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ABSTRACT

We introduce Integer Scale, a novel post-training quantization scheme for large
language models that effectively resolves the inference bottleneck in current fine-
grained quantization (i.e. group-wise quantization) approaches while maintaining
similar accuracies. Integer Scale is a free lunch as it requires no extra calibration
or fine-tuning which will otherwise incur additional costs. It can be used plug-
and-play for most fine-grained quantization methods. Its integration results in at
most 1.85× end-to-end speed boost over the original counterpart with comparable
accuracy. Additionally, due to the orchestration of the proposed Integer Scale and
fine-grained quantization, we resolved the quantization difficulty for Mixtral-8x7B
and LLaMA-3 models with negligible performance degradation, and it comes with
an end-to-end speed boost of 2.13×, and 2.31× compared with their FP16 versions
respectively.

1 INTRODUCTION

The size of language models has continued to grow exponentially throughout recent years. To name
some iconic models, Transformers (Vaswani et al., 2017) initially bear 65M parameters, BERT (Devlin
et al., 2019) exceeds with 340M, GPT-3 (Brown et al., 2020) prevails with 175B, PaLM (Chowdhery
et al., 2022) trumps with 540B and most lately GPT-4 (OpenAI, 2023) is estimated to have reached
1.8T parameters. This seemingly unstoppable trend is largely promoted by the so-called scaling law
(Kaplan et al., 2020) where a model’s capability, via a proxy metric of auto-regressive maximum-
likelihood loss, exhibits a power-law relationship to its number of parameters, dataset sizes, and
compute respectively. Not surprisingly, the intimidating number of parameters of Large Language
Models (LLMs) place an almost insurmountable hurdle for inference, potentially preventing their
pervasive applications.

However, optimizing the serving efficiency of LLMs is a non-trivial task. LLMs generally comprise a
compute-intense pre-filling stage and a memory-bound self-decoding stage. Exploiting integer matrix
multiplication speeds up the computation, but directly applying post-training quantization usually
generates a large performance drop. Quantization-aware training methods like LLM-QAT (Liu et al.,
2023) require costly computing resources to fine-tune all the weights. In contrast, post-training
quantization is more affordable and commonly used in practice. For instance, SmoothQuant (Xiao
et al., 2023) transforms activation outliers into weights for better quantization accuracy. Recently,
fine-granularity grouping (i.e. group-wise quantization as opposed to channel-wise quantization in
‘coarse-grained’ quantization) (Park et al., 2022) is often used as a general paradigm to reduce the
quantization errors, as in ZeroQuant (Yao et al., 2022), GPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2023) and FPTQ (Li et al., 2023b). FPTQ proposes a fine-grained W4A8 strategy to address the
memory-bound issue as a trade-off between W4A16 and W8A8. While its high quantization accuracy
benefits from fine-grained quantization, the actual inference is also stalled by inefficient operations
introduced by its intrinsic computational complexity due to fine granularity.

In this paper, we are driven to design a faster fine-grained quantization scheme called Integer Scale
that renders fewer quantization errors (Table 3) and simultaneously achieves boosted speed (see
Figure 1). Our contributions are multi-fold:

1. We unveil the intrinsic inference bottleneck of fine-grained LLM quantization approaches
and find a hassle-free cure, called Integer Scale, with negligible accuracy loss. Our approach
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Figure 1: End-to-end latency comparison of W4A8 (Integer Scale) compared with W4A8 (Float
Scale) and W4A16 (Marlin) on LLaMA-2 models. The speedup ratio is written on top of the bars.

can be used as an out-of-box plugin for the state-of-the-art quantization methods (e.g.
GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023), Omniquant (Shao et al., 2023),
QuaRot (Ashkboos et al., 2024) etc.) with minimum modifications.

2. The orchestration of fine-grained quantization and the integer scale scheme not only retains
the performance of the existing methods but also effectively addresses the quantization
difficulty of LLMs built with the mixture-of-experts technique (Jiang et al., 2024) and
LLaMA-3 (AI@Meta, 2024).

3. Our integer scale, when applied to fine-grained W4A8 paradigms, achieves at most 1.85×
end-to-end speed boost over FP16, 1.17× over Marlin W4A16 (Frantar & Alistarh, 2024),
1.83× over its float scale counterpart, while being comparable in performance. This suggests
the viability of our approach as we have achieved a new Pareto-front of speed vs. accuracy.

2 RELATED WORK

2.1 LLM SERVING FRAMEWORKS AND OPTIMIZATION TECHNIQUES

vLLM (Kwon et al., 2023) brings about paged attention (Kwon et al., 2023) and continuous batching.
FasterTransformer (NVIDIA, 2023b) provides a highly optimized inference framework featuring cut-
lass GEMMs, CUDA kernels. Built on top of FasterTransformer (NVIDIA, 2023b), LMDeploy (Con-
tributors, 2023) features an efficient backend called TurboMind that seeks extreme optimization
through persistent batching, KV caching, and a low-bit quantization toolkit. Another sprout from
FasterTransformer is TensorRT-LLM (NVIDIA, 2023c), which is tailored particularly for NVIDIA
GPUs and ensembles many up-to-date inference techniques like flash attention (Dao et al., 2022), FP8
quantization (Micikevicius et al., 2022), in-flight batching, graph optimization, etc. Marlin (Frantar &
Alistarh, 2024) ships so far the fastest W4A16 kernel along with a bag of optimization tricks, while
QServe (Lin et al., 2024) brings an advanced W4A8 kernel implementation. FP6-LLM (Xia et al.,
2024) delicately devises a software solution to support the FP6 precision on NVIDIA A100 GPUs.

2.2 LLM QUANTIZATION ALGORITHMS

Quantization is one of the most adopted optimization techniques to compress LLMs to their extremity.
Nevertheless, it becomes more challenging as we chase for the quantization of lower bit widths (e.g.
4-bit, 2-bit, or binary), it faces more critical accuracy loss. It also requires efficient hardware-aware
implementations that demand strenuous engineering effort.

Weight-only Quantization. GPTQ (Frantar et al., 2022) renovates OBQ (Frantar & Alistarh, 2022)
to obtain an approximate second-order method that compensates for the quantization error. AWQ (Lin
et al., 2023) is a mixed-precision weight-only method that locates salient weight channels and searches
for the corresponding optimal scales. Omniquant (Shao et al., 2023) introduces learnable weight
clipping that restricts extreme weight values and proposes learnable smoothing factors that tackle
the activation outliers following SmoothQuant (Xiao et al., 2023). Extreme low-bit approaches also
focus on weight-only quantization. Norm Tweaking (Li et al., 2024a) exploits layer norm tuning to
alleviate the performance degradation, QuiP (Chee et al., 2024) profits from orthogonal matrices and
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(a) Fine-grained Quantization (b) Float Scale (c) Integer Scale

g01g00 g02 g03
g11g10 g12 g13
g21g20 g22 g23
g31g30 g32 g33
s01s00 s02 s03
s11s10 s12 s13
s21s20 s22 s23
s31s30 s32 s33

×

sa0
sa1
sa2
sa3

x01x00 x02 x03
x11x10 x12 x13
x21x20 x22 x23
x31x30 x32 x33

M

N

K

= *

+= I32toF32(                           ) *

= I32toF32(                           ) *

+= I32toF32(                           ) *

+= I32toF32(                           ) *

g00x00 s00×
g10x01 s10×

Acc sa0

Acc

g20x02 s20×
g30x03 s30×

Out

+= * I32( *            )

+= * I32( *            )

+= * I32( *            )

= * I32( *            )g00x00 s00×
g10x01 s10×

= I32toF32(.          ) * /sa0

Acc

g20x02 s20×
g30x03 s30×

α

α

α

α

AccOut α

Figure 2: (a) Fine-grained quantization divides activation X of size M × K and weight K × N
into groups for separate quantization. (b) The previous float scale scheme requires numerous costly
type conversions (I32toF32) from grouped matrix multiplication results, which impedes the overall
performance. Our proposed scheme (c) with integer scales and automatic amplifiers (denoted as α)
alleviates the problem while retaining similar accuracy. Note sij are the scales for each weight group
gij , and sai are the scales for X .

AQLM (Egiazarian et al., 2024) from additive quantization with a codebook for 2-bit quantization,
while PB-LLM (Shang et al., 2023) uses partial 1-bit quantization.

The weight-only scheme alleviates the memory-bound issue but its activation remains in FP16. Recent
speculative parallel decoding methods (Leviathan et al., 2023; Li et al., 2024b; Cai et al., 2024) lead
the decoding phase to a compute-bound scenario, which leaves room for improvement.

Weight-Activation Quantization. ZeroQuant (Yao et al., 2022) presents a fine-grained quantization
scheme coupled with distillation. SmoothQuant (Xiao et al., 2023) enables W8A8 post-training
quantization by smoothing the outliers with a heuristic factor and ships with a handcrafted CUDA
kernel that ensures hardware efficiency. OdysseyLLM (Li et al., 2023a) is a coarse-grained W4A8
scheme that reduces the performance gap compared with W4A16 and W8A8. QUIK (Ashkboos et al.,
2023) implements W4A4 quantization with mixed-precision.

Fine granularity generally further enhances the quantized accuracy. FPTQ (Li et al., 2023b) is a
W4A8 fine-grained solution. Atom (Zhao et al., 2023) is a fine-grained mixed-precision W4A4
method. However, they typically suffer from low latency issues which cancel out the benefits from
lower bit widths. DGQ (Zhang et al., 2024) attempts to apply a dual quantization scheme to improve
the efficiency of the fine-grained approach.

Rotation-based Quantization. QuiP (Chee et al., 2024), QuiP# (Tseng et al., 2024), QuaRot (Ashk-
boos et al., 2024) are a line of quantization methods that profits from the computation invariance of the
orthogonal matrices for outlier suppression. To undo the rotation effect, extra online transformations
are applied. When implemented efficiently, this overhead can be deemed nearly negligible.

3 MOTIVATION

3.1 FINE GRANULARITY STRENGTHENS CURRENT QUANTIZATION APPROACHES

Fine granularity approaches (Li et al., 2023b; Lin et al., 2023; Zhao et al., 2023) bear prevailing
benefits over many state-of-the-art LLM quantization methods. In extreme cases, it even produces
reasonable results when coarse methods fail. It can be applied as a plug-in method to boost the
accuracy of the existing methods. Formally, the output Oi of a fine-grained weight-activation
quantization GEMM can be written as,

Oi = sai ∗
∑
g

(Xgi ×W⊤
gi) ∗ sgi (1)

where sai
is the i-th scale for the activation, sgi is the scale for each weight group. Xgi and Wgi

are the corresponding activation and weight for each group g. Depending on the precision of matrix

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

multiplication, specific type conversions are required to perform either scalar or matrix multiplication.
For instance, if we adopt a fine-grained W8A8 scheme with integer tensor cores for the computation,
the INT32 result has to be converted to float for the later dequantization.

This process is depicted in Figure 2 (a), where it typically considers weights in groups and each has its
float scale. We apply the fine-granularity strategy to approaches that cover commonly-used bit widths
range in W4A16, W8A8, W4A8, and W4A4 in Table 1 to exhibit that group-wise fine-granularity
consistently improves the quantized performance compared with its original coarse counterpart.
Note on the LLaMA-3-70B model, the vanilla Round-to-Nearest (RTN) caused a large performance
collapse while its fine-grained version can easily handle it. As we drive from W8A8 to lower bits,
the quantization error increases. Especially, when applying QuaRot (Ashkboos et al., 2024) on
LLaMA-3-70B at W4A4, the perplexity bursts into an unreasonable value, and fine-granularity can
alleviate the issue.

Table 1: Applying fine granularity (denoted by ‘FG’) to the state-of-the-art quantization methods
on LLaMA-2 models. Perplexity is tested on C4 (the lower the better). Group = -1 indicates
coarse-grained weight quantization while 128 means fine-grained with a group size of 128.

Bitwidth Method Group LLaMA-2 LLaMA-3
7B 13B 70B 8B 70B

FP16 Baseline 7.05 6.46 5.52 8.88 6.73
W8A8 RTN (Yao et al., 2022) -1 7.19 6.51 5.64 9.05 75.05

RTN w/ FG 128 7.2 6.51 5.64 9.04 7.15
W8A8 SmoothQuant (Xiao et al., 2023) -1 7.2 6.51 5.58 9.03 7.38

SmoothQuant w/ FG 128 7.2 6.51 5.58 9.03 7.48
W8A8 FPTQ (Li et al., 2023b) -1 7.08 6.50 5.55 8.97 8.88

FPTQ w/ FG 128 7.08 6.50 5.54 8.95 6.81
W4A16 GPTQ (Frantar et al., 2022) -1 7.47 6.84 5.71 10.54 7.83

GPTQ w/ FG 128 7.22 6.65 5.61 9.70 7.26
W4A8 Odyssey (Li et al., 2023a) -1 7.58 6.70 5.78 10.25 12.15

Odyssey w/ FG 128 7.26 6.60 5.60 9.56 7.09
W4A4 QuaRot (Ashkboos et al., 2024) -1 7.87 7.11 5.92 12.06 544.50

QuaRot w/ FG 128 7.82 7.08 5.90 11.8 132.20

3.2 FINE-GRAINED QUANTIZATION SUFFERS FROM THE INFERENCE BOTTLENECK
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Figure 3: Kernel latency comparison between
W4A8 w/ Float Scale vs. FP16. The red line
denotes its acceleration ratios over FP16.

Although fine-grained quantization can achieve
higher accuracy, as demonstrated in (Li et al., 2023b),
we have found it to be particularly slow during in-
ference, which is also noted in the Dual-Granularity
Quantization (DGQ) method (Zhang et al., 2024).
The advantages of using lower bit widths are often
offset by the computational overhead they introduce.
Figure 3 compares the kernel latency under typical in-
ference batch sizes (drops from 3.15× to 0.5×). No-
tably, the fine-grained kernel is significantly slower
when compared to FP16 at larger batch sizes, making
it less practical for deployment. Further analysis con-
firms that fine-grained approaches inherently require
numerous costly type conversions. The result of each
integer matrix multiplication has to be converted to
float precision to multiply the corresponding float scale, as depicted in Figure 2 (b).

The intrinsic computation drawbacks disable its use in practice. This incoherent situation calls for a
novel fine-grained scheme that is both computationally efficient and accuracy-retaining.
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4 METHOD

4.1 INTEGER SCALE WITH ADAPTIVE SCALE AMPLIFIER

Motivated by the previous discussion, it is then critical to boost the fine-grained inference. Figure 2
(b) has shown that using float scale triggers numerous costly type conversions. For instance, a typical
Dense layer of size 4096×4096 with 128 groups has 131072 float scales, thus the same amount of
type conversion operations are needed. Each operation requires additional element-wise conversions.
Intuitively, we can resort to integer scales to avoid it. However, since all normalized float scales are
in the (0, 1) range, directly converting scales to integers certainly causes tremendous quantization
errors. To mitigate this problem, we involve an integer amplifier α, called adaptive scale amplifier,
which can be easily computed based on the available float scales. Our method is put formally as,

Oi = sai
∗ FLOAT

(∑
g

(Xgi ×W⊤
gi) ∗ INT(sgi ∗ α)

)
/α (2)

To find the common amplifier, we use a heuristic search algorithm that starts from 20 to amplify
the minimum scale of all groups until we meet an amplifier 2i that guarantees amplified scales to
be bigger than 1, see Listing 1. Note we adopt an amplifier as the power of 2 for more efficient
implementation of multiplication and division as simple bit shifts will do. It is not necessarily to be
so, other amplifiers like INT (1/tmp) will also be fine.

1 scale_min = scales.min()
2 n, tmp = 0, scale_min
3 while tmp < 1:
4 tmp = scale_min * (2**n)
5 n+=1
6 scale_amplifier = 2**(n-1)

Listing 1: Quick Heuristic Search for Integer Scale
Amplifier

Ideally, we can use the above heuristic method
to find the optimal amplifier per layer. However,
based on the scale analysis of LLaMA-2-7B in
Figure 4 (a,b,c), we find that the number of bit
shifts required to amplify the scale mainly falls
to 9 or 10. The weight MSE when using an
amplifier of 210 is in the range of (10−7, 10−6),
as compared with its float counterpart. A similar
observation applies to 13B and 70B models. We
can select 210 as our default amplifier to avoid
possible overflow as the later ablation (Table 8) shows a bigger amplifier has no clear gains.
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Figure 4: (a) The range of amplified (α = 210) float scales of LLaMA-2-7B in the first layer (others
are similar) mapped to 16-bit integers. The majority of amplified scales can be represented within 8
bits. (b) The number of bit shifts required to amplify scales per linear layer. (c) Weight MSE between
integer scale and float scale under different amplifiers.

4.2 KERNEL IMPLEMENTATION

Table 2 illustrates the difference in typical kernels. Current hardware supports a standard MatMul
GEMM which isn’t suited for fine-grained approaches. Each group of Ai and Wi are multiplied and
iteratively accumulated to register Ci. Atom (Zhao et al., 2023)’s fine-grained W4A4 kernel adopts
4-bit for both weight and activation, which performs group-wise products and collects partial sums
with an additional register C ′. Note Atom’s float conversion becomes the main bottleneck while
ours removes this costly operation by applying integer scales sINT

i .
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Table 2: Comparison of kernel computation logic.
MatMul Atom Ours

C1 = A1 ∗W1 + C0 C1 = A1 ∗W1, C
′ = float(C1) ∗ s1 C1 = A1 ∗W1, C

′′ = C1 ∗ sINT
1

C2 = A2 ∗W2 + C1 C2 = A2 ∗W2, C
′ += float(C2) ∗ s2 C2 = A2 ∗W2, C

′′ += C2 ∗ sINT
2

· · · · · · · · ·

We also present our computation strategy in Figure 2 (c). Since the result of group-wise weight and
activation matrix multiplication (e.g., x00 × g00, executed with integer tensor cores) becomes INT32,
we only need to convert the amplified scale to INT32 offline. Each group is then accumulated to have
the final result. The large number of type conversions on the matrix is thus reduced to only once
for activation dequantization. Besides, we exploit the efficient weight processing and kernel fusion
technique of OdysseyLLM’s FastGEMM (Li et al., 2023a) for fast inference. The combination makes
fine-grained kernels substantially efficient, enabling fine-grained approaches as a feasible solution.

5 EXPERIMENTS

5.1 SETUP

Models and Datasets. We benchmark Integer Scale and other state-of-the-art quantization methods
on the well-known LLaMA-2 (Touvron et al., 2023) and LLaMA-3 (AI@Meta, 2024) models and
Mixtral 8x7B (Jiang et al., 2024). Several datasets are used for evaluation, including LAMBADA
(Paperno et al., 2016), C4 (Raffel et al., 2020), WikiText-2 (Merity et al., 2016), MMLU (Hendrycks
et al., 2021), and a set of Common Sense QA (Talmor et al., 2019) tasks like WinoGrande (Sakaguchi
et al., 2021), PIQA (Tata & Patel, 2003), HellaSwag (Zellers et al., 2019), ARCe. For CommonSense
QA tasks, we utilized the Language Model Evaluation Harness (Gao et al., 2021) tool.

Inference Framework. We adopt an end-to-end inference pipeline with cutlass (NVIDIA, 2023a)
that mainly profits GPU Tensor Core execution, kernel fusion policies, and graph optimization.
Unless otherwise notified, we use the same framework for fair comparisons. Note for LLaMA models
with W4A16, we use Marlin (Frantar & Alistarh, 2024) for inference as it claims to be the fastest
available framework. For Mixtral 8x7B, we had to use our W4A16 implementation as Marlin hasn’t
supported it yet. The latency is tested on a single NVIDIA A100 GPU, except for LLaMA-2-70B and
Mistral 8x7B we use four such GPUs.

Baselines. In our experiments, we choose GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023),
and Omniquant (Shao et al., 2023) as our baselines, given that they are the most prevalent fine-
grained quantization schemes. Throughout the paper, we adopt per-token activation quantization, and
per-channel weight quantization by default.

5.2 EXPERIMENT RESULT ON LAMBADA, C4, AND WIKITEXT-2

Table 3 exhibits the quantization result of LLaMA-2 and Mixtral models when applying Integer
Scale (IS) to GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023), and Omniquant (Shao et al.,
2023) on LAMBADA, WikiText-2, and C4 datasets. Our approach generally shows on-par or better
performance, indicating that the Integer Scale applies to the existing quantization methods and retains
the quantized performance at lower bits like W4A8. Note since Ominiquant on LLaMA-2-70B
originally fails, so does its integer scale variation.

5.3 EXPERIMENT RESULT ON COMMON SENSE QA

Table 4 compares the Common Sense QA (Talmor et al., 2019) result of applying the Integer Scale on
state-of-the-art quantization approaches. A similar conclusion to Section 5.2 can be reached. More
results on MMLU (Hendrycks et al., 2021) can be found in Table 9 in Section B.
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Table 3: Comparison with state-of-the-art quantization methods on LAMBADA (accuracy), C4 (PPL),
and WikiText (PPL). For all models tested, we set the weight group size to 128 and apply symmetric
quantization. Integer Scale (IS) with amplifier 1024 is used.
Dataset HyperParam LLaMA-2 Mixtral

Method BitWidth 7B 13B 70B 8x7B

LAMBADA

FP16 W16A16 73.70% 76.64% 79.57% 77.62%
GPTQ W4A8 71.65% 75.88% 78.54% 73.89%
GPTQ w/ IS W4A8 71.66% +0.01 75.39% -0.48 78.67% +0.13 73.93% +0.03
AWQ W4A8 70.15% 75.47% 78.48% 76.24%
AWQ w/ IS W4A8 70.07% -0.07 75.02% -0.44 78.42% -0.05 74.30% -1.94
Omniquant W4A8 71.76% 75.98% NaN 76.09%
Omniquant w/ IS W4A8 70.91% -0.85 75.60% -0.36 NaN 76.01% -0.07

WikiText-2

FP16 W16A16 5.65 4.95 3.36 3.93
GPTQ W4A8 12.32 5.16 3.66 4.51
GPTQ w/ IS W4A8 13.13 +0.81 5.18 +0.02 3.69 +0.03 4.59 +0.08
AWQ W4A8 6.12 5.27 3.66 4.30
AWQ w/ IS W4A8 6.19 +0.07 5.30 +0.03 3.70 +0.04 4.42 +0.12
Omniquant W4A8 5.94 5.16 NaN 4.27
Omniquant w/ IS W4A8 5.97 +0.03 5.17 +0.01 NaN 4.36 +0.09

C4

FP16 W16A16 7.05 6.46 5.52 6.88
GPTQ W4A8 39.96 6.66 5.75 7.31
GPTQ w/ IS W4A8 37.25 +2.71 6.68 +0.02 5.78 +0.03 7.39 +0.08
AWQ W4A8 7.57 6.79 5.73 7.15
AWQ w/ IS W4A8 7.64 +0.07 6.83 +0.04 5.76 +0.03 7.27 +0.12
Omniquant W4A8 7.41 6.65 NaN 7.12
Omniquant w/ IS W4A8 7.44 +0.03 6.67 +0.02 NaN 7.21 +0.09

5.4 W4A8 KERNEL LATENCY COMPARISON

Figure 5 (a) illustrates the comparison of kernel implementations under various bandwidths. Mar-
lin (Frantar & Alistarh, 2024) ships so far the most advanced W4A16 kernel implementation.
Odyssey’s W4A8 scheme largely benefits its specific FastGEMM and has the optimal accelera-
tion ratio over FP16. It can be seen that fine-grained W4A8 with integer scale becomes a feasible
scheme between W4A16 and non-fine-grained W4A8 for better accuracy. Interestingly, we discover
a “performance cliff” (gray-colored) where the acceleration ratio suddenly drops when it transits
from memory-bound to compute-bound scenarios. This is due to the sudden drop from the ideal 4×
speedup to 2× vs. FP16. It is however as expected. In small batch scenarios where the inference is
mainly memory-bound, all W4 solutions could achieve nearly theoretical 4× acceleration (W4 vs.
FP16). While in large batch scenarios where it is leaning towards compute-bound, the ratio turns into
2× since INT8 tensor cores are theoretically 2× of FP16 (A8 vs. FP16). However, the fine-grained
W4A8 kernel with float scale suffers from fine granularity and its speed is even inferior to W4A16,
for which reason we resolve it with Integer scale to achieve practical gain.

5.5 SPEED BOOST ON MIXTURE-OF-EXPERTS

Figure 5 (c) shows the end-to-end latency of the W4A8 Integer Scale scheme applied to the Mixtral
8×7B, where we obtain at most 1.55× and 1.3× boost, compared with FP16 and W4A16 respectively.

5.6 OUR RECIPE FOR LLAMA-3 Table 5: Our LLaMA-3 Integer Scale recipe.
Model BitWidth α Group C4 WikiText-2

LLaMA-3-8B W4A8 - 128 9.331 6.352
LLaMA-3-8B W4A8 8192 128 9.379 6.382

LLaMA-3-70B W4A8 - 128 7.061 3.280
LLaMA-3-70B W4A8 8192 128 7.092 3.312

LLaMA-3 is difficult to quantize at
lower bits compared with its predeces-
sors, as confirmed in (Huang et al.,
2024). To counter the problem, we
apply QuaRot (Ashkboos et al., 2024)
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Table 4: Comparison with state-of-the-art quantization methods on Common Sense QA. For all
models tested, we set the weight group size to 128 and apply symmetric quantization. Integer Scale
(IS) with amplifier 1024 is used.

Model HyperParam Common Sense QA
Method BitWidth WinoGrande PIQA HellaSwag ARC e Avg

LLaMA-2-7B

FP16 W16A16 0.6906 0.7911 0.7598 0.7458 0.7468
GPTQ W4A8 0.6819 0.7829 0.7380 0.6961 0.7247
GPTQ w/ IS W4A8 0.6882 0.7845 0.7359 0.6932 0.7255
AWQ W4A8 0.6890 0.7807 0.7418 0.6856 0.7243
AWQ w/ IS W4A8 0.6803 0.7818 0.7399 0.6717 0.7184
Omniquant W4A8 0.6930 0.7873 0.7427 0.6890 0.7280
Omniquant w/ IS W4A8 0.6882 0.7818 0.7393 0.6898 0.7248

LLaMA-2-13B

FP16 W16A16 0.7222 0.8052 0.7938 0.7744 0.7739
GPTQ W4A8 0.7080 0.8003 0.7858 0.7980 0.773
GPTQ w/ IS W4A8 0.7040 0.8025 0.7854 0.7917 0.7709
AWQ W4A8 0.7182 0.7976 0.7758 0.7677 0.7648
AWQ w/ IS W4A8 0.7246 0.7992 0.7734 0.7668 0.7660
Omniquant W4A8 0.7214 0.7992 0.7810 0.7710 0.7682
Omniquant w/ IS W4A8 0.7127 0.7954 0.7786 0.7715 0.7646

LLaMA-2-70B

FP16 W16A16 0.7798 0.8275 0.8381 0.8098 0.8138
GPTQ W4A8 0.7664 0.8313 0.8314 0.8131 0.8106
GPTQ w/ IS W4A8 0.7585 0.8324 0.8287 0.8077 0.8068
AWQ W4A8 0.7664 0.8194 0.8202 0.8005 0.8016
AWQ w/ IS W4A8 0.7624 0.8199 0.8218 0.7929 0.7993

Mixtral-8x7B

FP16 W16A16 0.7648 0.8368 0.8403 0.835 0.8192
GPTQ W4A8 0.7553 0.8161 0.8272 0.8056 0.8011
GPTQ w/ IS W4A8 0.7427 0.8145 0.8280 0.7925 0.7944
AWQ W4A8 0.7506 0.8341 0.8288 0.8228 0.8091
AWQ w/ IS W4A8 0.7443 0.8286 0.8252 0.8131 0.8028
Omniquant W4A8 0.7553 0.8308 0.8338 0.8165 0.8091
Omniquant w/ IS W4A8 0.7506 0.8308 0.8337 0.8178 0.8082
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Figure 5: (a) Fine-grained W4A8 kernel (K=4096, N=22016) with the integer scale (W4A8 Integer
Scale) boosts its float scale counterpart (W4A8 Float Scale). The gray region denotes the “perfor-
mance cliff”. (b) End-to-end speed boost on Mixtral 8x7B over FP16 under various batch sizes.

with a fine-grained paradigm. We adopt 8-bit per-token activation quantization and 4-bit fine-grained
symmetric quantization with a group size of 128. Besides, we use fine-grained W8A8 for down
projection layers following the observation in (Li et al., 2023b). Table 5 exhibits the result of our

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

LLaMA-3 scheme, while integer scale outperforms GPTQ’s W4A16 (-1.16% in C4 perplexity) shown
in Table 1.

5.7 COMPARISON WITH MARLIN’S W4A16 SCHEME

Table 6: C4 and WikiText-2 perplexity, and MMLU zero-shot
accuracy of LLaMA-2-7B quantized with Marlin’s imple-
mentation of GPTQ (W4A16) vs. GPTQ w/ Integer Scale
(W4A8).

Method BitWidth C4 WikiText-2 MMLU

GPTQ W4A16 7.2093 5.8212 39.11%
GPTQ w/ Integer Scale W4A8 7.4011 5.9433 38.54%

We compare our Integer Scale scheme
with Marlin’s implementation of
GPTQ (Frantar & Alistarh, 2024) in
Table 6. We are mostly on par with
GPTQ at W4A16 when tested on C4,
WikiText-2, and MMLU. Their accel-
eration ratios vs. FP16 are compared
in Figure 5 where W4A8 surpasses
W4A16 mainly due to faster tensor
core execution at lower bit widths.
This attests that fine-grained W4A8 with the Integer Scale is a competitive strategy in terms of
both quantization loss and speed.

5.8 COMPARISON WITH QSERVE’S W4A8 KERNEL

Figure 6 presents the kernel speed comparison with QServe (Lin et al., 2024), which ships an advanced
W4A8 kernel. For coarse-grained W4A8 kernel with M=1, K=4096, and N=22016, our W4A8 kernel
execution is substantially faster than QServe at all batch sizes. A similar conclusion is affirmed for
the fine-grained kernel at a typical group size of 128. Both being the same bit widths, our fine-grained
kernel with Integer Scale is substantially faster than QServe’s, with a maximum of being 1.53×. It
turns out that the main difference lies in the intrinsic complexity of Dual Quantization (Zhang et al.,
2024) they adopted which first quantizes weights in 8-bit and again in 4-bit. Note the second step
is kept asymmetric to counter quantization loss. This asymmetric scheme requires element-wise
multiplication and subtraction that must be done in costly CUDA cores. See more details in B.2.
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(a) Fine-grained Integer Scale
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Figure 6: Kernel speed comparison with QServe’s W4A8 at K=4096, N=22016. The acceleration
ratio is against FP16. Both our fine and coarse-grained kernels are faster.

5.9 COMPARISON WITH TENSORRT-LLM’S W8A8 AND W4A16KV8

Shown in Table 7, our FP16 implementation is comparable to TensorRT-LLM while our W4A8 with
Integer Scale is comfortably faster than TensorRT-LLM’s W8A8 under several different batch size
settings (1,8,16,32). We use LLaMA-2-7B and set the input and output length to 128.

6 ABLATION STUDY

6.1 FIXED AMPLIFIER VS. HEURISTIC SEARCH

To find the optimal amplifier for the integer scale, we test several amplifiers in Table 8. It turns
out that using an amplifier bigger than 1024 doesn’t bring substantial gains while 210 is a good
trade-off between performance and the overflow risk. It is thus safe to amplify the scale with 1024

9
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Table 7: End-to-end Latency Comparison (ms) with TensorRT-LLM’s W8A8 on LLaMA-2-7B.
LLaMA-2-7B Bit Width BS=1 BS=8 BS=16 BS=32

TRT-LLM W8A8 859.76 1058.62 1171.86 1365.68
TRT-LLM FP16 1280.83 1411.97 1555.52 1819.03
Integer Scale (Ours) W4A8 533.4 632.37 831.63 1147.43
(Ours) FP16 1281.65 1426.87 1552.36 1802.18

with minimum overflow risk. To verify this choice, we draw the maximum activation per layer of
LLaMA-2 and Mixtral models using α = 210 in Figure 8 (B.4), where all values fall within 231.

Table 8: Ablation on the amplifier value. Perplexity is tested on C4.
BitWidth Amplifier LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B LLaMA-3-8B LLaMA-3-70B

W4A16 - 7.43 6.64 5.66 10.00 9.06
W4A16 Heuristic 7.46 6.65 5.66 10.03 9.10
W4A16 128 6.75 7.57 5.81 15.52 13.84
W4A16 512 7.45 6.65 5.67 10.09 9.27
W4A16 1024 7.45 6.64 5.66 10.03 9.04
W4A16 4096 7.45 6.64 5.67 10.00 8.91

6.2 SPEED COMPARISON OF FLOAT SCALE VS. INTEGER SCALE

We compare the difference in inference speed using float and integer scales to showcase the latency
advantage of using the Integer scale in Figure 5 (a). The speedup is at most 2.3×, suggesting the
reduction of costly type conversions is more than necessary.

7 CONCLUSION

In this paper, we introduced a plug-and-play scheme called Integer Scale that can be applied to speed
up the existing fine-grained quantization approaches. We showed through extensive experiments
that the Integer Scale not only benefits from the performance boost due to fine granularity but also
well resolves the intrinsic computational overhead. It can serve as a default free-lunch technique
with fine-grained approaches of various bandwidths to render an overall competitive quantization
strategy. Moreover, the same strategy can be applied to Mixtral 8×7B based on a mixture-of-experts
and LLaMA-3, which were previously difficult to quantize at lower bit widths.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language models.
arXiv preprint arXiv:2310.09259, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv: 2401.10774, 2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36,
2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

LMDeploy Contributors. Lmdeploy: A toolkit for compressing, deploying, and serving llm. https:
//github.com/InternLM/lmdeploy, 2023.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany.
Vs-quant: Per-vector scaled quantization for accurate low-precision neural network inference.
Proceedings of Machine Learning and Systems, 3:873–884, 2021.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
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A BACKGROUND KNOWLEDGE ON LLM QUANTIZATION

A.1 SYMMETRIC VS. ASYMMETRIC QUANTIZATION

We suggest referring to the white paper (Nagel et al., 2021) for a thorough understanding of network
quantization. We draw some key concepts here as a quick manual. Both symmetric and asymmetric
quantization use uniform quantization that maps float values to integer values with a single scale.
Symmetric quantization computes the scale s as,

s =
|X|max

2n−1 − 1
(3)

Q(X) = clamp(⌈X/s⌉,−2n−1, 2n−1 − 1) (4)
For asymmetric quantization, a zero point is utilized.

s =
Xmax −Xmin

2n − 1
, z = ⌈−Xmin

s
⌉ (5)

Q(X) = clamp(⌈X/s⌉+ z, 0, 2n − 1) (6)

A.2 PER-TENSOR, PER-TOKEN, PER-CHANNEL QUANTIZATION, GROUP-WISE QUANTIZATION

Take symmetric quantization as an example, per-tensor quantization uses the same scale for all tensor
values. Per-channel/token quantization uses a scale for a row or a column of the tensor. We can divide
each channel into groups for group-wise quantization (Lin et al., 2023), also called fined-grained
quantization.

B ADDITIONAL DISCUSSIONS

B.1 EXPERIMENT RESULT ON MMLU

Table 9 compares the result on MMLU (Hendrycks et al., 2021).

B.2 MORE DISCUSSION WITH QSERVE

Due to the adopted asymmetry quantization, QServe’s kernel is prone to complex computation logic
that can be formulated as,

C1 = A1 ∗ (W1 − z1) ∗ s1 + C0 = A1 ∗ (W1 ∗ s1 − z1 ∗ s1) + C0 (7)
C2 = A2 ∗ (W2 − z2) ∗ s2 + C1 = A1 ∗ (W1 ∗ s2 − z2 ∗ s2) + C1 (8)

· · · (9)
where si and zi are the i-th scale and zero point for dequantization. Note Wi ∗ si is element-wise
multiplication, and the subtraction is performed with a vadd4 instruction.

Figure 7 gives the additional comparison on kernel (N=4096, K=4096), where our fine and coarse-
grained kernels also outperform QServe, indicating our flexibility in different inputs.

B.3 COMPARISON WITH VS-QUANT AND DGQ

The contribution of our paper is to resolve the intrinsic efficiency problem that lies in fine-grained
LLM quantization approaches like Atom (Zhao et al., 2023). We are different from VS-Quant (Dai
et al., 2021) which was solely evaluated on ResNet-50 and BERT models. More importantly, directly
quantizing scales like VS-Quant will inevitably cause clipping and rounding errors. In contrast,
we use an amplifier to expand the scale to a range that is safe to convert to integers. They two are
essentially different. Furthermore, VS-Quant is motivated by reducing energy overheads while we
are driven by mitigating the inference bottleneck of LLMs. In Table 10, we compare two methods
under similar fine-grained (group size of 128) W4A8 settings, while VS-Quant uses quantized scales
with per-channel quantization (as proposed by VS-Quant in their paper). Our Integer Scale uses an
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Table 9: Comparison with state-of-the-art quantization methods on MMLU. For all models tested, we
set the weight group size to 128 and apply symmetric quantization. Integer Scale (IS) with amplifier
1024 is used.

Model HyperParam MMLU
Method BitWidth Hums. STEM Social Other Avg

LLaMA-2-7B

FP16 W16A16 36.92% 30.75% 40.92% 45.68% 38.49%
GPTQ W4A8 33.69% 30.45% 40.36% 42.91% 36.58%
GPTQ w/ IS W4A8 34.64% 31.35% 39.36% 43.18% 36.94% +0.36%
AWQ W4A8 34.86% 29.69% 40.98% 41.27% 36.57%
AWQ w/ IS W4A8 34.13% 30.19% 40.40% 41.52% 36.36% -0.21%
Omniquant W4A8 34.39% 31.84% 42.28% 43.77% 37.74%
Omniquant w/ IS W4A8 33.65% 31.05% 40.17% 43.18% 36.72% -1.02%

LLaMA-2-13B

FP16 W16A16 54.43% 44.27% 63.41% 60.76% 55.68%
GPTQ W4A8 51.88% 43.57% 62.01% 60.21% 54.24%
GPTQ w/ IS W4A8 52.18% 43.27% 61.33% 60.83% 54.27% +0.03%
AWQ W4A8 50.07% 41.75% 60.90% 59.19% 52.76%
AWQ w/ IS W4A8 49.65% 42.64% 59.80% 58.45% 52.40% -0.36%
Omniquant W4A8 52.56% 43.21% 62.56% 60.67% 54.61%
Omniquant w/ IS W4A8 52.05% 43.14% 61.72% 60.02% 54.09% -0.52%

LLaMA-2-70B

FP16 W16A16 65.16% 57.79% 80.44% 74.61% 69.11%
GPTQ W4A8 62.49% 55.17% 78.55% 73.01% 66.86%
GPTQ w/ IS W4A8 62.42% 55.14% 78.39% 72.73% 66.74% -0.12%
AWQ W4A8 63.44% 55.86% 78.45% 72.12% 67.11%
AWQ w/ IS W4A8 63.70% 55.33% 78.00% 71.75% 66.89% -0.22%

Mixtral-8x7B

FP16 W16A16 64.46% 61.30% 81.51% 77.39% 70.50%
GPTQ W4A8 61.70% 58.78% 78.78% 73.81% 67.61%
GPTQ w/ IS W4A8 61.66% 57.55% 77.58% 73.60% 67.02%
AWQ W4A8 64.48% 60.17% 80.05% 75.20% 69.44%
AWQ w/ IS W4A8 62.85% 59.18% 79.07% 74.58% 68.32%
Omniquant W4A8 63.00% 58.78% 80.21% 75.69% 68.79%
Omniquant w/ IS W4A8 62.17% 58.81% 79.92% 75.17% 68.34%
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Figure 7: Kernel (N=4096,K=4096) speed comparison with QServe. The acceleration ratio is against
FP16.

amplifier of 1024. Both activation quantization is set per token. Note Integer Scale is robust on all
model sizes, while VS-Quant fails on LLaMA-2-70B. While VS-Quant attempts to solve quantization
problems for ResNet-50 and BERT, but fails to generalize to large models like LLaMA-2-70B (see
Table (d)). It is a two-level quantization approach that involves clipping while we don’t involve
clipping search.

DGQ (Zhang et al., 2024) is based on VS-Quant which is a quantization scheme on fine-grained
scales, leading to larger clipping and rounding errors. We are a different method. Note that DGQ

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 10: Comparison our Integer Scale W4A8 with VSQuant’s W4A8 with quantized scale on C4.
Model Quantization Dataset Group size VS-Quant Integer Scale
LLaMA-2-7B W4A8 C4 128 7.6122 7.5746
LLaMA-2-13B W4A8 C4 128 6.6908 6.6849
LLaMA-2-70B W4A8 C4 128 NaN 5.7814

doesn’t achieve practical gain over W8A8 due to its inefficient design on dequantization, discussed
also in section IV b) of QServe Lin et al. (2024).

B.4 MAX ACTIVATION VALUES PER LAYER

To verify whether our amplifier choice is feasible and not causing overflows, we illustrate the
maximum layerwise activation values on the investigated models in Figure 8. It appears no layer’s
output goes near the INT32 upper bound. We refrain from selecting a higher amplifier to improve
performance since it will generate few gains and in the meantime increase the overflow risk.
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Figure 8: Maximum activation values per layer of quantized LLaMA-2 models and Mixtral 8x7B
using an amplifier of 1024.
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