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Abstract

In Reinforcement Learning theory, we often assume restrictive assumptions, like
linearity and RKHS structure on the model, or Gaussianity and log-concavity of
the posteriors over models, to design an algorithm with provably sublinear regret.
But RL in practice is known to work for a wider range of distributions and models.
Thus, we study whether we can design efficient low-regret RL algorithms for
any isoperimetric distribution, which includes and extends the standard setups
in the literature to non-log-concave and perturbed distributions. Specifically, we
show that the well-known PSRL (Posterior Sampling-based RL) algorithm yields
sublinear regret if the sequence of posterior distributions satisfy the Log-Sobolev
Inequality (LSI), which is a form of isoperimetry, with linearly growing constants.
Further, for the cases where we cannot compute or sample from an exact posterior,
we propose a Langevin sampling-based algorithm design scheme, namely LaPSRL.
We show that LaPSRL also achieves order optimal regret if the posteriors satisfy
LSI. Finally, we deploy a version of LaPSRL with a Langevin sampling algorithms,
SARAH-LD. We numerically demonstrate their performances in different bandit
and MDP environments. Experimental results validate the generality of LaPSRL
across environments and its competitive performance with respect to the baselines.

1 Introduction

The last decade has seen a significant advance in Reinforcement Learning (RL), both in terms
of theoretical understanding and success in practical applications. However, still, the theoretical
results do not always apply or explain RL in real-world settings. The central issue is that to operate
on complex environments RL algorithms aim to learn a parametric functional approximation of
the environment and to theoretically analyse them, we often assume linear (Geramifard et al.,
2013), bilinear (Ouhamma et al., 2022), or reproducible kernel (Chowdhury & Gopalan, 2019) type
parametric models, and Gaussian or log-concave posteriors for Bayesian algorithms (Chowdhury &
Gopalan, 2019; Osband & Van Roy, 2017). In this paper, we aim to narrow this gap further by studying
whether we can achieve the desired regret guarantees for isoperimetric distributions. Isoperimetry
relates to the ratio between the area of the perimeter and the volume of a set. It is known that some
isoperimetric condition is needed for rapid mixing of Markov chains to avoid the risk of getting
stuck in bad regions (Stroock & Zegarlinski, 1992). This has motivated us to study isoperimetric
distributions in RL. In addition, isoperimetric distributions include all the aforementioned setups
studied in RL theory, and also non-log-concave and perturbed versions of log-concave distributions
as well as mean field neural networks (Nitanda et al., 2022). In fact, we will see that any posterior

17th European Workshop on Reinforcement Learning (EWRL 2024).



with a bounded likelihood function and a log-Sobolev prior will be log-Sobolev, which would include
complex setups such as some forms of Bayesian neural networks. In optimization and sampling
literature, isoperimetry is used as a minimal condition to conduct efficient and controlled sampling
from target distribution(s) (Vempala & Wibisono, 2019) while ensuring proper concentration of
empirical statistics (Ledoux, 2006). Among the different forms of isoperimetric inequalities (e.g.
Poincaré, modified log Sobolev etc.), we consider the Log Sobolev Inequality (LSI) (Bakry et al.,
2014) in this paper.

Posterior Sampling-based RL (PSRL). For our study, we focus on the popular PSRL algorithms (Os-
band et al., 2013; Russo et al., 2020), which are generalisation of Thompson sampling proposed for
bandits (Thompson, 1933). PSRL is a Bayesian algorithm that begins with a prior distribution over
the model parameters. As PSRL collects more data, it creates more informative posterior distributions,
samples probable model parameters from the posteriors, and uses the sampled parameters for further
planning. Since PSRL has been successful both theoretically and practically, we choose it as the base
algorithm to study.
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Figure 1: Examples of log-Sobolev distributions.

Still, exact sampling and tracking of
the posterior may be intractable for
many distributions (e.g. in high di-
mensions). It is easy to show that ap-
proximation in the sampling can lead
to linear regret unless sufficient care
is taken. On the other hand, being lim-
ited to distributions allowing exact sampling is insufficient for applications. Thus, there has been a
series of works to relax PSRL with approximate posteriors and still to avoid linear regret.

Langevin Sampling-based PSRLs. One of the growing approaches in this direction is to use
Langevin-based approximate sampling methods (Ishfaq et al., 2023; Mazumdar et al., 2020; Zheng
et al., 2024), which are known to be generic and efficient in optimisation, sampling, and deep learning
literature. Mazumdar et al. (2020) and Zheng et al. (2024) propose Langevin-based PSRL algorithms
for multi-armed bandits that achieve order-optimal regret only for log-concave distributions. Similarly,
Xu et al. (2022) extends these ideas to linear contextual bandits but still with a linear dependence on the
approximation error. Ishfaq et al. (2023) brings Langevin-based PSRL to Markov Decision Processes
(MDPs) but the theoretical guarantees are available only for linear approximations. However the
sampling literature has shown that Langevin methods are efficient for isoperimetric distributions such
as LSI. This motivates us to propose a generic algorithm that can work for any distribution satisfying
LSI, and for bandits and MDPs, and also to study what are the minimum conditions required to
achieve sublinear regret. Specifically, we ask:

1. Is isoperimetry of posteriors enough to ensure efficient execution of PSRL-type algorithms?
2. Can we use Langevin sampling-based algorithms to approximate the isoperimetric posteriors and
still obtain an efficient approximate PSRL algorithm?

Our contributions address these questions affirmatively and more. Specifically, we

1. Prove that PSRL can achieve sublinear regret for posteriors satisfying LSI if we can compute and
sample from the exact posteriors and the inequality constant scales linearly. This result broadens the
scenarios where PSRL is proven to be efficient.

2. Propose a generic PSRL-algorithm, called LaPSRL, that uses a Langevin-based sampling to
compute approximate posterior distributions. A generic regret analysis of LaPSRL shows it can
achieve O(

√
T ) regret if the approximate sampling algorithms allow the posterior to contract linearly,

where T is the number of interactions. Then, we show that if we deploy LaPSRL with SARAH-LD,
which is an efficient Langevin sampling algorithm, we only need a polynomial number of samples
w.r.t. the MDP parameters with and without chaining them. Conducting analysis requires generalising
the regret analysis with LSI and also studying the contraction of posterior over models under Langevin
dynamics.

3. Show LaPSRL with SARAH-LD achieves sublinear regret across different environments, including
Gaussian, Mixtures of LSI distributions as well as any log-concave distribution or mixture thereof.
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4. Experimentally demonstrate that LaPSRL with SARAH-LD yields sublinear regret for bandits with
Gaussians and mixture of Gaussians as posteriors, and Linear Quadratic Regulators (LQRs) with
approximate posteriors, and performs competitively with corresponding PSRL baselines.

Notation. We will use complexity notation O,Ω,Θ, with standard implications, and sometimes
Õ, Ω̃, Θ̃, which is the equivalent term but ignoring sub-logarithmic and poly-logarithmic terms.

2 Preliminaries: Reinforcement Learning, Sampling with Langevin Dynamics

Before proceeding to the contributions, we first formally state the problem of episodic RL. Then we
summarise PSRL for episodic RL and Langevin dynamics based sampling techniques, which are the
main pillars of our work.

Problem Formulation: Episodic Reinforcement Learning (RL). To perform RL, we consider the
episodic finite-horizon MDPs (aka Episodic RL) (Azar et al., 2017; Osband et al., 2013). MDP in
episodic RL is defined as M = ⟨S,A, T , R,H⟩. M has states s ∈ S where S ∈ Rd, actions a ∈ A.
In episodic RL, the agent interacts with the environment in episodes of H steps. Any episode l starts
with a state sl1. Then, for t ∈ [H], the agent draws action alt from a policy πt(s

l
t), observes the reward

R(slt, a
l
t) ∈ R, and transits to a state slt+1 ∼ T (. | slt, alt). This interaction is done for a total of τ

(which is commonly unknown) episodes. The performance of a policy π is measured by the total
expected reward V π

1 w.r.t. an initial state s. We define the value function and the Q-value function at
h ∈ [H]

V π,h
M (s) ≜ E

[
H∑
t=h

R(st, at) | sh = s

]
, and Qπ,h

M (s, a) ≜ E

[
H∑
t=h

R(st, at) | sh = s, ah = a

]
.

The MDP is typically unknown. In the Bayesian approach, we construct a posterior distribution
P (M | Dl) over M given the data observed so far, i.e. Dl. When there is only one state, or the state
does not depend on the action, this problem reduces to what is known as the multi-armed bandit
problem (MAB) (Lattimore & Szepesvári, 2020). When H = 1 there is no sequential component and
the problem becomes that of multi-armed bandits.

Background: PSRL. A popular Bayesian approach, which has been very successful is to sample
an MDP Ml ∼ P (M | Dl) and play the optimal policy for Ml for one episode before updating
the posterior and resampling. This algorithm is known as PSRL (Osband et al., 2013). PSRL
reduces to Thompson sampling (Thompson, 1933), when applied to MAB. In this paper, we will use
some simplifying notation, zi is shorthand for (si+1, si, ai). The concept of regret is crucial to RL
theory, it describes how much worse the policy is than the optimal policy. In the Bayesian regret,
this is taken in expectation of value over the possible MDPs and evaluations and can be written∑τ

l

∑
E[V M∗

π∗,1
(sl,1)−V M∗

πl,1
(sl,1)]. We also use notation ∆max = maxπ V

M∗
π,1 (s1)−minπ V

M∗
π,1 (s1)

to denote the maximal regret that could be obtained in one episode. In the paper, we use n to denote
the amount of data samples we have observed. We denote to total interactions with the environment
as T = τH .

Background: Sampling with Langevin dynamics. In the notation of Langevin sampling, we need
to sample from a target distribution dν ∝ e−γF , where F : Rd → R. Specifically, we express
F (θ) = 1/n

∑n
i=1 fi(θ), with each fi representing the loss associated with a data point xi, and

F being the average loss. In the context of Bayesian posteriors, we can set γ = n and define
fi(θ) = −1/n logP (θ)− logP (xi|θ), where each fi corresponds to the log-likelihood for data point
xi and includes its “share” of the log prior.

In continuous time diffusion, Langevin methods can sample exactly from a posterior (Vempala &
Wibisono, 2019). In practice, discretization makes this impossible, but using a Langevin gradient des-
cent algorithm allows for sampling from the target distribution with a controlled bias, under conditions
on isoperimetry. We define the three following assumptions on smoothness and isoperimetry.

Assumption 1 (L-smoothness). If fi is twice differentiable for all i = 1 . . . , n and ∀x, y ∈
Rd,

∥∥∇2fi(x)
∥∥ ≤ L, then fi is L-smooth. Additionally, this implies that F is also L-smooth.
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Definition 1 (log-Sobolev inequality). A distribution ν satisfies the log-Sobolev inequality (LSI) with
a constant α if, for all smooth functions g : Rn → R with Eν [g

2] ≤ ∞, the following holds:

Eν [g
2 log g2]− Eν [g

2] logEν [g
2] ≤ 2

α
Eν [||∇g||2]. (1)

An equivalent way of writing the LSI, which is also commonly used and is found by defining the
help function ρ = g2ν

Eν [g2]
, which reformulates the condition into KL(ρ ∥ ν) ≤ 1

2αJρ where Jρ :=

Eρ

[∥∥∇ log ρ
ν

∥∥2] is the relative Fisher information of ρ with respect to ν.

In this paper, we will only cover a brief introduction to log-Sobolev distributions as needed, but there
has been much work looking into the properties of log-Sobolev distributions, a summary of which
can be found in (Chafaı̈ & Lehec, 2023; Vempala & Wibisono, 2019). Also note that in some work
an inverse definition is used where the constant is defined α′ = 1

2α , leading to some confusion.

Obtaining the LSI constant is not always trivial, but there are some tools. In some cases, the
Bakry-Émery criterion can be used.

Theorem 1 (Bakry-Émery criterion). If for distribution ν, −∇2
θ log ν ≥ αId, where the inequality

indicates the Loewner order and Id the identity matrix of dimension d and θ the parametrization of ν,
then ν fulfils LSI with constant α.

There are plenty of other tools for analysing log-Sobolev constants such as Lyaponov conditions,
integral conditions, local inequalities and tools from optimal transport as well as decomposing into
mixtures (Barthe & Kolesnikov, 2008; Cattiaux et al., 2010; Chen et al., 2021b; Koehler et al., 2023;
F.-Y. Wang, 2001). Log-concave distributions P (θ) are distributions where logP (θ) is concave in
θ, this is a commonly used condition, but is is much more restrictive than log-Sobolev. Theorem 1
shows that log-concave distributions imply LSI, but log-Sobolev distributions are more general. For
example, log-concave distributions cannot be multimodal. Some examples of what log-Sobolev
distributions could look like can be found in Figure 1.

One example of an operation on log-Sobolev distributions that preserves the property is that of
bounded perturbation, something that would generally break a log-concave property. The theorem is
originally due to (Holley & Stroock, 1986) but presented here in the formulation of (Steiner, 2021).
Theorem 2. Assume dµ ∝ eΦdν where ν is a probability measure that satisfies LSI and Φ is
continuous and bounded. Then µ satisfies a LSI with 1

αµ
≤ e2(sup(Φ)−inf(Φ)) 1

αν
.

In some cases, even unbounded perturbations could still fulfil LSI (Steiner, 2021). The LSI is also
preserved under a Lipschitz-transformation, (Vempala & Wibisono, 2019) and if the distribution is
factorizable such that each part is log-Sobolev, then the product is log Sobolev with a constant that is
equal to minimum constant among the factors (Ledoux, 2006). Mixtures of log-Sobolev distributions
are also log-Sobolev under conditions on the distance between the distributions, more on that later.

The log-Sobolev inequality with constant α implies Gaussian concentration of a function around its
mean (Bizeul, 2023) such that for any locally Lipschitz function g : Rn → R

Pν(|g − Eν [g]| ≥ t) ≤ 2e
−αt2

L2
g (2)

where Lg is the Lipschitz constant of g. Under a curvature dimension condition, the reverse is also
true, Gaussian concentration implies that the distribution is log-Sobolev, Bakry et al., 2014, Theorem
8.7.2 .

Background: SARAH-LD (Kinoshita & Suzuki, 2022). There exists multiple algorithms for
performing biased Langevin sampling on log-Sobolev distributions (Kinoshita & Suzuki, 2022;
Vempala & Wibisono, 2019). In this paper, we focus on SARAH-LD (Algorithm 3), which is
a variance-reduced version of Langevin dynamics which is the current state-of-the-art in terms
of KL divergence concentration to the target distribution. SARAH-LD allows us to control the
bias, and trade-off the computational complexity with the KL-divergence between sampled and
target distributions, i.e. KL(ρ ∥ ν). The total amount of stochastic gradient evaluations that
need to be done for any of the samples (also known as the gradient complexity) of SARAH-LD is

Õ

((
n+ dn

1
2

ϵ

)
· γ2L2

α2

)
, complete result is deferred to Theorem 9.
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3 Related work

In addition to the work discussed in the introduction, we present an overview of relevant related work.

Posterior sampling was introduced by Thompson (Thompson, 1933) in the context of clinical trials
and was later used in the context of reinforcement learning by (Strens, 2000). It has since been found
to yield good theoretical guarantees (Chowdhury & Gopalan, 2019; Chowdhury et al., 2021; Dai
et al., 2022; Fan & Ming, 2021).

Sometimes approximations are required, either because calculating or sampling from the posterior is
intractable(Osband et al., 2023; Sasso et al., 2023; C. Wang et al., 2023). While these papers have
frameworks for approximate sampling, none of them comes with any regret guarantees.1 Fan and
Ming (2021) also study the case of function approximation, but the theory does not hold there. The
work of Huang et al. (2023) has an approximate upper confidence bound algorithm which Bayesian
regret bounds in the bandit setting.

In addition to the previously mentioned work, there has been a surge of recent work looking into the
use of Langevin methods for bandits and reinforcement learning (Dwaracherla & Van Roy, 2020;
Kim, 2023; Yamamoto et al., 2023), but this work comes without any theoretical guarantees. In
Nguyen-Tang et al. (2024) they use Langevin for offline RL and in (Kuang et al., 2023) it is for
linear MDPs. The work of Karbasi et al. (2023) also tries to tackle a similar problem as this paper,
using Langevin dynamics for order optimal regret. An important difference is that they are limited to
strongly log-concave distributions and to tabular MDPs, while we are much more general. Similarly,
concurrent work on Langevin for TS of bandits in (Zheng et al., 2024), but with requirements on
convexity. Finally, (Kuang et al., 2023) uses these ideas for delayed feedback RL, but limited to
Linear MDPs and Krishnamurthy and Yin (2021) uses Langevin dynamics for inverse reinforcement
learning.

4 Exact posteriors

If the distributions fulfil the log-Sobolev inequality, we know that this implies sub-Gaussian concen-
tration from Equation (2). We can then define confidence sets on T̄M and R̄M and use simplifying
notation z = (s, a) with Z = S ×A.

CR,l =

f : Z → R

∣∣∣∣∣∣ |f(z)− EP (θ|Dl)[R̄(θ)]| ≤

√
L2
R̄
log 1/δ

αr,l

 (3)

CT ,l =

f : Z → Rd

∣∣∣∣∣∣ ∥f(z)− EP (θ|Dl)[T̄ (θ)]∥2 ≤

√
dL2

T̄ log 1/δ

αp,l

 (4)

to hold for a probability 0 ≤ δ ≤ 1. These confidence sets can then be used to create a PSRL regret
analysis.

First, we must define a Lipschitz condition on the next step value functions. We define the one
step future value function U(φ) as the expected value of the optimal policy πl in Ml where φ is
the distribution of next state samples. This gives UMl

h (φ) = Es′∼φ

[
V πl,h+1(s′)

]
. We use this

definition, which is also used in previous work, (Chowdhury & Gopalan, 2019; Osband & Van Roy,
2014), to make a Lipschitz assumption on the next step value function U with respect to the means of
the distributions.
Assumption 2. For any φ1, φ2 distributions over S with 1 ≤ h ≤ H ,

|UM
h (φ1)− UM

h (φ2)| ≤ LM∥φ1 − φ2∥2 (5)

where φ1 and φ2 are the means of the respective distributions.

We can then finally create the desired theorem on Bayes regret under log-Sobolev posteriors.
Theorem 3 (Bayes regret of PSRL under log-Sobolev posteriors). If the posteriors over the MDP Ml

sampled at episode l, P(Ml | Hl), fulfil LSI and with Ml = (TMl
, RMl

) LSI constants are αp,l and

1It is worth noting that model sampling using subsamples does enjoy some theoretical properties.
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αr,l and the mean reward for any MDP M |R̄M (s)| ≤ BR∀s, the one step value function is Lipschitz
in the state with parameter LM∗ as in Assumption 2 and that the mean reward and mean transitions
are Lipschitz in θ with parameters LR̄, LT̄ respectively. We then obtain a PSRL Bayesian regret

E[Regret(T )] ≤ 2H

(
LR̄

√
log 8T

τ∑
l=1

1
√
αr,l

+ 2E[LM∗ ]LT̄
√
d log 8T

τ∑
l=1

1
√
αp,l

)
+BR (6)

It is clear that this result leads to E[Regret(T )] = Õ(
√
T ) if αl = Ω(T ), in Section 6 we study how

this holds for different families of distributions which is also summarized in Table 1.

The proof can be found in Appendix B and utilizes a result from (Chowdhury & Gopalan, 2019)
which transforms the Bayesian regret into a function of the mean reward and transition functions. We
can then use the confidence sets defined above and prove their concentration to obtain the final result.

5 Approximate posteriors

We know that constant approximation error for posteriors leads to linear regret in the context of
Thompson sampling for multi-armed bandits (Phan et al., 2019). This also happens in other reinforce-
ment learning setups, like contextual bandits and MDPs. Previous work has noted (Mazumdar et al.,
2020) that proper decay of this error can allow for sublinear regret in multi armed bandits. The results
of Mazumdar et al.; Zheng et al. were used to design an approximate algorithm for multi armed
bandits and strongly log-concave posteriors. However their results do not include planning over epis-
odes, which is essential for MDPs, and the regret analysis heavily depended on strong log-concavity
assumptions. We aim to show that this philosophy of constructing approximate posteriors with proper
concentration rates can be applied also to MDPs and with only an isoperimetric assumption (LSI in
Definition 1) instead of log-concavity. To start, we derive Theorem 4 that shows how can we control
the error rate of concentration of posteriors in RL.
Theorem 4. Let a policy the start of episode l plan according to a posterior Ql where
min(KL((Pl ∥ Ql),KL(Ql ∥ Pl)) ≤ ϵpost,l and where Pl is the true posterior at start of epis-
ode l and |R̄M | ≤ BR. Then the incurred regret from planning with an approximate posterior
bounded by

√
2∆max

√
ϵpost,l.

The result comes from the fact that KL divergence of posterior controls the growth of regret. The
detailed proof is in Appendix C.

Corollary 1. If a policy incurs Õ(
√
Tg(H,S,A)) regret under distribution P , for some function g,

it will incur the same order of regret under Q if 0 ≤ ϵpost,l ≤ C g(H,S,A)2

l∆2
max

for some constant C ≥ 0.

Thus, Corollary 1 states that if the approximation error of the posterior distribution decays linearly
with the number of episodes (l), then we can achieve (O(

√
T )) regret by running PSRL with such

posteriors.

5.1 LaPSRL

With these results in mind, we design an algorithm, Langevin PSRL (LaPSRL). The algorithm can
be seen in Algorithm 1 with its sampling routine in Algorithm 2. The algorithm works similarly to
PSRL. In each episode l, a tolerable error ϵpost,l is calculated. Then we use SARAH-LD to sample a
θl. Depending on the task at hand, SARAH-LD calculates the required step size and learning rate
to reach the acceptable error in KL distance, returning the desired sample. This sample is used to
obtain an optimal policy which is then played for the episode. We have two options for initializing
the sampling in each episode, from some prior or taking the previous sample. More on that in the
next subsection.

By combining Theorem 4 with log-Sobolev theory and SARAH-LD we obtain, for any log-Sobolev
posterior, order optimal Bayesian regret while still limiting the computational gradient complexity of
each episode to a quadratic polynomial.
Corollary 2. For a posterior fulfiling the Assumption 1 and definition 1, a posterior sampling style
algorithm can obtain an unchanged order of regret under SARAH-LD sampling under a gradient

6



Algorithm 1 Langevin PSRL (LaPSRL)

Input: Likelihood f(x|θ), Prior P (θ), Horizon H , total episodes τ , Regret order g(H,S,A)
for l = 1 : τ do

ϵpost,l =
g(H,S,A)

l∆2
max

if Chained sampling then
ρ0 = θl−1

else
ρ0 ∼ P (θ)

end if
Sample θl = LANGEVIN SAMPLE(f(x | θ), P (θ), Dl, ϵpost,l, ρ0)

Play π(θl) until horizon H obtaining data Dl+1 = Dl ∪ {xi}Hl
i=H(l−1).

end for

Algorithm 2 LANGEVIN SAMPLE

Input: Likelihood f(x|θ), Prior P (θ), data Dl, acceptable error ϵpost,l, initial sample ρ0.

Set ηt = min
(

αl

16
√
2L2(H(l−1))3/2

,
3αlϵpost,l

320dL2H(l−1)

)
Set kt = γ

αlη
log 2KL(ρ0 ∥ P (θ|Dl))

ϵpost,l

return θ = SARAH-LD (f(x|θ), Dl, P (θ), kt, ηt)

complexity for episode l of

Gradient complexity =Õ

(
H3l3L2

α2
l

+
dH2.5l3.5L2

α2
l g(H,S,A)2

)
(7)

In many cases, as seen in Section 6, αl = Ω̃(Hl). This then becomes

Gradient complexity ∝ Õ

(
HlL2 +

d
√
Hl3/2L2

g(H,S,A)2

)
(8)

5.1.1 Chained samples

The sample complexity for a ϵ approximation of ν is controlled by initial distribution ρ0 with
KL(ρ0 ∥ ν). The naive approach is having ρ0 from a prior such as an isotropic Gaussian, the
dependence is only logarithmic in KL(ρ0 ∥ ν) which also does not grow very fast. An alternative
is to use the final sample from the previous time step as initialization for the next one, this also
allows for a more practical algorithm as it might be easier to estimate the divergence between the two
sequential posteriors than between the prior and the posterior. We show that reusing samples bounds
the KL distance to a function of the variance of θ.

Theorem 5. Let ρl∗(θ) be the final sample (i.e. after k steps) of the Langevin algorithm at episode l,
approximating the true posterior P(θ | Dl) with KL(ρl∗(θ) ∥ P(θ | Dl)) ≤ ϵpost,l. Additionally, if
∇z logP (z|θ) is Lz-Lipschitz and αz-Log Sobolev, we get EP(z|Dl)

KL(ρl∗(θ) ∥ P(θ | Dl+1)) ≤
ϵpost,l +

Lz

2αz
Varρl

∗(θ)
(θ), where Varρl

∗(θ)
(θ) is the variance of the approximate posterior distribution

ρl∗(θ).

Appendix C contains the detailed proof. Chaining the samples will lead to correlations between
the sampled parameters. While this could be problematic in some cases, since Bayesian regret is
taken in expectation, this does not affect the order of the regret. One problem is that the variance is
taken under the approximate distribution ρl∗(θ). But in practice, we know that this is an ϵpost,l close
approximation. We also know that the variance of the posterior distributions tends to decay as more
data is observed, meaning that this KL(ρl∗(θ) ∥ P(θ | Dl+1)) will decay. This is unlike the naive
sampling from a prior, which will increase.
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6 Applications of LaPSRL across Different Distributions

In this section, we study a variety of log-Sobolev distributions. We show their log-Sobolev constants
and ultimately apply Theorem 3 to calculate the Bayesian regret of LaPSRL for such posteriors.

Table 1: Overview of log-Sobolev constants and Bayes regrets of LaPSRL for different families of
distributions.

Posterior log-Sobolev constant LaPSRL BayesRegret

Gaussian 1
σ2
0
+ n

σ2 Õ
(
(LR̄ + E[LM∗ ]LT̄ )

√
Tσ2

)
Log-concave Θ(n) Õ

(
(LR̄ + E[LM∗ ]LT̄ )

√
T
)

Mixture of Log-concave Ω
(

δmin pi minαi

4k(1−log(min pi))

)
Õ
(
(LR̄ + E[LM∗ ]LT̄ )

√
4kT

min pi

)

6.1 Univariate Gaussian

For illustrative purposes, we calculate the relevant constants for a Gaussian posterior with known
variance σ2. Here we also assume a Gaussian (0, σ2

0) prior over the mean µ. We have P (µ|D) ∝

e
−
(

µ2

2σ0
2 +

∑n
i=1

(µ−xi)
2

2σ2

)
= e

−
(
n 1

n

∑n
i=1

(
µ2

2nσ0
2 +

(µ−xi)
2

2σ2

))

We can then see that we have γ = n, fi(µ) =
(

µ2

2nσ0
2 + (µ−xi)

2

2σ2

)
. Since ∇2

µfi(µ) =
1

nσ2
0
+ 1

σ2 ≤ L.

Finally, we can use Theorem 1 to calculate α. Since ||∇2
µfi(µ)|| is independent of i in this case, we

can see that ∇2
µ − logP (µ|D) = ∇2

µ

∑n
i=1 fi(µ) =

1
σ2
0
+ n

σ2

which gives α = 1
σ2
0
+ n

σ2 = Lγ.

From Theorem 3 we then get the following.

Corollary 3. PSRL obtains E[Regret(T )] = Õ
(
(LR̄ + E[LM∗ ]LT̄ )

√
Tσ2

)
with univariate Gaus-

sian posteriors.

6.2 Mixture Distributions

There has been multiple work looking into log-Sobolev constants for mixtures of log-Sobolev
distributions (Chen et al., 2021a; Koehler & Vuong, 2024; Schlichting, 2019). Generally, it depends
the on constants of the mixture components as well as a function of the distance between the
components. Koehler and Vuong (2024) show
Theorem 6 (Informally from Theorem 2 (Koehler & Vuong, 2024)). For k-mixture components
µ =

∑k
i=1 piµi,

∑k
i=1 pi = 1, where there is some overlap δ between components, has αMixture ≥

δmin pi minαi

4k(1−log(min pi))
.

The overlap factor δ relates to integral over the minimum of the paired components, see (Koehler &
Vuong, 2024) for more details. If the components are posteriors, this δ should go to 1 as the individual
posteriors observe more data and converge.

6.3 Log-concave and Mixture of Log-concave Distributions

Theorem 7. Any log-concave posterior will have αl = Θ(n). Similarly, for any posterior that is a

mixture of log-concave distributions will have αMixture = Ω
(

nmin pi

4k(1−log(min pi))

)
This result comes from the superadditivity of minimum eigenvalues of Hessians and therefore LSI
constants for log-concave distributions. The mixture result follows from Theorem 6. A proof of the
theorem can be found in Appendix D.

Combining Theorem 3 and Theorem 7 we obtain the following corollary
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Figure 2: We compare LaPSRL versus baseline PSRL. On the left we compare the expected regret
for a Gaussian bandit algorithm, and on the right we compare how many episodes it takes to solve a
Cartpole task. In both environments, we average over 50 independent runs. The plots are included
full size in the appendix.

Corollary 4. Any log-concave posterior |R̄M (s)| ≤ BR∀s for all MDPs M will have

E[Regret(T )] = Õ
(√

T (LR̄ + E[LM∗ ]LT̄ )
)

for PSRL. Similarly, and under the same condi-
tion, any posterior that is a mixture of log-concave posteriors with sufficient overlap will obtain
E[Regret(T )] = Õ

(√
4kT

min pi
(LR̄ + E[LM∗ ]LT̄ )

)
PSRL regret.

6.4 General log-Sobolev distributions

Theorem 8. Any log-Sobolev prior with a likelihood ratio 1/Γ ≤ P (X|θ)
P (X|θ′) ≤ Γ will have a log-

Sobolev posterior.

Proof. This result follows directly from the Holley-Stroock perturbation result found in Theorem 2.
This also yields a vacuous bound 1/Γ 2nαprior ≤ αl ≤ Γ 2nαprior. ■

Unfortunately, we have yet to prove that the log-Sobolev constant of a posterior, under some suitable
conditions on the likelihood, will always scale as Ω(n). Although we conjecture that this is possible
and this also matches the intuition from the asymptotic results of the Bernstein–von Mises theorem
which gives a log-Sobolev constant of Θ(n) as n → ∞.

7 Experimental Analysis

We run a set of experiments on two environments to verify that the LaPSRL is competitive. While
these experiments are not exhaustive, they serve to show that the algorithm is sound. First, we deploy
LaPSRL on a Gaussian multi-armed bandit task with two arms. Second, we perform experiments
with a LQR (Kalman, 1960) setup on the Cartpole environment (Barto et al., 1983). We also perform
experiments to visualize how SARAH-LD samples from posteriors.

7.1 Gaussian multi-armed bandits

We use LaPSRL on a Gaussian multi-armed bandit task with two arms. The arms generate rewards
as N(0, 0.25), N(0.1, 0.25). As a baseline, we compare with the performance of PSRL from the
true posterior. Both LaPSRL and Thompson sampling use a N(0,1) prior for the mean of each arm.
Additionally, we compare with a LaPSRL algorithm that has a bimodal 1/2 N(0,1/4) + 1/2 N(1,1)
prior over the arms. The results can be seen in Figure 2(a). There we see that LaPSRL performs
almost identically to PSRL, which is to be expected. Additionally, the LaPSRL with a bimodal prior
is converging faster to the correct arm, this could be due to the prior being better adapted to the true
distribution but also could indicate a benefit of being able to have mixture distribution priors.
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7.2 Continuous MDPs

To evaluate the performance on MDPs we evaluate on the Cartpole environment. We use a continuous
control version of the task with states s ∈ R4 and a continuous action in [-1,1]. We use a Linear
Quadratic Regulator model, where LaPSRL samples from a distribution over the A and B matrixes
with a N(0,1) prior over the values. The policy can then be obtained through the Riccati equation.
Instead of calculating the log-Sobolev constant for the posterior distribution, we just evaluate for
a variety of α ∈

{
100
n , 10000

n , 10000
n

}
. To simplify the parameter search, we set the L parameter to

αn. Instead of estimating log 2KL(ρ0 ∥ P (θ|Dl))
ϵpost,l

, we upper bound this with n. In each sampling step,
we start with an initial sample from N (0, 1). While Cartpole is not a linear MDP, but it is a good
approximation and serves to show that LaPSRL can work even when the true model is not part of
the posterior support. As a baseline we, compare with an exact PSRL algorithm which samples
from Bayesian linear regression priors (Minka, 2000). Finally, we use a variant of LaPSRL with a
multimodal prior over the A and B matrixes with a 1/2N (0, 1)+ 1/2N (1, 0.25) to demonstrate that
it also works well for multimodal priors that are not log-concave. The results from this experiment
can be found in Figure 2(b) where we plot what fraction of the 50 runs have solved the task (i.e.
taking 200 steps without failing). Here we see that all versions successfully handle the task, even
faster than the PSRL baseline. We can note that it takes longer for the experiments with larger α
values to converge.

7.3 Evaluate posterior approximation

To illustrate the convergence of SARAH-LD to the true posterior, we also include experiments in Fig-
ure 2 which illustrates the correctness of the approximation. If anything, it seems the approximation
has a somewhat lower variance than the true posterior.

8 Conclusions and future work

In this paper, we aim to understand whether we can design algorithms with sublinear regret for
any isoperimetric distribution. We specifically study PSRL type algorithms for posteriors satisfying
log-Sobolev inequalities. We show that if we can compute exact posteriors and sample from them,
PSRL can achieve Õ(

√
T ) regret in an episodic MDP if log-Sobolev constant scales linearly, which

we show is true in many cases. We further design a generic Langevin sampling based extension of
PSRL, namely LaPSRL. We show that LaPSRL also achieves Õ(

√
T ) regret if the posterior for the

Langevin sampling algorithm contracts at a linear rate with the number of episodes. We plug-in
SARAH-LD as the Langevin sampling algorithm, and derive upper bounds on the required gradient
complexity and chained sample complexity. We further specify LaPSRL’s regret bound for gaussian,
mixture of gaussians, log-concave and mixture of log-concave distributions showing LaPSRL can
achieve sublinear regret in all these cases. Finally, we test LaPSRL in bandit and LQR environments
with Gaussian and mixture priors. We show that the variants of LaPSRL perform competitevly with
respect to classical PSRL in all these settings. In the future, it will be interesting to extend LaPSRL’s
analysis to neural tangent kernel’s which can give a better understanding of deep RL methods.
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A Algorithms

For completeness we include the SARAH-LD(Kinoshita & Suzuki, 2022) and PSRL(Osband et al.,
2013) algorithms in Algorithm 3 and Algorithm 4 as well as a theorem on the gradient complexity of
SARAH-LD in Theorem 9.

Algorithm 3 SARAH-LD

Input: step size η > 0, batch size B, epoch length m, inverse temperature γ ≥ 1
Initialization: X0 = 0, X(0) = X0

for s = 0, 1, . . . , (K/m) do
vsm = ∇F

(
X(s)

)
randomly draw ϵsm ∼ N (0, Id×d)

Xsm+1 = Xsm − ηvsm +
√
2η/γϵsm

for l = 1, . . . ,m− 1 do
k = sm+ l
randomly pick a subset Ik from {1, . . . , n} of size |Ik| = B
randomly draw ϵpost,l ∼ N (0, Id×d)
vk = 1

B

∑
ik∈Ik

(∇fik (Xk)−∇fik (Xk−1)) + vk−1

Xk+1 = Xk − ηvk +
√
2η/γϵpost,l

end for
X(s+1) = X(s+1)m

end for

Theorem 9 (Corollary 2.1 of (Kinoshita & Suzuki, 2022)). Under Assumption 1 and definition 1,
for all ϵ ≥ 0, if we choose step size η such that η ≤ 3αϵ

48γα2 , then a precision KL(ρk ∥ ν) ≤ ϵ is

reached after k ≥ γ
αη log 2KL(ρ0 ∥ ν)

ϵ steps of SARAH-LD. Especially, if we take B = m =
√
n

and the largest permissible step size η = min( α
16

√
2L2

√
nγ

, 3αϵ
320dL2γ ), then the gradient complexity

becomes Õ
((

n+ dn
1
2

ϵ

)
· γ2L2

α2

)
.

Algorithm 4 PSRL

Input: Likelihood f(x|θ), Prior P (θ)
for l = 1 : τ do

Sample θl ∼ P(θ | Dl)
Play π∗(θl) until horizon H obtaining data {xi}Hl

i=H(l−1).
Dt+1 = Dl ∪ {xi}Hl

i=H(l−1)

end for

B Proof on Bayes regret

Theorem 3 (Bayes regret of PSRL under log-Sobolev posteriors). If the posteriors over the MDP Ml

sampled at episode l, P(Ml | Hl), fulfil LSI and with Ml = (TMl
, RMl

) LSI constants are αp,l and
αr,l and the mean reward for any MDP M |R̄M (s)| ≤ BR∀s, the one step value function is Lipschitz
in the state with parameter LM∗ as in Assumption 2 and that the mean reward and mean transitions
are Lipschitz in θ with parameters LR̄, LT̄ respectively. We then obtain a PSRL Bayesian regret

E[Regret(T )] ≤ 2H

(
LR̄

√
log 8T

τ∑
l=1

1
√
αr,l

+ 2E[LM∗ ]LT̄
√
d log 8T

τ∑
l=1

1
√
αp,l

)
+BR (6)

Proof. This proof follows the general flow from Chowdhury and Gopalan (2019) for Kernel PSRL
but with major difference, to accommodate the different setting.

For PSRL, we have πl = argmaxπ V
Ml
π,1 . We also denote the optimal policy for the true MDP

M∗ as π∗ = V M∗
π,1 . With the observation that the under the observed history Hl−1 we have
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E[V Ml
πl,1

(sl,1) | Hl−1] = E[V M∗
π∗,1

(sl,1) | Hl−1], since they are both sampled from the same dis-
tribution. Marginalising we obtain:

E[V M∗
π∗,1

(sl,1)− V M∗
πl,1

(sl,1)] = E[V M∗
π∗,1

(sl,1)− V Ml
πl,1

(sl,1)] + E[V Ml
πl,1

(sl,1)− V M∗
πl,1

(sl,1)] (9)

= E[V Ml
πl,1

(sl,1)− V M∗
πl,1

(sl,1)] (10)

Next, we use Lemma 7 and observation after eq 50 from (Chowdhury & Gopalan, 2019) and obtain

E[Regret(T )] ≜
τ∑

l=1

E[V Ml
πl,1

(sl,1)− V M∗
πl,1

(sl,1)] (11)

≤ E[
τ∑

l=1

H∑
h=1

[
|R̄Ml

(zl,h)− R̄∗(zl,h)|+ LMl
||T̄Ml

(zl,h)− T̄∗(zl,h)||2
]
] (12)

where LMl
is the global Lipschitz constant one step function of Ml under πl. where T̄M and R̄M

are the mean of the transition and reward distributions for MDP M . Now we fix 0 ≤ δ ≤ 1 and for
1 ≤ l ≤ τ define two confidence sets

CR,l =

f : Z → R

∣∣∣∣∣∣ |f(z)− EP (θ|Dl)[R̄(θ)]| ≤

√
L2
R̄
log 1/δ

αr,l

 (13)

CT ,l =

f : Z → Rd

∣∣∣∣∣∣ ∥f(z)− EP (θ|Dl)[T̄ (θ)]∥2 ≤

√
dL2

T̄ log 1/δ

αp,l

 (14)

Define events E∗ ≜ {R̄∗ ∈ CR,l, T̄∗ ∈ CT ,l,∀1 ≤ l ≤ τ} and EM ≜ {R̄Ml
∈ CR,l, T̄Ml

∈
CT ,l,∀1 ≤ l ≤ τ}. From property on sub-Gaussian concentration for log-Sobolev posteriors
in Equation (2), we get P(EM ) = P(E∗) = 1 − 2Hτδ. Taking the union of these events E ≜
EM ∩ E∗ with P(Ec) ≤ P(Ec

M ) + P(Ec
∗) ≤ 4τHδ. We also have that E[LMl

] = E[LM∗ ] such that

E[LMl
|E] ≤ E[LM∗ ]

P (E) ≤ E[LM∗ ]
1−4τHδ .

Combining the results we then get an upper bound on the Bayesian regret

E[
τ∑

l=1

H∑
h=1

[
|R̄Ml

(zl,h)− R̄∗(zl,h)| | E
]
+ E

[
LMl

||T̄Ml
(zl,h)− T̄∗(zl,h)||2

∣∣E] + 2BR4τHδ

(15)

≤ 2H

(
LR̄

√
log 1/δ

τ∑
l=1

1
√
αr,l

+
E[LM∗ ]

1− 4τHδ
LT̄
√
d log 1/δ

τ∑
l=1

1
√
αp,l

)
+ 8BRτHδ

(16)

Setting δ = 1
8τH we obtain

E[Regret(T )] ≤ 2H

(
LR̄

√
log 8T

τ∑
l=1

1
√
αr,l

+ 2E[LM∗ ]LT̄
√
d log 8T

τ∑
l=1

1
√
αp,l

)
+BR (17)

■

C Proofs on regret for approximate sampling and sample complexity.

Theorem 4. Let a policy the start of episode l plan according to a posterior Ql where
min(KL((Pl ∥ Ql),KL(Ql ∥ Pl)) ≤ ϵpost,l and where Pl is the true posterior at start of epis-
ode l and |R̄M | ≤ BR. Then the incurred regret from planning with an approximate posterior
bounded by

√
2∆max

√
ϵpost,l.
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Proof. Let µl, µ
∗
l ∼ P (µl), µ

′
l ∼ Q(µl). πl is the policy corresponding to µl and π′

l the policy
corresponding to µ′

l.

EPl,Ql
[V µ∗

π∗ − V µ∗

π′
l
] =

∫
µ∗

∫
µ′
l

(V µ∗

π∗ − V µ∗

π′
l(µ

′
l)
)Pl(µ

∗)Ql(µ
′
l) (18)

= EPl,Ql
[V µ∗

π∗ − V
µ′
l

π′
l
+ V

µ′
l

π′
l
− V µ∗

π′
l
] (19)

= EPl,Ql
[V µ∗

π∗ − V µl
πl

+ V µl
πl

− V
µ′
l

π′
l
+ V

µ′
l

π′
l
− V µ∗

π′
l
] (20)

= EPl,Ql
[[V µ∗

π∗ − V µl
πl

] + [V µl
πl

− V
µ′
l

π′
l
] + [V

µ′
l

π′
l
− V µ∗

π′
l
]] (21)

≤ EPl
[V µ∗

π∗ − V µl
πl

] +∆max

√
ϵpost,l

2
+ EPl

[V µl
πl

− V µ∗

πl
] +∆max

√
ϵpost,l

2
]

(22)

= EPl
[V µ∗

π∗ − V µ∗

πl
] +

√
2∆max

√
ϵpost,l (23)

The second term in the inequality comes from the total variation distance that can make MDPs with
large values be more common in P than in Q. The third term is similar, we can sample the policy
from P instead of Q, with the added worst case penalty for the terms that differ. ■

Corollary 1. If a policy incurs Õ(
√
Tg(H,S,A)) regret under distribution P , for some function g,

it will incur the same order of regret under Q if 0 ≤ ϵpost,l ≤ C g(H,S,A)2

l∆2
max

for some constant C ≥ 0.

Proof. The regret for an algorithm following the approximate posterior Q is

Õ(EP R(πQ)) ≤ Õ(
√
τg(H,S,A)) +

√
2∆max

τ∑
k=1

√
ϵpost,l (24)

≤ Õ(
√
τg(H,S,A)) +

√
2∆max

τ∑
k=1

√
C
g(H,S,A)√

t∆max

(25)

= Õ(
√
τg(H,S,A)) +

√
2g(H,S,A)

√
C

τ∑
k=1

1√
t

(26)

= Õ(
√
τg(H,S,A)) (27)

■

Theorem 5. Let ρl∗(θ) be the final sample (i.e. after k steps) of the Langevin algorithm at episode l,
approximating the true posterior P(θ | Dl) with KL(ρl∗(θ) ∥ P(θ | Dl)) ≤ ϵpost,l. Additionally, if
∇z logP (z|θ) is Lz-Lipschitz and αz-Log Sobolev, we get EP(z|Dl)

KL(ρl∗(θ) ∥ P(θ | Dl+1)) ≤
ϵpost,l +

Lz

2αz
Varρl

∗(θ)
(θ), where Varρl

∗(θ)
(θ) is the variance of the approximate posterior distribution

ρl∗(θ).

Proof. For notation we write P (θ | Dl+1) = P (θ | Dl, zl) such that P (θ | Dl+1) = P (θ |
z0, . . . , zl−1) . Note that P (zl | Dl, θ) = P (zl | θ) and Eθ P (zl | Dl, θ) = P (zl | Dl).

KL(ρl∗ ∥ νl+1 | zl) (28)

=

∫
θ

log

(
ρl∗(θ)

P(θ | Dl, zl)

)
ρl∗(θ)dθ (29)

=

∫
θ

log

 ρl∗(θ)

P(θ|Dl)P (zl|θ)
P (zl|Dl)

 ρl∗(θ)dθ (30)

=

∫
θ

(
log

(
ρl∗(θ)

P(θ | Dl)

)
+ log

(
P (zl|Dl)

P (zl|θ)

))
ρl∗(θ)dθ (31)
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=

∫
θ

log

(
ρl∗(θ)

P(θ | Dl)

)
ρl∗(θ)dθ (32)

+

∫
θ

log

(
P (zl|Dl)

P (zl|θ)

)
ρl∗(θ)dθ (33)

=KL(ρl∗ ∥ νl) +

∫
θ

log

(
P (zl|Dl)

P (zl|θ)

)
ρl∗(θ)dθ (34)

≤ϵpost,l +

∫
θ

log

(
P (zl|Dl)

P (zl|θ)

)
ρl∗(θ)dθ (35)

=ϵpost,l +

∫
θ

log (P (zl|Dl)) ρ
l
∗(θ)dθ −

∫
θ

log (P (zl|θ)) ρl∗(θ)dθ (36)

(37)

This then gives

Ezl KL(ρl∗ ∥ νl+1 | zl) (38)

≤ϵpost,l +

∫
zl

∫
θ

log

(
P (zl|Dl)

P (zl|θ)

)
ρl∗(θ)dθP (zl | Dl)dzl (39)

=ϵpost,l +

∫
θ

∫
zl

log

(
P (zl|Dl)

P (zl|θ)

)
ρl∗(θ)P (zl | Dl)dzldθ (40)

=ϵpost,l +

∫
θ

∫
zl

log

(
P (zl|Dl)

P (zl|θ)

)
P (zl|Dl)

P (zl|θ)
P (zl|θ)dzlρl∗(θ)dθ (41)

≤ϵpost,l +

∫
θ

2/αz

∫
zl

||∇z

√
P (zl|Dl)

P (zl|θ)
||2P (zl|θ)dzlρl∗(θ)dθ (42)

=ϵpost,l +

∫
θ

2/αz

∫
zl

||P (zl|θ)∇zP (zl|Dl)− P (zl|Dl)∇zP (zl|θ)

2
√

P (zl|Dl)
P (zl|θ) P (zl|θ)2

||2P (zl|θ)dzlρl∗(θ)dθ (43)

=ϵpost,l +

∫
θ

2/αz

∫
zl

||P (zl|θ)∇zP (zl|Dl)− P (zl|Dl)∇zP (zl|θ)
2 P (zl|Dl)P (zl|θ)

×

√
P (zl|Dl)

P (zl|θ)
||2P (zl|θ)dzlρl∗(θ)dθ

(44)

=ϵpost,l +

∫
θ

2/αz

∫
zl

||P (zl|θ)∇zP (zl|Dl)− P (zl|Dl)∇zP (zl|θ)
2 P (zl|Dl)P (zl|θ)

×

√
P (zl|Dl)

P (zl|θ)
||2P (zl|θ)dzlρl∗(θ)dθ

(45)

=ϵpost,l +

∫
θ

2/αz

∫
zl

||P (zl|θ)∇zP (zl|Dl)− P (zl|Dl)∇zP (zl|θ)
2 P (zl|Dl)P (zl|θ)

||2P (zl|Dl)

P (zl|θ)
P (zl|θ)dzlρl∗(θ)dθ

(46)

=ϵpost,l +

∫
θ

1

2αz

∫
zl

||∇z logP (zl|Dl)−∇z logP (zl|θ)||2P (zl|Dl)dzlρ
l
∗(θ)dθ (47)

≤ϵpost,l +
Lz

2αz

∫
θ

||θl − θ||2ρl∗(θ)dθ (48)

=ϵpost,l +
Lz

2αz
Varρl

∗(θ)
(θ) (49)

■

The inequality in Equation (42) comes from the log-Sobolev inequality property of P (zl|θ). The rest
is algebra with the exception of the final inequality which comes from the Lipschitz property.
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D Proofs for theorems on LSI constants.

Theorem 7. Any log-concave posterior will have αl = Θ(n). Similarly, for any posterior that is a

mixture of log-concave distributions will have αMixture = Ω
(

nmin pi

4k(1−log(min pi))

)
Proof. We can write the product of log-concave distributions P (θ | Dl) = P (θ)

∏n
i=1 Pi(θ)

Z where
Pi(θ) is shorthand for P (xi | θ) with xi the datapoint at time i. Since products preserve log-
concavity, we can use Theorem 1. From Weyl’s inequality, we have that the smallest eigenvalue a
sum of two Hermitian is larger than the sum of the smallest eigenvalues of the two matrices. Since the
Hessian is a Hermitian matrix, putting this into Theorem 1 this gives that αl ≥ αP (θ) +

∑n
i=1 αi ≥

αP (θ) + nmini αi. Similarly, applying Weyl’s inequality for the largest eigenvalue, we get that the
largest eigenvalue of −∇2 log(P (θ | Dl)) is upper bounded by the sum of maximal eigenvalues
which gives an upper bound of O(n) for αl since the smallest eigenvalue must be smaller than the
largest.

Similarly, for mixtures of log-concave distributions we have from Theorem 6 that αMixture =

Ω
(

minαi min pi

4k(1−log(min pi)

)
. Setting mini αi = Θ(n) completes the proof. ■

E Experimental results
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Figure 4: We compare LaPSRL versus baseline PSRL. On the left we compare the expected regret
for a Gaussian bandit algorithm, and on the right we compare how many episodes it takes to solve a
Cartpole task. In both environments, we average over 50 independent runs.
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