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ABSTRACT

This study advances Early Event Prediction (EEP) in healthcare through Dynamic
Survival Analysis (DSA), offering a novel approach by integrating risk local-
ization into alarm policies to enhance clinical event metrics. By adapting and
evaluating DSA models against traditional EEP benchmarks, our research demon-
strates their ability to match EEP models on a time-step level and significantly im-
prove event-level metrics through a new alarm prioritization scheme (up to 11%
AuPRC difference). This approach represents a significant step forward in pre-
dictive healthcare, providing a more nuanced and actionable framework for early
event prediction and management.

1 INTRODUCTION
Early event prediction (EEP) on time series is concerned with determining whether an event will
occur within a fixed time horizon. It is highly relevant to a wide range of monitoring applications
in fields such as environment (Di Giuseppe et al., 2016) or healthcare (Sutton et al., 2020). Using
machine learning for EEP has gained particular interest in Intensive Care Unit (ICU) patient moni-
toring (Harutyunyan et al., 2019; Hyland et al., 2020; Yèche et al., 2021; van de Water et al., 2024),
where large quantities of medical data are collected automatically. Existing works train such mod-
els through maximum likelihood estimation (MLE) of the cumulative failure function for a fixed
horizon. However, to be usable by clinicians at an event scale, one needs to design an alarm mecha-
nism leveraging the time-step level failure estimates. If existing works have proposed various ways
of evaluating EEP models at event scale (Tomašev et al., 2019; Hyland et al., 2020), the design of
the alarm policy based on time-step prediction has been overlooked. Current approaches (Tomašev
et al., 2019; Hyland et al., 2020; Hüser et al., 2024; Lyu et al., 2024) rely on a simple fixed threshold
mechanism on the time-step prediction to raise alarms at the event scale. One limitation to more ad-
vanced policies is that due to their cumulative nature current EEP models do not provide information
concerning the imminence of the risk within the considered horizon.

Parallelly, in statistics, survival analysis (SA), also known as time-to-event analysis, considers the
highly related problem of predicting the exact time of a future event given a set of covariates. With
deep learning emergence, the field has also recently pivoted to discrete-time methods using neural
networks (Tutz et al., 2016; Gensheimer & Narasimhan, 2019; Kvamme et al., 2019; Lee et al.,
2018; Ren et al., 2019) to fit hazard or probability mass functions (PMF). The extension of SA
to longitudinal covariates, namely dynamic survival analysis, also gained popularity in the deep
learning field (Lee et al., 2019; Jarrett et al., 2019; Damera Venkata & Bhattacharyya, 2022; Maystre
& Russo, 2022). As opposed to models trained to maximize EEP likelihood, DSA models estimate
the event PMF at any horizon. Thus, in theory, such a model can also provide an estimate of the
cumulative failure function as required in EEP tasks while additionally providing a decomposition
of where such a risk lies within the considered horizon.

In this work, we study the usage of deep learning models trained with a DSA likelihood for EEP
tasks to design more advanced alarm policies. Our contribution can be summarized as follows: (i)
We formalize and propose how to train and use DSA models to match EEP models’ timestep-level
performance on three established benchmarks, (ii) To this end, we propose survTLS, a non-trivial
extension to temporal label smoothing Yèche et al. (2023) (TLS) for DSA. (iii) At the event level,
we propose a simple yet novel scheme, leveraging the risk localization provided by DSA models
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to prioritize imminent alarms, resulting in further performance improvement over EEP models. We
share our code repository1.

2 RELATED WORK

Early event prediction from EHR data. As previously mentioned, early warning systems (EWS)
using deep learning models have recently gained traction in the literature. Indeed, over the years
multiple large publicly available EHR databases (Johnson et al., 2016; Pollard et al., 2018; Faltys
et al., 2021; Thoral et al., 2021) and benchmarks including EEP tasks (Harutyunyan et al., 2019;
Wang et al., 2020; Reyna et al., 2020; Yèche et al., 2021; van de Water et al., 2024) were released.
Using these, existing works proposed new architecture designs (Horn et al., 2020; Tomašev et al.,
2019), imputation methods (Futoma et al., 2017), and more recently objective functions Yèche et al.
(2023). However, in all these works, the backbone model is trained via MLE on the cumulative fail-
ure function at the horizon of prediction. Thus, to our knowledge, our work is the first to investigate
the DSA models for these EEP tasks.

Survival analysis in the era of deep learning. With deep learning emergence, SA quickly moved
away from proportional linear hazard models, as originally proposed by Cox (1972). A stream of
work uses neural networks to parameterize the hazard function (Yousefi et al., 2017; Katzman et al.,
2018), Gensheimer & Narasimhan (2019) additionally remove the proportional hazard assumption.
Simultaneously, other works focus on parameterizing the PMF (Kvamme et al., 2019; Lee et al.,
2018; Ren et al., 2019), while adding regularization terms to their negative log-likelihood objec-
tive. Among these works, Lee et al. (2018) went in the opposite direction to our work by fitting
the PMF with MLE on the cumulative function, similar to EEP. In DSA, based on the landmarking
idea (Van Houwelingen, 2007; Parast et al., 2014), advances followed a similar trend with works
parametrizing the PMF (Damera Venkata & Bhattacharyya, 2022) and fitting an MLE on the cumu-
lative failure function (Jarrett et al., 2019; Lee et al., 2019).

Survival analysis and event classification Prior work has investigated the use of static survival
analysis for event classification problems such as early detection of fraud (Zheng et al., 2019). This
work however remains restricted to non-dynamic application, thus not applicable to DSA or EEP. On
the other hand, Shen et al. (2023) propose a model for EEP applications trained with a vanilla DSA
likelihood to classify neurological prognostication. However, they do not provide any comparison
to EEP MLE nor propose tailored alarm policies to the localized risk estimation.

3 METHODS

3.1 FROM EARLY EVENT PREDICTION TO DYNAMIC SURVIVAL ANALYSIS

Early Event Prediction In EEP, we consider a dataset of multivariate time series of covariates Xi

and binary event labels ei,t representing the occurrence of an event at time t in trajectory i. Each
sample i is a sequence {(xi,0, ei,0), . . . , (xi,Ti

, ei,Ti
)} of length Ti. For each timepoint t along a

time series, the covariates observed up to this point are denoted Xi,t = [xi,0, . . . ,xi,t] and the time
of the next event is given by Te(t) = argminτ :τ≥t{eτ : eτ = 1}. If no event happened, we define
Te(t) = +∞ and call this sample ”right-censored” to align with DSA terminology. The EEP task
consists of modeling the cumulative probability of this event occurring within a fixed prediction
horizon h defined as F (h|Xt) = P (Te ≤ t+h|Xt). Importantly, as EEP focuses on early warning,
no prediction is carried out during events. The common approach in the EEP literature is to train
models that directly parameterize the cumulative failure function Fθ by minimizing the following
negative log-likelihood with labels yi,t = 1[∑t+h

k=t ek≥1]:

LEEP =

N∑
i

Ti∑
t

(
−ei,t[yi,t log(Fθ(h|Xi,t)) + (1− yi,t) log(1− Fθ(h|Xi,t))]

)
(1)

Dynamic Survival Analysis Conversely, DSA aims to model the precise time Te(t) until an event
of interest occurs given observation up to t. Thus, when considering a discrete setting, to model for
all horizons k ∈ N∗, the mass function f(k|Xt) = P (Te = t + k|Xt). This statistical framework

1https://anonymous.4open.science/r/dsa-for-eep

2

https://anonymous.4open.science/r/dsa-for-eep


Published as a workshop paper at TS4H@ICLR2024

Cumulative Failure
Function Estimator

Hazard
 Function Estimator

EEP

Threshold-based
Alarm Policy

Function

Priorization
Function

Aggregation

DSA

Event sequences Time-step Modeling Alarm system

 

 

Episode 1 Episode 2

Episode splitting

Figure 1: Overview of the pipeline for EEP (green) and our proposed DSA (purple) approach to EEP tasks.

has the particularity of considering terminal events only. There can be at most one event per tra-
jectory i and if not censored, it is at time Te = Ti + 1. Right-censoring refers to sequences where
an event hasn’t been observed before the last observation Ti. For this purpose, it is common to
define ci = 1[Ti ̸=Te] a right-censoring indicator. Then the DSA negative log-likelihood for a model
parameterizing the PMF fθ is defined as:

LDSA = −
N∑
i=1

Ti∑
t=0

(
(1− ci)fθ(Ti + 1− t|Xi,t) + ci([1−

Ti+1−t∑
k=1

fθ(k|Xi)])
)

It is known (Kalbfleisch & Prentice, 2011) that the survival likelihood can be re-written as binary
cross-entropy over the hazard function λ(k|Xt) = P (Te = t + k|Xt, Te > t + k − 1). Thus, it
is common in DSA to parameterize the hazard λθ and to minimize the following survival negative
log-likelihood using binary labels yi,t,k = 1[Ti−t=k∧ci=0] and sample weights wi,t,k = 1[k≤Ti−t] :

LDSA = −
N∑
i=1

Ti∑
t=0

Tmax∑
k=1

wi,t,k

(
[yi,t,k log(λθ(k|Xi,t)) + (1− yi,t,k) log(1− λθ(k|Xi,t))]

)
(2)

Given an estimate λθ, for a fixed h, we obtain estimates of the PMF fθ(h|Xt) =
∏h−1

k=1(1 −
λθ(k|Xt))λθ(h|Xt) and the cumulative failure function Fθ(h|Xt) = 1 −

∏h
k=1(1 − λθ(k|Xt)).

Thus, from a hazard estimate, one can also perform EEP tasks. To handle the case of non-terminal
events in EEP data, we proceed to split the existing sequences into episodes containing at most a
single event. We explain this re-organization precisely in Appendix A.1.

Bridging the gap on timestep-level performance In practice, fitting hazard deep learning models
to a DSA likelihood on EEP data is unstable and underperforms on timestep metrics. We find we can
overcome this issue with two simple modifications to the training. First, we find that instability is due
to extreme imbalance compared to EEP likelihood and propose a specific logit bias initialization to
handle it. Second, to focus on the horizon of prediction used at inference, we propose to match EEP
likelihood and truncate DSA likelihood only until the horizon of prediction h allowing to close
the gap with EEP (see Figure 4). We detail the exact procedure in Appendix A.3.
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Figure 2: Illustration of survTLS for three
non-censored samples. (Top) Ground-truth
PMF; (Bottom) survTLS smoothed PMF.

survTLS – A temporal label smoothing approach for
Survival Analysis Recent work (Yèche et al., 2023)
proposed Temporal Label Smoothing (TLS), a regular-
ization technique enforcing lower model certainty further
away from events. Given the improvements it leads to in
EEP, we proposed an extension to this method for DSA.
Indeed, we propose to smooth the ground truth PMF func-
tion f(h|Xt) by a Gaussian distribution over Z, whose
entropy increases with the event distance. We illustrate
our method, survTLS, in Figure 2 and provide all details
in Appendix A.4.
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3.2 LEVERAGING HAZARD ESTIMATION FOR ALARM POLICY

 

Horizon of prediction

Figure 3: Localization problem when estimating fail-
ure function Fθ . If only provided with an estimate at h,
as in EEP modeling, alarms would be raised similarly
for X1,X2 and X3. Because of the imminence of the
risk, we argue that given that risk decomposition, X1

should have a higher alarm priority.

A straightforward approach to using a DSA
model is to extract the failure estimate
Fθ(h|Xt) and apply the same alarm policy as
EEP. We refer to this approach as ”Fixed hori-
zon”. However, our motivation to estimate the
more challenging hazard function is to have
as a counterpart an estimate on the localiza-
tion of the risk within horizon h for the alarm
policy design. Given a risk estimate vector
rt = [Fθ(1|Xt), ..., Fθ(h|Xt)], we formalize
a mechanism to raise alarms depending on a
unique functioning threshold compatible with
the different event metric definitions. Below we
provide a short overview of it, an extensive def-
inition can be found in Appendix A.5.

Prioritization Following the idea of Yèche et al. (2023) to favor imminent events at training time,
we propose to favor them at inference. For this, we define a ”prioritization” p : [0, 1] × [1, h] −→
[0, 1] to be monotonically decreasing with the horizon. As for them, we use an exponential decay
function between 0 and h.
Aggregation Following the prioritization step, we obtain a scaled risk vector giving more impor-
tance to closer risks defined as st = [s1, ..., sh] = [p(Fθ(1|Xt), 1), ..., p(Fθ(h|Xt), h)]. Given a
working threshold τ , we can simply apply it to all elements of st and raise alarm at with estimated
distance dt as follows (and refer to it with Imminent prio.):

at = 1(
∑

1sk>τ )>0 and dt = min
k

[k | sk > τ ]

4 EXPERIMENTAL SET-UP

Tasks We perform experiments on three EEP tasks, early prediction of circulatory failure, mechan-
ical ventilation and decompensation on established benchmarks from HiRID (Yèche et al., 2021)
and MIMIC-III (Harutyunyan et al., 2019). Both circulatory failure and ventilation are predicted at
a 12-hour horizon with a 5-minute resolution, while decompensation is predicted at 24 hours with a
1-hour resolution. Further details about tasks and dataset can be found in Appendix B.1

Implementation details For all tasks, models are composed of a linear time-step embedding with
L1-regularization (Tomašev et al., 2019) coupled to a GRU (Chung et al., 2014) backbone. All
hyperparameters shared across methods were selected through validation performance (AuPRC) for
the EEP model and then used for all methods. Specific parameters to each method, such as priority
strength, are selected on individual validation performance. Further details about implementation
can be found in Appendix B.2. As discussed in Section 2, existing works have proposed specific
improvements to either EEP likelihood, with auxiliary regression (Tomašev et al., 2019) terms, or
DSA likelihood with a ranking term (Lee et al., 2018; Jarrett et al., 2019). Both EEP and DSA
likelihoods being versatile objectives, these extensions can be seamlessly incorporated for further
applications. Hence, we focus on comparing directly likelihood objectives alone. We consider a
model parameterizing the cumulative failure function at horizon h fitted by MLE over the EEP
likelihood and a model parameterizing the hazard function fitted by MLE over the DSA likelihood.

Table 1: Time-Step AuPRC. “EEP” and “Sur-
vival” refer to training with the respective vanilla
likelihoods.

Task HiRID MIMIC

Circ. Vent. Decomp.

EEP 39.0 ± 0.4 34.3 ± 0.3 37.1 ± 0.6
+ TLS 40.5 ± 0.4 34.9 ± 0.4 37.2 ± 0.3

Survival 37.4 ± 2.0 21.5 ± 7.5 N.A

+ Bias Init. 39.2 ± 0.3 31.3 ± 0.8 36.2 ± 0.4
+ Limit Horizon 40.7 ± 0.2 34.5 ± 0.4 37.4 ± 0.6
+ survTLS 40.7 ± 0.2 34.9 ± 0.3 38.4 ± 0.2

Evaluation At a time-step level, to evaluate the
goodness of the cumulative failure function estimate
Fθ across models, we follow a common approach
for highly imbalanced tasks, with the area under
the precision-recall curve (AuPRC). We report the
Alarm/Event AuPRC for event-level metrics, as de-
fined by Hyland et al. (2020). To measure the time-
liness of alarms, we also report the distance of the
first alarm and event recall at high alarm precision
thresholds. The high precision region represents a
clinically relevant setting with a lower risk of alarm
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Figure 4: Ablation on the
maximum considered hori-
zon in LDSA for ventila-
tion.
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Table 3: Event Recall and Mean Distance (in hours) of the first alarm on
MIMIC-III Decompensation at fixed alarm precisions of 60, 70, 80% .

Metric Event Recall Mean Dist. (h)

@ 60% P. @ 70% P. @ 80% P. @ 60% P. @ 70% P. @ 80% P.

EEP 66.7±0.0 60.9±0.1 52.4±0.0 6.2±0.1 4.9±0.1 3.4±0.1

+ TLS 68.1±0.0 62.4±0.0 54.8±0.0 6.5±0.0 5.2±0.0 3.7±0.0

Survival 68.5±0.0 63.2±0.0 57.5±0.0 6.4±0.1 5.1±0.1 4.0±0.1
+ survTLS 68.8±0.1 64.1±0.1 58.5±0.0 6.4±0.1 5.2±0.1 4.0±0.1
+ Imminent prio. 70.3±0.1 64.6±0.0 59.9±0.0 6.6±0.1 5.1±0.1 4.0±0.1

fatigue (Tomašev et al., 2019; Yèche et al., 2023). More details about metrics definition can be
found in Appendix B.3. Unless stated otherwise, all results are reported in the form mean ± 95%
CI of the standard error across 10 runs.

5 RESULTS
Table 2: Area under the Alarm Precision / Event
Recall Curve (Hyland et al., 2020). “Survival”
refers to training with bias initialization and trun-
cated survival likelihood Lh

DSA.

Task HiRID MIMIC

Circ. Vent. Decomp.

EEP 66.0±2.3 61.6±0.3 67.4±1.2

+ TLS 76.4±1.1 64.7±0.3 68.4±0.5

Survival 75.2±0.3 64.2±0.8 70.0±0.1

+ survTLS 77.5±0.6 64.8±1.5 70.9±0.3
+ Imminent prio. 79.5±0.1 66.7±1.4 71.3±0.5

Time-step level As shown in Table 1, we find that
vanilla survival models are significantly worse than
their EEP counterparts going as far as not converging
on the decompensation task. However, by fixing bias
initialization and truncating the DSA likelihood up
to h, we managed to close the gap and even surpass
in some cases MLE with EEP likelihood at a time-
step level.

Event level As shown in Table 2, we find that sur-
vival models, given the prior improvements, already
outperform EEP when used with a similar alarm pol-
icy with a fixed threshold over Fθ(h). When additionally introducing a priority function favoring
imminent events, this gap further increases by 1 to 3%. Finally, as shown in Table 3 for decom-
pensation, our prioritization of more imminent events does not come at the cost of event recall nor
distance to the event as our policy still matches or outperforms the base policy in both metrics.
Similar conclusions can be drawn for HiRID tasks (Appendix B).

6 CONCLUSION

In this work, we investigate the usage of DSA models for EEP tasks motivated by the additional
localization of the risk they provide. We show that even though more challenging to train, with
careful initialization and partial survival likelihood fitting, DSA models can be competitive at a
time-step level. Further, we show that our simple prioritization scheme for alarms allows DSA
models to outperform EEP counterparts even further. Our proposed prioritization transformation is
a first step towards tailored alarm policies. Future work remains to further leverage risk localization
to design more sophisticated alarm policies and provide a richer output to clinicians.
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Camia, Giorgio Libertá, and Jesus San Miguel. The potential predictability of fire danger pro-
vided by numerical weather prediction. Journal of Applied Meteorology and Climatology, 55(11):
2469–2491, 2016.

Martin Faltys, Marc Zimmermann, Xinrui Lyu, Matthias Hüser, Stephanie Hyland, Gunnar Rätsch,
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A METHOD

In this section, we detail the specific challenges raised by fitting a DSA likelihood in the context of
EEP tasks and our proposed solution to them.

A.1 HANDLING NON-TERMINAL EVENTS

In general, events from EEP are not terminal, meaning that observations are carried out during
and after an event and events can occur multiple times. To train a model using a survival analysis
method for these cases, the DSA framework requires unique terminal events. To address this issue,
we propose to instead only predict the occurrence of the closest event, if there is one.

In EEP tasks, timesteps within events are ignored in the likelihood. Thus, for a patient stay i experi-
encing v events at times te1 , ..., tev , respectively ending at times se1 , ..., sev , we proposed instead to
consider distinct episodes [Xi,0, ...,Xi,te1−1],[Xi,0, ...,Xi,te2−1], ..., [Xi,0, ...,Xi,Ti

] associated to
their respective labels [yi,0, ...,yi,te1−1],[yi,se2

, ...,yi,te2−1],...,[yi,sev
, ...,yi,Ti ]. It is important to

note that for any episode beyond the first one indexed by k, we provide the history of measurement
between 0 and sek−1

to ensure preserving the signal from previous occurrences. This procedure
ensures, that in each sample, if not censored, the event occurrence is unique and at the end of the
sequence, as in DSA.

A.2 BIAS INITIALIZATION

As resolution is high in ICU data and horizons of prediction relatively short, associated tasks tend
to already be imbalanced. Unfortunately, as shown in Eq 2, when fitting a hazard model, each
positive label from the EEP is associated with Ti − t − 1 negative elements for a single positive
label. Similarly, each negative is associated with Ti − t negative labels. Hence the prevalence from
the EEP task is divided by a factor T̄ corresponding to the average sequence length. This becomes
extreme in EHR data where sequences have thousands of steps. We found this to forbid convergence
in certain cases.

To overcome this issue, inspired by Karpathy (2019), we propose to initialize the bias of the logit
layer b = [b1, ..., bTmax

] such that the output probability 1
1+e−bk

= ỹ(k) with ỹ(k), the average
hazard label value for horizon k. Thus we initialize the bias as follows:

bk = log(
ỹ(k)

1− ỹ(k)
),∀k ≤ Tmax

We found this to greatly stabilize training and allow convergence. However, this alone does not
allow to match EEP models out of the box.

A.3 SURVIVAL LIKELIHOOD TRUNCATING

As shown in Table 1, correct initialization of biases already allows DSA models to be trainable for
ICU data, however, they still lag behind EEP counterparts. As motivated by Yèche et al. (2023),
further events are generally harder to predict due to their lower signal. We observe sequences to
be longer in EEP datasets than in DSA. Indeed, PCB2 and AIDS, two commonly used datasets in
DSA, have median lengths of 3 and 5 Maystre & Russo (2022), whereas MIMIC-III and HiRID have
median sequence lengths of 50 and 275. Thus, when fitting a DSA likelihood, a model is trained to
model event occurrence possibly much further than the fixed horizon of prediction h used in EEP.
As empirically validated in Fig.4), we believe such events dominate the loss due to their hardness,
forbidding the model to learn properly for events occurring within h steps. In the alarm policy, no
prediction, whether it is cumulative or not, is required beyond h.

To solve this issue, because in EEP no prediction is carried beyond h, we propose to fit DSA models
only until h. This translates into a truncated negative log-likelihood as follows:

Lh
DSA = −

N∑
i=1

Ti∑
t=0

h∑
k=1

wi,t,k

(
[yi,t,k log(λθ(k|Xi,t)) + (1− yi,t,k) log(1− λθ(k|Xi,t))]

)
(3)

9



Published as a workshop paper at TS4H@ICLR2024

A.4 SURVTLS – A TEMPORAL LABEL SMOOTHING APPROACH FOR SURVIVAL ANALYSIS

In EEP, prior work showed the effectiveness of TLS (Yèche et al., 2023) for timestep-level perfor-
mance. As a form of regularization, this method enforces EEP model certainty on their estimate
Fθ(h|Xt) to decrease with the distance to the next event, by modulating similarly label smoothing
strength during training. Given its success for EEP, transferring TLS to DSA is reasonable. Unfor-
tunately, this is not straightforward to do, as in DSA we model the more granular hazard function
λθ over all horizons with the constraint that

∑
h fθ(h) = 1.

In our extension survTLS, we propose to leverage this higher granularity in labels, not to control the
certainty of event occurrence, as in TLS, but rather to control the certainty of the event localization
based on its distance.

For this purpose, as shown in Figure 2, we replace the (hard) ground truth PMF vector fi,t =
[f(h|Xi,t) = 1[Ti−t=h∧ci=0]]h≥1 by a smooth version fS . Given a continuous distribution gi ∼
N (Ti, (

Ti

l )
2) and Gi its cumulative distribution, we define fS as its discretization :

fS(h|Xi) =


0 if ci = 1

Gi(h+ 1
2 ) elif h = 1

Gi(h+ 1
2 )−Gi(h− 1

2 ) elif h ∈ [2,K − 1]

1−Gi(h− 1
2 ) elif h = Tmax

The lengthscale hyperparameter l controls the strength of the smoothing. It was selected on valida-
tion metrics and more details can be found in Appendix B. Note that we preserve

∑
h fS(h|Xi,t) =

1. Following discrete survival analysis definitions, we can define the smooth survival function
SS(h|Xi,t) = 1−

∑h
k=1 fS(h|Xi,t) and the hazard function λS(h|Xi,t) =

fS(h|Xi,t)
SS(h−1|Xi,t)

.

By identifying wij and yij in Eq. 2 as respectively the ground-truth survival S(j|X) and hazard
probability λ(j|X) as proposed by Maystre & Russo (2022), we define our survTLS objective as
follows:

LsurvTLS = −
N∑
i=1

Ti∑
t=0

h∑
k=1

SS(k|Xi,t)
(
[λS(k|Xi,t)) log(λθ(k|Xi,t))

+ (1− λS(k|Xi,t))) log(1− λθ(k|Xi,t))]
)

(4)

We show the new labels y and weights w obtained from survTLS in Figure 5 and Figure 6.
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Figure 5: Illustration of the smooth hazard function λS serving as labels in survTLS.

10



Published as a workshop paper at TS4H@ICLR2024

0.0

0.5

1.0

P(
T e

>
h|

X) w1h = S(h|X1)
w2h = S(h|X2)
w3h = S(h|X3)

T1 T2 T3
Time-to-event h

0.0

0.5

1.0

P(
T e

>
h|

X) w1h = SS(h|X1)
w2h = SS(h|X2)
w3h = SS(h|X3)

Figure 6: Illustration of the smooth survival function §S serving as weights in survTLS.

A.5 ALARM POLICY DESIGN

Threshold-based policy In the literature, though crucial to clinical adoption, most works do not
explore model performance in terms of alarms for whole events and rather focus on timestep mod-
eling. This leads the current state-of-the-art alarm policy to still be straightforward. First, Tomašev
et al. (2019) proposed to define a working threshold τ ∈ [0, 1] selected based on a timestep pre-
cision constraint. Then, the alarm policy raises alarm at ∈ 0, 1 at any timestep where risk score
st = Fθ(h|Xt) is above τ :

at = 1Fθ(h|Xt)≥τ (5)

Silencing policy Later, to reduce the false alarm rate, Hyland et al. (2020) introduced the concept
of silencing. After a raised alarm following Eq.5. the system silences all subsequent alarms until the
duration σ of the silencing time has passed. This was then adopted in subsequent works on EWS
(Hüser et al., 2024; Lyu et al., 2024) If we define dat to be the distance to the last alarm at timestep
t, the silenced alarm policy is defined as follows:

at = 1Fθ(h|Xt)≥τ1da
t ≥σ (6)

It is important to note that silencing is applied regardless of the correctness of the alarm. Indeed,
EEP tasks are prognosis tasks, hence contrary to diagnosis tasks, the veracity of prediction is not
verifiable until the event occurs.

Imminent prioritization policy Hazard parametrization from DSA models provides an additional
hierarchy among cumulative failure estimate Fθ(h) on where the risk is located between 0 and h.As
explained in Section 3.2, we propose to integrate this information into the alarm policy. We follow
the same intuition as Yèche et al. (2023) to favor more imminent events given similar risk at horizon
h. Indeed, impending events should be acted on immediately and are less likely to be impacted by
a competitive event, thus they should have a higher priority than events equally probable but at a
further horizon.

We formalize this intuition by introducing a priority function p and transforming the output of the
DSA model to create a score vector st ∈ [0, 1]h from the output vector [[Fθ(1|Xt), ..., Fθ(h|Xt)]]
as follows:

st = [s1, ..., sh] = [p(Fθ(1|Xt), 1), ..., p(Fθ(h|Xt), h)]

Once on a a similar scale, we aggregate risk scores into a single alarm by defining at and the estimate
of the estimate distance dt as follows:

at = 1(
∑

1sk>τ )>01da
t ≥σ and dt = min

k
[k | sk > τ ] (7)
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Figure 7: Visualizations of the qexp exponential decay function used for prioritization of survival risk scores.
The plot show hmax = h = 144, and different γ for the convex and the concave version.

To enforce a prioritization of the closer horizons of prediction, we simply have to enforce, p to
be monotonically decreasing. We choose to implement the priority function with an exponential
decay (Yèche et al., 2023):

p(F, k) = qexp(k) · F (8)

where the exponential decay function qexp(k) is defined as follows:

q(t) =

{
0 if k > hmax

e−γ(k−d) +A if k ≤ hmax
(9)

where

A = −e−γ(hmax−d) (10)

d = − 1

γ
ln(1− e−γhmax) (11)

As shown in Figure7, hmax controls the intercept with 0 and γ the strength of the decay. Hence,
for any prediction beyond hmax, the risk score is set to 0. The two hyperparameters γ and hmax

are tuned on the validation set Alarm/Event AuPRC. Additionally, we also consider the following
”concave” case:

p(F, k) =
(
1− qexp(hmax − k)

)
· F (12)

B EXPERIMENTAL DETAILS

B.1 DATASETS

Table 4: Label and event prevalence statistics computed on the training set for all tasks.

Task Positive Patients undergoing Number of events
timesteps (%) event (%) per positive patient

Circulatory Failure (HiRID) 4.3 25.6 1.9
Mechanical Ventilation (HiRID) 5.6 56.5 1.5
Decompensation (MIMIC) 2.1 8.3 1.0
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Circulatory failure Online binary prediction of future circulatory failure events on the
HiRID (Faltys et al., 2021) dataset as defined by Yèche et al. (2021) every 5 minutes. The bench-
marked prediction horizon for the EEP models and the survival model at a fixed horizon are set at
12 hours.

Ventilation Online binary prediction of future ventilator usage on the HiRID (Faltys et al., 2021)
dataset every 5 minutes. The ventilation status is extracted from the data as defined by Yèche et al.
(2021) and the prediction horizon is 12 hours.

Decompensation Online binary prediction of patient mortality as defined by Harutyunyan et al.
(2019). A label is positive if the patient died within the horizon. Benchmarked and evaluated on
MIMIC-III (Johnson et al., 2016) at a 24 hour horizon.

B.2 IMPLEMENTATION

Training details. For all models, we set the batch size to 64 and the learning rate to 1e−4 us-
ing Adam optimizer Kingma & Ba (2017). We early-stop each model training according to their
validation loss when no improvement was made after 10 epochs.

Libraries. An exhaustive list of libraries and their version we used is in the environment.yml
file from the code release.

Infrastructure. We trained all models on a single NVIDIA RTX2080Ti with 8 Xeon
E5-2630v4 cores and 64GB of memory. Individual seed training took between 3 to 10 hours
for each run.

Timestep modeling hyperparameter We used the same architecture and shared hyperparameters
for both types of likelihood training. These were selected based on the validation performance of
EEP likelihood training. It is possible further improvement can be achieved by selecting different
hyperparameters for our DSA approach. However, we prefer to be conservative to ensure a fair
comparison. Exact parameters are reported in Table 6, Table 7, Table 8.

Temporal label smoothing hyperparameters Similarly we selected hyperparameters for TLS
and survTLS on validation set timestep AUPRC. We found similar hyperparameters as the original
paper for TLS with hmax = 2×h and hmin = 0 and γcirc = 0.2, γvent = 0.1, and γdecomp = 0.05.
For survTLS, we found for the lengthscale parameter that lcirc = 10, lvent = 50, ldecomp = 8. We
plot the obtained labels and weights from smoothing the groud-truth event PMF f corresponding to
smooth hazard function λS and survival function SS in Figure 5 and Figure 6.

Alarm policy hyperparameter We find that a short one step silencing actually performs the best
(5 minutes on HiRID and 1 hour on MIMIC-III) based on validation set performance for the EEP
model and keep that constant across all experiments also for the survival models.

For the prioritized alarm policy we tune hmax, γ, and qexp function type for each task on the vali-
dation set. Chosen values are shown in Table 5.

Table 5: Hyperparameter search range for prioritized alarm policies on top of DSA models. In bold are
parameters selected by grid search.

Hyperparameter Decomp Circ. Vent.

hmax (12, 24, 36, 48, 96) 144:[72,720] 576:[72,720]

γ 0.1:[0.01,2.0] 0.5:[0.01,2.0] 2.0:[0.01,2.0]

Function Type (Convex, Concave) (Convex, Concave) (Convex, Concave)
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Table 6: Hyperparameter search range for circulatory failure, In bold are parameters selected by grid search.

Hyperparameter Values

Drop-out (0.0, 0.1, 0.2, 0.3)

Depth (1, 2, 3, 4)

Hidden Dimension (64, 128, 256, 512)

L1 Regularization (1e-1, 1, 10, 100)

Table 7: Hyperparameter search range for mechanical ventilation, In bold are parameters selected by grid
search.

Hyperparameter Values

Drop-out (0.0, 0.1, 0.2, 0.3)

Depth (1, 2, 3, 4)

Hidden Dimension (128, 256, 512,1024)

L1 Regularization (1e-1, 1, 10, 100)

Table 8: Hyperparameter search range for decompensation, In bold are parameters selected by grid search.

Hyperparameter Values

Drop-out (0.0, 0.1, 0.2, 0.3)

Depth ( 2, 3, 4, 5)

Hidden Dimension (128, 256, 512 ,1024)

L1 Regularization (1e-1, 1, 10, 100)

B.3 EVENT-LEVEL EVALUATION

Commonly online early event predictions on clinical time series are evaluated on their time-step
performance at a fixed horizon (Harutyunyan et al., 2019; Yèche et al., 2021; van de Water et al.,
2024) using area under the precision-recall curve (AuPRC) due to heavy imbalance. While useful to
compare machine learning estimators, these metrics do not give relevant clinical insights on actual
explicit event detection performance. Tomašev et al. (2019); Yèche et al. (2023); Moor et al. (2023)
note the relevance of reporting event-oriented performance such as event recall or precision and
distance to event at a fixed sensitivity level. To get a general event-level evaluation across different
working thresholds, Hyland et al. (2020) define event-based precision-recall curve mapping event
recall to an effective alarm precision. We detail the event metric definitions below

Event Recall Proposed by Tomašev et al. (2019), given binary timestep predictions a, event recall
Revent corresponds to the true positive rate over event predictions. An event E at time tE is detected
if any at if positive between tE − h and te − 1. Hence the following definition:

Revent =

∑
E 1(

∑tE−1

tE−h at)>0

#Events

Alarm Precision Proposed by Hyland et al. (2020), given binary timestep predictions a, alarm
precision Palarm is the proportion of alarm raised located within h of a event. It is defined as
follows:

Pevent =

∑
E(

∑tE−1
tE−h at)∑
t at
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Note, that considering a single event, there can be multiple true alarms for it as long as they fall
within the prediction horizon.

In our work, the first event metric we report is the Event Recall @ Alarm Precision for high
precision threshold corresponding to clinically applicable regions.

Distance to Event Because event recall does not capture the earliness of the alarm, Hyland et al.
(2020) also proposes to report the distance for the first alarm for an event Dfa. Formally for an
event event E at time tE this is defined as:

Dfa = max
k∈[tE−h,tE−1]

[TE − k|ak = 1]

Alarm/Event AuPRC Finally, to not depend on binary prediction, Hyland et al. (2020) propose
a curve score where alarms a directly depend on a working threshold τ ∈ [0, 1] where a point
(x, y) =

(
Revent(τ), Palarm(τ)

)
. The final score is the area under this curve. As for timestep

prediction, this metric gives a global overview of the model performance at different thresholds.

15



Published as a workshop paper at TS4H@ICLR2024

C ADDITIONAL RESULTS

Table 9: Event Performance on HiRID Circulatory Failure at fixed alarm precisions.

Metric Event Recall Mean Dist. (h)

@ 60% P. @ 70% P. @ 80% P. @ 60% P. @ 70% P. @ 80% P.

EEP 67.1±0.0 46.6±0.0 24.5±0.1 1.61±0.04 0.93±0.02 0.36±0.02

+ TLS 83.3±0.0 70.9±0.0 52.8±0.0 1.99±0.04 1.40±0.01 0.81±0.02
Survival 79.0±0.0 65.0±0.0 48.2±0.0 1.81±0.02 1.19±0.02 0.69±0.01

+ survTLS 82.5±0.0 69.5±0.0 54.4±0.0 1.85±0.02 1.26±0.02 0.78±0.02
+ Imminent prio. 88.7±0.0 75.0±0.0 55.3±0.0 1.91±0.03 1.24±0.04 0.70±0.00

Table 10: Event Performance on HiRID Ventilation at fixed alarm precisions.

Metric Event Recall Mean Dist. (h)

@ 60% P. @ 70% P. @ 80% P. @ 60% P. @ 70% P. @ 80% P.

EEP 55.7±0.0 49.0±0.0 39.7±0.0 1.25±0.04 0.96±0.04 0.69±0.03

+ TLS 58.2±0.1 52.9±0.0 44.7±0.0 1.23±0.01 1.01±0.00 0.73±0.01
Survival 58.2±0.0 50.8±0.0 41.2±0.0 1.20±0.03 0.93±0.03 0.66±0.01

+ survTLS 60.3±0.0 52.3±0.0 42.7±0.0 1.24±0.02 0.94±0.01 0.69±0.01
+ Imminent prio. 64.5±0.1 58.0±0.1 43.8±0.0 1.43±0.02 1.14±0.03 0.66±0.03

Event Recall and Distance to Event In Tables 9 and 10 we show event recall and mean distance
to events at different alarm precision levels for HiRID Ventilation and Circulatory Failure respec-
tively. As noted before in the main manuscript, also on the HiRID dataset we can improve event
performance while maintaining (or even slightly improving) on the distance of the first alarm to the
event.

Event Performance Curves In Figure 8 we show alarm precision and mean distance to event
curves plotted over levels of event recall (sensitivity of the alarm policy conditioned on a risk pre-
dictor).
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(b) Circulatory Failure on HiRID
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Figure 8: Event-based performances of the alarm policy under different models. We show the event-based
alarm precision (Hyland et al., 2020) and also plot the mean distance of the first alarm to the event horizon at
each event detection sensitivity level.
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