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Abstract

Graph Neural Networks (GNNs), a type of neural network that can learn from
graph-structured data through neighborhood information aggregation, have shown
superior performance in various downstream tasks. However, as the number of
layers increases, node representations become indistinguishable, which is known
as over-smoothing. To address this issue, many residual methods have emerged.
In this paper, we focus on the over-smoothing issue and related residual methods.
Firstly, we revisit over-smoothing from the perspective of overlapping neighbor-
hood subgraphs, and based on this, we explain how residual methods can alleviate
over-smoothing by integrating multiple orders neighborhood subgraphs to avoid the
indistinguishability of the single high-order neighborhood subgraphs. Additionally,
we reveal the drawbacks of previous residual methods, such as the lack of node
adaptability and severe loss of high-order neighborhood subgraph information, and
propose a Posterior-Sampling-based, Node-Adaptive Residual module (PSNR).
We theoretically demonstrate that PSNR can alleviate the drawbacks of previous
residual methods. Furthermore, extensive experiments verify the superiority of the
PSNR module in fully observed node classification and missing feature scenarios.
Our code is available at https://github.com/jingbo02/PSNR-GNN.

1 Introduction

GNNs have emerged in recent years as the most powerful model for processing graph-structured data
and have demonstrated exceptional performance across various fields, such as social networks [22],
recommender systems [6], and drug discovery [4]. Through the message-passing mechanism that
propagates and aggregates information of neighboring nodes, GNNs provide a general framework
for learning information on graph structure. Despite the remarkable success, according to previous
studies [17, 32], GNNs show significant performance degradation as the number of layers increase.
One of the main reasons for this situation is over-smoothing [17, 21, 32, 15]. Over-smoothing refers
to the phenomenon in which node representations become increasingly similar to each other as
GNNs recursively aggregate more neighborhood information. This indistinguishability will inevitably
degrade the performance of deep GNNs, restricting their ability to effectively model long-range
dependencies among multi-hop neighbors.

Several methods have recently been proposed to alleviate over-smoothing in deep GNNs. According
to [26], these methods fall into three categories: Normalization and Regularization [34, 33], Change
of GNN dynamics [5], and Residual connections [32, 16]. Among all of them, the residual-based
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method is inspired by the success of residual neural networks (ResNets) [9] in computer vision. This
type of method introduces a residual connection to the GNNs architecture. For example, JKNet
[32] learns node representations by aggregating the outputs of all previous layers at the last layer.
DenseGCN [16] concatenates the results of the current layer and all previous layers as the node
representations of this layer. APPNP [15] uses the initial residual connection to retain the initial
feature information with probability α, and utilizes information aggregated at the current layer with
probability 1− α. GCNII [3] shares a similar framework with APPNP, and it further introduces an
identical mapping to avoid overfitting.

In this paper, we study the over-smoothing issue in GNNs, with a particular emphasis on residual
methods. First, we revisit the over-smoothing phenomenon of GNNs from the new perspective of
overlapping neighborhood subgraphs and explain the essential reason why the residual method can
alleviate the over-smoothing. In essence, these methods mainly use multiple neighborhood subgraph
aggregations to alleviate the indistinguishability of the single neighborhood subgraph aggregation,
thereby improving the performance of the model. On this basis, we find that these residual methods
often lack node adaptivity in utilizing multi-order neighborhood subgraph information, and at the
same time, they still struggle to mitigate information loss when dealing with high-order neighborhood
subgraphs, which hinders further improvement in the performance of deep GNNs. Although some
residual methods, such as DenseGNN, can avoid these drawbacks, they tend to introduce more
parameters at deeper layers. This can lead to significant memory consumption and is prone to
gradient explosion, limiting the scalability of the methods.

Considering these limitations, we propose a Posteriori-Sampling-based Node-Adaptative Residual
Module (PSNR). More specifically, this module introduces a graph encoder to learn the posterior
distribution of the required residual coefficients for each node in different layers with minor overhead.
And then, we can obtain the specific fine-grained node-adaptive residual coefficients by sampling
from the distribution. The contributions of this paper are as follows:

• Perspective: We revisit the over-smoothing issue from a novel perspective of high-order
neighborhood subgraph coincidences and explain why the residual methods can alleviate it.
Through this lens, we reveal several significant drawbacks of prior residual methods that
limit the performance and scalability of GNNs.

• Method: We propose PSNR, a lightweight and model-agnostic module to mitigate the draw-
backs of previous residual methods and provide theoretical justification for its advantages.

• Experiments: Extensive experiments verify that the PSNR module can effectively mitigate
oversmoothing and further improve the performance of GNNs, especially in the case of
missing feature that require deep GNNs.

2 Related Work

2.1 Notations

A connected undirected graph is represented by G = (V, E), where V = {v1, v2, . . . , vN} is the set of
N nodes and E ⊆ V × V is the edge set. The node features are represented in the matrix H ∈ RN×d,
where d represents the length of the feature. Let A ∈ {0, 1}N×N denotes the adjacency matrix and
Aij = 1 only if an edge exists between nodes vi and vj . D ∈ RN×N is the diagonal degree matrix,
where each element di represents the number of edges connected to node vi. Ã = A+ I, D̃ = D+ I
represent the adjacency matrix and degree matrix with self-loop, respectively.

2.2 Graph Neural Networks

A GNN layer updates the representation of each node via aggregating itself and its neighbors’
representations. Specifically, a layer’s output H′ consists of new representations h′ of each node
computed as:

h′
i = fθ (hi,AGGREGATE ({hj | vj ∈ V, (vi, vj) ∈ E})) , (1)

where h′
i indicates the new representation of node vi and fθ(·) denotes the update function. The

difference between different GNNs lies in the update function fθ(·) and the AGGREGATE(·)
function, which are also key to the performance of GNNs. Graph Convolutional Network (GCN) [14]
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Table 1: Common residual connections for GNNs.
Residual Connection Corresponding GCN Formula

Res ResGCN [16] Hk = Hk−1 + σ
(
D̃− 1

2 ÃD̃− 1
2Hk−1Wk−1

)
InitialRes APPNP [15] Hk = (1− α) D̃− 1

2 ÃD̃− 1
2Hk−1 + αH

Dense DenseGCN [16] Hk = AGG(H,H1, . . . ,Hk−1)
JK JKNet [32] Houtput = AGG(H1, . . . ,Hk−1)

is a classical massage-passing GNNs follows layer-wise propagation rule:

Hk+1 = σ
(
D̃− 1

2 ÃD̃− 1
2HkWk

)
, (2)

where Hk is the feature matrix of the k-th layer, Wk is a layer-specific learnable weight matrix, σ(·)
denotes an activation function.

2.3 Residual connection

Several works have used residual connection to alleviate the over-smoothing issue. Common residual
connections for GNNs are summarized in Table 1, where Hk represents the output of the k-th layer,
Wk is a learnable weight matrix for the k-th layer, α serves as a hyperparameter denoting the residual
coefficient, and σ(·) denotes an activation function. Additionally, in DenseGNN, AGG represents a
function with the concatenation of outputs from all previous layers as the input to the current layer,
while in JKNet, AGG refers to the aggregation of all previous representations through concatenation,
max-pooling, or LSTM-attention only at the final layer. Details can be found in Appendix B.

3 Why does the residual method alleviate over-smoothing?

In this section, we revisit over-smoothing from the perspective of overlapping high-order neigh-
borhood subgraphs. Based on this, we elucidate the role of various residual methods in alleviating
over-smoothing and identify their shortcomings.

3.1 Revisit over-smoothing from the perspective of neighborhood subgraphs overlapping
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Figure 1: SMV for node groups of different degrees. More results are shown in Appendix C.

For message-passing GNNs without the residual connection, the information domain of each node
after k-layer aggregation is a corresponding k-order neighborhood subgraph. Intuitively, the size
of its k-order neighborhood subgraph grows exponentially as k increases, leading to a significant
increase in the overlap between the k-order neighborhood subgraphs of different nodes. As a
result, the aggregation result of different nodes on their respective k-order neighborhood subgraphs
becomes indistinguishable. This explanation can be partially validated from the perspective of node
degrees. Considering nodes with high degrees tend to have larger neighborhood subgraph overlap,
the correlation between neighborhood subgraph overlap and oversmoothiong can be validated if
nodes with higher degree exhibit more pronounced over-smoothing. To verify this point, we conduct
experiments on three graph datasets: Cora, Citeseer, and Pubmed. Initially, nodes are grouped based
on their degrees, with nodes having degrees falling within the range of [2i, 2i+1) assigned to the
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i-th group. Subsequently, we perform aggregation with different layers of GCN and GAT and then
calculate the degree of smoothing of the node representations within each group separately. The
metric proposed in [19] is used to measure the smoothness of the node representations within each
group, namely smoothness metric value (SMV), which calculates the average distances between the
nodes within the group:

SMV(X) =
1

N(N − 1)

∑
i̸=j

D (Xi,:,Xj,:) , (3)

where D(·, ·) denotes the normalized Euclidean distance between two vectors:

D(x,y) =
1

2

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥
2

. (4)

From the definition, a smaller value of SMV indicates a greater similarity in node representations.
We show the result of GAT in Figure 1. More results can be found in Appendix C. It can be observed
that the groups of nodes with higher degree tend to be more similar to each other within the group in
different layers. This finding supports our claim.

3.2 The role of residual method in alleviating over-smoothing

After verifying the conclusion that neighborhood subgraph overlap leads to over-smoothing, a
natural idea is to alleviate the overlap of the single neighborhood subgraph by utilizing multi-
order neighborhood subgraph aggregations. In the following section, we show that the previous
k-layer residual-based GNNs essentially represent different forms of utilizing neighborhood subgraph
aggregations from 0 to k orders.

Table 2: Utilization of neighborhood subgraphs by various residual methods.

Model Closed/Iterative form formulas

ResGCN Hk =
∑k

j=0

(
j
k

)
NjH

APPNP Hk = (1− α)
k
NkH+ α

k−1∑
j=0

j∑
i=0

(−1)
j−i

(1− α)
i
NiH

JKNet Hk = AGG(NH, . . . ,Nk−1H)
DenseGCN Hk = AGG(Hk−1, ...,H1,H0)

In the rest of this paper, we take GCN, a classical residual-free message-passing GNN, as an example.
Assuming that H is non-negative, the ELU function and the weight matrix can be ignored for simplicity.
Combined with the formula of GCN in Eq. 2, the k-order neighborhood subgraph aggregation can
be formulated as NkH, where N = D̃− 1

2 ÃD̃− 1
2 . To show more intuitively how different residual

models utilize multi-order neighborhood subgraph aggregation NkH, we rewrite their formula in
Table 2. Details of the derivation of the closed-form formula in this part are given in Appendix
D. As can be observed, the output of GCN’s residual-based variants contains multi-order matrix
products that represent different order neighborhood subgraph aggregations from 0 to k. There are
two main ways to exploit them: (1) Summation, such as ResGCN and APPNP. Such methods employ
linear summation over the aggregation of different order neighborhood subgraphs; (2) Aggregation
functions, such as DenseGNN and JKNet. Such methods make direct and explicit exploitation of
different order neighborhood subgraph aggregations through operations such as concatenation.

However, the utilization of multi-order neighborhood subgraph aggregations in these methods
presents the following issues: Firstly, the summation methods all use a fixed coefficient to sum
the neighborhood subgraph aggregations. Consequently, these methods inherently presume that the
information from the neighborhood subgraph of the same order is equally important for different
nodes, which lacks node adaptivity. Secondly, for ResGNN, APPNP, and JKNet, when the number of
layers increases, the output of these methods still involves many high-order matrix products that are
over-smoothed. This leads to severe information loss when aggregating high-order neighborhood
subgraphs, which in turn degrades model performance at deeper layers. Although DenseGNN
seems to alleviate the above issues to some extent, the recursive use of all previous neighborhood
subgraph aggregation would introduce more parameters as the model deepens. This increases memory
consumption and raises the risk of gradient explosion at deeper layers.
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4 The Proposed Method PSNR

4.1 Methodology

To solve the above issues, we propose a node-adaptive and lightweight residual module named
PSNR. The motivation is to learn the adaptive residual coefficients for each node, thereby achiev-
ing fine-grained and node-level neighborhood subgraph aggregation to improve the performance
of GNNs. However, directly learning these coefficients through backpropagation presents signif-
icant challenges. The primary challenge lies in the lack of transferability of learned coefficients.
Specifically, in tasks such as semi-supervised node classification, nodes in the test and validation
sets often cannot propagate information to the training nodes through multiple message-passing
steps. Therefore, we cannot learn effective coefficients for these nodes during the training phase.

…
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Figure 2: The framework of PSNR Module.

As a remedy, we regard node-level residual coefficients
as hidden parameters. Our strategy involves estimating
their posterior distribution P(ηk|A,Hk, k). In most
cases, since the training, validation, and test sets orig-
inate from the same distribution, the posterior distri-
bution learned from the training data possesses trans-
ferability to the validation and testing nodes. We can
assume the posterior distribution to be Gaussian:

ηk ∼ N (µ(A,Hk, k), σ
2(A,Hk, k)).

A graph encoder can be used to model this distribu-
tion. This encoder leverages graph topology and node
information as inputs. Subsequently, to enable back-
propagation, we employ the reparameterization trick.
This technique enables us to represent the sampling pro-
cess from the aforementioned distribution as follows:

ηk = µ(A,Hk, k) + ζ · σ(A,Hk, k), ζ ∼ N (0, 1).

Furthermore, we parameterize µ(A,Hk, k) and σ(A,Hk, k) as an arbitrary GNN layer. While the
posterior distributions of residual coefficients vary across different layers, we do not parameterize a
specific encoder for each layer. Instead, we employ the same graph encoder and use the positional
embedding generated from the layer number k to differentiate the posterior distributions of residual
coefficients for various layers. Consequently, the PSNR module can be formulated as follows:

H′
k−1 = GraphConv (Hk−1)

Hk = H1 + ϕ(diag(ηk−1))
(
H1 −H′

k−1

)
, ηk−1 ∼ N (µk−1, σk−1

2)

µk, σk = GraphEncoderµ,σ(H1 −H′
k + γ LayerEmb(k)),

(5)

where GraphConv(·) is the k-th layer of any backbone GNN, Hk denotes the node representation
matrix of the k-th layer, and H′

k represents the output matrix of the k-th layer. The first equation
corresponds to the aggregation operation of the backbone GNN at the k-th layer. ηk represents
the node-level residual coefficient at the k-th layer, where the element η(i)k corresponds to the
residual coefficient at the i-th node. In addition, ηk follows a high-dimensional Gaussian distribution:
N (µk, σk

2), and each time before each residual calculation, the distribution is first sampled to
obtain the exact residual coefficients. µk and σk represent the mean and standard deviation of the
distribution, respectively. diag(ηk) represents a diagonal matrix transformed from ηk, where the i-th
diagonal element is precisely the i-th element of ηk. ϕ(·) represents the sigmoid function, which
constrains the residual coefficient to (0, 1). GraphEncoderµ,σ(·) is a posterior encoder, which can
be any graph convolution layer that is independent of the backbone GNN. LayerEmb(k) represents
the positional embedding [29] with layer number k as input. γ is a learnable coefficient serving as
the layer embedding factor. The analysis of the residual coefficients can be found in Appendix H.

Also, it is noteworthy that PSNR introduces randomness by sampling residual coefficients during
both training and testing phases, thereby adding learnable random perturbations. This is different to
other methods including DropEdge [24], GRAND [8] and DropMessage [7] that only incorporate
randomness during the training phase and primarily introduce perturbations to node features and
graph structure. We provide the theoretical analysis for this design in Section 4.2. Additionally, we
clarify the difference between PSNR and other subgraph-based methods in Appendix F.
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4.2 Theoretical justifications on the advantages of the PSNR module

In this section, we theoretically show that the PSNR module achieves finer-grained and node-adaptive
neighborhood subgraph aggregations while avoiding the loss of high-order subgraph information.
Firstly, combining with Equation 5, the matrix form of the iterative formula for PSNR-GCN is:

Hk = H1 + Λk−1

(
H1 − D̃−1/2ÃD̃−1/2Hk−1

)
.

For simplicity, we use Λk to denote diag(ηk). Subsequently, based on this recursive form of formula,
we derive the closed-form expression of PSNR-GCN as:

Hk =

k−1∑
i=2

k−1∏
j=i

Ñj(Mi −Mi−1) +

k−1∏
i=1

Ñi (H1 +M1)−Mk−1,

where Ñi = −Λk−1N, and Mk = − (ΛkN+ I)
−1

(I+ Λk)H1. The detailed derivation of this
formula can be found in Appendix E. The first two terms consist of cumulative product terms of
different orders, similar to the form of NkH, thus approximating a new version of neighborhood
subgraph aggregation. Additionally, the formula involves the aggregation of all neighborhood
subgraphs from 1 to k orders. This ensures that our method, like other residual methods, can
comprehensively utilize multi-order neighborhood subgraph aggregations to enhance performance.
Furthermore, since Λk is a diagonal matrix computed by a learnable posterior encoder with graph
structure, node feature and layer number as input, the neighborhood subgraph aggregation of PSNR-
GCN is fine-grained and node-adaptive. This sets it apart from methods like ResGCN and APPNP.

Beyond that, we can also demonstrate that the PSNR module can reduce the information loss of
high-order subgraph aggregation, thereby further improving the performance of GNNs at deeper
layers. Specifically, we aim to prove that as the order k increases, the smoothing rate of the cumulative
product terms in PSNR is slower than that of the matrix power terms in other methods. Since we
need to analyse the smoothing rate, which involves analyzing the asymptotic behavior of cumulative
product terms or matrix power terms as the order increases, we can generalize the problem setup.
Therefore, we only need to prove the following proposition to support our claim.

Proposition 1 Let S = {Sj = ΛjN|j ∈ N0}, where Λj represents a random diagonal matrix
with each diagonal element Λj,ii satisfying 0 < Λj,ii < 1, and let X be any feature matrix.
Then, as the order k increases, the product of elements in the set S and the matrix X, denoted as
X(k) =

∏k
i=1 SiX, converges to a rank-one matrix with identical rows slower than X

(k)
GCN = NkX.

Since the diagonal elements of the diagonal matrix Λ are all results of the sigmoid function, we can
assume that they have a lower bound ϵ > 0. Therefore, in this setting, each element Si in the set S is
a row-stochastic matrix satisfying the following property.

Property 1 For a row-stochastic matrix Sk, there exists an ϵ > 0 satisfying the following conditions:
1. ϵ ≤ Sk,ij ≤ 1, if (i, j) ∈ E ,
2. Sk,ij = 0, if (i, j) /∈ E .

We can refer to the conclusion in [31]. [31] describes the attention matrix of GAT as a row-stochastic
matrix satisfying Property 1. Leveraging mathematical tools such as joint spectral radius from the
perspective of dynamical systems, this work proves that the convergence rate of GAT is bounded
below by GCN. Due to all the matrix Si from S also satisfies Property 1, this conclusion can be
borrowed to prove Proposition 1, thereby demonstrating that the PSNR module can alleviate the loss
of high-order neighborhood subgraph information. Furthermore, this conclusion also explains the
introduction of randomness during both the training and testing phases. This random perturbation
further reduces the smoothing rate, thereby enhancing the model’s performance.

4.3 Complexity analysis

We take PSNR-GCN as an example to provide a complexity analysis of the PSNR module. The
time complexity of a vanilla GCN layer mainly comes from the matrix multiplication of N and
H, hence its complexity is O(n2d). And the main computational parts of PSNR module are the
computation of mean and standard deviation, sampling of p(i)k , scalar multiplication and matrix
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addition, which correspond to a complexity of O(n2d), O(n), O(nd), and O(nd), respectively. Thus
the time complexity of the PSNR module is O(n2d) and the time complexity of a GCN layer equipped
the PSNR module is O(n2d). As for space complexity, PSNR module needs to store the computed
mean and variance for each node, i.e., O(2n), which can be approximately considered as O(n).
Section 5.6 compares memory consumption with other residual methods on large graphs.

5 Experiment

In this section, we assess the performance of the PSNR module in comparison to other methods
and answer the following research questions (RQ): RQ1. How well does the PSNR alleviate
oversmoothing? RQ2. How does PSNR perform compared to other baseline when used with different
backbone? RQ3. Can PSNR enable deeper networks to perform better under the missing feature
scenario? RQ4. How scalable is the PSNR on large graph datasets?

5.1 Datasets

We conducted experiments on ten real-world datasets, including three citation network datasets,
i.e., Cora, Citeseer, Pubmed [27], two web network datasets, i.e., Chameleon and Squirrel [25],
co-author/co-purchase network datasets, i.e., Coauthor-CS [28], Amazon-Photo [28] and three larger
datasets, i.e., Flickr [20], Coauthor-Physics [28] and Ogbn-arxiv [10]. More details of these datasets
and data-splitting procedures can be found in Appendix G.

5.2 Baselines and experimental settings

We consider two fundamental GNNs, GCN [14] and GAT [30]. For GCN, we test the performance
of PSNR-GCN and its residual variant models, including ResGCN [16], DenseGCN [16], GCNII
[3] and JKNet [32]. For GAT, we directly equip it with the following residual module: Res-GAT,
InitialRes-GAT, Dense-GAT, JK-GAT and PSNR-GAT. And we adopt the GraphSAGE layer as the
GraphEncoder of the PSNR module. The impact of different graph encoders on the experiments
can be found in Appendix I. In addition, we compare three recent representative methods belonging
to different categories aimed at alleviating oversmoothing issues: DropMessage [7] for the drop
category, DeProp [18] for the norm category, and Half-Hop [1] for graph data processing. For the
missing feature setting, we also conduct comparisons with several classical oversmoothing mitigation
techniques, including BatchNorm [11], PairNorm [33], DGN [34], Decorr [12], DropEdge [24]. For
all baselines, the linear layers in the models are initialized with a standard normal distribution, and
the convolutional layers are initialized with Xavier initialization. The Adam optimizer [13] is used for
training. Experimental results are obtained from the server with four core Intel(R) Xeon(R) Platinum
8358 CPUs @ 2.60GHZ, one NVIDIA A100 GPU (80G), and models and datasets used in this paper
are implemented using the Deep Graph Library (DGL) and Pytorch Geometric (PyG). Further details
on the specific parameter settings can be found in Appendix G.

5.3 Effectiveness in mitigating over-smoothing (RQ1)

In this section, we aim to assess whether the PSNR module can mitigate the oversmoothing phe-
nomenon in deep GNNs. We select representative datasets Cora, Amazon-Photo, and Chameleon.
Using GCN as the backbone network, we compare our method against several residual methods:
ResGCN, GCNII, JKNet, and DenseGNN. We set the number of layers to 2, 4, 8, 16, 32, 64 and
test on ten random splits, with the average accuracy serving as the final result. The experimental
results are depicted in Figure 3. Consistent with the analysis in the main text, most methods can
alleviate over-smoothing, but at deeper layers, such as 64 layer, over-smoothing still occurs. In
contrast, compared to other residual methods, PSNR maintains stable performance even at deeper
layers, demonstrating remarkable effectiveness in mitigating over-smoothing in deep GNNs. This
is attributed to PSNR module can effectively reduce the loss of high-order neighborhood subgraph
information. It is noteworthy that among the various residual methods, another initial residual method
GCNII also alleviate over-smoothing well. However, the subsequent experiment will reveal that
although the performance of GCNII remains relatively stable with varying layers, it leads to a decrease
in overall performance.

7



21 22 23 24 25 26

Layers

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Cora

21 22 23 24 25 26

Layers

30

40

50

60

70
Amazon Photo

21 22 23 24 25 26

Layers

50

60

70

80

90
Chameleon

Vanilla Res Init-Res Dense JK PSNR

Figure 3: Different residual methods’ effectiveness in mitigating over-smoothing.

Table 3: Summary of classification accuracy (%) results on real-world datasets. The best results are
in bold, and the second best results are underlined.

Method Cora Citeseer CS Photo Chameleon Squirrel Avg. Rank

GCN 78.56±1.57 66.00±2.37 90.19±0.83 91.22±0.73 67.70±0.17 47.43±1.31 6.67
ResGCN 80.11±0.98 66.40±2.29 90.86±0.99 91.31±0.85 70.70±1.54 52.43±1.72 3.67
GCNII 77.40±1.43 66.69±1.95 90.34±0.78 91.46±0.84 69.69±1.36 46.13±1.59 5.00

DenseGCN 74.94±2.46 62.54±2.56 90.28±1.06 90.38±1.02 67.82±1.27 49.57±1.58 7.17
JKNet 79.42±1.48 65.49±2.32 90.94±0.89 90.85±1.19 68.26±1.15 49.87±1.44 5.17

Half-Hop-GCN 80.74±1.80 67.76±2.19 90.30±1.83 89.32±1.17 60.07±2.34 42.78±1.01 6.33
DropMessage-GCN 80.00±2.22 67.66±1.84 90.64±2.34 91.40±0.90 65.91±2.43 45.71±1.76 4.83

DeProp-GCN 79.52±2.63 67.24±2.02 90.98±2.04 91.38±1.33 61.51±1.40 44.07±1.07 5.17
PSNR-GCN 81.01±1.63 68.06±2.12 91.23±1.00 91.51±0.69 71.51±1.90 54.95±1.73 1.00

GAT 79.21±1.31 67.12±1.59 89.43±1.62 89.64±0.84 68.04±1.36 47.93±1.99 6.00
Res-GAT 79.72±1.94 67.19±1.91 89.92±0.86 91.40±0.74 72.66±0.94 55.98±2.12 2.83

Init-Res-GAT 79.67±1.71 66.84±2.52 89.61±1.02 91.53±1.06 69.89±1.81 51.29±1.42 4.17
JK-GAT 80.04±1.61 65.83±2.21 90.10±0.94 90.82±1.24 67.98±1.71 50.43±1.45 4.50

Dense-GAT 73.39±1.52 61.23±2.53 89.72±0.86 88.92±1.66 67.36±1.95 50.25±0.88 7.00
DropMessage-GAT 80.36±1.92 67.82±2.04 90.67±1.68 90.98±0.90 63.23±2.23 45.23±1.35 4.33

DeProp-GAT 76.00±2.08 61.16±3.50 87.34±1.42 89.76±1.52 64.23±3.22 46.29±3.24 8.00
Half-Hop-GAT 77.24±1.69 66.74±1.98 89.66±1.45 89.92±0.77 62.86±2.04 47.84±4.36 6.83

PSNR-GAT 80.47±1.62 68.01±2.14 90.38±1.21 91.64±0.61 72.24±1.69 60.85±1.61 1.33

5.4 Fully observed feature setting (RQ2)

The PSNR module can effectively address the performance degradation of GNNs at deeper layers,
but can it further enhance the overall performance of the model? In this section, we comprehensively
evaluate the PSNR module across a wider range of datasets. Under the fully observed feature setting,
we set the number of layers to 2, 4, 8, 16, 32, 64, and conduct experiments on ten random splits for
each dataset, taking the average accuracy as the final result for each layer. The results of all layers
of the model can be found in Appendix A. To evaluate the overall performance, we record the best
results of each model in all layers for each dataset in Table 3.

As can be observed from the Table 3, PSNR outperforms all baselines in most cases. For example,
compared to the vanilla model, PSNR improves the test accuracy on the Squirrel dataset by 7.52% and
12.92%, respectively. Compared with the vanilla GCN and GAT, the proposed PSNR can significantly
improve the performance under the fully observed feature setting.

5.5 Missing feature setting (RQ3)

When do we need the deeper GNN? Real-world data often contain missing features. In that scenario,
previous research [33] has shown that deep GNNs can help improve performance. For the nodes
with missing features, due to the lack of information, they need a deeper network to gather more
neighborhood information, thereby achieving better node representations. However, deep GNNs face
the issue of performance degradation. In this section, we examine if PSNR module can improve the
performance of GNNs in the context of missing feature.

Consistent with [33, 18, 12], we evaluate the performance of GNNs on three datasets, Cora, Citeseer,
and Pubmed, and remove their node features from validation and test sets. Under this setting, the test
nodes need more propagation layers to reach the training nodes. We reuse the metrics that already
reported in [12] for None, BatchNorm [11], PairNorm [33], DGN [34], DeCorr [12], and DropEdge
[24]. For all residual-based models, the results are obtained by varying the number of layers in

8



Table 4: Test accuracy (%) on missing feature setting. The best results are in bold and the second
best results are underlined.

GCN GAT

Module Cora Citeseer Pubmed Cora Citeseer Pubmed
Acc #K Acc #K Acc #K Acc #K Acc #K Acc #K

None 57.3 3 44.0 6 36.4 4 50.1 2 40.8 4 38.5 4
BatchNorm 71.8 20 45.1 25 70.4 30 72.7 5 48.7 5 60.7 4
PairNorm 65.6 20 43.6 25 63.1 30 68.8 8 50.3 6 63.2 20

DGN 76.3 20 50.2 30 72.0 30 75.8 8 54.5 5 72.3 20
DeCorr 73.8 20 49.1 30 73.3 15 72.8 15 46.5 6 72.4 15

DropEdge 67.0 6 44.2 8 69.3 6 67.2 6 48.2 6 67.2 6
Res 76.8 8 60.4 10 76.6 6 76.5 8 60.5 6 76.9 8

Init-Res 65.1 6 50.7 15 70.4 10 77.1 8 60.6 8 76.8 6
Dense 66.2 4 51.5 2 74.1 8 68.5 10 52.7 2 75.1 10

JK 75.5 30 60.4 8 76.9 6 77.0 10 60.3 4 76.8 6
DropMessage 75.5 10 61.0 6 74.6 6 76.5 6 61.1 8 76.6 6

DeProp 71.4 6 59.4 2 76.1 4 68.04 2 48.3 2 75.8 4
Half-Hop 73.7 8 59.48 6 76.5 6 76.0 20 59.6 4 76.9 6

PSNR 77.3 20 61.1 15 77.0 30 77.9 8 61.9 15 77.3 10

{2, 4, 6, 8, 10, 15, 20, 30} and running five times for each number of layers. We select the layer #K
that achieves the best performance and report its average accuracy. The results are reported in Table 4.
By examining the results in Table 4, under the missing feature setting, the optimal number of layers
to achieve the best performance is significantly higher than in the fully observed feature setting,
demonstrating the importance of deep GNNs. And PSNR outperform other baselines in all cases
through alleviating over-smoothing more effectively. Specially, on the Pubmed dataset, PSNR boost
the accuracy of GCN and GAT by 40.6% and 38.8%, respectively.

5.6 Performance on large graphs (RQ4)

To validate the scalability of PSNR, we conducted additional experiments on three larger graph
datasets i.e., Coauthor-Physics, Flickr and Ogbn-arxiv, to further validate the effectiveness and
scalability of our method. Specifically, we selected the GCN backbone for our experiment. We
report the performance of GCN and various residual methods on three datasets and the memory
consumption on the largest dataset, Ogbn-arxiv. The experimental results are presented in Table 5,
from which we observe that PSNR-GCN scales well and achieves the best results across all three
large datasets. Meanwhile, in terms of memory consumption, PSNR is slightly higher than GCN and
ResGCN, comparable to GCNII with the same initial residuals, and significantly lower than JKNet
and DenseGCN. Regarding training time, PSNR is roughly at the same level as JKNet, and its time is
shorter than that of DenseNet.

Table 5: Comparison of different methods across various datasets and memory consumption (MB)
and training time (ms / epoch) on Ogbn-arxiv. The best performance for each dataset is in bold, while
the second best is underlined.

Method Phy Flickr Ogbn-arxiv Memory Time

GCN 95.32 ± 0.11 51.40 ± 0.33 64.37 ± 0.41 2421 30.10
ResGCN 95.61 ± 0.18 51.90 ± 0.16 66.32 ± 0.59 2463 36.06
GCNII 95.90 ± 0.14 46.18 ± 0.21 61.43 ± 1.63 2525 33.33
JKNet 95.88 ± 0.15 51.65 ± 0.31 60.46 ± 1.21 2921 40.05
DenseGCN 95.50 ± 0.12 52.18 ± 0.25 62.46 ± 1.58 3131 52.24
PSNR-GCN 95.92 ± 0.17 52.47 ± 0.16 67.81 ± 0.57 2539 42.93

6 Conclusion and Future Work

In this paper, we addressed the oversmoothing in Graph Neural Networks (GNNs) with a focus on
residual methods. We revisit the oversmoothing from the perspective of overlapping neighborhood
subgraphs, explaining why residual methods can alleviate it. Our analysis revealed that current
residual methods often lack node adaptivity and struggle with information loss in high-order neigh-
borhoods subgraphs. To overcome these limitations, we introduce the Posteriori-Sampling-based
Node-Adaptive Residual Module (PSNR). This innovative module uses a graph encoder to learn the
posterior distribution of residual coefficients for each node at different layers, enabling fine-grained,
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node-adaptive neighborhood subgraph aggregation with minimal overhead. Extensive experiments
confirmed that the PSNR module can effectively mitigate oversmoothing and improve performance,
particularly in scenarios requiring deep networks. Despite the significant progress made by PSNR,
training a deeper GNN remains challenging, prompting the need for further research in the future.
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A Fully Observed Node Classification

Table 6: Node classification accuracy (%) on GCN backbone. The best results across different layers
are highlighted.

Datasets Model Layer 2 Layer 4 Layer 8 Layer 16 Layer 32 Layer 64

Cora

GCN 78.56±1.57 78.52±2.02 77.27±2.29 72.11±6.30 46.09±12.12 30.76±1.30
ResGCN 79.39±1.12 79.80±1.53 80.10±1.46 80.11±0.98 71.27±3.65 36.48±7.53
GCNII 77.40±1.43 76.47±1.96 76.39±1.88 76.15±1.70 75.76±1.83 76.27±1.46
DenseGCN 74.94±2.46 67.06±2.02 67.58±2.66 65.08±3.71 59.98±2.30 34.37±5.69
JKNet 78.44±2.10 79.42±1.48 79.36±2.23 77.18±2.17 77.33±2.88 51.58±7.29
DropMessage-GCN 80.00±2.22 79.88±1.81 78.14±1.65 76.40±1.22 52.18±1.06 30.34±0.63
DeProp-GCN 79.52±2.63 78.44±2.39 33.02±5.64 31.28±3.24 30.20±0.01 30.20±0.01
Half-Hop-GCN 78.92±2.08 80.74±1.80 80.24±1.61 46.66±13.37 43.68±7.14 31.03±7.39
PSNR-GCN 80.59±1.57 81.01±1.63 80.55±1.57 78.26±1.36 76.34±2.18 77.75±2.27

Citeseer

GCN 66.00±2.37 64.13±2.31 64.13±2.10 58.52±3.31 27.21±3.98 27.52±5.04
Res-GCN 66.11±1.65 66.40±2.29 65.97±1.93 65.46±2.02 48.70±3.77 33.74±4.79
GCNII 66.69±1.95 66.18±1.74 66.50±1.77 66.31±2.08 66.27±1.92 66.50±2.59
Dense-GCN 62.54±2.56 58.99±3.74 54.35±5.42 50.10±5.24 49.09±4.03 31.43±5.54
JKNet 65.49±2.32 64.40±2.28 64.18±3.07 63.77±1.87 60.88±3.53 29.66±7.51
DropMessage-GCN 67.66±1.84 67.04±2.20 63.84±2.66 59.82±2.75 22.68±3.77 21.38±1.72
Half-Hop-GCN 67.76±2.19 67.46±1.99 67.02±2.53 54.48±3.93 38.40±8.33 24.14±3.48
DeProp-GCN 67.24±2.02 64.86±2.93 29.08±10.03 21.72±0.91 21.94±1.18 20.98±1.13
PSNR-GCN 68.06±2.12 66.03±1.93 65.46±1.59 65.81±2.39 65.52±1.76 65.85±2.30

CS

GCN 90.19±0.83 88.81±0.62 86.93±0.83 84.47±0.95 71.40±4.93 36.74±4.57
Res-GCN 90.86±0.99 90.63±0.96 89.97±0.90 88.40±0.90 85.01±1.53 64.39±3.86
GCNII 90.34±0.78 90.02±0.81 90.07±0.77 90.09±0.94 90.17±0.52 89.93±0.70
Dense-GCN 89.01±1.09 89.99±1.27 90.28±1.06 89.33±1.73 88.92±1.08 88.40±1.37
JKNet 90.81±1.35 90.94±0.89 90.53±1.41 89.52±1.11 88.81±1.14 88.44±1.44
DropMessage-GCN 90.64±2.34 89.18±1.76 89.38±1.52 85.62±7.01 87.94±6.18 84.44±1.13
Half-Hop-GCN 90.30±1.83 89.30±2.23 88.98±1.81 82.98±1.88 54.60±4.55 25.36±10.27
DeProp-GCN 90.98±2.04 89.10±2.23 71.24±4.18 72.34±2.26 52.60±0.03 22.60±0.01
PSNR-GCN 91.23±1.00 90.70±1.49 90.26±1.17 90.26±0.98 90.52±1.02 90.30±0.88

Photo

GCN 91.22±0.73 90.49±0.76 88.10±1.02 80.05±4.25 54.80±8.00 46.57±9.64
Res-GCN 91.31±0.85 90.97±0.78 90.71±0.78 85.98±2.36 65.42±6.75 56.15±10.43
GCNII 91.02±0.93 90.98±0.92 91.02±0.70 90.99±0.76 91.20±0.81 91.46±0.84
Dense-GCN 90.38±1.02 90.07±1.76 89.34±1.40 87.77±2.00 86.01±1.91 68.22±17.58
JKNet 87.26±1.77 87.96±1.91 84.39±2.76 90.85±1.19 90.10±1.20 87.93±2.66
DropMessage-GCN 91.40±0.90 90.22±1.19 87.57±2.74 87.82±1.21 86.12±1.05 80.40±1.07
Half-Hop-GCN 52.00±17.28 67.48±24.16 89.32±1.17 83.66±3.02 64.40±4.30 39.00±9.42
DeProp-GCN 91.38±1.33 89.50±5.31 78.12±3.66 81.86±9.36 87.74±4.19 84.43±2.31
PSNR-GCN 91.44±0.82 91.20±1.03 91.39±0.76 91.11±0.68 91.51±0.69 91.49±0.88

Chameleon

GCN 67.70±0.17 56.30±2.28 48.37±1.56 46.81±2.06 39.62±2.13 33.27±1.86
Res-GCN 70.28±1.14 70.70±1.54 69.18±0.78 51.64±2.11 42.61±3.60 31.42±2.73
GCNII 69.45±1.63 69.36±1.13 69.62±1.61 69.23±1.21 68.87±2.16 69.69±1.36
Dense-GCN 67.82±1.27 64.59±1.29 65.36±1.50 64.39±1.37 30.63±3.98 28.72±4.66
JKNet 68.26±1.15 67.97±1.59 66.61±1.76 67.78±1.60 66.46±2.25 52.98±2.79
DropMessage-GCN 65.91±2.43 60.50±2.84 47.29±2.00 42.66±1.60 34.56±1.61 31.74±1.56
Half-Hop-GCN 60.07±2.34 55.72±3.12 52.64±1.99 43.19±2.55 36.26±2.12 29.34±2.20
DeProp-GCN 61.51±1.40 58.25±2.22 46.46±2.18 31.88±2.52 30.81±2.07 33.36±0.96
PSNR-GCN 71.51±1.90 70.74±2.24 71.40±1.83 66.00±1.97 65.82±2.02 69.67±4.59

Squirrel

GCN 47.43±1.31 41.68±1.80 37.43±1.35 33.17±1.22 31.99±1.14 29.83±1.98
Res-GCN 51.72±1.63 52.43±1.72 50.38±1.90 38.35±1.56 26.30±2.06 22.66±1.01
GCNII 46.13±1.59 45.28±1.59 45.71±2.08 45.37±1.72 45.06±1.50 45.32±1.85
Dense-GCN 49.57±1.58 49.01±0.98 49.51±1.30 49.08±1.36 49.29±1.25 49.04±1.30
JKNet 49.87±1.44 49.11±2.27 46.62±1.44 24.79±3.88 45.73±1.80 41.75±1.96
DropMessage-GCN 45.71±1.76 38.68±2.02 26.67±3.06 25.71±1.15 23.77±1.18 20.06±0.23
Half-Hop-GCN 42.78±1.01 41.87±1.36 37.84±1.68 31.60±2.12 26.36±1.66 21.07±1.53
DeProp-GCN 44.07±1.07 40.98±1.29 33.38±1.70 28.33±0.96 28.42±0.54 29.98±2.78
PSNR-GCN 54.95±1.73 54.13±1.41 50.68±1.45 50.22±6.32 50.06±0.97 50.24±1.58
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Table 7: Node classification accuracy (%) on GAT backbone. The best results across different layers
are highlighted.

Datasets Model Layer 2 Layer 4 Layer 8 Layer 16 Layer 32 Layer 64

Cora

GAT 79.21±1.31 78.83±1.78 41.48±2.84 30.20±0.00 30.20±0.00 30.20±0.00
Res-GAT 79.42±1.46 79.72±1.94 78.88±1.69 78.71±2.13 77.80±2.25 30.22±0.12
InitRes-GAT 79.32±1.65 79.39±1.45 79.00±1.97 79.16±1.68 79.67±1.71 79.42±1.97
Dense-GAT 73.39±1.52 69.07±2.76 58.85±3.02 60.34±2.12 59.44±3.03 55.80±3.12
JK-GAT 79.32±1.06 80.04±1.61 77.28±1.62 77.58±1.51 77.53±1.29 77.58±2.91
DropMessage-GAT 80.06±2.50 80.36±1.92 79.20±0.22 76.54±2.49 52.54±1.02 30.17±0.06
DeProp-GAT 76.00±2.08 69.06±3.94 30.22±0.06 31.20±0.02 30.20±0.01 30.20±0.01
Half-Hop-GAT 77.20±1.86 76.98±1.42 77.24±1.69 75.84±1.68 70.50±4.69 30.20±0.10
PSNR-GAT 80.47±1.62 80.22±0.98 79.96±1.69 80.02±1.64 79.43±1.78 79.69±1.29

Citeseer

GAT 67.12±1.59 65.14±3.02 21.90±2.40 21.10±0.00 21.10±0.00 21.10±0.00
Res-GAT 67.19±1.91 65.65±2.21 63.26±2.31 63.47±1.18 62.82±2.92 22.66±1.31
InitRes-GAT 66.84±2.52 64.15±2.44 65.80±1.89 64.89±2.65 64.69±2.49 65.11±2.65
Dense-GAT 61.63±2.53 54.84±2.34 50.69±3.79 49.21±3.48 47.24±3.08 46.34±3.62
JK-GAT 65.83±2.21 64.79±2.46 63.44±2.51 65.00±1.43 63.57±2.27 62.08±2.26
DropMessage-GAT 67.82±2.04 66.64±2.51 65.10±3.32 58.20±2.55 21.90±1.64 20.90±2.04
DeProp-GAT 61.16±3.50 51.52±11.25 23.20±2.77 21.12±1.76 21.00±1.67 20.50±0.92
Half-Hop-GAT 66.74±1.98 66.70±2.58 63.12±3.49 60.00±3.30 45.98±4.63 24.32±4.46
PSNR-GAT 68.01±2.14 65.61±2.05 66.46±2.14 65.48±2.59 66.36±2.25 65.50±2.35

CS

GAT 89.43±1.62 77.23±10.14 72.63±5.30 38.81±6.52 22.60±0.00 22.60±0.00
Res-GAT 89.48±1.25 83.48±3.39 89.92±0.86 64.30±19.93 23.10±1.45 22.46±2.22
InitRes-GAT 89.61±1.02 77.82±5.90 89.43±1.23 88.50±1.17 88.20±1.22 86.90±2.30
Dense-GAT 89.72±0.86 88.81±0.89 88.28±0.72 87.01±1.52 86.47±1.13 87.23±1.78
JK-GAT 89.77±1.02 90.10±0.94 90.03±1.26 89.68±1.41 89.66±1.04 89.86±1.12
DropMessage-GAT 90.67±1.68 89.20±1.58 87.58±1.46 85.68±1.29 84.58±1.40 81.43±1.13
DeProp-GAT 87.34±1.42 84.18±1.99 72.26±2.77 72.36±2.34 52.60±0.02 22.60±0.01
Half-Hop-GAT 89.66±1.45 89.30±1.84 84.12±2.27 84.75±2.96 56.20±5.96 29.61±9.70
PSNR-GAT 90.38±1.12 86.31±2.68 84.48±1.24 83.84±1.38 81.85±3.55 79.85±5.24

Photo

GAT 89.64±0.84 42.4±18.86 51.13±10.00 27.97±7.71 25.40±0.00 25.40±0.00
Res-GAT 89.03±1.33 89.30±4.68 91.40±0.74 88.60±1.79 25.61±4.23 26.16±1.88
InitRes-GAT 88.92±2.22 31.74±3.12 91.23±1.22 90.72±1.40 91.53±1.06 91.11±1.21
Dense-GAT 88.92±1.66 88.10±1.50 87.03±2.22 86.79±1.97 86.24±2.65 85.63±2.15
JK-GAT 87.55±1.39 90.82±1.24 90.35±1.61 90.30±1.37 90.29±1.49 90.07±1.48
DropMessage-GAT 90.98±0.90 90.29±0.97 82.15±2.82 84.96±1.56 85.10±0.90 82.15±1.32
DeProp-GAT 89.76±1.52 87.98±1.05 82.54±1.01 81.25±2.88 82.26±2.17 80.00±2.11
Half-Hop-GAT 89.92±0.77 85.48±1.89 85.16±2.77 72.12±1.54 67.84±1.08 45.51±0.65
PSNR-GAT 90.93±1.42 91.48±0.94 91.33±1.05 91.05±0.95 91.64±0.61 91.37±0.96

Chameleon

GAT 68.04±1.36 48.37±3.71 26.86±6.17 22.86±0.00 22.86±0.00 22.86±0.00
Res-GAT 70.90±1.34 67.87±3.43 72.66±0.94 66.68±1.13 27.54±3.63 27.27±3.44
InitRes-GAT 69.87±1.65 61.63±5.02 69.89±1.81 69.34±1.34 68.62±1.32 68.53±1.23
Dense-GAT 67.36±1.95 66.87±2.07 66.21±2.03 61.95±2.14 62.32±2.10 61.71±1.69
JK-GAT 67.98±1.71 65.71±1.40 66.75±1.88 66.99±2.23 66.24±1.42 66.31±1.56
DropMessage-GAT 63.23±2.23 56.98±2.54 48.53±2.95 47.00±1.93 40.19±1.82 33.75±2.23
DeProp-GAT 64.23±3.22 53.31±4.19 42.29±2.77 41.19±2.17 32.29±2.77 32.26±0.85
Half-Hop-GAT 62.86±2.04 60.34±2.01 50.58±7.19 43.05±1.74 33.75±2.37 32.27±1.42
PSNR-GAT 71.29±1.64 72.04±1.82 71.58±1.99 71.78±1.51 71.47±2.54 72.24±1.69

Squirrel

GAT 47.93±1.99 32.96±1.85 20.57±1.02 20.00±0.00 20.00±0.00 20.00±0.00
Res-GAT 52.87±1.68 49.87±4.74 55.98±2.12 50.31±1.68 23.07±1.98 22.01±1.26
InitRes-GAT 51.29±1.42 43.92±5.77 49.83±1.55 50.34±1.17 50.30±1.81 50.46±1.75
Dense-GAT 50.25±0.88 49.57±1.80 46.71±1.69 47.83±1.70 47.54±1.58 46.87±1.65
JK-GAT 50.43±1.45 44.41±2.33 49.08±0.79 49.31±1.99 48.87±1.74 49.56±1.31
DropMessage-GAT 45.23±1.35 40.31±1.25 30.69±1.84 29.44±1.34 28.35±2.50 25.47±1.33
DeProp-GAT 45.76±1.32 46.29±3.24 29.99±0.28 28.97±0.56 28.91±0.23 20.00±0.04
Half-Hop-GAT 43.46±1.57 47.84±4.36 42.53±1.53 29.19±1.50 24.37±1.54 23.79±0.65
PSNR-GAT 57.81±2.08 60.85±1.61 59.58±2.09 60.43±2.20 60.00±2.20 60.20±1.53

14



B Residual Connection Defination

Common residual connection for GNNs and their corresponding GNNs are described below.

Res. Res is composed of multiple residual blocks containing few stacked layers. Taking the initial
input of the n-th residual block as Xn, and the stacked nonlinear layers within the residual block as
F(X):

Xn+1 = F(Xn) +Xn,

where residual mapping and identity mapping refer to F(X) and X on the right side of the above
equation, respectively. Inspired by Res, Guohao Li & Matthias Müller(2019) proposed a residual
connection learning framework for GCN and called this model ResGCN which can be simply
described as follows:

Hk = σ
(
D̃− 1

2 ÃD̃− 1
2Hk−1Wk−1

)
+Hk−1.

InitialRes. InitialRes is proposed for the first time in APPNP, unlike Res that carries information
from the previous layers, it constructs a connection to the initial representation X0 at each layer:

Xn+1 = (1− α)H(Xn) + αX0,

where H(X) denotes the aggregation operation within one layer. InitialRes ensures that each node’s
representation retains at least an α-sized portion of the initial feature information. Correspondingly,
APPNP can be formulated as:

Hk = (1− α) D̃− 1
2 ÃD̃− 1

2Hk−1 + αH.

Based on APPNP, GCNII introduces identity mapping from Res to make up for the deficiency in
APPNP.

Dense. Dense proposes a more efficient way to reuse features between layers. The input is the outputs
of all previous layers of the network and at each layer Dense concats them together:

Xn+1 = H([X0,X1, . . . ,Xn]),

where [·] denotes the concatenation of the feature map for the output of layers 0 to n. Inspired
by Dense, DenseGCN applies a similar idea to GCN, i.e., let the output of the k-th layer contains
transformations from all previous GCN layers to exploit the information from different GCN layers:

Hk = AGGdense(H,H1, . . . ,Hk−1).

JK. At the last layer, JK sifts from all previous representations [X1, . . . ,XN ] and combines them:

Xoutput = AGG(X1, . . . ,XN ).

The AGG operation includes concatenation, Maxpooling and LSTM-attention. When it is introduced
to GNN, i.e., JKNet, can be formulated as:

Houtput = AGGjk(H1, . . . ,Hk−1).
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C SMV for Node Groups of Different Degrees
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D Derivation of the closed-form formulas in the table

ResGCN: We can write the recursive formula for ResGCN in the following form:

Hk = (I+N)Hk−1. (6)

In turn, the following form can be obtained by recursion:

Hk = (I+N)kH. (7)

Using the binomial theorem, we can obtain the closed-form formula for ResGCN as follows:

Hk =

k∑
j=0

Cj
kN

jH. (8)

APPNP: According to the recurrence formula of APPNP:

Hk = αH+ (1− α)NHk−1. (9)

To obtain the closed-form formula, we can add a term T to both sides of the equation:

Hk +T = (1− α)NHk−1 + αH+T. (10)

We aim to transform the equation into the following form:

Hk +T = (1− α)N (Hk−1 +T) . (11)

Then we need to make sure that there exists a very T that satisfies the following equation:

(1− α)NT = αH+T, (12)

which can be transformed into the following form:

((1− α)N− I)T = αH. (13)

We can proof the following lemma:

16



Lemma 1 Given that α ∈ (0, 1), (1− α)N− I is invertible.

Proof 1 Proving that (1− α)N − I is invertible is equivalent to demonstrating that it does not
possess an eigenvalue of 0. Consider the Rayleigh quotient of (1− α)N− I:

XT ((1− α)N− I)X

XTX
= (1− α)

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
− 1. (14)

From spectral graph theory, we can know the following equation holds:

XT
(
D̃− 1

2LD̃− 1
2

)
X =

∑
(vi,vj)∈E

(
Xi√
di + 1

− Xj√
dj + 1

)2

> 0. (15)

We can decompose L into D̃− Ã, then we have:

XT
(
D̃− 1

2 D̃D̃− 1
2

)
X

XTX
−

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
> 0, (16)

which is equivalent to:

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
<

XT IX

XTX
= 1. (17)

Combining Eq. 14 and Ineq. 17, we can obtain:

XT ((1− α)N− I)X

XTX
< (1− α)− 1 = −α < 0. (18)

Hence, 0 can’t be the eigenvalue of (1− α)N− I . Therefore, (1− α)N− I is invertible.

Since Lemma 1 holds, we can derive the concrete form of T:

T = α ((1− α)N− I)
−1

H. (19)

Thus we can keep recurring from Eq. 11 and obtain the following equation:

Hk +T = ((1− α)N)
k
(H+T) , (20)

which also can be written as:

Hk = ((1− α)N)
k
H+ ((1− α)N)

k
T−T. (21)

For the second and third terms in Eq. 21, we write (1− α)N as (1− α)N− I+ I. We can use the

binomial theorem to write ((1− α)N)
k as

k∑
j=0

((1− α)N− I)
j
, then Eq. 21 can be written as :

Hk = ((1− α)N)
k
H+

k∑
j=1

((1− α)N− I)
j
T. (22)

Bring in the specific form of T and further derive the closed-form formula of APPNP:

Hk = ((1− α)N)
k
H+ α

k−1∑
j=0

((1− α)N− I)
j
H (23)

= (1− α)
k
NkH+ α

k−1∑
j=0

j∑
i=0

(−1)
j−i

(1− α)
i
NiH. (24)
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E Derivation of the closed-form formula of PSNR-GCN

For each diagonal element Λk,ii of Λk, it is trivial to obtain:

0 < Λk,ii < 1.

To derive the closed-form formula of PSNR-GCN, we need proof the following lemma first.

Lemma 2 Set all the diagonal elements of Λ to satisfy 0 < Λii < 1, then (ΛN+ I) is invertible.

Proof 2 Proving that ΛN+ I is invertible is equivalent to demonstrating that its determinant is not
equal to 0. Because all the diagonal elements of Λ satisfy 0 < Λii < 1, then Λ is invertible. And due
to

|ΛN+ I| = |Λ||N+ Λ−1|. (25)
Therefore, proving that its determinant is not equal to 0 is equivalent to demonstrating that |N+Λ−1|
is not equal to 0, and further equivalent to demonstrating that N+ Λ−1 does not have an eigenvalue
of 0.

Consider the Rayleigh quotient of N+ Λ−1:

R1 =
XT

(
N+ Λ−1

)
X

XTX
. (26)

Split Eq. 26, and we can derive:

R1 =
XTNX

XTX
+

XTΛ−1X

XTX
. (27)

The second term of Eq. 27 can be easily written as follows:

XTΛ−1X

XTX
=

∑N
i=1 Λii

−1x2
i∑N

i=1 x
2
i

.

Since 0 < Λii < 1, therefore Λii
−1 > 1, then

XTΛ−1X

XTX
> 1. (28)

For the first item, we write its specific form as follows:

XTNX

XTX
=

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
. (29)

From spectral graph theory, we know that the following formula holds:

XT
(
D̃− 1

2 (A+D) D̃− 1
2

)
X =

∑
(vi,vj)∈E

(
Xi√
di + 1

+
Xj√
dj + 1

)2

> 0. (30)

Further mathematically transforming this formula, we can get the following form:

XT
(
D̃− 1

2 (A+D) D̃− 1
2

)
X

XTX

=
XT

(
D̃− 1

2

(
Ã+ D̃− 2I

)
D̃− 1

2

)
X

XTX
(31)

=
XT

(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
+

XT
(
D̃− 1

2 D̃D̃− 1
2

)
X

XTX
− 2XT D̃−1X

XTX
(32)

=
XT

(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
+ 1− 2XT D̃−1X

XTX
> 0. (33)
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Further, we get the following result:

XT
(
D̃− 1

2 ÃD̃− 1
2

)
X

XTX
>

2XT D̃−1X

XTX
− 1. (34)

It is trivial to obtain:
2XT D̃−1X

XTX
=

2
∑N

i=1 (di + 1)
−1

x2
i∑N

i=1 x
2
i

> 0. (35)

Combining Eq. 27, Ineq. 28, Ineq. 34 and Ineq. 35, we can get the following inequality:

XT
(
D̃− 1

2 ÃD̃− 1
2 + Λ−1

)
X

XTX
> 0. (36)

It can be obtained that the eigenvalue of D̃− 1
2 ÃD̃− 1

2 + Λ−1 is greater than 0, so 0 is not an
eigenvalue of it. Further, ΛN+ I is invertible.

Now, we derive the closed form of the formula. Given the following recursive formula:

Hk = H1 + Λk−1

(
H1 − D̃−1/2ÃD̃−1/2Hk−1

)
, (37)

where H1 = D̃−1/2ÃD̃−1/2H , Λk = diag{λ(1)
k , ...λ

(n)
k }, λ(i)

k ∼ Sigmoid(N (α
(i)
k , β

(i)
k

2
)). After

mathematical transformation, Eq. 37 can be written as:

Hk = (I+ Λk−1)H1 − Λk−1D̃
−1/2ÃD̃−1/2Hk−1. (38)

Set N = D̃−1/2ÃD̃−1/2, then Eq. 38 can be abbreviated as:

Hk = (I+ Λk−1)H1 − Λk−1NHk−1. (39)

We try to modify Eq. 39 to the form that is more suitable for obtaining the closed form of the formula:

Hk +Mk−1 = −Λk−1N (Hk−1 +Mk−1) . (40)

To verify whether there exists such M that satisfies the equation, we need to solve the following
equation:

−Λk−1NMk−1 = (I+ Λk−1)H1 +Mk−1, (41)
which is equivalent to the following form:

− (Λk−1N+ I)Mk−1 = (I+ Λk−1)H1. (42)

Based on the definition, all the diagonal elements of Λk satisfy 0 < λ
(i)
k < 1, so according to Lemma

2, (Λk−1N+ I) is invertible. Then Mk−1 = − (Λk−1N+ I)
−1

(I+ Λk−1)H1, which means such
Mk−1 that we require exists.

First, we perform the following mathematical transformation on Eq. 40:

Hk +Mk−1 = −Λk−1N (Hk−1 +Mk−2 +Mk−1 −Mk−2) , (43)

which can be split into the following form:

Hk +Mk−1 = −Λk−1N (Hk−1 +Mk−2) + (−Λk−1N) (Mk−1 −Mk−2) . (44)

Let Ñk−1 denotes −Λk−1N, so the formula can be simply written as:

Hk +Mk−1 = Ñk−1 (Hk−1 +Mk−2) + Ñk−1 (Mk−1 −Mk−2) . (45)

We first use Eq. 40 to recurse once, then derive the following formula:

Hk +Mk−1 = Ñk−1Ñk−2 (Hk−2 +Mk−3) + Ñk−1 (Mk−1 −Mk−2) . (46)

By analogy, continuing to split and iterate, we can get the closed form of the output of the k-th layer:

Hk =

k−1∑
i=2

k−1∏
j=i

Ñj (Mi −Mi−1) +

k−1∏
i=1

Ñi (H1 +M1)−Mk−1. (47)

19



F Comparing with other subgraph-based methods

It is worth noting that a lot of previous work mentions "subgraph". However, our approach is
fundamentally different from these approaches.

Relation with other subgraph-based methods. While there are existing works [2, 23] related to
subgraphs, they primarily focus on graph classification tasks, aiming to learn representations of
entire graphs. Given the limited capacity of GNNs to effectively represent the entire graphs, these
subgraph-based approaches employ various strategies to leverage information from multiple subgraph
structures within the overall graph to improve the representation.

In contrast, our focus is on node-level tasks, specifically, enhancing the representations of individual
nodes. In our context, we naturally refer to neighborhood subgraphs as different orders of ego-
networks centered on a node (which can be regarded as subgraphs of the entire graph). Our work
uncovers the relationship between these subgraphs and over-smoothing, as well as how to utilize
them to enhance node representations. This distinction fundamentally sets our approach apart from
other subgraph methods.

G Experiment Setup

G.1 Details of Datasets

The dataset statistics are shown in Table 8, and details on dataset splits are summarized as follows:

Experiment 5.3 & 5.4. For Cora, Citeseer, Coauthor-CS, Amazon-Photo, we randomly select 20
nodes per class for training set, 500 nodes for validation and 1000 nodes for testing. For Chameleon
and Squirrel, we randomly divide each class’s nodes into 60%, 20%, and 20% as the train, validation,
and test sets, respectively.

Experiment 5.5. We follow the widely used semi-supervised setting in [14].

Experiment 5.6. For larger datasets, We randomly divide each class’s nodes into 20%, 20%, and
60% as the train, validation, and test sets, respectively.

Table 8: Dataset statistics of real-world datasets.
Cora Citeseer Pubmed Amazon-Photo Ogbn-arxiv Chameleon Squirrel Coauthor-CS Coauthor-Phy Flickr

#Nodes 2708 3327 19717 7650 169343 2277 5201 18333 34493 89250
#Edges 5429 4732 119081 126842 1166243 36101 217073 81894 247962 899756

#Features 1433 3703 500 745 128 2325 2089 6805 8415 500
#Classes 7 6 3 8 39 5 5 5 10 7

G.2 Parameter Settings

We summarized the hyperparameters used in different experiments in Table 9.

Table 9: Hyperparameters for experiments
Experiment Backbone Learning Rate Dropout Weight Decay Hidden State Attention Head Max Epoch Early Stopping Epoch

Experiment 5.3 & 5.4 GCN {0.01, 0.001} 0.5 0.0005 128 - 500 100
GAT {0.01, 0.001} 0.5 0.0005 64 3 500 100

Experiment 5.5 GCN {0.01, 0.001} 0.5 0.0005 128 - 1000 1000
GAT {0.01, 0.001} 0.5 0.0005 32 1 1000 1000

Experiment 5.6 GCN {0.01, 0.001} 0.5 0.0005 128 - 500 100

H. The Analysis of PSNR Residual Coefficients

We conducted an empirical study using an 8-layer PSNR-GCN trained on the Cora dataset to obtain
the best-performing model. We saved the mean and standard deviation of the learned residual
coefficient distribution for each layer. Nodes were evenly divided into four groups based on their
degree, with each group containing a similar number of nodes, and the average mean and standard
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deviation for each group across different layers are reported in Table 10. The following observations
can be obtained from the table: the mean residual coefficient increases with the number of layers,
suggesting that PSNR effectively retains high-order subgraph information. In certain layers, the
variance of the residual coefficients rises, indicating that added randomness helps mitigate information
loss in higher-order subgraphs. In the shallow layers, the mean values show no significant differences
across node degrees; however, in deeper layers, nodes with higher degrees tend to exhibit lower mean
values, indicating that these nodes retain more initial information due to significant subgraph overlap.
All of these observations align with our expectations, illustrating how residual coefficients adapt
based on node degree and layer depth.

Table 10: Summary of means and standard deviations for different layers
Layer Mean Group 1 Mean Group 2 Mean Group 3 Mean Group 4 Std Group 1 Std Group 2 Std Group 3 Std Group 4

Layer 0 0.0043 0.0049 0.0063 0.0099 0.0002 0.0001 0.0002 0.0001
Layer 1 0.0009 0.0017 0.0013 0.0016 0.3102 0.3120 0.3130 0.2410
Layer 2 0.0000 0.0000 0.0003 0.0008 0.0480 0.0431 0.0446 0.0170
Layer 3 0.5582 0.6017 0.5972 0.4979 0.0084 0.0118 0.0105 0.0080
Layer 4 1.4898 1.5238 1.5212 1.3478 8.3354e-05 5.4541e-05 0.0001 0.0002
Layer 5 2.4080 2.3974 2.3981 2.1414 0.0062 0.0081 0.0078 0.0059
Layer 6 5.2347 5.3148 5.2070 3.8177 0.0046 0.0089 0.0075 0.0069
Layer 7 11.0787 11.1253 10.9247 8.7238 0.1642 0.2089 0.2128 0.0677

I. Comparison of Experimental Results of Different GraphEncoders.

In practice, in addition to SAGE, encoders such as GAT and GCN can also be utilized. To provide
further insight, we have included results for different encoders on the classical semi-supervised node
classification task. The results are summarized in the table blow.

Table 11: Different GraphEncoder performance for SSNC task (layer 2)
Graph Encoder Cora Citeseer CS Photo Chameleon Squirrel

GCN 80.98±1.60 68.46±2.28 90.52±0.82 91.56±0.74 72.02±1.60 56.14±1.51
GAT 80.89±1.63 68.77±1.89 90.61±0.89 91.18±0.92 71.97±1.28 56.24±1.11
SAGE 80.59±1.57 68.06±2.12 91.23±1.00 91.44±0.82 71.51±1.90 54.95±1.73

Table 12: Different GraphEncoder performance for SSNC task (layer 4)
Graph Encoder Cora Citeseer CS Photo Chameleon Squirrel

GCN 81.65±1.70 68.11±1.24 90.66±0.70 91.14±0.90 71.58±2.07 56.34±1.48
GAT 82.21±1.41 67.96±1.20 90.57±0.89 91.17±0.81 71.29±1.75 56.50±1.45
SAGE 81.01±1.63 66.03±1.93 90.70±1.49 91.20±1.03 70.74±2.24 54.13±1.41

The results indicate that each encoder has its strengths and performs differently across various
datasets, demonstrating superior performance compared to the baseline and emphasizing the potential
of PSNR.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our paper’s contributions and scope are presented in the abstract and introduc-
tion accurately.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations of our work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the proofs of all theorems and the derivations of all formulas in
Section 4.2, Appendix D and Appendix E, respectively.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details of experiments in Appendix G, which can ensure the
reproducibility of our experimental result.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We only used public datasets and the anonymous link to the code is provided
in the Abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the details of training and test in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The standard deviation of the experimental results is reported in most of the
tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the details about the compute resources in Section 5.2
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential positive societal impacts in section 6. It has
no negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the original owners of assets (e.g., code, data, models) used in this paper
are properly credited, and the license and terms of use are explicitly mentioned and properly
respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we provide the anonymous link to the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve any crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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