
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPLEXITY OF INJECTIVITY AND VERIFICATION OF
RELU NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks with ReLU activation play a key role in modern machine learn-
ing. Understanding the functions represented by ReLU networks is a major topic
in current research as this enables a better interpretability of learning processes.
Injectivity plays a crucial role whenever invertibility of a neural network is nec-
essary, such as, e.g., for inverse problems or generative models. The exact com-
putational complexity of deciding injectivity was recently posed as an open prob-
lem (Puthawala et al. [JMLR 2022]). We answer this question by proving coNP-
completeness. On the positive side, we show that the problem for a single ReLU-
layer is still tractable for small input dimension; more precisely, we present a
parameterized algorithm which yields fixed-parameter tractability with respect to
the input dimension.
In addition, we study the network verification problem which is of great impor-
tance since neural networks are increasingly used in safety-critical systems. We
prove that network verification is coNP-hard for a general class of input domains.
Our result thus highlights that the hardness of network verification is intrinsic to
the ReLU networks themselves, rather than specific input domains.
In this context, we also characterize surjectivity for ReLU networks with one-
dimensional output which turns out to be the complement of a basic network ver-
ification task. We reveal interesting connections to computational convexity by
formulating the surjectivity problem as a zonotope containment problem.

1 INTRODUCTION

Neural networks with rectified linear units (ReLUs) are a widely used model in deep learning. In
practice, neural networks are trained on finite datasets and are expected to generalize to new, unseen
inputs. However, they often exhibit unexpected and erroneous behavior in response to minor input
perturbations; see, e.g., Szegedy et al. (2014). Hence, the certification of trained networks is of
great importance and necessitates a thorough understanding of essential properties of the function
computed by a ReLU network.

Network verification, that is, the question whether for all inputs from a given subset X , the ReLU
network outputs a value contained in a given set Y , is a research field gaining high interest recently
since neural networks are increasingly used in safety-critical systems like autonomous vehicles (Bo-
jarski et al. (2016)) and collision avoidance for drones (Julian et al. (2019)), see, e.g., Weng et al.
(2018); Rössig & Petkovic (2021); Kouvaros & Lomuscio (2021); Katz et al. (2022). Typically, X
and Y are balls or defined by some linear constraints and the problem is known to be coNP-hard if
the sets X and Y are part of the input; see Katz et al. (2022); Weng et al. (2018); Sälzer & Lange
(2023).

Moreover, recent works focus on studying elementary properties of functions computed by ReLU
networks such as injectivity; see, e.g., Puthawala et al. (2022); Haider et al. (2023); Furuya et al.
(2023). Injectivity plays a crucial role in many applications where invertibility of a neural network
is necessary. Such applications include, for example, generative models, inverse problems, or like-
lihood estimation; see Puthawala et al. (2022); Furuya et al. (2023) for a more detailed discussion.
On the other hand, injectivity might cause privacy issues since the input might be inferred from the
output.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Formally, for any number of layers ℓ ∈ N, given weights of a fully connected ReLU network
f : Rd → Rm with ℓ layers, the question is whether the map f is injective. Puthawala et al. (2022)
give a mathematical characterization for injectivity of a single ReLU-layer (see Theorem 5), imply-
ing an exponential-time algorithm where the exponential part is upper bounded by min{2m,md}.
In terms of parameterized complexity, the problem is fixed-parameter tractable with respect to the
number m of ReLUs (that is, the superpolynomial part depends only on m), and in XP with respect
to the input dimension d (that is, polynomial time for constant d). The complexity status of decid-
ing injectivity of an ℓ-layer ReLU neural network (and therefore also, in particular, a single layer),
however, is unresolved and posed as an open problem by Puthawala et al. (2022).

Another natural and fundamental property of functions to consider is surjectivity. Hence, to com-
plete the picture alongside injectivity, we initiate the study of surjectivity for ReLU networks, which,
to the best of our knowledge, has not been considered before. In fact, we show that deciding surjec-
tivity can be considered as the complement of a certain network verification task.

Our Contributions. After some preliminaries in Section 2, we show in Section 3 that deciding
injectivity of a ReLU network with ℓ layers is coNP-complete (Corollary 8) for any ℓ ∈ N and
thus not polynomial-time solvable, unless P = NP. Notably, our hardness reduction reveals some
interesting connections between cut problems in (di)graphs and properties of ReLU networks via
graphical hyperplane arrangements. We believe that these connections between seemingly unre-
lated areas are of independent interest. Moreover, our hardness result implies a running time lower
bound of 2Ω(m) for a single ReLU-layer with m neurons based on the Exponential Time Hypothesis
(Corollary 7). Hence, the running time 2m is essentially optimal. As regards the input dimension d,
however, in Section 4 we give an improved algorithm running in O

(
(d + 1)d · poly

)
time. This

yields fixed-parameter tractability (Theorem 10) and settles the complexity status for injectivity of a
ReLU-layer.

Katz et al. (2022) and Sälzer & Lange (2023) show that the network verification problem is coNP-
hard for a single hidden layer. However, their hardness results are based on the unit cube as input
set. Thus, it was not clear so far whether there are interesting special cases of input sets on which
network verification is solvable in polynomial time. In Section 5, we provide the strongest hardness
result for network verification to date (Corollary 13), proving coNP-hardness for every possible
input domain X that contains a ball (of possibly lower dimension under some mild conditions). In
particular, our result implies that the computational intractability does not stem from choosing a
particular set X , but is rather an intrinsic property of a single hidden ReLU-layer. Since arguably
any reasonable input domain contains some ball (this holds, e.g., for all polyhedral sets satisfying
the same mild conditions), no special case of verification regarding the input domain is solvable in
polynomial time in the worst case. In particular, our result implies hardness for all polyhedra and
also all balls as input set, which is not covered by the previous hardness results. As a consequence,
one must make (very) specific assumptions on the network in order to obtain tractable cases, e. g., by
building special (approximating) networks that are efficiently verifiable (Baader et al. (2020),Wang
et al. (2022),Baader et al. (2024)).

Moreover, we give a characterization of surjectivity for ReLU networks with one-dimensional out-
put (Lemma 14) which implies a polynomial-time algorithm for constant input dimension d. We
then proceed with proving NP-hardness of surjectivity by showing that it can be phrased as (the
complement of) a special case of network verification. Finally, we also show that surjectivity can
be formulated as a zonotope containment problem, which is of fundamental importance, e.g., in
robotics (Kulmburg & Althoff (2021)).

Related Work. Puthawala et al. (2022) initiate the study of injectivity of ReLU networks. Their
result implicitly yields an exponential-time algorithm. They also mention a connection between
injectivity and the spark of the weight matrix (that is, the minimum number of linearly dependent
rows). Computing the spark is known to be NP-hard (Tillmann & Pfetsch (2014)), and also known
not to be fixed-parameter tractable with respect to d, unless FPT = W[1] (Panolan et al. (2015)).
Haider et al. (2023) use a frame-theoretic approach to study the injectivity of a ReLU-layer on a
closed ball. They give an exponential-time algorithm to determine a bias vector for a given weight
matrix such that the corresponding map is injective on a closed ball. Furuya et al. (2023) study
injectivity of ReLU-layers with linear neural operators.

The network verification problem is known to be coNP-hard for networks with two layers and arbi-
trary output dimension (Katz et al. (2022) proved NP-hardness for the complement). Sälzer & Lange

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(2023) corrected some flaws in the proof and showed coNP-hardness for one-dimensional output.
The problem is also known to be coNP-hard to approximate in polynomial time for one-dimensional
output if the number of layers is unbounded (Weng et al. (2018)) and for three hidden layers and
squashable activation functions Wang et al. (2022). Efficient verifiable networks with heuristics such
as the interval bound propagation Gowal et al. (2018) are shown to be universal approximators Wang
et al. (2022); Baader et al. (2020), but the networks might have exponential size. On the other hand,
obtaining exact representations for all functions computed by ReLU neural networks is not possible
such that they are precisely verifiable with interval bound propagation Mirman et al. (2022) or single
neuron convex relaxations Baader et al. (2024). Further heuristics include methods such as Deep-
Poly (Singh et al. (2019)), DeepZ (Wong et al. (2018)), general cutting planes (Zhang et al. (2024)),
multi neuron verification (Ferrari et al. (2022)). Moreover, there exist libraries for verification (Xu
et al. (2020); Mao et al. (2024)).

Parameterized complexity has also been studied for the training problem for ReLU neural net-
works by Froese et al. (2022); Froese & Hertrich (2023). In general, understanding the complex-
ity/expressivity of ReLU neural networks is an important task (Hertrich et al. (2021); Arora et al.
(2018)).

2 PRELIMINARIES

We introduce the basic definitions and concepts involving ReLU neural networks and their geometry
which are relevant for this work.
Definition 1. A ReLU-layer with d inputs, m outputs, weights W ∈ Rm×d, and biases b ∈ Rm

computes a map ϕW,b : Rd → Rm, x 7→ [Wx + b]+, where [·]+ : Rm → Rm is the rectifier
function given by [x]+ := (max{0,x1}, . . . ,max{0,xm}).

For most of our purposes, we can assume b = 0 without loss of generality. In that cases, we omit b
and simplify notation ϕW := ϕW,0. A deep ReLU network is just a concatenation of compatible
ReLU-layers.
Definition 2. An ℓ-layer ReLU network of architecture (n0, n1, . . . , nℓ−1, nℓ) with weights Wi ∈
Rni−1×ni and biases bi ∈ Rni for i ∈ {1, . . . , ℓ} computes a map

f : Rd → Rm, x 7→Wℓ · (ϕWℓ−1,bℓ−1
◦ · · · ◦ ϕW1,b1)(x) + bℓ,

where d = n0 and m = nℓ.

Whenever we consider an ℓ-layer ReLU neural network f : Rd → Rm as the input to a decision
problem in the paper, we implicitly consider its weights and biases as the input. For most of our
purposes we can assume without loss of generality bi = 0 and hence the technical parts only deal
with such ReLU-layers.

Hw1

Hw2Hw3

Figure 1: The poly-
hedral fan induced
by an oriented linear
hyperplane arrange-
ment given by a ma-
trix W ∈ R3×w.

Geometry of ReLU-layers. We review basic definitions from polyhedral
geometry; see Schrijver (1986) for more details. For a row vector wi, the
hyperplane Hwi

:= {x ∈ Rd | wix = 0} subdivides Rd into half-spaces
H+

wi
:= {x ∈ Rd | wix ≥ 0} and H−

wi
:= {x ∈ Rd | wix ≤ 0}. A polyhe-

dron P is the intersection of finitely many closed halfspaces. A polyhedral
cone C ⊆ Rd is a polyhedron such that λu + µv ∈ C for every u, v ∈ C
and λ, µ ∈ R≥0. A hyperplane supports P if it bounds a closed halfspace
containing P , and any intersection of P with such a supporting hyperplane
yields a face F of P . A polyhedral complex P is a finite collection of poly-
hedra such that (i) ∅ ∈ P , (ii) if P ∈ P then all faces of P are in P , and
(iii) if P, P ′ ∈ P , then P ∩ P ′ is a face of both P and P ′. A polyhedral fan
is a polyhedral complex in which every polyhedron is a cone. For a matrix
W ∈ Rm×d, the set of full-dimensional polyhedral cones

CW :=

{⋂m
i=1 H

si
wi

∣∣∣∣ (s1, . . . , sm) ∈ {+,−}m, dim
(⋂m

i=1 H
si
wi

)
= d

}
subdivides Rd and the set {C∩Hwi | C ∈ CW, i ∈ [m]} forms a polyhedral
fan. A vector x in the support |ΣW| =

⋃
σ∈ΣW

σ of the fan ΣW is called

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a breakpoint of ϕW. See Figure 1 for an illustration of a 2-dimensional
polyhedral fan arising from a ReLU-layer.

For C ∈ CW, we define the active set IC := {j ∈ [m] | ∀x ∈ C : wjx ≥ 0} and the matrix WC ∈

Rm×d, where (WC)j :=

{
wj , j ∈ IC ,

0, j ∈ [m] \ IC .
Note that the map ϕW is linear on C, namely

ϕW(x) = WC · x for x ∈ C.

Geometry of ReLU Neural Networks. It is well-known that also a deep ReLU neural network f
partitions its input space into polyhedra on which f is affine linear (Hanin & Rolnick (2019); Grigsby
& Lindsey (2022)). More precisely, let fi,j = πj ◦ϕWi,bi

◦· · ·◦ϕW1,b1
, where πj : Rni → R is the

projection onto the j-th coordinate. Then, every s = (s1, . . . , snℓ−1
) ∈ {−,+}n1×. . .×{−,+}nℓ−1

corresponds to a (possibly empty) polyhedron

Ps =
⋂

(si)j=+

{x ∈ Rd | fi,j(x) ≥ 0} ∩
⋂

(si)j=−

{x ∈ Rd | fi,j(x) ≤ 0}.

The maps fi,j are affine linear on Ps and the coefficients are polynomially bounded in the weights
and biases of the neural network. Hence, the polyhedron Ps arises as the intersection of at most∑ℓ

i=1 nℓ half-spaces whose encoding sizes are polynomially bounded in the weights and biases of
f . All polyhedra Ps and their faces form a polyhedral complex which we denote by Σf .

A ray ρ is a one-dimensional pointed cone; a vector r is a ray generator of ρ if ρ = {λ r | λ ≥ 0}.
For each ray ρ of Σf , let rρ be the unique unit ray generator of ρ having norm 1 and let R := {rρ |
ρ is a ray in Σf}. A ray ρ ⊆ C of a cone C is an extreme ray if there do not exist λ1, λ2 > 0 and
ρ1, ρ2 ⊆ C such that ρ = λ1ρ1 + λ2ρ2. We make the following simple observation.
Observation 3. Let C be a pointed polyhedral cone such that f is linear on C and let r1, . . . , rℓ be
ray generators of the extreme rays of C. Then, for each x ∈ C, there are λ1, . . . , λℓ ∈ R such that
x =

∑ℓ
i=1 λiri and f(x) =

∑ℓ
i=1 λif(ri).

Observation 3 implies that the map f is essentially determined by its values on R, if all cones
C ∈ Σf are pointed.

(Parameterized) Complexity Theory. We assume the reader to be familiar with basic concepts
from classical complexity theory like P, NP, and NP-completeness. The class coNP contains all
decision problems whose complement is in NP. A decision problem is coNP-complete if and only if
its complement is NP-complete. Clearly, a coNP-complete problem cannot be solved in polynomial
time unless P = NP.

A parameterized problem consists of instances (x, k), where x encodes the classical instance
and k ∈ N is a parameter. A parameterized problem is in the class XP if it is polynomial-time
solvable for every constant parameter value, that is, in O(|x|f(k)) time for an arbitrary function f
depending only on the parameter k. A parameterized problem is fixed-parameter tractable (con-
tained in the class FPT) if it is solvable in f(k) · |x|O(1) time, for an arbitrary function f . Clearly,
FPT ⊆ XP; see Downey & Fellows (2013) for further details of parameterized complexity.

3 CONP-COMPLETENESS OF INJECTIVITY

In this section we study the computational complexity of ℓ-RELU-LAYER INJECTIVITY, that is,
deciding whether a ReLU network f : Rd → Rm with ℓ layers computes an injective map.
Proposition 4. For every ℓ ∈ N, it holds that ℓ-RELU-LAYER INJECTIVITY is contained in coNP.

Proof sketch. Two maximal polyhedra P,Q ∈ Σf serve as a certificate for non-injectivity, since
checking whether there are x1 ∈ P and x2 ∈ Q with x1 ̸= x2 such that f(x1) = f(x2) is simply
checking feasibility of a linear program. For a rigorous proof one can apply Theorem 3.3 in Sälzer
& Lange (2023).

To show that ℓ-RELU-LAYER INJECTIVITY is coNP-hard for any ℓ ∈ N, it suffices to show that
deciding injectivity is already coNP-hard for a single ReLU-layer. Hence, in the remainder of this

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3

1 2

3

1 2

(a) For the ordering 3 ≤ 2 ≤ 1 (on the left) and
the ordering 3 ≤ 1 ≤ 2 (on the right), the arcs
that respect the ordering are dotted and colored in
orange.

0 ≤ x1 ≤ x2

0 ≤ x2 ≤ x1

(b) The resulting ReLU network represented by the
corresponding oriented hyperplane arrangements.
For the gray colored cones, the inactive neurons are
colored in orange.

Figure 2: An illustration of the reduction from ACYCLIC 2-DISCONNECTION to RELU-
LAYER NON-INJECTIVITY for a digraph with n = 3 nodes. An ordering π of the coor-
dinates induces an acyclic subset Aπ of arcs corresponding to inactive neurons on the cone
Cπ = {xπ(1) ≤ · · · ≤ xπ(n)}. The active neurons on Cπ have full rank n if and only if removing
the arcs Aπ results in a weakly connected digraph.

section we study the following decision problem (RELU-LAYER INJECTIVITY): Given a matrix
W ∈ Rm×d and a vector b ∈ Rm, is the map ϕW,b injective?

Puthawala et al. (2022, Theorem 2) prove the following characterization of injectivity for a map
computed by a single ReLU-layer.
Theorem 5 (Puthawala et al. (2022)). A ReLU-layer ϕW with W ∈ Rm×d is injective if and only
if WC has (full) rank d for all C ∈ CW.

Since any hyperplane arrangement with m hyperplanes in d dimensions defines at most O(md) (also
clearly at most 2m) cells (Zaslavsky (1975)), Theorem 5 implies an algorithm that solves RELU-
LAYER INJECTIVITY in O(min{2m,md} · poly(S)) time, where S denotes the input size.

We prove that RELU-LAYER INJECTIVITY is coNP-complete. To this end, we show NP-
completeness for the complement problem RELU-LAYER NON-INJECTIVITY. Based on Theo-
rem 5 and the fact that one can w.l.o.g. assume b = 0 (Puthawala et al., 2022, Lemma 3), the
RELU-LAYER NON-INJECTIVITY problem is, given a matrix W ∈ Rm×d, to decide if there is a
cell C ∈ CW such that rank(WC) < d.

For the NP-hardness proof, we reduce from the following directed graph (digraph) problem. A
digraph D = (V,A) is called acyclic if it does not contain oriented cycles and weakly disconnected
if the underlying graph, i.e., the graph where we have an unoriented edge for every arc, is connected.
The ACYCLIC 2-DISCONNECTION problem is, given a digraph D = (V,A), to decide if there is a
subset A′ ⊆ A of arcs such that (V,A′) is acyclic and (V,A \A′) is not weakly connected.

The problem is a special case of ACYCLIC s-DISCONNECTION where the goal is to remove an
acyclic arc set such that the remaining digraph contains at least s weakly connected components.
This more general problem is known to be NP-hard if s is part of the input (Figueroa et al. (2017)).
In Appendix A.1 we prove NP-hardness for our special case s = 2 (Theorem 18). We remark that
our reduction implies that ACYCLIC 2-DISCONNECTION cannot be solved in 2o(|D|) time unless the
Exponential Time Hypothesis1 fails (Corollary 19).
Theorem 6. RELU-LAYER NON-INJECTIVITY is NP-complete even if every row of W contains at
most two non-zero entries.

Proof sketch. Containment in NP is easy: The set IC of a cell C with rank(WC) < d serves as
a certificate. To prove NP-hardness, we reduce from ACYCLIC 2-DISCONNECTION which is NP-
hard by Theorem 18. We sketch the proof here, a detailed proof can be found in Appendix A.1.1.
Moreover, the reduction is illustrated in Figure 2. Given a digraph D = (V,A) with V = [n],
we construct a ReLU-layer ϕ : Rn−1 → R|A| by ϕ(x) = (max{0,xi − xj})(i,j)∈A. For every
permutation π ∈ Sn, function ϕ is linear on the cone Cπ := {x | xπ(1) ≤ · · · ≤ xπ(n)}, where we

1The Exponential Time Hypothesis asserts that 3-SAT cannot be solved in 2o(n) time where n is the number
of Boolean variables in the input formula (Impagliazzo & Paturi (2001)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

let xn := 0, since no hyperplane xi = xj induced by a neuron max{0,xi − xj} intersects this
cone. Let Aπ := {(i, j) ∈ A | π(i) ≤ π(j)} ⊆ A be the (acylic) subset of arcs respecting the (total)
order on the nodes induced by π ∈ Sn. The set of arcs in the complement A \ Aπ is therefore in
bijection with the neurons that are active on Cπ , i.e., neurons max{0,xi − xj} where π(j) ≤ π(i).
In Appendix A.1.1, we prove that the digraph Dπ = (V,A \Aπ) is weakly connected if and only if

– there is a path in the underlying graph of Dπ from node j to node n, for all j ∈ [n− 1];

– if and only if the standard unit vector ej is contained in span(WCπ
), for all j ∈ [n− 1];

– if and only if WCπ has full rank.

The illustration for the 2-dimensional case in Figure 2 provides intuition for this chain of equivalent
statements. Since the partial order on the nodes induced by an acyclic subset of arcs can be extended
to a total order on the nodes, it holds that ϕ is not injective if and only if there is A′ ⊆ A such
that (V,A′) is acyclic and (V,A \ A′) is not weakly connected, proving the correctness of the
reduction.

The lower bound from Corollary 19 actually transfers to RELU-LAYER INJECTIVITY since our
polynomial-time reduction in the proof of Theorem 6 yields a matrix where the number of
rows/columns is linear in the number arcs/nodes of the digraph.
Corollary 7. RELU-LAYER INJECTIVITY is coNP-complete even if every row of W contains at
most two non-zero entries (and b = 0). Moreover, RELU-LAYER NON-INJECTIVITY and RELU-
LAYER INJECTIVITY cannot be solved in 2o(m+d) time, unless the ETH fails.

To prove coNP-hardness for an arbitrary number ℓ of layers, one can simply reduce RELU-LAYER
INJECTIVITY to ℓ-RELU-LAYER INJECTIVITY by concatenating the layer with a ReLU network
with ℓ− 1 layers that computes the identity map. Hence, we obtain the following corollary.
Corollary 8. For every ℓ ≥ 2, it holds that ℓ-RELU-LAYER INJECTIVITY is coNP-complete.

4 AN FPT ALGORITHM FOR RELU-LAYER INJECTIVITY

The complexity results from the previous section exclude polynomial running times as well as run-
ning times subexponential in m + d for deciding injectivity for a single ReLU-layer. Nevertheless,
we show in this section that the previous upper bound of md can be improved to (d + 1)d. We
achieve this with a branching algorithm which searches for a “non-injective” cell C, that is, WC

has rank strictly less than d. The algorithm branches on the ReLUs active in C, thus restricting the
search space to some cone. The pseudocode is given in Algorithms 1 and 2.

The key idea to bound the running time of our search tree algorithm is to show that there are always at
most d+1 candidate ReLUs to set active. The candidates are those whose corresponding halfspaces
cover the current search space; that is, at least one of them will be active in the sought cell (cf. Line 5
of Algorithm 2). Helly’s Theorem (Helly (1923)) ensures that there are always at most d + 1 such
candidates. Using duality of linear programming, we show that these halfspaces can be found in
polynomial time. A more detailed proof of the following lemma is given in Appendix A.2.1.
Lemma 9. Let C ⊆ Rd be a cone and let {w1, . . . ,wn} ⊆ Rd be such that C is covered by the
corresponding half-spaces, that is, C ⊆

⋃n
i=1 H

+
wi

. Then, there exists a subset A ⊆ [n] of size at
most d+ 1 computable in polynomial time, such that C ⊆

⋃
i∈A H+

wi
.

Algorithm 1: LayerInjectivity

Input : W = {w1, . . . ,wm} ⊆ Rd

Output: x ∈ Rd with rank({wi ∈W | wT
i x ≥ 0}) < d (if it exists); otherwise, “yes”

1 if rank(W) < d, then return 0;
2 if ∃x ∈ Rd : ∀i ∈ [m] : wT

i x < 0, then return x;
3 x← FindCell(∅, W);
4 if x ̸= “no”, then return x;
5 return “yes”

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2: FindCell

Input : vectors C = {c1, . . . , cn} ⊆ Rd and M = {m1, . . . ,mm} ⊆ Rd

Output: vector x ∈ Rd (if it exists) such that cTi x ≥ 0, for all i ∈ [n], and
rank(C ∪ {mi |mT

i x ≥ 0}) < d; otherwise, “no”
1 if rank(C) = d ∨ {x | ∀i ∈ [n] : cTi x ≥ 0} = {0}, then return “no”;
2 I ←

{
i ∈ {1, . . . ,m} | mi /∈ span(C)

}
;

3 M ← {mi | i ∈ I};
4 if ∃x ∈ Rd :

(
(∀i ∈ [n] : cTi x ≥ 0) ∧ (∀i ∈ I : mT

i x < 0)
)
, then return x;

5 compute A ⊆ I such that {x | ∀i ∈ [n] : cTi x ≥ 0} ⊆
⋃

i∈A H+
mi

and |A| ≤ d+ 1;
6 foreach i ∈ A do
7 x← FindCell(C ∪ {mi},M \ {mi});
8 if x ̸= “no”, then return x;
9 end

10 return “no”

As regards the correctness of our algorithm, assume that there exists a vector x ∈ Rd such that
rank({wi | wT

i x ≥ 0}) = k < d. Then, after every branching, x is contained in some cone
that is the search space of FindCell, that is, cTi x ≥ 0 for all i ∈ [n]. Notice that every branching
increases the number of linear independent neurons that are active in the current cone by one. Thus,
after at most k branchings, FindCell finds a cone where the map is not injective. Conversely, if the
algorithm outputs an x ∈ Rd, then the matrix WC̄ corresponding to the cone C̄ := {x̄ | ∀i ∈ [n] :
cTi x̄ ≥ 0} containing x cannot have full rank; otherwise, Line 1 in FindCell would have output
“no”. Lemma 9 ensures that we can always branch on d + 1 neurons. Furthermore, the number of
active neurons increases after every branching by one. Hence the search tree has at most (d + 1)d

nodes. We conclude our findings in the following theorem for which we provide a detailed proof in
Appendix A.2.2.

Theorem 10. RELU-LAYER INJECTIVITY is solvable in O((d + 1)d · poly(S)) time, where S
denotes the input size.

Deciding injectivity for a deep neural network f = ϕℓ ◦ · · · ◦ ϕ1 is even more involved. Clearly, if
all layer maps ϕi are injective, then also Φ is injective. The converse does not hold, however, since
ϕi only needs to be injective on the image (ϕi−1 ◦ · · · ◦ϕ1)(Rd) for all i ∈ [ℓ] := {1, . . . , ℓ}. Hence,
it is unclear whether the problem is still contained in FPT when parameterized by d.

5 VERIFICATION AND SURJECTIVITY

In this section, we study the network verification task and prove hardness for a very general class
of input sets. To this end, we call a sequence S = (Sd)d∈N of subsets Sd ⊆ Rd reasonable if
there exists an algorithm that on input k ∈ N computes in poly(k) time a d ∈ N, z ∈ Rd and a
k-dimensional affine space A in Rd (given by a basis and a translation vector) such that there is a
k-dimensional ball with center z contained in Sd that affinely spans A. For a sequence S = (Sd)d∈N
of reasonable sets and a polyhedron Qt := {x ∈ Rm | xi ≤ ti for all i ∈ [m]} where t ∈ Rm,
the task to decide for a given ℓ-layer ReLU network f : Rd → Rm whether f(Sd) ⊆ Qt we call
ℓ-LAYER RELU (S,Qt)-VERIFICATION.

Even though the definition of a reasonable sequence is a bit involved, they include a wide range
of set-sequences. For example, they trivially include all sequences of sets that contain an open
neighborhood of the origin and therefore in particular all sequences of full-dimensional polyhedra
containing the origin in the interior. This shows, in comparison to previous existing coNP-hardness
proofs, that the hardness of verification does not rely on the complexity of the polyhedron in the
input domain but is intrinsic to the ReLU networks themselves.

To show that the problem is coNP-hard, it suffices to show hardness for one hidden layer and one-
dimensional output and hence in the remaining part we study the following decision problem for an
arbitrary t ∈ R.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2-LAYER RELU (S, t)-VERIFICATION

Input: Matrices W1 ∈ Rn×d,W2 ∈ R1×n,b1 ∈ Rn, and b2 ∈ R.
Question: Is W2 · ϕW1,b1

(x) + b2 ≤ t for all x ∈ Sd?

We will see in Theorem 12 that the hardness of 2-LAYER RELU (S, t)-VERIFICATION stems from
the hardness of deciding whether a ReLU network computes a map that attains a positive output
value. Thus, we will first show that the 2-LAYER RELU POSITIVITY problem is NP-complete:
Given Matrices W1 ∈ Rn×d,W2 ∈ R1×n, is there an x ∈ Rd such that W2 · ϕW1

(x) > 0?

Afterwards, we give a reduction from the complement of 2-LAYER RELU POSITIVITY to 2-LAYER
RELU (S, t)-VERIFICATION implying that 2-LAYER RELU (S, t)-VERIFICATION and thus ℓ-
LAYER RELU (S,Qt)-VERIFICATION are coNP-hard.

5.1 NP-COMPLETENESS OF 2-LAYER RELU POSITIVITY

We prove NP-completeness of 2-LAYER RELU POSITIVITY via reduction from POSITIVE CUT.
For a graph G = (V,E), we denote by E(S, V \ S) := {{u, v} ∈ E | u ∈ S, v /∈ S} the edges in
the cut induced by S ⊆ V . The POSITIVE CUT problem is to decide for a given graph G = (V,E)
with edge weights w : E → Z whether there is a subset S ⊆ V such that

∑
e∈E(S,V \S) w(e) > 0,

which we prove to be NP-complete in Appendix A.3.4. A detailed proof of the following theorem
is given in Appendix A.3.5.
Theorem 11. 2-LAYER RELU POSITIVITY is NP-complete.

Proof sketch. The problem is contained in NP since, by Observation 3, it is sufficient to identify an
extreme ray ρ as a certificate for positivity.

To prove NP-hardness, we reduce from POSITIVE CUT. Given a weighted graph (G = (V,E), w),
we define a 2-layer ReLU neural network f : R|V | → R, where we have two hidden neurons for
every e ∈ E and the output weight of the neurons are the corresponding weights of the edges. More
precisely,

f(x) =
∑

{i,j}∈E

w({i, j}) · ([xi − xj]+ + [xj − xi]+).

The weights of the cuts are now stored as function values on certain vectors. For a subset S ⊆ V ,
let rS :=

∑
i∈S ei ∈ R|V | and r′S := −

∑
i∈S\V ei ∈ Rd. It follows easily that

f(rS) = f(r′S) =
∑

{i,j}∈E(S,V \S)

w({i, j}).

We proceed by showing that every x is the conic combination of such rS and r′S . Hence, there
is an x ∈ R|V | such that f(x) > 0 if and only if there is an S ⊆ V such that f(rS) =∑

e∈E(S,V \S) w(e) > 0, proving the correctness of the reduction.

5.2 CONP-HARDNESS OF VERIFICATION

We continue with the coNP-hardness for network verification using the NP-hardness of 2-LAYER
RELU POSITIVITY.
Theorem 12. For every reasonable set-sequence S and t ∈ R, it holds that 2-LAYER RELU (S, t)-
VERIFICATION is coNP-hard.

Proof sketch. In Appendix A.3.1, we provide a reduction from the complement of 2-LAYER RELU
POSITIVITY that we sketch here. Let f : Rk → R be the function computed by an instance of 2-
LAYER RELU POSITIVITY and let the dimension d, the affine space A and the point z ∈ Rd be the
output of the algorithm that exists due to the fact that (Sd)d∈N is a reasonable sequence of sets. Let
T : Rd → Rd be the affine map that maps z to the origin composed with the affine map that projects
orthogonal to A and afterwards maps isomorphic to Rk. Then we prove that x 7→ (f ◦ T)(x) + t is
the function computed by a “no”-instance of 2-LAYER RELU (S, t)-VERIFICATION if and only if
f attains a positive output value.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

To prove coNP-hardness for an arbitrary number ℓ ≥ 2 of layers and arbitrary output dimension m,
one can simply provide a reduction from 2-LAYER RELU (S, t)-VERIFICATION to ℓ-LAYER RELU
(S,Qt)-VERIFICATION by concatenating the 2-layer ReLU network with a ReLU network with ℓ−1
layers that computes m many maps in parallel that translate t to t ∈ Rm coordinate-wise. Hence,
we obtain the following corollary.

Corollary 13. For every reasonable set-sequence S, every polyhedron Qt ⊆ Rm with t ∈ Rm and
every ℓ ≥ 2, it holds that ℓ-LAYER RELU (S,Qt)-VERIFICATION is coNP-hard.

5.3 SURJECTIVITY

In this section, we study the task to decide whether a given ReLU network f : Rd → R with ℓ layers
computes a surjective map. We will call this task ℓ-LAYER RELU SURJECTIVITY. We start with
some simple observations characterizing surjectivity; see Appendix A.3.2 for a proof.

Lemma 14. For a ReLU network f = Wℓ ◦ ϕWℓ−1,bℓ−1
◦ · · · ◦ ϕW1,b1

+ bℓ we denote by f0 :=
Wℓ ◦ϕWℓ−1

◦· · ·◦ϕW1
the corresponding ReLU network without biases. Then the following holds:

a) f0 is surjective if and only if there are v+,v− ∈ Rd such that f0(v+) > 0 and f0(v
−) < 0.

b) f is surjective if and only if f0 is surjective

c) The map f is surjective if and only if there exist two ray generators r+, r− of two rays ρ+, ρ− ∈
Σf0 such that f0(r+) > 0 and f0(r

−) < 0.

Lemma 14 b) implies that we can assume that the ReLU network has no biases without loss of
generality. Furthermore, Lemma 14 c) implies an exponential-time algorithm for ℓ-LAYER RELU
SURJECTIVITY, since Σf0 contains at most O(

((∏ℓ
i=1 ni)

d

d−1

)
) many rays. In particular, for ℓ = 2, the

fan ΣW1
contains at most min{2nd−1

1 , 2n1+1} rays; that is, the problem is in XP when parameter-
ized by d and in FPT when parameterized by n1. Moreover, since two ray generators r+, r− of two
rays ρ+, ρ− ∈ Σf0 serve as a certificate, we obtain the following proposition.

Proposition 15. For every ℓ ∈ N, it holds that ℓ-LAYER RELU SURJECTIVITY is in NP.

Again, to show that the problem is NP-hard, it suffices to show hardness for one hidden layer and
one-dimensional output. Hence, in the remainder we study 2-LAYER RELU SURJECTIVITY, where
we have one hidden layer with n neurons (with weights W1 ∈ Rn×d and bias b1 ∈ Rn) with
ReLU activation, and an output layer with one output neuron (with weights W2 ∈ R1×n) without
activations. The network then computes the map f : Rd → R with f(x) := W2 · ϕW1,b(x).

In fact, to decide surjectivity, it is actually enough to find one (say the positive) ray generator since it
is easy to find some point x where f is non-zero (we argue below that w.l.o.g. f(x) < 0). To find x,
we choose an arbitrary full-dimensional cone and determine whether WC is the zero map or not. In
the former case, one can pick an arbitrary full-dimensional cone C ′ that shares a facet with C. Then,
WC′ ̸= 0 since the neuron defining the facet must be active in C ′. Hence, one finds a point x ∈ C ′

with f(x) ̸= 0. We give a more detailed proof of the following lemma in Appendix A.3.3.

Lemma 16. One can check in polynomial time whether f = 0, and otherwise find a point x∗ ∈ Rd

such that f(x∗) ̸= 0.

Lemma 16 implies that 2-LAYER RELU SURJECTIVITY is polynomially equivalent to 2-LAYER
RELU POSITIVITY (if f(x∗) > 0, then replace W2 with−W2 such that f(x∗) < 0) and hence we
obtain the following corollary. Moreover,

Corollary 17. For every ℓ ≥ 2, it holds that ℓ-LAYER RELU SURJECTIVITY is NP-complete.

Clearly, the above result implies NP-hardness for the general case where the output dimension m
is part of the input. It is unclear, however, whether containment in NP also holds for larger output
dimension.2

2We believe that the problem might be ΠP
2-complete for m ≥ 2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.4 ZONOTOPE FORMULATION

We conclude this section with an alternative formulation of 2-LAYER RELU POSITIVITY based
on a duality of convex piecewise linear functions and polytopes. Interestingly, this yields a close
connection to zonotope problems which arise in areas such as robotics and control. Let Fd be the
set of convex piecewise linear functions from Rd to R and let Pd be the set of polytopes in Rd. For
every f ∈ Fd, there are {ai ∈ Rd}i∈I such that f(x) = maxi∈I{aTi x} and there is a bijection
φ : Fd → Pd given by φ

(
maxi∈I{aTi x}

)
= conv {ai | i ∈ I} where the inverse is the support

function φ−1 : Pd → Fd given by φ−1(P)(x) = max
{
⟨x,y⟩ | y ∈ P

}
.

Furthermore, φ is a semi-ring isomorphism between the semi-rings (Fd,max,+) and
(Pd, conv,+), where + is either the pointwise addition or the Minkowski sum, respectively.3

A zonotope is a Minkowski sum of line segments, i.e., given a matrix G ∈ Rn×d, the corresponding
zonotope is given by Z(G) :=

{
x ∈ Rd | x ∈

∑
i∈[n]

conv{0,gi}
}
.

We now show that 2-LAYER RELU POSITIVITY is equivalent to deciding (non-)containment of
certain zonotopes. Given the map f(x) = W2 · ϕW1

(x) (where W2 ∈ {−1, 1}1×n), we define the
sets I+ := {i ∈ [n] | (W2)i = 1} and I− := [n] \ I+ and let W := W1. Note that we have

f(x) =
∑
i∈I+

max{0,wix} −
∑
i∈I−

max{0,wix},

and therefore f = φ−1(Z+) − φ−1(Z−), where Z+ :=
∑

i∈I+ conv{0,wi} = Z(WI+), and
Z− :=

∑
i∈I− conv{0,wi} = Z(WI−). Note that the support functions φ−1(Z+) and φ−1(Z−)

can only attain nonnegative values and Z+ ⊆ Z− implies that φ−1(Z+) ≤ φ−1(Z−). Moreover, if
for a v ∈ Z+, it holds that φ−1(Z+)(v) > φ−1(Z−)(v), then v /∈ Z−. Therefore, there exists a
v ∈ Rd such that φ−1(Z+)(v) > φ−1(Z−)(v) if and only if Z+ ⊈ Z−.

Notably, Kulmburg & Althoff (2021) already showed that ZONOTOPE CONTAINMENT (that is, the
question whether Z+ ⊆ Z−) is coNP-hard, which implies our NP-hardness of 2-LAYER RELU
POSITIVITY (Theorem 11). Nevertheless, we believe that our reduction is more accessible and
direct and provides a different perspective on the computational hardness. The question whether
ZONOTOPE CONTAINMENT is fixed-parameter tractable with respect to d is, to the best of our
knowledge, open.

6 CONCLUSION

We showed the strongest hardness result for network verification known so far and thereby excluded
polynomial-time algorithms (in the worst case) for almost all restrictions on the input set. Moreover,
we initiate the complexity-theoretic study of deciding the two elementary properties injectivity and
surjectivity for functions computed by ReLU networks. We exclude polynomial-time algorithms
for solving both problems, and prove fixed-parameter tractability for injectivity of a single layer. It
turned out that surjectivity is a special case of network verification and is also equivalent to zono-
tope containment. Our results build new bridges between seemingly unrelated areas, and yield new
insights into the complexity and expressiveness of ReLU neural networks. We close with some open
questions:

– Can the running time for RELU-LAYER INJECTIVITY be improved? Or is it possible to
prove a lower bound of 2Ω(d log d)?

– What is the (parameterized) complexity of deciding injectivity for a ReLU neural network
with two hidden layers?

– Is 2-LAYER RELU SURJECTIVITY (or equivalently ZONOTOPE CONTAINMENT) fixed-
parameter tractable with respect to the input dimension d?

– How can surjectivity be characterized for output dimension m ≥ 2? What is the complexity
of the decision problem?

– What is the complexity of bijectivity for 2-layer ReLU networks?

3See, e.g., Zhang et al. (2018) for more details on this correspondence.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=B1J_rgWRW. 3

Maximilian Baader, Matthew Mirman, and Martin Vechev. Universal approximation with certified
networks. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=B1gX8kBtPr. 2, 3

Maximilian Baader, Mark Niklas Mueller, Yuhao Mao, and Martin Vechev. Expressivity of reLU-
networks under convex relaxations. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=awHTL3Hpto. 2, 3

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars, 2016. URL https://arxiv.org/
abs/1604.07316. 1

Paul S. Bonsma, Hajo Broersma, Viresh Patel, and Artem V. Pyatkin. The complexity status of
problems related to sparsest cuts. In 21st International Workshop on Combinatorial Algorithms
(IWOCA ’10), volume 6460 of LNCS, pp. 125–135. Springer, 2010. 19

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer,
2013. 4

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=l_amHf1oaK. 3

Ana Paulina Figueroa, César Hernández-Cruz, and Mika Olsen. The minimum feedback arc set
problem and the acyclic disconnection for graphs. Discrete Mathematics, 340(7):1514–1521,
2017. 5

Vincent Froese and Christoph Hertrich. Training neural networks is NP-hard in fixed dimension. In
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS ’23), pp. 44039–44049, 2023. 3

Vincent Froese, Christoph Hertrich, and Rolf Niedermeier. The computational complexity of ReLU
network training parameterized by data dimensionality. Journal of Artificial Intelligence Re-
search, 74:1775–1790, 2022. 3

Takashi Furuya, Michael Puthawala, Matti Lassas, and Maarten V. de Hoop. Globally injective and
bijective neural operators. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems (NeurIPS ’23), pp. 57713–57753, 2023.
1, 2

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelović, Timothy A. Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. ArXiv, abs/1810.12715, 2018. URL
https://api.semanticscholar.org/CorpusID:53112003. 3

J. Elisenda Grigsby and Kathryn Lindsey. On transversality of bent hyperplane arrangements and
the topological expressiveness of relu neural networks. SIAM Journal on Applied Algebra and
Geometry, 6(2):216–242, 2022. doi: 10.1137/20M1368902. URL https://doi.org/10.
1137/20M1368902. 4

Daniel Haider, Martin Ehler, and Péter Balázs. Convex geometry of ReLU-layers, injectivity on the
ball and local reconstruction. In Proceedings of the 40th International Conference on Machine
Learning (ICML ’23), volume 202 of PMLR, pp. 12339–12350, 2023. 1, 2

11

https://openreview.net/forum?id=B1J_rgWRW
https://openreview.net/forum?id=B1gX8kBtPr
https://openreview.net/forum?id=B1gX8kBtPr
https://openreview.net/forum?id=awHTL3Hpto
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://openreview.net/forum?id=l_amHf1oaK
https://api.semanticscholar.org/CorpusID:53112003
https://doi.org/10.1137/20M1368902
https://doi.org/10.1137/20M1368902

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pp. 359–368, 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/9766527f2b5d3e95d4a733fcfb77bd7e-Abstract.html. 4

Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 32:175–176, 1923. 6

Christoph Hertrich, Amitabh Basu, Marco Di Summa, and Martin Skutella. Towards lower bounds
on the depth of relu neural networks. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems (NeurIPS’21), pp. 3336–3348,
2021. 3, 18

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367–375, 2001. 5, 14

Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. Deep neural network compres-
sion for aircraft collision avoidance systems. Journal of Guidance, Control, and Dynamics,
42(3):598–608, 2019. doi: 10.2514/1.G003724. URL https://doi.org/10.2514/1.
G003724. 1

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: a
calculus for reasoning about deep neural networks. Formal Methods in System Design, 60(1):
87–116, 2022. 1, 2

Panagiotis Kouvaros and Alessio Lomuscio. Towards scalable complete verification of ReLU neural
networks via dependency-based branching. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence (IJCAI ’21), pp. 2643–2650, 2021. 1

Dieter Kratsch and Van Bang Le. Algorithms solving the matching cut problem. Theoretical Com-
puter Science, 609:328–335, 2016. 14

Adrian Kulmburg and Matthias Althoff. On the co-NP-completeness of the zonotope containment
problem. European Journal of Control, 62:84–91, 2021. 2, 10

László Lovász. Coverings and colorings of hypergraphs. In Proceedings of the 4th Southeastern
Conference of Combinatorics, Graph Theory, and Computing, pp. 3–12, 1973. 13

Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin Vechev. Understanding certified training
with interval bound propagation, 2024. URL https://arxiv.org/abs/2306.10426. 3

Matthew B Mirman, Maximilian Baader, and Martin Vechev. The fundamental limits of neural
networks for interval certified robustness. Transactions on Machine Learning Research, 2022.
ISSN 2835-8856. URL https://openreview.net/forum?id=fsacLLU35V. 3

Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. On the parameterized complexity of girth and
connectivity problems on linear matroids. In Proceedings of the 14th International Symposium
on Algorithms and Data Structures (WADS ’15), volume 9214 of LNCS, pp. 566–577. Springer,
2015. 2

Michael Puthawala, Konik Kothari, Matti Lassas, Ivan Dokmanic, and Maarten V. de Hoop. Globally
injective ReLU networks. Journal of Machine Learning Research, 23:105:1–105:55, 2022. 1, 2,
5

Ansgar Rössig and Milena Petkovic. Advances in verification of ReLU neural networks. Journal of
Global Optimization, 81(1):109–152, 2021. 1

Marco Sälzer and Martin Lange. Reachability in simple neural networks, 2023. URL https:
//arxiv.org/abs/2203.07941. 1, 2, 4

A. Schrijver. Theory of Linear and Integer programming. Wiley-Interscience, 1986. 3, 16

12

https://proceedings.neurips.cc/paper/2019/hash/9766527f2b5d3e95d4a733fcfb77bd7e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9766527f2b5d3e95d4a733fcfb77bd7e-Abstract.html
https://doi.org/10.2514/1.G003724
https://doi.org/10.2514/1.G003724
https://arxiv.org/abs/2306.10426
https://openreview.net/forum?id=fsacLLU35V
https://arxiv.org/abs/2203.07941
https://arxiv.org/abs/2203.07941

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certify-
ing neural networks. Proc. ACM Program. Lang., 3(POPL), January 2019. doi: 10.1145/3290354.
URL https://doi.org/10.1145/3290354. 3

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and
Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6199. 1

Andreas M. Tillmann and Marc E. Pfetsch. The computational complexity of the restricted isometry
property, the nullspace property, and related concepts in compressed sensing. IEEE Transactions
on Information Theory, 60(2):1248–1259, 2014. 2

Zi Wang, Aws Albarghouthi, Gautam Prakriya, and Somesh Jha. Interval universal approximation
for neural networks. Proc. ACM Program. Lang., 6(POPL), January 2022. doi: 10.1145/3498675.
URL https://doi.org/10.1145/3498675. 2, 3

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S.
Boning, and Inderjit S. Dhillon. Towards fast computation of certified robustness for ReLU net-
works. In Proceedings of the 35th International Conference on Machine Learning (ICML’18),
volume 80 of PMLR, pp. 5273–5282, 2018. 1, 3

Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial
defenses. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pp. 8410–8419, Red Hook, NY, USA, 2018. Curran Associates Inc. 3

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified ro-
bustness and beyond. Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
3

Thomas Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by
hyperplanes. Memoirs of the American Mathematical Society, 1(154), 1975. 5

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. In Proceedings
of the 36th International Conference on Neural Information Processing Systems, NIPS ’22, Red
Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088. 3

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. In
Proceedings of the 35th International Conference on Machine Learning (ICML’18), volume 80
of PMLR, pp. 5824–5832, 2018. 10

A APPENDIX

A.1 APPENDIX TO SECTION 3

To prove that ACYCLIC 2-DISCONNECTION is NP-hard, we reduce from the following problem.

3-UNIFORM HYPERGRAPH 2-COLORING

Input: A 3-uniform hypergraph H = (V,E), that is, |e| = 3 for all e ∈ E.
Question: Is there a 2-coloring of the nodes V such that no hyperedge is monochromatic?

Theorem 18. ACYCLIC 2-DISCONNECTION is NP-hard.

Proof. We give a reduction from 3-UNIFORM HYPERGRAPH 2-COLORING which is NP-
hard Lovász (1973). Let H = (V,E) be a 3-uniform hypergraph with |V | = n and |E| = m.
We construct a digraph D = (U,A) as follows: For each i ∈ {0, 1}, we define a node set Ui with
the n+ 2m nodes

Ui := {vi | v ∈ V } ∪
⋃
e∈E

{ei, e′i}.

13

https://doi.org/10.1145/3290354
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1145/3498675

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Moreover, for each node v ∈ V , we define a node set Xv with the 2 deg(v) + 2 nodes

Xv := {xv, x
′
v} ∪ {xv,e,0, xv,e,1 | e ∈ E, v ∈ e}.

Finally, we define the node set Q := {qe,i, q′e,i | e ∈ E, i ∈ {0, 1}} and let

U := U0 ∪ U1 ∪
⋃
v∈V

Xv ∪Q.

The arc set A is defined as follows: For i ∈ {0, 1}, we connect the nodes in Ui with 2(|Ui| − 1)
arcs to a strongly connected path, that is, for an arbitrary ordering b1, . . . , b|Ui| of the nodes in Ui,
we insert the arcs (bj , bj+1) and (bj+1, bj) for each j ∈ [|Ui| − 1]. Analogously, we also connect all
nodes in Xv for each v ∈ V to a strongly connected path. Moreover, for each v ∈ V , we insert the
cyclic arcs (v0, xv), (xv, v1), (v1, x′

v), and (x′
v, v0). Finally, for each hyperedge e = {u, v, w} ∈ E

and each i ∈ {0, 1}, we insert the arcs

• (qe,i, q
′
e,i) and (q′e,i, qe,i),

• (xu,e,i, ei), (ei, qe,i), (qe,i, e′i), and (e′i, xu,e,i), and
• (xv,e,i, qe,i), (qe,i, xw,e,i), (xw,e,i, q

′
e,i), and (q′e,i, xv,e,i).

Overall, the constructed digraph D contains O(n+m) many nodes and arcs.

For the correctness, assume first that there is a 2-coloring of the nodes of H such that no hyperedge is
monochromatic and let Vi ⊆ V denote the set of nodes with color i. We construct a solution A′ ⊆ A
for D as follows: For each v ∈ V0, A′ contains the arcs (xv, v1) and (v1, x

′
v), and for each v ∈ V1,

A′ contains the arcs (v0, xv) and (x′
v, v0). Clearly, these arcs are acyclic. Further, consider a

hyperedge e = {u, v, w} ∈ E. Since e is not monochromatic, it follows that exactly one of its
nodes is colored with one of the two colors, say 0 (the other case is analogous), and the two other
nodes have color 1. If u is colored 0, then A′ contains the arcs (xu,e,1, e1), (e′1, xu,e,1), (e0, qe,0),
and (qe,0, e

′
0). If v has color 0 (the case where w has color 0 is analogous), then A′ contains the arcs

(xu,e,0, e0), (e′0, xu,e,0), (xv,e,1, qe,1), (qe,1, xv,e,1), (xw,e,0, q
′
e,0), and (qe,0, xw,e,0). It can easily

be verified that A′ is acyclic. Moreover, (U,A \ A′) is not weakly connected since e.g. all nodes
in Xv with v ∈ V0 are disconnected from all nodes in U1.

Conversely, assume that there is a solution A′ ⊆ A for D. First, observe that in D′ := (U,A\A′) all
nodes in U0 are weakly connected (since they are strongly connected in D). The same holds for U1

and for each Xv , v ∈ V . Moreover, for each v ∈ V , the set Xv is weakly connected to exactly one
of the sets U0 or U1. To see this, note that Xv cannot be disconnected from both U0 and U1 due
to the cycle involving the nodes xv and x′

v . It follows that also no Xv can be weakly connected to
both U0 and U1 since then D′ would be weakly connected because also each node in Q is connected
to some Xv due to its cyclic connections. Hence, we assign each node v ∈ V the color i ∈ {0, 1} if
and only if Xv is weakly connected to Ui.

It remains to check that each hyperedge e = {u, v, w} ∈ E is not monochromatic. Assume the con-
trary, that is, Xu, Xv , and Xw are weakly connected to (wlog) U0. Then, by construction, also qe,1
and q′e,1 are weakly connected to U0. Since Xu is not weakly connected to U1 and therefore A′

contains (xu,e,1, e1) and (e′1, xu,e,1), it follows that e1 is weakly connected to qe,1, since otherwise
A′ would not be acyclic. Therefore, e1 is also weakly connected to U0, which yields a contradiction
since then D′ would be weakly connected.

We remark that our reduction implies a running time lower bound based on the Exponential
Time Hypothesis4 (ETH). As discussed by Kratsch & Le (2016), there is no algorithm solving
a 3-UNIFORM HYPERGRAPH 2-COLORING-instance (V,E) in 2o(|E|) time assuming ETH. Our
polynomial-time reduction in the proof of Theorem 18 constructs a digraph D of size O(|V |+ |E|).
Notice that O(|V | + |E|) ⊆ O(|E|) since we can assume |V | ≤ 3|E| (isolated nodes can trivially
be removed). Hence, any algorithm solving ACYCLIC 2-DISCONNECTION in 2o(|D|) time would
imply a 2o(|E|)-time algorithm for 3-UNIFORM HYPERGRAPH 2-COLORING.

Corollary 19. ACYCLIC 2-DISCONNECTION cannot be solved in 2o(|D|) time unless the ETH fails.
4The Exponential Time Hypothesis asserts that 3-SAT cannot be solved in 2o(n) time where n is the number

of Boolean variables in the input formula (Impagliazzo & Paturi (2001)).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

U0 u0 v0 w0 . . . e0 e′0 . . .

U1 u1 v1 w1 . . . e1 e′1 . . .

Qe,0

Qe,1

. . .

Xv

. . .

Xu

. . .

Xw

Figure 3: The encoding of one hyperege {u, v, w} ∈ E in the digraph D. The cyclic directed paths
connecting Xv respectively Xw with U0 and U1 are not drawn in order to not overload the figure.

A.1.1 PROOF OF THEOREM 6

Proof. Containment in NP is easy: The set IC of a cell C with rank(WC) < d serves as a certificate.

For the NP-hardness, we reduce from ACYCLIC 2-DISCONNECTION which is NP-hard by Theo-
rem 18. For a given digraph D = (V = {v1, . . . , vn}, A = {a1, . . . , am}), we construct the matrix
W ∈ Rm×(n−1) as follows: For every arc a = (vi, vj) ∈ A, we add the row vector wa ∈ Rn−1

with

(wa)ℓ =

1, ℓ = i

−1, ℓ = j

0, otherwise
.

For the correctness, assume first that there is a solution A′ ⊆ A for D. Let I ′ := {i | ai ∈ A′} ⊆
[m]. We claim that there is a cell C ∈ CW with IC ⊆ [m] \ I ′. To see this, let vπ1 , vπ2 , . . . , vπn be a
topological ordering of V such that all arcs in A′ point “from left to right”. Such an ordering exists
since A′ is acyclic. Let πk = n and let x ∈ Rn−1 be such that

xπ1
< · · · < xπk−1

< 0 < xπk+1
< · · · < xπn

.

Then, no neuron i ∈ I ′ corresponding to an arc ai = (vj , vℓ) ∈ A′ is active at x since

wai
x =

xj − xℓ, j ̸= n ∧ ℓ ̸= n

−xℓ, j = n

xj , ℓ = n

< 0.

Hence, x is contained in some cell C with IC ⊆ [m] \ I ′. Now, since (V,A \ A′) is not weakly
connected, it follows that rank(WC) < n − 1. To see this, note that there must be a node vi ∈ V
that is not weakly connected to vn, that is, there is no undirected path from vi to vn. If rank(WC) =
n−1, then there exists a linear combination

∑
j∈IC

cjwaj
= ei of the i-th unit vector in Rn−1. But

this implies the existence of an undirected path from vi to vn corresponding to some arcs in {aj |
cj ̸= 0}, which yields a contradiction. To see this, note first that (ei)i = 1 implies that cj ̸= 0 for
some j ∈ IC such that (waj

)i ̸= 0. Clearly, aj = (vi, vn) or aj = (vn, vi) is not possible. Hence, aj
must be an arc between vi and some vk ̸= vn. But then, we have (cjwaj)k ̸= 0, whereas (ei)k = 0.
Therefore, there exists another j′ ∈ IC such that cj′ ̸= 0 and (waj′) ̸= 0. Again, it is not possible
that aj′ = (vk, vn) or aj′ = (vn, vk). However, since IC is finite, repeating this argument yields a
contradiction.

For the reverse direction, let P ∈ CW be a cell with rank(WC) < n − 1. Then, there exists a
point x ∈ P . Now, let i ∈ [m] \ IC be a neuron corresponding to arc ai = (vj , vℓ) that is not active

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

at x. Then, this implies that xj − xℓ < 0 if j < n and ℓ < n. If j = n, then this implies xℓ > 0
and if ℓ = n, then this implies xj < 0. Hence, (V,A′) with A′ := {ai | i ∈ [m] \ IC} is
acyclic since any cycle would lead to a contradiction. Now, we claim that (V,A \ A′) cannot be
weakly connected. Otherwise, there exists an undirected path from each vi, i ∈ [n − 1] to vn.
Let vi = vj0 , vj1 , . . . , vjt = vn be the nodes of such a path along the arcs aℓ1 , . . . , aℓt . Then, there
exists the linear combination

∑t
k=1 ckwaℓk

= ei, where ck := 1 if aℓk = (vjk−1
, vjk) and ck := −1

if aℓk = (vjk , vjk−1
). But this implies rank(WC) = n− 1, which yields a contradiction.

A.2 APPENDIX TO SECTION 4

A.2.1 PROOF OF LEMMA 9

Proof. We use strong duality of linear programming. To that end, let A ∈ Rm×d such that C =

{x ∈ Rd | Ax ≥ 0} and let W := (w1, . . . ,wn)
T ∈ Rn×d. Since C ⊆

n⋃
i=1

H+
wi

, it follows that

the set
{x ∈ Rd | −Wx ≥ 1,Ax ≥ 0} ⊆ {x ∈ Rd | −Wx > 0,Ax ≥ 0}

is empty and hence the following linear program does not admit a feasible solution.

min
x

0

s.t. Ax ≥ 0
−Wx ≥ 1

By strong duality, the dual linear program

max
y

1Ty

s.t. zTA− yTW = 0
y, z ≥ 0

has either no feasible solution or its objective value is unbounded. Since y = 0 and z = 0 yields a
feasible solution, the latter is the case. In particular, there is a ray ρ of the cone {(y, z) ∈ Rn+m |
zTA − yTW = 0,y, z ≥ 0} such that the objective value is unbounded on ρ. The dimension
of the subspace {(y, z) ∈ Rn+m | zTA − yTW = 0} is at least n + m − d. Therefore, ρ as
a 1-dimensional subspace lies in the intersection of at least n + m − d − 1 many hyperplanes of
the form {(y, z) ∈ Rn+m | (y, z)i = 0} and hence in the intersection of at least n − d − 1 many
hyperplanes of the form {(y, z) ∈ Rn+m | yi = 0}. Let B ⊆ [n] be the set of size at least n−d−1
such that ρ ⊆

⋂
i∈B{(y, z) ∈ Rn+m | yi = 0} (this can be computed in polynomial time; see, e.g.,

(Schrijver, 1986, Corollary 14.1g)) and A := [n] \B its complement.

It follows that |A| ≤ d+ 1 and that the objective value of the following LP is still unbounded.

max
y

1Ty

s.t. zTA− yT
AWA = 0

y, z ≥ 0

Again, by strong duality, this implies that the set

S := {x ∈ Rd | −WAx ≥ 1,Ax ≥ 0}

is empty. Assume that the cone {x ∈ Rd | −WAx > 0,Ax ≥ 0} contains an element x. Let
k := min

i∈[d]
{(−WAx)i}. Then 1

k · x ∈ S, which is a contradiction. Hence, the set

{x ∈ Rd | −WAx > 0,Ax ≥ 0}

is empty, which means that C ⊆
⋃
i∈A

H+
wi

, proving the claim.

A.2.2 PROOF OF THEOREM 10

Lemma 20. Algorithm 1 is correct.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. Assume that the algorithm outputs some x ∈ Rd. If x was returned in Line 1 or Line 2, then
this is clearly correct since either no cell has rank d or there is a rank-0 cell. If x was returned by
some call of FindCell (Algorithm 2) in Line 4, then this is correct since rank(Wx) ≤ rank(C) < d,
where Wx := {wi ∈ W | wT

i x ≥ 0}. The second inequality holds since otherwise the algorithm
would have returned “No” in Line 1. For the first inequality, we first observe the invariant that
W \ span(C) ⊆M ⊆W holds at any time during execution of FindCell. This is clear for the initial
call of FindCell in Line 3 in Algorithm 1. Also, within FindCell the property holds after Line 3 and
for the recursive calls in Line 7. Now, rank(Wx) ≤ rank(C) holds since mT

i x < 0 for all i ∈ [m]
implies that Wx ∩M = ∅, and thus, by our invariant, we have C ⊆Wx ⊆ span(C).

For the opposite direction, assume that there is an x ∈ Rd such that k := rank(Wx) < d. If k = 0,
then Algorithm 1 correctly returns some point of a rank-0 cell in Line 2. If k > 0, then Wx contains
at least one vector wi. We claim that the call of FindCell in Line 3 will correctly return some point
from a cell with rank at most k. To this end, we show that FindCell(C, M) (Algorithm 2) returns a
correct point whenever C ⊆ Wx. Clearly, if rank(C) = k, then x satisfies the conditions in Line 4
since C ⊆Wx, and thus Wx ⊆ span(C) while M ⊆W \ span(C) (due to Line 3 and the invariant
on M). Hence, FindCell returns a correct point in this case.

Now consider the case rank(C) < k. If some point is returned in Line 4, then this is correct
(as already shown above). If no point satisfies the conditions in Line 4, then it holds {x | ∀i ∈
[n] : cTi x ≥ 0} ⊆

⋃
i∈I H

+
mi

and by Lemma 9, we can compute the set A in Line 5. Note that
Wx ∩ {mi | i ∈ A} ≠ ∅. Hence, for at least one of the recursive calls in Line 7, it holds that
C∪{mi} ⊆Wx. Moreover, rank(C∪{mi}) = rank(C)+1 since mi ̸∈ span(C) (due to Line 3).
Hence, by induction, this call will return a correct point.

Lemma 21. Algorithm 1 runs in O((d+ 1)d · poly(S)) time, where S denotes the input size.

Proof. Let S be the bit-length of W . Clearly, Line 1 and Line 2 can be done in poly(S) time via
linear programming. As regards the running time of FindCell, note first that the recursion depth is
at most d since every recursive call increases the rank of C (as already discussed in the proof of
Lemma 21) and the recursion terminates when rank d is reached. Moreover, each call of FindCell
branches into at most d + 1 recursive calls, that is, the search tree has size at most (d + 1)d. Since
all other computations within FindCell can be done in poly(S) time (using linear programming and
Lemma 9), we obtain the desired running time.

A.3 APPENDIX TO SECTION 5

A.3.1 PROOF OF THEOREM 12

Proof. We reduce from the complement of 2-LAYER RELU POSITIVITY. Let W1 ∈ Rn×k,W2 ∈
R1×n be an instance of 2-LAYER RELU POSITIVITY. Let the dimension d, the affine space A (as
a basis) and the point z ∈ Rd be the output of the algorithm (on input k) that exists due to the fact
that (Sd)d∈N is a reasonable sequence of sets. More precisely, let ε > 0 be chosen such that

B = Bε(z) := {x ∈ A | ∥x− z∥2 < ε} ⊆ Sd.

Let P : Rd → A be the orthogonal projection to A and T : A → Rk an isometric isomorphism
obtained by mapping the normalized basis of A to the standard basis of Rk. The composition
(T ◦ P) : Rd → Rk is an affine map and let it be given by a matrix A ∈ Rk×d and a vector b ∈ Rd.
Then, W̃2 := W2,W̃1 := W1 · A, b̃1 := W1 · b −W1 · A · z, b̃2 := t form an instance of
2-LAYER RELU (S, t)-VERIFICATION and it holds that

W2 · ϕW1(Ax+ b) > 0 ⇐⇒ W̃2 · ϕW̃1,b̃1
(z+ x) + b̃2 > t. (1)

For the correctness of the reduction, assume that there is a y ∈ Rk such that W2 · ϕW1(y) > 0.
Then, by the positive homogeneity of the map x 7→W2·ϕW1(x), we also have that W2·ϕW1(y

′) >
0 for y′ := ε

2
y

∥y∥ . Since T is an isometric isomorphism, there is an x ∈ A with ∥x∥ = ε
2 such that

T (x) = y′. Hence, z+ x ∈ B ⊆ Sd and Equation (1) implies that W̃2 · ϕW̃1,b̃1
(z+ x) + b̃2 > t.

Conversely, if there is an x ∈ Sd such that W̃2 ·ϕW̃1,b̃1
(x)+ b̃2 > t, then Equation (1) implies that

W2 · ϕW1
(A(x− z) + b) > 0, concluding the proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3.2 PROOF OF LEMMA 14

Proof. a) If there is a v+ ∈ Rd with f0(v
+) = a > 0, then for all b ∈ [0,∞) it holds that

f0(
b
av

+) = b due to positive homogeneity of f0 (analogously for all b ∈ (−∞, 0] with v−). The
other direction is trivial.

b) We start with some preliminary observations. First, there is a constant C ∈ R that only depends
on the weights and biases of f such that ∥f − f0∥∞ ≤ C (Hertrich et al. (2021) Proposition 2.3).
Moreover, due to continuity of f it holds that f is surjective if and only if for every a < b ∈ R there
are a′, b′ ∈ R with a′ < a and b′ > b such that a′, b′ ∈ f(Rd).

Now, for the first direction, assume that f is surjective. Then there are a < −C and b > C such that
a, b ∈ f(Rd). Since ∥f − f0∥∞ ≤ C, it follows that there are v+ and v− with ϕ0(v

+) > 0 and
ϕ0(v

−) < 0, implying with a) that ϕ0 is surjective.

For the converse direction, let a < 0 < b. By surjectivity of f0, we have that a− 2C ∈ f0(Rd) and
b + 2C ∈ f0(Rd). Hence, since ∥f − f0∥∞ ≤ C, it follows that there are a′ < a and b′ > b such
that a′, b′ ∈ f(Rd), implying surjectivity of f .

c) Follows directly from a) and Observation 3.

A.3.3 PROOF OF LEMMA 16

Proof. We define the sets I+ := {i ∈ [n] | (W2)i = 1} and I− := [n] \ I+ and let w1, . . . ,wn be
the rows of W1.

First, we can assume that for any v ∈ Rd there is at most one i ∈ [n] such that wi ∈ pos(v) :=
{λv | λ ≥ 0}. To see this, let wi ∈ pos(wj) for some i, j ∈ [n]. If i, j ∈ I+, then we can simply
delete the rows wi and wj and add a new row wi + wj without changing the map f (clearly the
same works for i, j ∈ I−). If i ∈ I+ and j ∈ I−, then we can delete the rows wi and wj and, if
∥wj∥2 ≤ ∥wi∥2, add a new row wi − wj with output weight 1 or add a new row wj − wi with
output weight −1 if ∥wi∥2 ≤ ∥wj∥2 without changing the map f . Note that we can transform any
matrix W1 to such a form in polynomial time.

Now, if for every row wj there is a row wj′ such that wj = −wj′ and (W2)j = −(W2)j′ , it
follows that f is a linear map and hence we can easily check whether it is the zero map. Otherwise,
assume that for a row wj there is no such row wj′ . Then wj induces a hyperplane Hj := {x ∈
Rd | wjx = 0} such that ϕ is not linear in every open neighborhood of any x ∈ Hj and hence the
map f is not linear and in particular cannot be the zero map. Thus, we can check in polynomial time
whether f = 0.

Now in the case of f ̸= 0, let Ij := {i ∈ [n] | wi ∈ span(wj)} and note that |Ij | ≤ 2. For
i ∈ [n], we define the hyperplane Hi := {x ∈ Rd | wix = 0}. By definition, there exists an
x ∈ Hj \

(⋃
i∈[n]\Ij Hi

)
. Now, for

ε := min{1, 1/2 min
i∈[n]\Ij

min
y∈Hi

∥x− y∥2 > 0}

it holds that {x+ δwj ,x− δwj} ⊂ Rd \
(⋃

i∈[n]\Ij Hi

)
for all δ ∈ (0, ε). Let x′ := x+ εwj and

x′′ := x− εwj and let I ′ := {i ∈ [n] | wix
′ > 0} and I ′′ := {i ∈ [n] | wix

′′ > 0}.
We will argue now that either in the cell C ′ ∈ ΣW1 containing x′ or in the cell C ′′ ∈ ΣW1

containing x′′ we find the desired x∗ with f(x∗) ̸= 0. Note that it is sufficient to prove that f cannot
be the zero map on C ′ and C ′′. We prove this by showing that

W2 ◦ (W1)C′ −W2 ◦ (W1)C′′ ̸= 0.

Note that (I ′ ∪ Ij) \ {j} = I ′′. If Ij = {j}, then(∑
i∈I′∩I+

wi −
∑

i∈I′∩I−

wi

)
−

(∑
i∈I′′∩I+

wi −
∑

i∈I′′∩I−

wi

)
= ±wj ̸= 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

If Ij = {j, j′}, then we have wj′ = −λwj for some λ > 0 and hence(∑
i∈I′∩I+

wi −
∑

i∈I′∩I−

wi

)
−

(∑
i∈I′′∩I+

wi −
∑

i∈I′′∩I−

wi

)
= ±wj ±wj′

equals 0 if and only if λ = 1 and (W2)j = −(W2)j′ , which we assumed not to be the case.

A.3.4 PROPOSITION 22

In order to prove that POSITIVE CUT is NP-complete, we reduce from the following NP-hard prob-
lem (Bonsma et al. (2010)).

DENSEST CUT

Input: A graph G = (V,E) and t ∈ Q ∩ [0, 1].
Question: Is there a subset S ⊆ V such that |E(S,V \S)|

|S|·|V \S| > t?

Proposition 22. POSITIVE CUT is NP-complete.

Proof. We reduce from DENSEST CUT. Let (V,E) be a graph and t = a
b with a < b ∈ N and let

w(F) :=
∑

e∈F w(e). We construct the complete graph K|V | = (V,E′ :=
(
V
2

)
) with edge weights

w : E′ → Z by

w({i, j}) =
{
−ab {i, j} /∈ E

(b− a)b {i, j} ∈ E
.

Note that for any S ⊆ V , it holds that

w(E′(S, V \ S)) = (b− a)b · |E(S, V \ S)| − ab(|S| · |V \ S| − |E(S, V \ S)|)
= b2 · |E(S, V \ S)| − ab · |S| · |V \ S|.

Hence, we have

w(E′(S, V \ S)) > 0 ⇐⇒ b2 · |E(S, V \ S)|
ab · |S| · |V \ S|

> 1 ⇐⇒ |E(S, V \ S)|
|S| · |V \ S|

>
a

b
= t,

proving the correctness of the reduction.

A.3.5 PROOF OF THEOREM 11

Proof. The problem is contained in NP since, by Lemma 14, it is sufficient to define a ray ρ as a
certificate for positivity. Since rays are one-dimensional subspaces, they are the intersection of d−1
hyperplanes corresponding to rows of W1. Hence, the 2(d− 1) rows of W1 that determine ρ form
a polynomial-time verifiable certificate.

For the NP-hardness, we reduce from POSITIVE CUT. Given a weighted graph (G = (V,E), w)
with V = [d] and |E| = n, we define the matrices W1 ∈ R2n×d and W2 ∈ R1×2n as follows: For
each e = {i, j} ∈ E, W1 contains two rows we and w′

e, where

(we)ℓ :=

1, ℓ = i

−1, ℓ = j

0, else
and w′

e := −we.

The corresponding entries of W2 are set to w(e). Thus, the 2-layer ReLU neural network computes
the map f : Rd → R with

f(x) =
∑

{i,j}∈E

w({i, j}) · ([xi − xj]+ + [xj − xi]+).

For the correctness, we start with some preliminary observations. For a subset S ⊆ V , let rS :=∑
i∈S ei ∈ Rd and r′S := −

∑
i∈S\V ei ∈ Rd and note that

[(rS)i − (rS)j]+ + [(rS)j − (rS)i]+ =

{
0, {i, j} /∈ E(S, V \ S)
1, {i, j} ∈ E(S, V \ S)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

as well as

[(r′S)i − (r′S)j]+ + [(r′S)j − (r′S)i]+ =

{
0, {i, j} /∈ E(S, V \ S)
1, {i, j} ∈ E(S, V \ S)

and therefore

f(rS) = f(r′S) =
∑

{i,j}∈E(S,V \S)

w({i, j}) = w(E(S, V \ S)).

As regards the correctness, if (G,w) is a yes-instance, that is, there exists a subset S ⊆ V
with w(E(S, V \ S)) > 0, then f(rS) > 0.

Conversely, assume that there is a v ∈ Rd with f(v) > 0. Let π ∈ Sd+1 be a permutation such
that vπ(1) ≤ vπ(2) ≤ · · · ≤ vπ(d+1), where vd+1 := 0. Since all breakpoints x of fW1

satisfy
xi = xj for some i and j, the map fW1 is linear within the pointed d-dimensional cone

C := {x ∈ Rd | xπ(1) ≤ · · · ≤ xπ(d+1)} =
d⋂

i=1

{x ∈ Rn | xπ(i) ≤ xπ(i+1)},

where again xd+1 := 0. Hence, by linearity of the output layer and Observation 3, the value ϕ(v) is
a conical combination of the values of f on the ray generators of the rays of C and hence there is ray
generator r of C such that f(r) > 0. All rays of C are the intersection of C and n− 1 hyperplanes
of the form {x ∈ Rd | xπ(i) = xπ(i+1)}. We denote these rays by

ρk := {x ∈ Rd | xπ(1) = · · · = xπ(k−1) ≤ xπ(k) = · · · = xπ(d+1)}

for k ∈ [d]. Let k ∈ [d] and S = {π(k), . . . , π(d)}. If π−1(d + 1) < k, then rS generates ρk and
otherwise r′S generates ρk. Since ϕ is positive on one of these ray generators, we can conclude that
there is a S ⊆ V such that f(rS) = f(r′S) > 0 which implies w(E(S, V \ S)) > 0.

20

	Introduction
	Preliminaries
	coNP-Completeness of Injectivity
	An FPT Algorithm for ReLU-Layer Injectivity
	Verification and Surjectivity
	NP-Completeness of 2-Layer ReLU Positivity
	coNP-hardness of Verification
	Surjectivity
	Zonotope Formulation

	Conclusion
	Appendix
	Appendix to sec:complexity-injectivity
	Proof of Theorem 6

	Appendix to sec:FPT-algorithm
	Proof of Lemma 9
	Proof of thm:fpt

	Appendix to sec:surjectivity
	Proof of prop:verificationhard
	Proof of Lemma 14
	Proof of Lemma 16
	Proposition 22
	Proof of Theorem 11

