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Abstract

We study the regret in stochastic Multi-Armed Bandits (MAB) with multiple
agents that communicate over an arbitrary connected communication graph. We
show a near-optimal individual regret bound of Õ(

√
AT/m+A), where A is the

number of actions, T the time horizon, and m the number of agents. In particular,
assuming a sufficient number of agents, we achieve a regret bound of Õ(A), which
is independent of the sub-optimality gaps and depends only logarithmically on
the time horizon. To the best of our knowledge, our study is the first to show an
individual regret bound in cooperative stochastic MAB that is independent of the
graph’s diameter and applicable to non-fully-connected communication graphs.

1 Introduction

Multi-Armed Bandit (MAB) is a fundamental framework for studying sequential decision making,
with an expanding scope of practical applications (see, [Lattimore and Szepesvári, 2020]). Recent
research expanded the classic MAB problem into a cooperative setting, sometimes referred to as
multiplayer or multi-agent MAB, where multiple agents share the same goal and can communicate
with each other.

A significant focus of this research has centered on cooperating agents within a communication graph,
often referred to as a communication network. This framework, in which all agents address the same
problem, dates back to Landgren et al. [2016a] for stochastic rewards and Cesa-Bianchi et al. [2016]
for the nonstochastic case. In this setting, agents transmit their information to adjacent neighbors,
from where it continues to propagate throughout the entire network, while encountering delay at
each step. Communication graphs arise naturally in many problems. For example, a communication
network try to find a suitable configuration. The network elements (e.g., routers) experience the
same rewards for the same actions, but they cannot always send information directly to all the other
network elements. In this example, the agents are the network elements, the configurations are the
actions, and the communication graph is determined by the environment in which the system resides.
Other cooperating entities in physical environment can also be modeled with this setting, for example,
drones, cloud servers and more. The communication graph setting can also be applied to model
problems involving social networks. One such example is when individuals are working towards the
same objective but choose to communicate directly only with their friends within the social network.

The literature of cooperative MAB, both in the stochastic and non-stochastic case, distinguishes
between group (a.k.a. average) regret and individual regret, where the latter is much stronger and
more challenging to achieve. In stochastic setting, group regret was studied by Landgren et al.
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[2016a,b, 2018, 2021], Chakraborty et al. [2017], Martínez-Rubio et al. [2019], Wang et al. [2020],
Yang et al. [2023], Chen et al. [2024], and individual regret was studied by Dubey and Pentland
[2020], Wang et al. [2022]. Both in the stochastic and non-stochastic cases, approaches that explicitly
synchronize between agents have often been employed to achieve individual regret bounds. While
such synchronization seems to nearly optimize regret in the non-stochastic setting [Bar-On and
Mansour, 2019], it appears to introduce an unnecessary artifact in the stochastic case. This artifact
causes the regret bound to depends inversely on the degree of each agent in the graph [Dubey and
Pentland, 2020], rather than on total number of agents. In a cycle graph, for example, their bound is
similar to a single-agent bound. [Wang et al., 2022] also showed an individual regret bound, but their
bound has an additive term which is linear in the diameter of the graph. In contrast, our individual
regret vanishes even for a cycle, where all the degrees are two, and the diameter is of order of m.

The focus of this work is to bridge the gap between group and individual regret in the stochastic
setting. To the best of our knowledge, this is the first paper to show a graph-independent individual
regret bound.

1.1 Key contributions

Our key contributions are as follows:

• We present Coop-SE, a natural extension of the known Successive Elimination (SE) algo-
rithm [Even-Dar et al., 2006] to the cooperative setting. Coop-SE is completely decentralized
and each agent plays it independently. We prove that Coop-SE achieves a near-optimal
individual regret bound of Õ(

√
(AT )/m+A), which is independent of the graph and the

sub-optimality gaps.

• We show a lower bound for the individual regret of Ω(
√
AT/m+

√
A).

• We extend our algorithm for a bounded communication framework. We show that with
O(A log(ATm)) bits per message we achieve the same individual regret bound as with
unbounded message size. For message of size O(log(ATm)) bits we reach an individual
regret bound of Õ(A

√
T/m+A2).

[Kolla et al., 2018] raised the question of whether it is feasible, in a general network, to surpass the
performance of well-established single-agent policies, such as UCB [Auer et al., 2002] and SE, when
executed independently across the network. Our work addresses this open question by demonstrating
that, apart from an additive term of A and logarithmic factors, it is not possible to obtain an individual
regret bound that improves upon the bound achieved by the simple Coop-SE algorithm.

Main techniques We conducted an analysis similar to SE analysis, where the number of obser-
vations for an action is limited to prevent excessive exploration. However, in a single-agent setting,
the number of observations directly corresponds to the number of plays, which is not the case in our
multi-agent scenario. The challenge is to ensure that a sufficient number of agents provide relevant
information. To address this problem, we employ a technique we call Implicit Synchronization. This
technique is based on the idea that there exist long enough time intervals in which every agent in
large neighborhoods plays the same policy. By leveraging this property, we can establish an upper
bound on the number of times an agent performs a specific action. Our algorithm is designed in such
a way that every agent follows it independently, and the synchronization arises implicitly.

1.2 Additional related work

Communication-aware MABs appear in [Sankararaman et al., 2019, Chawla et al., 2020, Mad-
hushani et al., 2021, Madhushani and Leonard, 2020, 2021a, Agarwal et al., 2022, Pavlovic et al.,
2024]. The works address group regret which vanishes, or becomes independent of the number of
actions, as the number of agents increase. This this line of work focus on minimizing the number of
messages sent. The main difference is that we do not restrict the number of messages being sent.

Directed communication graphs were addressed in Zhu et al. [2021], Zhu and Liu [2021, 2023].
Their instance-dependent regret has an additive term which is linear in the number of agents.

Best action identification using cooperation was studied in Hillel et al. [2013], Tao et al. [2019]
where the network is fully-connected and they also minimize the number of messages.
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Algorithm 1 Stochastic MAB on Graph. Protocol for agent v

1: for t ∈ [T ] do
2: Agent v picks an action avt ∈ A.
3: Environment samples a reward, rvt (a

v
t ) ∼ Dav

t
.

4: Agent v observes reward rvt (a
v
t ).

5: Agent v sends messages mv,u
t to each neighbor u.

6: Agent v receives messages mu,v
t from each neighbor u.

7: end for

Heterogeneous agents which observe their neighbors with different probabilities and minimize the
group regret were also addressed. Madhushani and Leonard [2019] derives a group regret based
on various properties of the graph and Madhushani and Leonard [2021b] studies group regret in
multi-star networks. The case of each agent having a subset of actions that are relevant to them, was
studied in Yang et al. [2022], and group regret bound was derived.

Linear contextual MAB with a network of users of similar linear utility was analyzed in [Cesa-
Bianchi et al., 2013].

Cooperation in Markov-Decision-Processes (MDPs) has been studied by Lidard et al. [2022]
who have shown group regret guarantees in cooperative stochastic MDPs over a general network.
Lancewicki et al. [2022] considered both the stochastic and non-stochastic case in cooperative MDPs
but only over a fully-connected graph.

2 Model and problem formulation

Stochastic MAB (SMAB): A stochastic Multi-armed bandit problem has A actions, denoted by
A = {1, . . . , A}. Each action a ∈ A has a reward distribution Da, whose support is [0, 1], and its
expectation is µa = Er∼Da

[r].

An optimal action is denoted with a⋆ ∈ argmaxa∈A µa, and µ⋆ = µa⋆ . The gap of a sub-optimal
action a is ∆a = µ⋆ − µa.

Multi-player MAB: We have an undirected graph G(V,E), where V is the set of vertices and E the
set of edges. Every vertex represents an agent. An agent u is a neighbor of agent v iff (v, u) ∈ E.
Let Nv

≤d be the set of agents at distance at most d from agent v, i.e., Nv
≤d := {u ∈ V |dG(v, u) ≤ d},

where dG(v, u) is the minimal path length (number of edges) from v to u in G.

There are T rounds of play. Each agent v ∈ V , in each round of play t ∈ [T ] does the following: (1)
selects an action avt ∈ A and observes a reward rvt (a

v
t ). (2) sends messages to neighboring agents

u ∈ Nv
≤1. (3) receives messages from neighboring agents u ∈ Nv

≤1. See Algorithm 1.

Regret definition: The individual (pseudo) regret of an agent v is defined by Rv
T =

E[
∑T

t=1(µ
∗ − rvt (a

v
t ))].

1 In this paper we focus on minimizing the individual (pseudo) regret
of every agent.

Events and Messages: An event is a tuple describing reward, or a tuple describing an elimination of
an action. A reward event is (rwd, t, id, a, r), where t is the timestep, id is the agent’s ID, a = aidt
is the action, and r = ridt (aidt ) is the reward. An elimination event is (elim, t, id, a), where t is the
timestep, id is the agent, a is the eliminated action. To denote individual elements within an event
tuple, we use subscript notation. For example, if we have an event event = (rwd, t, id, a, r), we
denote the action a using eventa. A message is a set of events.

3 The Coop-SE algorithm and individual regret guarantees

We present Coop-SE, our main algorithm, which is a natural extension of the well-known Successive
Elimination (SE) algorithm to the cooperative setting. Coop-SE is a decentralized algorithm, and it is

1The expectation of the pseudo regret is also over the randomness of the algorithm. We will refer to the
pseudo regret as the regret for the rest of the article.
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Algorithm 2 Cooperative Successive Elimination (Coop-SE)

1: Input: number of rounds T , neighbor agents N , number of actions A, ID of current agent v.
2: Initialization: t ← 1; Set of active actions A = A; Rt(a) = 0, nt(a) = 0 for every action a;

Min = ∅; Mupdates = ∅; Msent = ∅; Mseen = ∅;
3: for t = 1, ..., T do
4: for event ∈Mupdates do
5: if event /∈Mseen then
6: Mseen = Mseen ∪ event
7: if event is elim-event then A = A \ eventa
8: else if eventa ∈ A then nt(a) = nt(a) + 1, Rt(a) = Rt(a) + eventr
9: end if

10: end if
11: end for
12: E = ElimStep(A, nt, µ̂t, L), A = A \ E
13: Choose action at uniformly from A, and get reward rt(at)
14: // Send and receive messages
15: Mme = {(rwd, t, v, at, rat)} ∪ {(elim, t, v, a)|∃a ∈ E}, Mv

t = (Mme ∪Min) \Msent

16: Send message Mv
t to all neighbors, receive messages Mv′

t from each neighbor v′ ∈ N

17: Msent = Msent ∪Mv
t , Mupdates = Mme ∪v′∈N Mv′

t , Min = Min ∪v′∈N Mv′

t
18: end for

Algorithm 3 Elimination Step (ElimStep)

1: Input: active actions A, number of samples n(a) for each active actions a, empirical mean for
every active action µ̂(a).

2: E = ∅
3: for a ∈ A do
4:

λ(a) =

√
2ι

n(a) ∨ 1
, UCB(a) = µ̂(a) + λ(a), LCB(a) = µ̂(a)− λ(a) (1)

where ι := log(3mTA).
5: end for
6: for a ∈ A do
7: if exists a′ with UCB(a) < LCB(a′) then E = E ∪ {a}
8: end if
9: end for

10: Return E

important to note that each agent plays Coop-SE independently. In this algorithm, the agent keeps
track of a set of active actions and maintains a confidence interval for the mean reward associated with
each action. When the upper confidence bound of an action is strictly lower than the lower confidence
bound of another action, the agent can be almost certain that the former action is sub-optimal and
remove it from her set of active actions, i.e., to eliminate the action. In each round, the agent selects
an action with uniform distribution among the active actions. Furthermore, each agent shares all the
information she generates and receives from other agents with her neighbors in the communication
graph. Our cooperative adaptation of the SE algorithm utilizes all observed samples received by the
agent during communication to calculate these confidence bounds. This increased information sharing
significantly reduces the regret compared to the non-cooperative setting. The formal description of
the algorithm is provided in Algorithm 2.

Our main result is the following theorem.
Theorem 1. When all the agents play Coop-SE, i.e., Algorithm 2, the individual regret of each agent
v ∈ V is bounded by,

Rv
T ≤ 1089

√
TA log(3mTA)

m
+ 138A log(3mTA) + 1.
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A problem-specific flavor of an individual regret bound can also be found:
Theorem 2. When all the agents play Coop-SE, i.e., Algorithm 2, the individual regret of each agent
v ∈ V is bounded by,

Rv
T ≤ 1088

( ∑
a∈A:∆a>0

log(3mTA)

m∆a

)
+ 138A log(3mTA) + 1.

To the best of our knowledge, the current state-of-the-art individual regret is achieved by Wang et al.
[2022], who obtain a bound of Õ(

∑
a∈A:∆a>0

1
m∆a

+
∑

a∈A ∆aD), where D is the diameter of the
communication graph. For graphs such as line graphs, their bound is linear in m, and thus, does not
vanish with increasing m as opposed to our regret bound. Landgren et al. [2016a,b, 2018, 2021],
Martínez-Rubio et al. [2019] show only an average regret bound of Õ(

∑
a∈A:∆a>0(

1
m∆a

+∆a)),
however, the O-notion here hides various dependencies on the graph parameters. Our individual
regret bound matches their average regret bounds, and in addition does not have any dependency on
the graph parameters.

In Section 5, we present a lower bound of Ω(
√
TA/m +

√
A), which almost matches the upper

bound of the individual regret of Coop-SE. However, the exact dependency on A in this additive term
still remains open.

An important insight that follows from these results is that for a sufficiently large number of agents,
the instance-independent bound depends only logarithmically on T . I.e., when m = T , we achieve
an individual regret bound of Õ(A). It is interesting to see that in every large graph, even a line graph,
the individual regret of every agent on the line depends on the number of actions, and logarithmically
depends on T . This is in contrast to previous individual regret bounds that scale linearly with the
number of agents, m, for a line graph.

Notably, our natural extension to the Successive Elimination algorithm demonstrates that effec-
tive individual regret bounds can be achieved without resorting to complex algorithms or heavy
dependencies on the graph structure. Resolving the question in Kolla et al. [2018].

To summarize, our results present a simple algorithm that achieves a near-optimal individual regret
bound. Importantly, this bound is independent of the graph structure and simple to understand.

In the following section, we present the key ideas employed in the analysis of the individual regret.
Remark 1. In Coop-SE each agent selects a random action from its set of active actions. A natural
alternative is to have the actions selected in a round-robin way, deterministically. For the round-robin

selection we have obtained a slightly worse Õ(
√

AT
m +A2) regret bound (proof omitted).

4 Individual regret analysis

In this section we provide a proof sketch that outlines the key steps in our analysis. We analyse the
regret of an arbitrary agent v, and all the definitions are reference to this agent, unless explicitly stated
otherwise.

The Stages. Our proof heavily rely on a notion we call stages. These are the time intervals between
the eliminations of agent v. Formally, a stage j ∈ [A] is the interval [tj , tj+1) where t1 = 1, and
tj+1 is the timestep of the j’th elimination. We’ll also denote by τj the length of the j’th step and the
number of active actions in the j’th step by Aj := A− j + 1.

Section 4.1 bounds the stage length as a function of the number of samples. This bound relies on
Implicit Synchronization between agents, which we discuses in Section 4.2. Since the number of
observed samples from a sub-optimal action cannot be too large before it is eliminated, this induces a
restriction on stage lengths. Finally, Section 4.3 bounds the agent’s regret in terms of stage length.
By combining these results we obtain our main theorem.

4.1 Number of samples in terms of Stage length

Consider the j’th stage and an action a which is still active in that stage. For the sake of intuition,
assume that the agents are completely synchronized, i.e., have the same set of active actions. (We will
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remove this assumption later). In the first τj/2 steps of the stage, each of the closest τj/4 agents to v
contribute to v’s information approximately τj/(2Aj) samples of action a. Moreover, these samples
are observed by v with delay of at most τj/4 and thus will reach her before the end of the stage.

For the ease of notation, we omit the v from Nv
≤τ and denote N≤τ := Nv

≤τ .

If a is active in the first i stages, we would expect that the number of sameples that reaches v for
that action a from the first i stages is at least of order of

∑i
j=1

τj
Aj
· |N≤τj/4|, where N≤τj/4 is v’s

neighborhood of radius τj/4.

However, in general, the agent’s policies are not completely synchronized, and thus, we need a
stronger argument to rigorously establish the above claim. In the the next subsection, we show that
under Coop-SE the agents have Implicit Synchronization. Specifically, while their policies may not be
synchronized for the entire stage, they do synchronize during a specific time interval of length Θ(τj).
In Appendix B.2 we define a "good event", which intuitively captures the fact that the observed means
are close to their expectations. This allows us to show the following lemma:
Lemma 1. Under a "good event" defined in appendix B.2 (which holds w.h.p), for every action a
that was not eliminated before the end of stage i, the number of samples that v observes by the end of
stage i is bounded as,

nti+1−1(a) ≥
i∑

j=1,τj>16

τj
16Aj

|N≤τj/4| − 2 log(3mTA),

where nt(a) is the number of samples that v observed by the beginning of time t.

The above lemma implies that the amount of observed feedback from each stage is boosted by a
factor |N≤τj/4| compared to the number of times that v itself choose the action. In particular, if the
number of agents is sufficiently large (say, m = Θ(T )), then |N≤τj/4| ≥ τj/4 and the number of
observed samples from state j is at least from an order of τ2j /Aj .

4.2 Implicit synchronization of neighborhoods over intervals

We now prove the Implicit Synchronization of our algorithm, which is one of the key components that
allows us to show individual regret.
Lemma 2. Let j be a stage index such that τj > 16. Then every agent u ∈ N≤τj/4 plays the same
policy (i.e., has the same set of active actions) at time interval [tj + ⌈τj/4⌉, tj + ⌊τj/2⌋].

Proof. Let t ∈ [tj + ⌈τj/4⌉, tj + ⌊τj/2⌋] and let u ∈ N≤τj/4. Denote the active actions of v in the
j’th stage as Aj . We will show that an action a is active for u at t iff a ∈ Aj .

Let a be an active action of u at time t. Since u ∈ N≤τj/4, we have dG(u, v) ≤ τj/4. The distance
dG(u, v) is a natural number, then it is at most ⌊τj/4⌋. Therefore u gets all v’s eliminations (the first
j − 1 eliminated actions) until the beginning of round tj + ⌊τj/4⌋. By the stage’s definition, the
agent v does not send any elimination event about one of its active actions until the end of the stage.
Therefore, for any t′ ≥ tj + ⌈τj/4⌉, u does not have any active action which is not in Aj . Hence,
a ∈ Aj .

Let a be an action in Aj . We will show that a is an active action of u at time t. Assume for
contradiction that u, at timestep tj+⌊τj/2⌋ or before, encounters an elimination of a. The elimination
event should arrive to v in no more than ⌊τj/4⌋ timesteps, so v should get the elimination event at
most at timestep tj+⌊τj/2⌋+⌊τj/4⌋ ≤ tj+

3τj
4 . But τj > 16, then τj/4 > 4, so tj+

3τj
4 < tj+1−4.

Therefore, the elimination event about an action in Aj should arrive to v at least 5 timesteps before
stage j + 1 begin. Contradiction. Therefore, a is an active action of u at t.

We get that for every t ∈ [tj + ⌈τj/4⌉, tj + ⌊τj/2⌋] and for every u ∈ N≤τj/4, the active actions of
u at t are exactlyAj . In other words, we get that in time interval [tj + ⌈τj/4⌉, tj + ⌊τj/2⌋] all agents
in N≤τj/4 plays the same policy, i.e., choosing randomly from Aj .

One can notice that τj/4 is both distance in the graph, and a timesteps interval length. The two roles
the same τj/4 fulfills are depicted in Figure 1.
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Figure 1: Visualization of the proof idea in Lemma 2. The circle on the left depicts the τj/4-
neighborhood of v. On the red interval (left-pointing arrow), every relevant agent has at least Aj as
the active actions, and on the blue (right-pointing arrow) interval every relevant agent has at most Aj

as the active actions. The intersection of these intervals is the τj/4-length of timesteps interval in
which the τj/4-neighborhood plays with the same active actions as v.

τj/4

tj tj + τj/4
tj + τj/2

tj+1

4.3 Bounding the regret

We start by bounding agent’s v regret in terms of stage lengths. Fix a sub-optimal action a and
assume that i is the last stage that a was active. Since v samples active actions uniformly, in each
stage j ≤ i, she sampled a approximately τj/Aj times. Thus, the total number of times v samples a
is approximately

∑i
j=1

τj
Aj

and we can roughly bound the regret with,

RT ≲
A∑
i=1

i∑
j=1

τj
Aj

∆i, (2)

where we slightly abuse notation and let ∆i to be the sub-optimality gap of the action that was
eliminated at the end of stage i.

Next, we use Lemma 1, to induce constraints on {τj}Aj=1. Using standard concentration bounds, we
can show that the number of samples v can see from a sub-optimal action a, without eliminating it, is
approximately 1/∆2

a. Thus, from Lemma 1 we get that for the i’th action v eliminates,
i∑

j=1

|N≤τj/4|
τj

16Aj
≲

1

∆2
i

. (3)

If N≤τj/4 is not the entire graph (i.e., not of size m) then |N≤τj/4| ≥
τj
4 . (Note that for a line graph

we have approximate equality). Hence, |N≤τj/4| ≥ min{m,
τj
4 }. Denote the indices of the short

intervals in which τj/4 < m with Sτ , i.e., Sτ = {j : τj/4 < m}. Now, from (3) we get
i∑

j=1,j∈Sτ

τ2j
64Aj

+

i∑
j=1,j /∈Sτ

m
τj

16Aj
≤

i∑
j=1

min{m,
τj
4
} τj
16Aj

≤
i∑

j=1

|N≤τj/4|
τj

16Aj
≲

1

∆2
i

This implies that
i∑

j=1,j∈Sτ

τ2j
64Aj

≲
1

∆2
i

, and
i∑

j=1,j /∈Sτ

m
τj

16Aj
≲

1

∆2
i

. (4)

With that in hand, we can break the sum in Equation (2) to stages in Sτ and outside Sτ , and use the
above two conditions in order to obtain our final regret bound of Theorem 1. The formal details are
rather technical and deferred to the appendix.

5 Lower bound

The following section derives the lower bound, which also shows that our algorithm achieves near-
optimal individual regret.
Theorem 3. For every algorithm, and for every T,A,m, there exists a problem instance of the
cooperative stochastic MAB over a communication graph such that there exists an agent for which
the individual regret is at least,

Ω

(√
AT

m
+
√
A

)
.
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Proof. We will show two separate lower bounds, Ω(
√

AT/m) and Ω(
√
A).

For the Ω(
√
AT/m), we consider a fully-connected network. This lower bound follows from the

lower bound on group regret. The group regret of m agents with T time steps is lower bounded by
the optimal regret of a single agent running mT time steps. The standard lower bounds for MAB
imply an Ω(

√
mTA) for the single agent running for mT time steps. Therefore, there exists some

agent whose regret is Ω(
√
AT/m). This is essentially the lower bound in Ito et al. [2020].

For the Ω(
√
A) bound, we use a line graph. The lower bound appears formally in Theorem 6. The

intuition of the proof is the following. We consider a deterministic MAB where one action has
reward 1 and all other actions have reward 0. An agent, during the first τ time steps receives Θ(τ2)

observations. Therefore, if τ ≲
√
A/10, then an agent receives information about at most A/100

of the actions. If the optimal action is selected at random then with probability 0.99 the agent will
not observe it, and hence will have an individual regret of at least

√
A/10. For the formal proof see

Theorem 6.

6 Low communication results

In this setting we model a problem in which the communication channels between the agents are
bounded. This type of restriction is common when modeling a communication network. Specifically,
we limit the size of the messages that the agent can transmit. This model is referred to as the
CONGEST model in the distributed literature [Peleg, 2000].

We derived two results. The first is for message size of O(A log(ATm)) bits. The second requires
the messages to be logarithmic in all parameters, including the number of actions, and each message
is at most O(log(ATm)) bits.

The first step in our solution is to avoid duplicated messages. This can be done by selecting a spanning
tree in the graph and limiting all our communication to this spanning tree. Note that limiting the
communication to the spanning tree does not affect the individual regret bound of Coop-SE. This is
unique to our algorithm, since Coop-SE promises a regret bound that does not depend on the graph
parameters. When we send the messages on the tree, we perform a broadcast, which is done by
forwarding the message on all the edges except the edge it was received from. This guarantees that
each message is received by each agent only once.

The next observation is that the Coop-SE algorithm can aggregate all the events regarding an action a
into two events, one for the rewards, rwd, and one for elimination, elim. The message will contain
information about every action a, whether it was eliminated, the number of times it was observed,
and the sum of the rewards observed. The size of such message is O(A log(ATm)) bits. This is all
the information the agents need to receive from the multiple messages.

Algorithm Coop-SE-Restricted, Algorithm 4, uses the above two observations. It creates a
spanning tree out of the communication graph, on which it transmits the messages. It also merges
multiple message for the same action, as outline above. We derive the following regret bound for
Algorithm Coop-SE-Restricted.
Theorem 4. When the message size is bounded by O(A log(ATm)) bits, and when all the agents
play Coop-SE-Restricted (Algorithm 4), the same bounds for Coop-SE hold, i.e., Theorem 1 and
Theorem 2 hold. Specifically, the individual regret of each agent v ∈ V is bounded by,

Rv
T ≤ 1089

√
TA log(3mTA)

m
+ 138A log(3mTA) + 1.

The above model assume that messages are Õ(A) bits long. In case of a large number of action, it is
reasonable to require the messages to be only logarithmic in the problem parameters, including the
number of actions A. For this reason we consider the case that the size of the messages is limited to
O(log(ATm)) bits. Algorithm Coop-SE-Low-Comm, Algorithm 5, works with messages of size at
most O(log(ATm)) bits.

Here is the high level idea of the algorithm. Rather than sending messages of size O(A log(mTA)),
we break them into A messages of logarithmic size. Specifically, Coop-SE-Low-Comm operates
over ⌊T/A⌋ blocks of A timesteps each. At the beginning of each block, the agent samples an
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action and plays it throughout the entire block. To simulate faithfully, the agent fixes the action
and ignores the information she produces except for the first round in the block. In each timestep
within a block she sends a message that includes only the rwd and elim events of a single action,
aggregating messages from the previous block. In this way, each block effectively simulates a
single timestep of Coop-SE-Restricted - that is, a play of an action and transmission of mes-
sages containing events for all A actions. Since the same action is played throughout the entire
block, the regret incurred in each block of Coop-SE-Low-Comm corresponds to the regret in each
timestep of Coop-SE-Restricted, scaled up by a factor of A. Consequently, the total regret ex-
perienced over the entire duration of Coop-SE-Low-Comm corresponds to the cumulative regret of
Coop-SE-Restricted over ⌊T/A⌋ timesteps, also scaled by a factor of A.

Formally, we obtain the following theorem. A detailed proof is provided in the supplementary
material.
Theorem 5. When the message size is bounded by O(log(ATm)) bits, and when all the agents play
Coop-SE-Low-Comm, i.e., Algorithm 5, the individual regret of each agent v ∈ V is bounded by,

Rv
T ≤ 1089A

√
T log(3mTA)

m
+ 140A2 log(3mTA).

7 Summary and future work

In this paper, we introduced Coop-SE, a simple extension of the well-known Successive Elimination
(SE) algorithm, to address the problem of cooperative stochastic MAB over a communication graph.
Our main contribution is the proof that when all agents play Coop-SE, the individual regret is bounded

by Õ(
√

TA
m +A), which is near-optimal and independent of the graph structure. We also provided

a lower bound of Ω(
√

TA
m +

√
A) for this problem. Although the upper and lower bounds nearly

match, obtaining the optimal dependency on A remains an open question.

We also discussed the effect of messages of bounded size. For the case where the message size is re-
stricted to O(A log(ATm)) bits, we presented the Coop-SE-Restricted algorithm, which achieves
the same individual regret bound as Coop-SE. When the message size is restricted to O(log(ATm))

bits, the Coop-SE-Low-Comm algorithm achieves an individual regret of Õ(A
√

T
m +A2). An obvi-

ous open problem is to reduce the later regret bound.

Future research could investigate how different communication restrictions impact the performance
of Coop-SE and other algorithms targeting individual regret. For example, bounding not only the
message size, but also the number of messages.

It would be very interesting to extend the results to other MAB agorithms, specifically, Upper
Confidence Bound (UCB) and Thompson sampling. Unlike the SE algorithm, the UCB algorithm
does not possess the property of Implicit Synchronization when each agent runs an independent UCB
algorithm. We leverage the Implicit Synchronization property, which means that agents play the same
policy, to ensure the number of times an agent plays an action is related to the number of observations
she makes. On the other hand, for agents using UCB to create the same policy, they must have
identical empirical bounds. We leave the analysis and adaptation of UCB for the individual regret in
the cooperative setting as future work. Similar issues might arise also in the potential adaptation of
Thomson sampling to the cooperative setting.
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A Summery of notations

For convenience, the table below summarizes most of the notation used throughout the paper.

Da The reward distribution of action a
µa The expected reward of action a
µ⋆ The maximal expected reward
a⋆ An optimal action
∆a The sub-optimality gap of action a
Nu

≤d The set of agents at distance at most d from agent u
N≤d For ease of notation N≤d := Nv

≤d; see Remark 2
dG(v, u) The minimal path length (number of edges) from v to u

tj The beginning of stage j of agent v; see Remark 2
τj The length of stage j of agent v; see Remark 2
Aj The number of active actions in the j’th step of agent v; see Remark 2
ι log(3mTA)

nu
t (a) The number of samples that u observed by the beginning of time t

nt(a) For ease of notation nt(a) := nv
t (a); see Remark 2

but (a) The number of times agent u played action a until the beginning of round t.
bt(a) For ease of notation bt(a) := bvt (a); see Remark 2
puk The policy of agent u at time k

A∆ The set of elimination indices (with respect to agent v) with gaps larger than
√

Aι
Tm

ai The i’th action being eliminaed by agent v
∆i The sub-optimality gap of ai
Gτ The set of "Good Intervals": {j|τj > 16}.
Sτ The set of "Short Intervals": {j|j ∈ Gτ & τj/4 < m}

B Proof of the main theorem

Remark 2. For the ease of notation, the following proof and definitions focus on a specific agent,
named v.

B.1 Definitions

Definition 1. A stage is a timestep-interval when its boundaries are the eliminations. The stage’s
index is usually denoted by j. The time interval is split into A different stages. Assume that the
elimination timesteps are s1, s2, . . . . The first stage starts at t = 1 and ends with the first elimination.
I.e., it is the timesteps that are in time interval [1, s1). The second stage is [s1, s2), etc. Denote tj to
be the timestep in which the agent started the j’th stage, where t1 = 1 and tA+1 = T + 1.

Definition 2. Denote τj to be the length of the j’th stage (for agent v).

Definition 3. Denote Aj := A− j + 1 to be the number of remained actions in the j’th stage.

Definition 4. Elimination index i of the action a is the stage index in which in its end the action is
eliminated. Every action has a unique elimination index.

If some actions are eliminated in the same timestep, then the stage is of zero length and the elimination
index are chosen arbitrary. The elimination index of a is denoted by ia, and the appropriate action
for elimination index i is denoted by ai.

Definition 5. Denote with A∆ the set of elimination indices of large gaps. A∆ = {i|∆ai
≥
√

Aι
Tm}.

Definition 6. For the ease of notation, denote ∆i := ∆ai
.

Definition 7. Define the set of "Good Intervals" to be the set of long enough intervals: Gτ = {j|τj >
16}. These are the intervals we will focus in the proofs.

Definition 8. Denote the group of indices of short stages with Sτ . Specifically,

Sτ := {j|j ∈ Gτ & τj/4 < m}
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Definition 9. Denote the number of samples an agent u sees for action a until the begging of timestep
t with nu

t (a). For the ease of notation, denote nt(a) := nv
t (a).

Definition 10. Denote by but (a) the number of times agent u played action a until the beginning of
round t.

Definition 11. Denote the upper confidence bound for agent u for action a with UCBu
n(a)(a) =

µ̂(a) +
√

2 log(3mTA)
n(a)∨1 , where n(a) is the number of times agent u observed action a, and µ̂(a) is the

empirical mean calculated by u for action a. Similarly, let LCBu
n(a)(a) = µ̂(a) −

√
2 log(3mTA)

n(a)∨1

denote the corresponding lower confidence bound. In other words, UCBu
n(a)(a) and LCBu

n(a)(a)

are the confidence bounds calculated in Algorithm 3 Equation (1) when agent u calls this algorithm
with parameters n, a vector containing the number of observations for each action, and µ̂, the vector
of empirical means.

Definition 12. The policy of agent u at time t is denoted with put . I.e., put (a) is the probability that
agent u plays action a at time t given her observations up to time t. In all the proposed algorithms it
is simply 1 divide the number of active actions if the action is active, and zero otherwise.

Definition 13. Denote the logarithmic term used in Algorithm 3 with ι, i.e., ι = log(3mTA)

B.2 The good event

The first good event G1 captures the intuition that the true expectation of each action is between the
UCB and the LCB.

Definition 14. Define the good event, G1, to be the event in which for every agent u, for every action
a and for every rwd-event that was received, the empirical mean is in the confidence interval, i.e.,

µa ∈ [LCBu
n(a)(a), UCBu

n(a)(a), ]

where n(a) is the number of rwd-events that were received for this action by the agent u.

Lemma 3. Let w be an agent and let Xw
t (a) := I(awt = a) be the indicator that w plays action a at

timestep t. Then for any agent u, timestep t, and action a,

nu
t (a) =

t−1∑
k=1

∑
w∈Nu

≤t−k

Xw
k (a)

Proof. Let w be an agent such that w ̸= u and dG(w, u) = d. Every Xw
k (a) reaches u at the end of

round k + d− 1. Therefore, it contributes to nu
t′(a) at timestep t′ = k + d. We get that for w ̸= u,

w ∈ Nu
≤t−k, Xw

k (a) reaches u until the beginning of timestep t.

Now, let w = u and k < t. An agent u uses the information she creates only at the next timestep.
Since we do not sum the information for the current timestep t, i.e., t − k ≥ 1, the information u
creates is summed only for timesteps that passed. In other words, for w = u, Xw

k (a) is summed only
at timesteps t′ < t, for them the information reaches u until the beginning of t. Therefore, we get
that for all k < t, w ∈ Nu

≤t−k, Xw
k (a) reaches u until the beginning of timestep t. Summing over all

the timesteps at which information on action a can be produced and we obtain the result.

The second good event G2 requires that the number of observations of an action is not much less than
its expectation.

Definition 15. Define the good event G2 to be the event in which for all u ∈ V , action a and timestep
t ∈ T simultaneously,

nu
t (a) ≥

1

2

t−1∑
k=1

∑
w∈Nu

≤t−k

pwk (a)− 2ι.

The third good event G3 requires that the number of plays of an action is not much more than its
expectation.
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Definition 16. Define the good event G3 to be the event in which for all u ∈ V , action a and timestep
t ∈ T simultaneously,

but (a) ≤ 2

t−1∑
k=1

puk(a) + 12ι.

The following lemma show that with high probability all the good events hold.

Lemma 4. When all agents play Algorithm 2 the good event, G := G1 ∪G2 ∪G3, happens with
probability of at least 1− 1

T 2 .

Proof. We will show that each of the events ¬G1,¬G2 and ¬G3 happens with probability of at most
1

3T 2 . Thus, by the union bound, G occur with probability of at least 1− 1
T 2 .

Event ¬G1: Denote Mu
a (k) to be the k’th rwd event agent u received for action a. Define

Xu
n(a) :=

∑n
k=1(M

u
a (k)− µa) and λn :=

√
2ι
n . Note that Xu

n(a) is a martingale. From Azuma’s
inequality we get

Pr

(∣∣∣∣Xu
n(a)

n
− µa

∣∣∣∣ ≥ λn

)
≤ 1

3m3T 3A3

There are at most m · T rwd events the agent can get. The same holds for every action and for
every message. The upper confidence bound (UCBu

n(a)) is defined as Xu
n(a) + λn and the lower

confidence bound (LCBu
n(a)) is defined as Xu

n(a) − λn. From the union bound we get that with
high probability for every agent, for every timestep, for every action and for every rwd event message
the agent get, the actual mean of the action would be inside the confidence bound. Specifically

G1 := ∀u ∈ V,∀a ∈ A,∀n ∈ [m · T ](µa ∈ [LCBu
n(a), UCBu

n(a)])

P(¬G1) ≤ 1

3mT 2A2
≤ 1

3T 2

Event ¬G2: Fix an action a and agent u. Let Xk,w = I{awk = a} and Ft,w be the sigma algebra
induced by the first t− 1 rounds; and the actions chosen by the first w − 1 agents in round t (where
we assume a linear order on the agents - for example the alphabetic order induced by their IDs).
Notice that Ft,1 is induced simply by the first t − 1 rounds. Note that pwk (a) is Fk,w-measurable,
E[Xk,w | Fk,w] = pwk (a) and that Xk,w is Fk,w+1-measurable (or if w is the last agent, Xk,w

is Fk+1,1-measurable). By applying Lemma 15, with probability 1 − 1
9T 2A2m2 for all t ∈ [T ]

simultaneously we have,

nu
t (a) =

t−1∑
k=1

∑
w∈Nu

≤t−k

Xw
k (a) ≥ 1

2

t−1∑
k=1

∑
w∈Nu

≤t−k

pwk (a)− 2ι,

where the equality is from Lemma 3. By taking the union bound over all actions, a, and agents u we
get that P(¬G2) ≤ 1/(9mAT 2) ≤ 1/(3T 2).

Event ¬G3: Fix an action a, agent u and timestep t. Let Xk = I{auk = a} and Ft be the sigma
algebra induced by the first t− 1 rounds. Note that pwk (a) is Fk-measurable, E[Xk | Fk] = puk(a)
and that Xk is Fk+1-measurable. By applying Lemma 16, with probability 1− 1

27T 3A3m3 ,

but (a) =

t−1∑
k=1

Xk(a) ≤ 2

t−1∑
k=1

puk(a) + 12ι.

By taking the union bound over all time steps t, actions a, and agents u we have P(¬G3) ≤
1

27T 2A2m2 ≤ 1
3T 2 .

Taking the union bound over ¬G1 ∪ ¬G2 ∪ ¬G3, we complete the proof.
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B.3 Proof of Theorem 1

Lemma 5. The complementary event of the good event adds no more than 1 to the regret of each
agent.

Proof. From Lemma 4, the complementary event of the good event happens in probability lower than
1
T 2 . Every agent plays T timesteps, and the gaps are bounded by 1, i.e., for every action a we have
∆a ≤ 1. Hence, in expectation, this adds at most 1

T ≤ 1 to the regret.

In the proof from now on, we assume the good event G := G1 ∪G2 ∪G3 holds.
Lemma 6 (restatement of Lemma 1). For every action a that was not eliminated before the end of
stage i, we have

nti+1−1(a) ≥
i∑

j=1,j∈Gτ

τj
16Aj

|N≤τj/4| − 2ι.

Proof. Under the good event G2,

nti+1−1(a) ≥
1

2

ti+1−2∑
t=1

∑
u∈N≤ti+1−t−2

put (a)− 2ι

≥ 1

2

i∑
j=1

tj+τj−2∑
t=tj

∑
u∈N≤ti+1−t−1

put (a)− 2ι

≥ 1

2

i∑
j=1,j∈Gτ

tj+⌊τj/2⌋∑
t=tj+⌈τj/4⌉

∑
u∈N≤ti+1−t−2

put (a)− 2ι

≥ 1

2

i∑
j=1,j∈Gτ

tj+⌊τj/2⌋∑
t=tj+⌈τj/4⌉

∑
u∈N≤τj/4

put (a)− 2ι.

The second inequality is by splitting the rounds to stages and summing partially. The third inequality
is by summing partially over j ∈ Gτ (⌊τj/2⌋ ≤ τj/2 − 1 ≤ τj − 2). The last inequality is since
N≤τj/4 ⊆ N≤ti+1−t−2 as for all j ∈ [i] ∩Gτ and t ≤ tj + ⌊τj/2⌋,

ti+1 − t− 2 ≥ tj+1 − tj − ⌊τj/2⌋ − 2 ≥ τj − τj/2− 3 = τj/2− 3 ≥ τj/4.

Finally, by Lemma 2, all agents u ∈ N≤τj/4 play the same policy at time steps t ∈ [tj + ⌈τj/4⌉, tj +
⌊τj/2⌋] which is uniform over the active actions. I.e., put (a) = 1

Aj
for active actions in [tj +

⌈τj/4⌉, tj + ⌊τj/2⌋]. The interval [tj + ⌈τj/4⌉, tj + ⌊τj/2⌋] is of size at least τj/8, since tj +
⌈τ/4⌉ − tj + ⌊τ/2⌋ ≥ τj

2 −
τj
4 − 2 =

τj
4 − 2 ≥ τj

8 , when the last inequality follows from the that
for every j ∈ Gτ , τj > 16. Thus,

1

2

i∑
j=1,j∈Gτ

tj+⌊τj/2⌋∑
t=tj+⌈τj/4⌉

∑
u∈N≤τj/4

put (a) ≥
i∑

j=1,j∈Gτ

τj
16Aj

|N≤τj/4|,

as desired.

Lemma 7. For every action a that was not eliminated before the end of stage i,

i∑
j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≤

544ι

∆2
a

.

Proof. Fix an action a that was not eliminated before the end of stage i. Denote t′ = ti+1 − 1. The
action a is still active by agent v at time t′, and thus, UCBv

t′(a) ≥ LCBv
t′(a

⋆). Note the slightly
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abuse of notation, when UCBv
t′(a) is actually UCBv

nt′ (a)
(a), and the same for LCB. Under the

good event G1,

µa + 2λv
t′(a) ≥ UCBv

t′(a) ≥ LCBv
t′(a

⋆) ≥ µa⋆ − 2λv
t′(a

⋆).

Rearranging it we get,

∆a ≤ 2

√
2ι

nt′(a)
+ 2

√
2ι

nt′(a⋆)
.

Recall that under the good event, a⋆ is never eliminated. Thus, we can apply Lemma 6 on both a and
a⋆ and further bound ∆a by,

∆a ≤ 4

√
2ι∑i

j=1,j∈Gτ

τj
16Aj
|N≤τj/4| − 2ι

,

then

∆2
a ≤ 16

2ι∑i
j=1,j∈Gτ

τj
16Aj
|N≤τj/4| − 2ι

,

we get

i∑
j=1,j∈Gτ

τj
16Aj

|N≤τj/4| − 2ι ≤ 32ι

∆2
a

,

and,

i∑
j=1,j∈Gτ

τj
16Aj

|N≤τj/4| ≤
32ι

∆2
a

+ 2ι ≤ 34ι

∆2
a

.

By rearranging terms we get the Lemma’s statement.

Lemma 8. For any τ ≥ 0
min{τ,m} ≤ |N≤τ |

Proof. The graph is connected, so either there exists an agent u at distance ⌊τ⌋ from v, in which case
N≤τ ≥ ⌈τ⌉ ≥ τ , or all the agents are at distance at most τ from v, in which case N≤τ = m.

Lemma 9.
∑A

j=1
1
Aj
≤ logA+ 1

Proof.

A∑
j=1

1

Aj
=

A∑
j=1

1

A− j + 1

=

A∑
i=1

1

i

= 1 +

A∑
i=2

1

i

≤ 1 +

A∫
1

1

x
dx

= 1 + logA
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Lemma 10. Let {τj |j ∈ [A]} be the stage lengths. The regret of agent v (under the good event) is
bounded by

RT ≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 44Aι (5)

Proof. Under the good event,

bti+1(ai) ≤ 2

ti+1−1∑
t=1

pvk(ai) + 12ι

= 2

i∑
j=1

tj+τj−1∑
t=tj

pvk(ai) + 12ι

= 2

i∑
j=1

τj
Aj

+ 12ι

Now the regret can be bounded by,

RT =
∑
i∈[A]

bti+1(ai)∆i

≤ 2
∑
i∈[A]

i∑
j=1

τj
Aj

∆i + 12Aι

≤ 2
∑
i∈A∆

i∑
j=1

τj
Aj

∆i +
∑
i/∈A∆

bti+1
(ai)

√
Aι

Tm
+ 12Aι (6)

≤ 2
∑
i∈A∆

i∑
j=1

τj
Aj

∆i + T

√
Aι

Tm
+ 12Aι

≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +
∑
i∈A∆

i∑
j=1,j /∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 12Aι

≤ 2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 44Aι,

where the last is since,∑
i∈A∆

i∑
j=1,j /∈Gτ

τj
Aj

∆i ≤
∑
i∈A∆

i∑
j=1

16

Aj
≤ A

A∑
j=1

16

Aj
≤ 32A logA.

as
∑A

j=1
1
Aj
≤ logA+ 1 by Lemma 9.

Lemma 11. For every action elimination index i ∈ A∆, it holds that

i∑
j=1,j∈Sτ

τ2j
4Aj

+

i∑
j=1,j∈Gτ\Sτ

τj
Aj

m ≤ 544ι

∆2
i

where Sτ := {j|j ∈ Gτ & τj/4 < m}, and {τj |j ∈ [A]} are the stage lengths.

Proof. From Lemma 7,
i∑

j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≤

544ι

∆2
ai

.
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On the other hand, using Lemma 8

i∑
j=1,j∈Gτ

τj
Aj
|N≤τj/4| ≥

i∑
j=1,j∈Gτ

τj
Aj

min{m, τj/4}

=

i∑
j=1,j∈Sτ

τ2j
4Aj

+

i∑
j=1,j∈Gτ\Sτ

τj
Aj

m

Lemma 12.
∑A

i=1

√∑i
j=1

1
Aj
≤ A

Proof. Using Cauchy–Schwarz inequality

A∑
i=1

√√√√ i∑
j=1

1

Aj
≤
√
A

√√√√ A∑
i=1

i∑
j=1

1

Aj

=
√
A

√√√√ A∑
j=1

A∑
i=j

1

Aj

=
√
A

√√√√ A∑
j=1

A− j + 1

Aj

=
√
A

√√√√ A∑
j=1

1

= A.

Proof of Theorem 1. Let us write again the Right-Hand-Side of Equation (5)

2
∑
i∈A∆

i∑
j=1,j∈Gτ

τj
Aj

∆i +

√
TAι

m
+ 44Aι.

Note that the bound on the regret that is depicted in Equation (5) assumes that the good event holds,
and we will remove this assumption later. Let’s assume that the good event hold. We’ll break the first
sum in the Right-Hand-Side of Equation (5) as

∑
i∈A∆

i∑
j=1,j∈Sτ

τj
Aj

∆i +
∑
i∈A∆

i∑
j=1,j∈Gτ\Sτ

τj
Aj

∆i. (7)

For the first term above, using Lemma 11, for every i ∈ A∆,

i∑
j=1,j∈Gτ\Sτ

τj
Aj

∆i =
∆i

m

i∑
j=1,τj∈Gτ\Sτ

τj
Aj

m

≤ 544ι

m∆i
(8)

≤ 544

√
Tι

mA
.

where the second inequality is since i ∈ A∆. Summing over all elimination indices in A∆ we get the

the first term in Equation (7) is bounded by 544
√

TAι
m .
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For the second term, for every i, using Cauchy–Schwarz inequality

i∑
j=1,j∈Sτ

τj
Aj

∆i ≤ ∆i

√√√√ i∑
j=1,j∈Sτ

τ2j
Aj

√√√√ i∑
j=1,j∈Sτ

1

Aj

≤ ∆i

√
2176ι

∆2
i

√√√√ i∑
j=1

1

Aj

≤
√
2176ι

√√√√ i∑
j=1

1

Aj
,

where the second inequality is from Lemma 11. Using Lemma 12, summing over all actions we
get the second term in Equation (7) is bounded by 47A

√
ι. Combining this with the other terms

in Equation (5) yields the part of the bound corresponding to the good event. From Lemma 5, the
complementary event of the good events adds no more than 1 to the regret. We get,

RT ≤ 2 · 544
√

TAι

m
+ 2 · 47A

√
ι+

√
TAι

m
+ 44Aι+ 1

≤ 1088

√
TAι

m
+ 94Aι+

√
TAι

m
+ 44Aι+ 1

= 1089

√
TAι

m
+ 138Aι+ 1

= 1089

√
TA log(3mTA)

m
+ 138A log(3mTA) + 1.

B.4 Instance dependant bound

It is important to note that when the analysis is not split into large and small gaps, a bound specific to
the problem instance can also be derived. We can conclude that the individual regret is bounded by,

Õ(
∑

a:∆a>0

1

m∆a
)

as depicted in Theorem 2.

Despite being a suitable bound for various scenarios, there are cases where it fails to provide a good
approximation. For example, two action and the gap is ∆a = 1/T ·m. We will get regret which is
linear in T . We have made this distinction between large and short gaps to be problem independent.

Although the changes that yield the instance dependent bound are simple, we provide for clarity the
relevant parts where the proof changes.

Lemma 13. Under the good event, the regret of agent v is bounded by

RT ≤ 2
∑
i∈[A]

i∑
j=1,j∈Gτ

τj
Aj

∆i + 44Aι. (9)

Proof. The proof follows the same steps as Lemma 10, but without splitting the gaps as in Equation (6).

Lemma 14. Under the good event, the following holds,

∑
i∈[A],∆i>0

i∑
j=1,j∈Gτ

τj
Aj

∆i ≤
∑

i∈[A],∆i>0

544ι

m∆i
+ 47A

√
ι.
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Proof. The proof follows the same steps as the proof of Theorem 1, but treating all non optimal
actions the same, and stopping the analysis in Equation (8), i.e., without bounding the expression
with

√
Tι/mA.

Proof of Theorem 2. The proof follows by combining the results of Lemma 13 and Lemma 14, and
with the fact from Lemma 5 that the complementary event of the good events adds no more than 1 to
the regret. We get,

RT ≤ 2
∑
i∈[A]

i∑
j=1,j∈Gτ

τj
Aj

∆i + 44Aι+ 1

≤ 2 ·
∑

i∈[A],∆i>0

544ι

m∆i
+ 2 · 47A

√
ι+ 44Aι+ 1

≤
∑

i∈[A],∆i>0

1088ι

m∆i
+ 94Aι+ 44Aι+ 1

=
∑

i∈[A],∆i>0

1088ι

m∆i
+ 138Aι+ 1

=

1088
∑

i∈[A],∆i>0

log(3mTA)

m∆i

+ 138A log(3mTA) + 1.

C Lower bound

Theorem 6. For any algorithm, there exists an instance of the cooperative MAB over a communication
graph problem, for which the individual regret of any agent is bounded from below by

Ω(
√
A) ≤ RT .

Proof. Let the graph be a line of length T . Let A be the number of actions such that
√
A > 20. Let

a⋆ be the only best action. Let ∆a = 1 for every a ̸= a⋆. Namely the reward of a∗ is 1 and the
rewards of the other actions a ̸= a∗ is 0.

Let v be an agent in the graph. After t timesteps, the maximum number of samples v sees, for all
actions together, is no more than 2 · (2 + t+ 1)t/2 = (t+ 3)t (twice the sum of arithmetic series).
At timestep ⌊

√
A/20⌋ the agent sees at most A+30

√
A

400 samples for all the actions together.

From the assumption on A, 3
√
A

40 ≤
A
200 . It implies that

A+ 30
√
A

400
≤ A

200
+

3
√
A

20
≤ A

100
.

It means that until this timestep, the agent didn’t see at least 0.99A of the actions.

Let us randomly choose an instantiation of the best action a∗. Define the random variable X that
chooses the best action uniformly. I.e., P(X = a) = 1

A . Denote the event in which the agent doesn’t
see the best action until timestep ⌊

√
A

20 ⌋ with E . From the above, event E happens with probability at
least 99

100 . I.e., P(E) ≥ 99
100 . Under event E , from the assumption that ∆a = 1, the regret until this

timestep is ⌊
√
A

20 ⌋, and we get
√
A

20 − 1 ≤ RT .

For any algorithm the agents play,

EX(RT ) ≥
99

100
· (
√
A

20
− 1).

Therefore, for any algorithm, there exists an instance such thatRT ≥ 99
100 · (

√
A

20 − 1).
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D Bounded communication

This section relies on the definitions and theorem that are depicted in Appendix B.

We introduce a new event type, the aggregated event for many rewards.

Definition 17. A reward-many event is a tuple (rwdMany, t, v, a, r, n) that represent an aggregation
of many rewards, where v is the agent’s ID, t is the time, a is the action, r is the reward, and n is the
number of samples of this event.

Remark 3. The good event occurs with probability higher than or equals to 1 − 1/T 2, when all
agent play Algorithm 4 or when all agent play Algorithm 5. Although these algorithms uses the
rwdMany events, the same proof of Lemma 4 applies also to them.

Proof of Theorem 4. In Algorithm 4, we do not have duplicated messages. We achieve this by the
tree structure, and by not sending to a neighbor u information that u already sent to v. The tree
structure promises that there is only one path from an agent to another. This property ensures that a
message originating from one agent will reach all other agents exactly once, as it traverses the tree
along the single possible route. Consequently, the combination of the spanning tree structure and the
selective forwarding of messages allows for efficient and duplicate-free communication among all
agents.

The Coop-SE-Restricted algorithm aggregate all events regarding an action a into two events:
rwdMany for rewards and elim for elimination. The message contains information about action a, its
elimination status, observation count, and sum of observed rewards, requiring O(A log(ATm)) bits.
This is all the information agents need from multiple messages.

Therefore, the agent has exactly the same information if all agents had played Algorithm 2 on that
spanning tree. The individual regret bound that is induced from Coop-SE does not depend on the
structure of the graph, therefore the same regret bound applied for Coop-SE-Restricted as well.

The agent sends to each neighbor 2A events. Each event has O(log(TAm)) bits. Therefore each
message is bounded by O(A log(TAm)) bits. This completes the proof.

Proof of Theorem 5. In Algorithm 5, on every timestep the agent v sends and receives only 2 events
per action, for every neighbor. Every event is of size O(log(mTA)). This means that the communi-
cation in Algorithm 5 is bounded by O(log(TAm)).

Coop-SE-Low-Comm sends in each block (i.e., A timesteps) the exact same informa-
tion that Coop-SE-Restricted sends after 1 timestep. So Coop-SE-Low-Comm simulates
Coop-SE-Restricted, but it takes it A timesteps to simulate 1 timestep of Coop-SE-Restricted.
For simulating faithfully Coop-SE-Restricted, Coop-SE-Low-Comm ignores the information of
the timesteps when t mod A ̸= 1. Note that Coop-SE-Low-Comm is designed in a way that when
all agents play Coop-SE-Low-Comm, every A timesteps the state of the algorithm is exactly the same
as if all agents had played Coop-SE-Restricted, and only one timestep had passed. As a result,
the regret incurred in each of the ⌊T/A⌋ blocks is A times the regret incurred in the corresponding
timestep for Coop-SE-Restricted. If T is not divisible by A we might have a remainder of at most
A−1 timesteps, for each the regret is at most 1. That is, if R̃T is the regret of Coop-SE-Restricted
over T rounds, then the regret of Coop-SE-Low-Comm is at most AR̃⌊T/A⌋ +A. We get

RT ≤ A

(
1089

√
AT log(3mTA)

Am
+ 138A log(3mTA) + 1

)
+A

= 1089A

√
T log(3mTA)

m
+ 138A2 log(3mTA) + 2A

≤ 1089A

√
T log(3mTA)

m
+ 140A2 log(3mTA).
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Algorithm 4 Cooperative Successive Elimination with Restricted Communication
(Coop-SE-Restricted)

1: Input: number of rounds T , neighbor agents N , number of actions A, id of current agent v,
confidence bound parameter L.

2: Initialization: t ← 1; Set of active actions A = A; Rt(a) = 0, nt(a) = 0 for every action a;
Min = ∅; Mupdates = ∅; Msent = ∅;

3: Coordinate a spanning tree, T , out of the communication tree G.
4: Set N ′ ⊆ N to be the agent’s neighbors in T .
5: for t = 1, ..., T do
6: for u ∈ N ′ do
7: for a ∈ A do
8: nu

a = 0, rua = 0
9: end for

10: end for
11: Ereceived = ∅
12: for event ∈Mupdates do
13: if event is elim-event then
14: A = A \ eventa
15: Ereceived = Ereceived ∪ event
16: else if eventa ∈ A then // event = (rwdMany, t, id, a, r, n).
17: nt(a) = nt(a) + eventn, Rt(a) = Rt(a) + eventr
18: for u ∈ N ′ do
19: if eventid ̸= u then
20: nu

a = nu
a + eventn; rua = rua + eventr

21: end if
22: end for
23: end if
24: end for
25: Mupdates = ∅
26:
27: E = ElimStep(A, nt, µ̂t, L)
28: A = A \ E
29: Choose action at uniformly from A, and get reward rt(at)
30: nt(at) = nt(at) + 1, Rt(at) = Rt(at) + rt(at)
31: for u ∈ N ′ do
32: nu

at
= nu

at
+ 1, ruat

= ruat
+ rt(at)

33: end for
34:
35: for u ∈ N ′ do
36: Melim(u) = {(elim, t, v, a)|∃a ∈ E} ∪ {(elim, t, v, eventa)|∃event ∈

Ereceived, eventid ̸= u}
37: Mrwd(u) = {(rwdMany, t, v, a, rua , nu

a)|a ∈ A}
38: Mv

t (u) = Melim(u) ∪Mrwd(u)
39: Send Mv

t (u) and receive Mu
t (v)

40: Mupdates = Mupdates ∪Mu
t (v)

41: end for
42: end for
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Algorithm 5 Cooperative Successive Elimination with Low Communication (Coop-SE-Low-Comm)

1: Input: number of rounds T , neighbor agents N , number of actions A, id of current agent v,
confidence bound parameter L.

2: Initialization: t ← 1; Set of active actions A = A; Rt(a) = 0, nt(a) = 0 for every action a;
Min = ∅; Mupdates = ∅; Msent = ∅;

3: Coordinate a spanning tree, T , out of the communication tree G.
4: Set N ′ ⊆ N to be the agent’s neighbors in T .
5: for t = 1, ..., T do
6: if t mod A = 1 then
7: for u ∈ N ′ do
8: for a ∈ A do
9: nu

a = 0, rua = 0
10: end for
11: end for
12: Ereceived = ∅
13: for event ∈Mupdates do
14: if event is elim-event then
15: A = A \ evente
16: Ereceived = Ereceived ∪ event
17: else if eventa ∈ A then
18: nt(a) = nt(a) + eventn, Rt(a) = Rt(a) + eventr
19: for u ∈ N ′ do
20: if eventid ̸= u then
21: nu

a = nu
a + eventn, rua = rua + eventr

22: end if
23: end for
24: end if
25: end for
26: Mupdates = ∅
27:
28: E = ElimStep(A, nt, µ̂t, L)
29: A = A \ E
30: Choose action at uniformly from A, and get reward rt(at)
31: nt(at) = nt(at) + 1, Rt(at) = Rt(at) + rt(at)
32: Set afix = at
33: for u ∈ N ′ do
34: nu

at
= nu

at
+ 1, ruat

= ruat
+ rt(at)

35: end for
36: else
37: Choose action afix , and get reward rt(afix)
38: end if
39: a′ = (t mod A)+1 // The actions are [A]. The agent sends each round all the information

regarding one action.
40: for u ∈ N ′ do
41: Melim(u)[a

′] = {(elim, t, v, a′)|∃event ∈ Ereceived, eventid ̸= u, eventa = a′}
42: if a′ ∈ E then
43: Melim(u)[a

′] = {(elim, t, v, a′)}
44: end if
45: Mrwd(u)[a

′] = {(rwdMany, t, v, a′, rua′ , nu
a′)}

46: Mv
t (u)[a

′] = Melim(u)[a
′] ∪Mrwd(u)[a

′]
47: Send Mv

t (u)[a
′] and receive Mu

t (v)[a
′]

48: Mupdates = Mupdates ∪Mu
t (v)[a

′]
49: end for
50: end for
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E Auxiliary lemmas

Lemma 15 (Lemma F.4 in Dann et al. [2017]). Let {Xt}Tt=1 be a sequence of Bernoulli random
and a filtration F1 ⊆ F2 ⊆ ...FT with P(Xt = 1 | Ft) = Pt, Pt is Ft-measurable and Xt is
Ft+1-measurable. Then, for all t ∈ [T ] simultaneously, with probability 1− δ,

t∑
k=1

Xk ≥
1

2

t∑
k=1

Pk − log
1

δ
.

Lemma 16 (Consequence of Freedman’s Inequality, e.g., Lemma E.2 in Cohen et al. [2021]).
Let {Xt}t≥1 be a sequence of random variables, supported in [0, R], and adapted to a filtration
F1 ⊆ F2 ⊆ ...FT . For any T , with probability 1− δ,

T∑
t=1

Xt ≤ 2E[Xt | Ft] + 4R log
1

δ
.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction refers to Theorems 1 to 5
which we rigorously prove either in the main text or the appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We stated the setting formally in Section 2, and the proofs assume this setting
exactly. When we extend the setting for the low-communication setting, we stated the
restrictions in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions are provided in Section 2 and most of the proofs reside in the
appendix, while one lemma’s proof appears in the main text.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While EWRL does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the EWRL code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the EWRL code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
EWRL Code of Ethics https://ewrl.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the EWRL Code of Ethics, and the research conducted conforms
in every aspect with this code.
Guidelines:

• The answer NA means that the authors have not reviewed the EWRL Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper presents a theoretical work, and we do not see any direct societal
impact of the work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not include data or models that pose such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the EWRL Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the EWRL Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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