predictions

et al., 2023), we explore a range of possible thresholds anaolely on a set of partially observed learning curves.
horizons by randomizing these. Such random sampling

procedure is undertaken every freeze-thaw BO iteration ) ]

and is akin to an AF selection from a portfolio of different Evaluation procedure: ~ From a given benchmark, we sam-
MFPIs. We posit that this hedging with a portfolio of AFs ple both a set of partial curves, Where each curve has |ts. own
(portfolio of Equation 3 with differenit; T)in eachiteration ~Set of target epochs. The selection process is strategically
bene ts freeze-thaw setups where queries are more granul4€signed to encompass a wide range of scenarios, vary-
than standard BO. The result is a simple, parameter-free A9 from depth- rst approaches, which involve a smaller

with a balanced exploration-exploitation trade-off, number of long curves, to breadth- rst approaches, where
multiple shorter curves are explored. Additional details on

the sampling strategy can be found in Appendix A.2. To

n this section, we compare the predictive capabilities of

MEPI-random = MFPI( :hrand ran assess Fhe quality of the predic_tions, we utilize two metr_ics:
( _) and ( ) log-likelihood (log-score, the higher the better), measuring
with h™™ U (1; bmay) and 4 the approximation of the posterior distribution (incer-

TRMA= frogt @9 (1 fhes) tainty calibration), and mean squared error (the lower the

better), measuring the accuracy of point predictions. We
also report the runtime, accounting for tting and infer-
ence of each surrogate. The evaluation was run on a single

. ) Intel Xeon 6242 CPU
Further details, as well as pseudo code (Algorithm 2) can

be found in Appendix A.4.

with logio( @ U ( 4; 1)

) Results discussion: Table 1 presents the log-likelihood
5. Experiments and MSE (Mean Squared Error) for each approach relative
to the context sample size. As expected, we observe an
increase in log-likelihood and a decrease in MSE as the
context size get larger. NotablyT-PFN and its No HPs
Mariant signi cantly outperforrDPLandDyHPOIn terms
of log-likelihood. DPLin particular has low log-likelihood
values, corresponding to a poor uncertainty estimate such
as being overly con dent in incorrect predictions. This may
be due to the very low ensemble size %) adopted by
(Kadra et al., 2023) compounded by their strong power law
We conduct our experiments on three benchmarksassumption. On the other harialyHPOstruggles with low
LCBench (Zimmer et al., 2021)PD1(Wang et al., 2021), log-likelihood due to its inability to extrapolate beyond a
andTaskset (Metz et al., 2020). These benchmarks, cov-single step effectively. Regarding MSET-PFN generally
ering different architectures (Transformers, CNNs, MLPs)surpasses the baselinedi@Bench andPD1, performing
and tasks (NLP, vision, tabular data), are commonly usedomparably tdPL on Taskset .
in the HPO literature. A detailed overview of the tasks
included in each benchmark is presented in Appendix B.

In this section, we compaitBO to state-of-the-art multi-
delity freeze-thaw Bayesian optimization methods. To this
end, we rst assesBT-PFN in terms of the quality and cost
of its prediction (Section 5.1). Then, we assess our approac
which combine$T-PFN with our MFPI-random acqui-
sition function, on HPO tasks (Section 5.2). Finally, we
conduct an ablation study on acquisition function used i
ifBO (Section 5.3).

Beyond the impressive log-likelihood and MSE results, our
approach also yield signi cant speed advantages over the
Our main baselines are both other recent freeze-thaw apaseline methods. ImportantlyT-PFN maintains supe-
proachesDyHPO(Wistuba et al., 2022) anbPL (Kadra riority in quality and speed for inferences with more than
et al., 2023). We reimplement the above two baselines i1000samples as a context without not being trained in this
order to allow ablation of the online learning surrogatesregime. Depending on the context sample size, our method
with different acquisition functions. Refer to Appendix C achieves speedups ranging frdfd to 100 faster than

for more details. DPLandDyHPO
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Table 1.Comparison of T-PFN, a variant ofFT-PFN that excludes hyperparameteyHPOandDPL across three benchmarks. Values
represent the median over tasks of the log-likelihood and mean squared error (MSE) as well as the runtime of predictions.

LCBench PD1 Taskset Runtime (s)
#samples Method Log-likelihood MSE Log-likelihood MSE Log-likelihood MSE
DPL 14577 Q007 13:384 Q043 26.011 Q005 17686
400 DyHPO 0:481 Q042 0:573 Q104 0:465 Q009 16860
FT-PFN (no HPs) 1:649 Q008 Q983 0028 2860 Q005 0215
FT-PFN 1:876 Q005 0925 Q030 2934 Q004 0225
DPL 13:291 0:007 11:721 0:037 21:779  0:005 33480
800 DyHPO 0:426 0:031 0:510 0:088 0:419 0:008 64:809
FT-PFN (no HPs) 1:701 0:007 1:103 0:024 2:835 0:005 0:527
FT-PFN 2:044 0:004 1:072 0:025 2:975 0:004 0:541
DPL 11:983 Q007 11:017 Q035 20:350 Q004 41956
1000 DyHPO 0:368 Q012 0:457 Q071 0:381 Q008 59949
FT-PFN (no HPs) 1:763 Q007 1120 0024 2877 Q005 Q687
FT-PFN 2:118 Q004 1133 Q024 3016 Q004 Q719
DPL 11:333 0:007 10:353 0:033 17760 0:004 56:576
1400 DyHPO 0:361 0:011 0:438 0:061 0:374 0:008 112168
FT-PFN (no HPs) 1:733 0:007 1:225 0:021 2:874  0:005 1:084
FT-PEN 2:137 0:003 1:201 0:022 3:042 0:004 1:130
DPL 9:182 Q007 9:263 Q035 13712 Q004 73435
1800 DyHPO 0:365 Q009 0:437 Q058 0:381 Q008 166491
FT-PFN (no HPs) 1:753 Q006 1251 Q019 2858 Q005 1635
FT-PEN 2:199 Q003 1192 Q022 3057 Q004 1715
5.2. Assessment of HPO performance random search) for low-budget settings. Most notably, these

. . . . results establish the promiseitBO , which either outper-
In this section, we present an extensive empirical compark (onLCBench andTaskset ) or competes closely
son, showing the merits of our method on HPO tasks acro

sg . : . :
. . . on PD1) with DPLandDyHPOQOIifBO is also consistently

a variety oftabular benchmarks (see, Appendix B) in the )
low budget regime. Additionally toPL andDyHPO we the best on average rank across all benchmarks (see Ap

: . endix D.2, Figure 8). Appendix F (Figures 12-17) offers a
|ncl'ude Hyperband, ASHA, Ga“S.S"?‘.” procesg-based FT'.B cgloser look at the raw error metrics for each algorithm per
(usingDyHPCs one-step El acquItlon function) _and UM task. These detailed results collectively con rm the robust-
form _randpm search, as baselines (see, Appendix C). Eae&ss offBO for HPO tasks, showing its ability to compete
algorithm is allocated a total budget of 1000 steps for every: ot outperform the most competitive baselines.
task, which corresponds to 20 full trainings b@Bench
andTaskset with each task being repeated 10 times with 5 3. Ablation on Acquisition
different seeds, each time starting from a different randont ™" q
con guration (see Algorithm 1). FOPD1 tasks have vary- In this section, we evaluate hdfBO performs in combi-
ing maximum steps allowedbfay), but for consistency and nation with other acquisition functions and aim to assess to
fair aggregation across benchmarks, we applied the samyghat extent our novel acquisition function described in Sec-
HPO budget of 1000 here too. We report two complemention 4.2 contributes to its HPO success. To this end, we com-
tary metrics: The normalized regret, capturing performanceare againsfBO variants combinind=T-PFN with the
differences, and the average rank of each method, capturirgl-based acquisitions used in prior-art (Wistuba et al., 2022;
the relative order. Formally, the normalized regret correKadra et al., 2023), i.eEl (one step)  predicting one
sponds to §0; 1] normalization of the observed error w.r.t step in the future@yHPQ, andEIl (max) predicting at the
to the best (lowest) and worst (highest) errors recorded biighest budgetinay (DPL). We also include their P counter-
all algorithms on the task. partsPl (one step) andPl(max) , as well as variants

of MFPIl-random that only vary the prediction horizon,

Pl (random horizon) with T = 0, or only vary the
Results discussion: Figure 3 presents the comparative threshold Pl (max, random-T)  with h = by Apart
results per benchmark family. The results validate the supérom the methods compared, the experimental setup is iden-
riority of freeze-thaw approache$gO , DyHPQandDPL) tical to that in Section 5.2.
compared to standard approaches (Hyperband, ASHA, and

7
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Figure 3.Comparison of our method against state-of-the-art baselines on all 3 benchmarks. First row shows normalized regret aggregated
across multiple tasks in each benchmark (See Appendix B for benchmark details, and the results per task can be found in Appendix F).
Second row shows the average ranks of each method.

Figure 4.Results of an ablation study of the acquisition functioif 8O0 on each benchmark family. First row shows normalized regret
aggregated across multiple tasks in each benchmark (Appendix B). Second row shows the average ranks of each method.

Results discussion: Figure 4 shows the comprehensive art, are amongst the worst-performing variants, both in
results for ouifBO variants for each of the benchmarks, terms of rank and regret. For exam#g (max) fails on

in terms of average ranks and average normalized regreisCBench andPD1, while El (one step) fails onPD1
aggregated across all tasks. Generally, we nd that pemandTaskset . Curiously, these trends do not seem to ex-
formance varies strongly between acquisitions, suggestend to our baselines, e.@dPLusingEl (max) performs

ing this choice is at least as important for HPO successtrongly onLCBench andDyHPQusingEl (one step)

as our surrogate's superior predictive quality. In particuperforms strongly o®®D1 We conjecture that this failure
lar, we nd that combinations with the El-based acquisi-is related to the (justi ed) lack of con dencéT-PFN has
tionsEl (one step) andEl(max) proposed in prior- aboutits predictions, as is evident by the superior log-scores
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in Table 1. As a result, the predicted posterior will be Impact Statement

heavy-tailed, resulting in the high EI values for those con- hi Kwh [ d he eld
gurations our predictions are least con dent for. While This paper presents work whose goal is to advance the e

this drives exploration, in the very low budget regime, it of hyperparameter optimizatiqn (HPO) in machine Ieaming'
can easily lead to a catastrophic failure to exploit. Overall| '€'€ aré many potential societal consequences of machine

we nd that while some variants are successful at speci ¢ _ea;]m'g% none Wh'chwﬁ feel mulskt be ﬁ_pi(l:_' (;’]a”?: high-
tasks in early stages of the optimization, none exhibit thd!ghted here. We would, however, like to highlight that our

same robustness in performance across benchmarks, makiﬁ’grk makes HPQ more rpbust and ef cient, and W'“.thus
MFPIl-random the clear winner. Ip make machine learning more reliable and sustainable.

We perform comparable ablation studies OPL and

DyHPQ as detailed in Appendix D.3, to demonstrate theACknowIedgements

bene ts of randomizing the horizon and the threshold.  We thank Johannes Hog for his feedback on an earlier ver-
sion of the paper. Frank Hutter is a Hector Endowed Fellow

6. Conclusion at the ELLIS Institute Tibingen. All authors acknowledge
funding by the state of Baden-iittemberg through bwHPC,

In this paper, we proposeBT-PFN a novel surrogate the German Research Foundation (DFG) through grant num-

for freeze-thaw Bayesian optimization. We showed thabers INST 39/963-1 FUGG and 417962828, and the Euro-

the point and uncertainty estimates produced®yPFN  pean Union (via ERC Consolidator Grant Deep Learning

throughin-context learningare superior to those obtained 2.0, grant no. 101045765), TAILOR, a project funded by EU

by tting/training recently proposed deep Gaussian proHorizon 2020 research and innovation programme under

cess (Wistuba et al., 2022) and deep power law ensenGA No 952215. Views and opinions expressed are however

ble (Kadra et al., 2023) models, while being over an ordethose of the author(s) only and do not necessarily re ect

of magnitude faster. We presented the rst-ever empiricakhose of the European Union or the European Research

comparison of different freeze-thaw implementations. OurCouncil. Neither the European Union nor the granting au-

results con rm the superiority of these HPO methods, in thethority can be held responsible for them.

low-budget regime, and show that our in-context learning

approach is competitive with the state-of-the-art.

Despite our promising results, we admit that attaining the
sample ef ciency required to scale up to modern deep learn-
ing (e.g., LLM pretraining) remains a challenging endeavor.
Future work should attempt to extend our approach to take
advantage of additional sources of prior information, e.g.,
to do in-context meta-learning, leveraging learning curves
on related tasks (Ruhkopf et al., 2022); to incorporate user
priors (Muller et al., 2023; Mallik et al., 2023a); and addi-
tional information about the training process (e.g., gradient
statistics). An alternative to scaling up is scaling in parallel.
Here, we expect our in-context learning approach to reduce
the overhead further, as the online learning/re tting stage
occurs on the critical path, while in-context learning during
prediction can easily be parallelized. Finally, the current
FT-PFN model has some limitations. First, it requires the
performance metric and each hyperparameter value to be
normalized in0; 1]; and supports up to 10 hyperparameters.
While we believe that this is reasonable, future work build-
ing systems should push these limits, train larger models, on
more data, and explore ways to scale to larger context sizes.
In summary, there is a lot left unexplored, and we hope that
the relative simplicity, ef ciency, and public availability of
our method, lowers the threshold for future research in this
direction.
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A. Further Details about ifBO
A.1l. The Learning Curve Prior

In this section, we continue the discussion of our learning curve prior de ned by Equation 2:

X
curve(;t) N fcomb(t;E); 2 with fcomb(t;E):yO+(y1 yO) kak(t; k)
k=1
and ( Z(y1iWiiinWes 1005 k) congl 5 )
f 4t }

Note that 2 andE are all outputs of the same neural netwogkn, 4. Due to the symmetry of this network, when
marginalizing over and , all these parameters would have the same distribution. This is undesirable. To impose
parameter-speci ¢ marginal distributions, we (i) estimate the empirical CDF of marginal output distribution; (ii) apply it to
each output to obtain a new output withi0; 1) marginal distribution; (iii) apply the icdf of the parameter-speci c target
marginal distribution. Speci cally, leti;; u; uz U (0; 1) be three i.i.d. uniform random variables that are hyperparameter
independent and like are sampled once per task, then the non-basis curve speci ¢ parameters of our curve model are
(marginally) distributed as follows:

i i max(ug; u if u 0:25
Vi U (Yo;VYmax ) With yg=min(uz;uz) and ymax = (u; u2) 3

1.0 if u3 > 0:25

We X
log( ) N ( 51) Wy = W with Wy Gamma(y; 1) and W = Wi

k=1

Each of the basis curves takes the form
(
. if
fr(t; &)= X «) with x¢ = t ML Xsau

I'satk (t Xsatk) + Xsatk ift>x satk

where eacliy has the following four parameters;:

k The skew of the curve, determining the convergence rate change over time.
Xsatk ; Ysatk The point at which model performance saturates and the convergence rate is suddenly reduced.
rsack The reduced convergence rate after saturation, which can be negative, modeling divergence.
andf 2(x¢; «) is a [0,1] bounded monotonic growth function. The formulas for these growth functions, alongside the target
distributions of their parameters, are listed in Table 2.

Finally, note that given these choices, we hbyg.(t; E) 2 [0; 1] and we clip the Gaussian noise ige ;t ) in the same
range. As a consequence, if performance does not naturally fall in this range, it must be normalized before passing it to
FT-PFN. Examples of collections of curves generated using this prior can be found in Figure 5.

Reference name  Formuld 2(x¢; «) Prior p( «)
pow, 1 (.4 1 et * In( 1) N (L) l0g10(Xsat) N (0;1); 8k
expy 1 (o) T’ In( ») N (0:1) log, 0() U ( 3;0); 8k
ilog, 1 s In( 3 1) N ( 41) | Ysatk = Y1 (Y1 Yo); 8k
(3% 8) g+ a)
hill4 1 (ﬁﬁ In( 4) N (0:5025) |1 rsax Exp(1); 8k
X sat4 4

Table 2.The formulas for each of the four basis functions in our curve prior. Note that each of them are normalized to start at 0, converge
to 1, and pass through the saturation point.
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Figure 5.Twenty-one i.i.d. samples of tH€l-PFN prior, i.e., synthetically generated collections of learning curves for the same task
using different hyperparameter con gurations. In these examples, we consider 3 hyperparameters that are mapped onto the color of the
curves, such that runs using similar hyperparameters, have similarly colored curves. We observe correlations, in varying degrees, between
curves on the same task, especially with similar hyperparameter con gurations.
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A.2. Meta-training Data Generating Procedure

A single, meta-training example in our setting corresponds to a trainingDggh and test setDig, Where
S

Diain= , (; %); curvel ; ﬁ) Ezl cSorresponds to the (synthetic) partial learning curves observed thus far
(i.e., the analog oH at test time) andD (et > F((s ﬁ); curvel ﬁ)) gﬁ:ﬁg the extrapolation targets we want

FT-PFEN to predict. To keep the input size BT-PFN xed we choosgD i) + jDtesj = N = 1;000and vary the size

of jDgainj U (O;N  1). Asbnax varies in practice, we sample it log-uniformly[its N ]. Note that in the special case

bmax = 1, we trainFT-PFN for black box BO. = f g, is our synthetic con guration space with U (0; 1)™, with

j il = m U (0; M) the dimensionality of our con guration space. We deterniindy sampling a bag gD 4irj €lements

from proportionally to weight§w g , that follow a Dirichlet distribution witHog;o( ) U ( 4; 1) resultingin
heterogeneous budget allocations that vary from breadth- rst to deptH-\"é. use the same weights to sample another bag

of jDesj determining the number of extrapolation targets for eaalvhere each targédtis choserlJ(b ; bnhay). Finally, to

generate the corresponding performance observation/target, we rst instantiate the random variables that are task-speci ¢
but do not depend on, i.e., Yo, Ymax and the architecture and weight®f the neural network ¢on g; and subsequently

obtain cynel ; ﬁax) using Equation 2.

Limitations:  With these modeling choices come some limitations. F¥$tPFN is trained for HPO budge® N =
1; 000, requires the performance metficand each hyperparameter value to be normalized in [0,1]; and supports up to
M =10 hyperparameters.

A.3. Architecture and Hyperparameters

Following Muller et al. (2022), we use a sequence Transformer (Vaswani et al., 20I7)-#8FN and treat each tuple

(.1, curvel , 1)) (fortrain) and (, t) (for test) as a separate position/token. We do not use positional encoding such that
we are permutation invariarfET-PFN outputs a discretized approximation of the PPD, each output corresponding to the
probability density of one of the equal-sized bins. We set the number of bins/outputs to 1,000. For the transformer, we use 6
layers, an embedding size of 512, four heads, and a hidden size of 1,024, resulting in a total of 14.69M parameters. We use a
standard training procedure for all experiments, minimizing the cross-entropy loss from Equation 1 on 2.0M synthethic
datasets generated as described in Section A.2, using the Adam optimizer (Kingma et al., 2015) (learning rate 0.0001, batch
size 25) with cosine annealing (Loshchilov & Hutter, 2017) with a linear warmup over the rst 25% epochs of the training.
Training took roughly 8 GPU hours on an RTX2080 GPU and the dafmBFN is used in all experiments described in
Section 5, without any retraining/ ne-tuning.

A.4. Acquisition function

Algorithm 2 describes the acquisition procedMEPI-random , used inifBO . In each iteration offBO (L5-L11 in

Algorithm 1), Algorithm 2 is invoked once taking as input the con guration spacthe surrogate mod#l , the observed
historyH , and the maximal training stepsa, of a con guration. First, the random horizé®" and the scaled factor of
improvement "2 (and therebyT @Y are sampled once in every execution of the algorithm (L2-L3). This process can

be seen as instantiating an acquisition function from a portfolio of multi- delity Pls. The choice of PI, the multi- delity
component of extrapolating hyperparameters, and the random selection of an acquisition behaviour lends the naming
of this acquisition functionMFPI-random . Then, for each candidate hyperparamet& , the performance of the
hyperparameter at a total steptf+ h@9is inferred, using the surrogaké . Finally, the candidate with the highest
obtained PI score is returned as the candidate solution to query next in the main Algorithm 1 loop. Figure 6 illustrates the
behavior oMFPI-random w.r.t some values dfi"®dandT ™" with FT-PFN as a surrogate.

3We adopt the same strategy to generate benchmark tasks for our evaluation of prediction quality described in Section 5.1.
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Figure 6.lllustration of theMFPI acquisition (Equation 3).Leff) The gure shows a collection of partial learning curves and their
corresponding continuations predicted by 8@rPFN model. Here again, we consider 3 hyperparameters whose values are mapped
onto the color of the curvesR{gh) The gure shows the color of the curve continued (i.e., maximiiigPl) for different values of

the horizon and threshold parameters. Note that the ranges shown (and scale used), match those sampled uiMieRhhabgom

(Equation 4) and consequently, the likelihood of continuing a speci ¢ curve is proportional to the surface area covered in this image by its
corresponding color. Finally, note that the bright red color corresponds to starting a new curve.

Algorithm 2 MFPI-random

Input: con guration space ,
probabilistic surrogat¥ ,
history of observationsl ,
maximal stepHmax

Output: 2 , hyperparameter to evaluate next

Procedure MFPI-random ( ,M ,H, bnay):

1 frest maxfyg . .yyon best score seen i
2: ™ U (1; bmay) random horizon
3 Tz fg+10 ™ (1 fres) with ™9 U (4 1) random threshold scaling
4: return argnaxP (M (; min(b + h®%bga): H) > T 79 to perform in-context learning we palisas input toFT-PFN

2

B. Benchmarks

Below, we enumerate the set of benchmarks we have considered. These benchmark cover a variety of optimization scenarios,
including the model being optimized, the task for which it's being trained on, and the training metric with which to
optimize hyperparameters with respect to. Notably, each of these benchmarks are tabular, meaning that the set of possible
con gurations to sample from is nite.

This choice of benchmarks is largely dictated by following the existing benchmarks used in prior work, especially the two pri-
mary baselines with which we compare ByHPOandDPL These benchmarks were provided usinigprior-bench 4,

¢ LCBench (Zimmer et al., 2021)[DpyHPQ DPL] - We use all 35 tasks available which represent the 7 integer and oat
hyperparameters of deep learning models from AutoPyTorch. Each task represents the 1000 possible con gurations,
trained for 52 epochs on a dataset taken from the AutoML Benchmark (Gijsbers et al., 2019). We drop the rst epoch
as suggested by the original authors.

“https://github.com/automl/mf-prior-bench
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Table 3.The 7 hyperparameters for &lCBenchtasks.
name type values info

batchsize integer [16;512] log
learningrate  continuous [0:000% 0:1] log
maxdropout  continuous [0:0; 1:0]

max.units integer [64;1024] log
momentum continuous [0:1; 0:99]
num.layers integer [1;5]

weightdecay continuous [1e-05; 0:1]

« Taskset (Metz et al., 2020)DyHPQ DPL] This set benchmark provides 1000 diverse task on a variety of deep
learning models on a variety of datasets and tasks. We choose the same 12 tasks as uSyHR@experimentation
which consists of NLP tasks with purely numerical hyperparameters, mostly existing on a log scale. We additionally
choose a 4 hyperparameter variant and an 8 hyperparameter variant, where the 4 hyperparameter variant is a super set
of the former. This results in 24 total tasks that we use fofTtagkset benchmark.

One exception that needs to be considred with this set of benchmarks is that the optimizers must optimize for is the
model's log-loss. This metric has no upper bound, which contrasts to all other benchmarks, where the bounds of the
metric are known a-priori. We note that in tByHPOevaluation setup, they removed diverging curves as a benchmark
preprocessing step, essentially side-stepping the issue that the response function for a given con guration mays return
nans or out-of-distribution values. As our method requires bounded metrics, we make the assumption that a practitioner
can provide a reasonable upper bound for the log loss that will be observed. By clampling to this upper bound, this
effectively shrinks the range of values that our method will observe. As we are in a simulated benchmark setup, we
must simulate this a-priori knowledge. We take the median value of at epoch 0, corresponding to the median log loss of
randomly initialized con gurations that have not yet taken a gradient step. Any observed value that is nan or greater
will then be clamped to this upper bound before being fed to the optimizer.

Table 4.The 4 hyperparameter search spaceTiaskset .

name type values info
betal continuous [0:000%; 1:0] log
beta2 continuous [0:00%; 1:0] log
epsilon continuous [le-12;100Q0] log
learningrate  continuous [1e-09; 10:0] log

Table 5.The 8 hyperparameter search spaceTiaskset .

name type values info
betal continuous [0:000%; 1:0] log
beta2 continuous [0:001; 1.0] log
epsilon continuous [1e-12;10000] log
learningrate continuous [1e-09; 10:0] log
exponentialdecay continuous [9e-07;0:0001] log
11 continuous [1e-09;10:0] log
12 continuous [1e-09; 10:0] log
linear.decay continuous [1e-08;0:0001] log

e PD1(Wang et al., 2021)DPL] These benchmarks were obtained from the output generated by HyperBO (Wang et al.,
2021) using the dataset and training setup of (Gilmer et al., 2021). We choose a variety of tasks including the tuning of
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large vision ResNet (Zagoruyko & Komodakis, 2016) models on datasets such as CIFAR-10, CIFAR-100 (Krizhevsky,
2009) and SVHN (Liao & Carneiro, 2022) image classi cation datasets, along with training a ResNet (He et al., 2016)
on the ImageNet (Russakovsky et al., 2015) image classi cation dataset. We also include some natural language
processing tasks, notable transformers train on the LM1B (Chelba et al., 2013) statistical language modelling dataset,
the XFormer (Lefaudeux et al., 2022) trained on the WMT15 German-English (Bojar et al., 2015) translation dataset
and also a transformer trained to sequence prediction for protein modelling on the uniref50 dataset. Lastly, we also
include a simple CNN trained on the MNIST (Deng, 2012) and Fashion-MNIST (Xiao et al., 2017) datasets.

Notably, all of these benchmarks share the same 4 deep learning hyperparameters given in table 6.

Table 6.The 4 hyperparameters for &D1tasks.

name type values info
Ir_decayfactor continuous [0:01; 0:99]
Ir_initial continuous [1e-05;10:.0] log
Ir_power continuous [0:1; 2:0]

optmomentum continuous [1e-05;1:0] log

Each benchmark ranges in the size of their learning curves, depending on the task, ranging from 5 to 1414. For each
task, there are different variant based on a pair of dataset and batchsize. In total we evaluate our methodRD1he 16
tasks below.

— WideResnet- Tuned on the CIFAR10, CIFAR100 datasets, each with a constant batch 226 afid2048 Also
included is the SVHN dataset with a constant batch 8&@and1024

— Resnet- Tuned on ImageNet with three constant batch si266,512, and1024

— XFormer - Tuned with a batch size @48on the LM1B statistical language modelling dataset.

— Transfomer Language Modelling- Tuned on the WMT15 German-English dataset with a batch sigd.of

— Transformer Protein Modelling - Tuned on the uniref50 dataset with a batch siz&2g

— Simple CNN - Tuned on MNIST and Fashion-MNIST with constant batch sizeZx@&and2048for each of them.

C. Baselines

To useifBO in practice for an HPO task, please refer to N&RSI our baselines were developed into the NePS framework
that we forked and copied into our setup. Below, we describe the basic con guration of these baselines that were included in
our experiments.

All baseline implementations can be found undeps in our experiment code available &ttps://github.com/
automl/ifBO/tree/icml|-2024
C.1. General baselines

We chose random search based algorithms as baselines for the different benchmarks. This additionally also shows the utility
of the different delity scheduling algorithms in HyperBand and ASHA which traverses the delity space in progressive
geometric intervals, relying on strong performance correlation at these delity checkpoints. For these baselines, we chose
the existing implementations in NePS, benchmarked in previously published work (Mallik et al., 2023b).

Random Search Simply searches uniformly random in the hyperparameter space. The delity is set bgthes
speci ed by each benchmark instance (see, Appendix B). Therefore, as an example, a ba0@efiefeze-thaw steps, will
be equivalent t@0 full random search evaluations fo€Bench andTaskset tasks.

HyperBand The NePS implementation follows the algorithm described in Li et al. (2018) and uses the early stopping
hyper-hyperparameter, as= 3. Theh,, is eitherl or as speci ed by the benchmark instances. Similarlykfgy.

Shttps://automl.github.io/neps/latest/
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ASHA The NePS implementation follows the algorithm described in Li et al. (2020b) and uses the early stopping
hyper-hyperparameter, as= 3. Thehy, is eitherl or as speci ed by the benchmark instances. Similarlylfgy.

C.2. Freeze-thaw baselines

Here we describe the set of freeze-thaw BO algorithms. We note that due to experimental framework (optimizer-benchmark
interfacing and analysis) related differences, performing ablation studies on the original implementations of DyHPO and
DPL were not straightforward. For consistency and reducing confounding factors, all experiments were performed with
implementations in the same experimental framework. Each of the algorithms were implemented in our custom NePS
framework.

Freeze-Thaw with GPs This algorithm is designed to take one unit step per con guration in the delity space. Th8 rst
samples are selected uniformly random, as in uenced by the seed. Subsequently, a Gaussian Process (GP) is t on the joint
hyperparameter and delity space to predict the loss, as a surrogate model. This baseline uses the greedy MF-EI acquisition
function from Wistuba et al. (2022). The GP here uses a standard 5@+Madrnel with a lengthscale &f0.

DyHPO This implementation follows the exact details given in Wistuba et al. (2022) and their publicly availabte code
For a quick hyper-hyperparameter glance, refer hiettps://github.com/automl/ifBO/blob/icml-2024/
src/pfns_hpo/pfns_hpo/configs/algorithm/dyhpo-neps-v2.yami

DPL This implementation follows the exact details given in Kadra et al. (2023) and their publicly available Eoda
quick hyper-hyperparameter glance, refer héitgps://github.com/automl/ifBO/blob/icml-2024/src/
pfns_hpo/pfns_hpo/configs/algorithm/dpl-neps-max.yaml

D. Further Ablations

D.1. Effectiveness of modeling curve divergence

As detailed in Section A.1, our curve prior is capable to model learning curve with diverging behavior. This capability is
novel compared to the related works (Adriaensen et al., 2023; Klein et al., 2017; Kadra et al., 2023; Domhan et al., 2015),
which are restricted to monotonic curves only. In Figure 7, we empirically show that modeling diverging curves yields a
better surrogate model in terms of both extrapolation and HPO.

Figure 7.Comparison of the relative ranks of the performance gained by modeling divergences in ICL-FT-PFN. The plots, showing the
average ranks across all the benchmarks (LCBench, PD1, and TaskSet), con rm the merits of capturing diverging curves both in terms of
the quality of the predictions (log-likelihood, left) and HPO performances (regret, right).

Shttps://github.com/releaunifreiburg/DyHPO/tree/main
"https://github.com/releaunifreiburg/DPL/tree/main
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D.2. Pairwise comparison of freeze-thaw approaches

For a ne-grained assessment of the performandéB® , we present a pairwise comparison with the main freeze-thaw
approaches includingPL andDyHPO This is to visualize the relative gain of performance compared to each baseline,
which may have been hidden from Figure 5.2. As shown in Figure 8, our approach dominates configteatiy DyHPO

after 150 steps of HPO run.

Figure 8.Comparison of relative ranks when aggregated @alebenchmark familiesshowing strongnytimeperformance in both
pairwise comparisons and also overall among freeze-thaw algorithms.

D.3. Acquisition function ablation of the baselines

In this section, our objective is to explore the impact of incorporating randomization into the acquisition function on the
baseline methodDPL andDyHPQ. For this purpose, we assess each baseline across four distinct acquisition functions
(Figure 9). The variants includeoyrs), where both the horizon and the threshold for improvement are randomly selected,
similar to the approach iifiBO ; (one-step, where the horizon and threshold for improvement are chosenzgHRQ

(at may, where the selection criteria for the horizon and threshold follow the methodoldgklinand §andom horizoi,

where the horizon is randomly determined, and the threshold is set to the best value observed.

The results presented in Figure 9 con rm that the randomization technique markedly enhances the performance of methods
capable of extending learning curves over many steps, sufdi@s andDPL Furthermore, please note that only the greedy
one-stefacquisition function is effective fdbyHPQ given that it is speci cally designed for one-step ahead predictions.

Figure 9.Relative ablation over the horizon and threshold parameters of a multi- d&kty=or each algorithm, we take tiAd- designed
into the original algorithm and ablate over the two variables: extrapolation horizon and the best performance threshold.

D.4. Comparison of freeze-thaw approaches wittMFPI-random

In Figure 10, we present a comparison of freeze-thaw approaches—includin®&lrsndDyHPG—when employing our
acquisition function MFPI-random ). Despite all models utilizing the same acquisition function, our model signi cantly
outperforms those ddPLandDyHPO This clearly indicates the crucial role our prior in achieving the nal performance.
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Figure 10.Comparison of freeze-thaw approachéB@ , DPL, andDyHPQ when using our acquisitioMFPI-random ) with their
speci ¢ surrogate models. The plots represent the average ranks over all benchmarks (LCBench, PD1, and Taskset). This ablation con rms
that our novel surrogate (and not only our novel acquisition function) contributes signi cantly to the HPO performdB¢e of

E. Aggregate plots over time

Figure 11 plots Figure 3(bottom) but with tlReaxis as cumulative wallclock time from the evaluation costs returned by the
benchmark for each hyperparameter for every unit step. The overall conclusions remain over our HPO Hi@ifetteps.
ifBO is on average anytime better ranked than the freeze-thaw HPO baselines.

Figure 11.Comparing relative rank over wallclock time @) over different benchmark families and the aggregated result ovéBal.
is on average better than the baselirigg;IPOandDPL, except for the TaskSet benchmark family whBfeL starts the best bufBO
improves with more budget.

F. Per-task HPO Plots

In Section 3.1, we presented HPO results on each of these three benchmarks in a comprehensive form, averaging rank and
normalized regrets across every task in the suite. These averages may hide / be susceptible to outliers. For completeness,
Figures 12-17 provide regret plots for every task in the benchmark, averaged across the 10 seeds. We nd that our method
consistently performs on par, or better than the best previous best HPO method, especially in later stages of the search,
without notable outliers.
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Figure 12.Per-task HPO results drCBench
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Figure 13.Per-task HPO results drCBench (cont.)
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Figure 14. Per-task HPO results on LCBench (cont.)
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Figure 15. Per-task HPO results on PD1
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Figure 16. Per-task HPO results on Taskset
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