
The Courage to Stop: Overcoming Sunk Cost Fallacy
in Deep Reinforcement Learning

Jiashun Liu 1 Johan Obando-Ceron 2 3 Pablo Samuel Castro 2 3 Aaron Courville 2 3 Ling Pan 1

Abstract
Off-policy deep reinforcement learning (RL) typi-
cally leverages replay buffers for reusing past ex-
periences during learning. This can help improve
sample efficiency when the collected data is infor-
mative and aligned with the learning objectives;
when that is not the case, it can have the effect of
“polluting” the replay buffer with data which can
exacerbate optimization challenges in addition to
wasting environment interactions due to wasteful
sampling. We argue that sampling these uninfor-
mative and wasteful transitions can be avoided by
addressing the sunk cost fallacy which, in the con-
text of deep RL, is the tendency towards continu-
ing an episode until termination. To address this,
we propose learn to stop (LEAST), a lightweight
mechanism that enables strategic early episode ter-
mination based on Q-value and gradient statistics,
which helps agents recognize when to terminate
unproductive episodes early. We demonstrate that
our method improves learning efficiency on a va-
riety of RL algorithms, evaluated on both the Mu-
JoCo and DeepMind Control Suite benchmarks.

“People are reluctant to waste prior investments, even when
continuing guarantees further loss.”

– Halr Arkes

1. Introduction
The sunk cost fallacy refers to a behavioral pattern where
agents continue along a current course of action despite
recognizing its suboptimality, rather than stop acting if they
have already devoted a certain amount of effort towards
it (Arkes & Blumer, 1985; Sweis et al., 2018). This cog-
nitive bias often leads to inefficiencies in decision-making
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Figure 1. LEAST enables the agent to prematurely end the current
episode by monitoring the quality of present situations, such as
getting stuck in a suboptimal trajectory. This mechanism improves
sample efficiency, reduces replay buffer contamination, and con-
serves the overall interaction budget.

processes. A simple example of this is watching a bad movie
until the end because we have already paid for a movie ticket,
thereby wasting our time and energy that could have been
devoted elsewhere. In this work, we argue that this fallacy
is inherent in traditional deep reinforcement learning (deep
RL) frameworks, where enforced episode completion hin-
ders agents from making strategic stopping decisions (Pardo
et al., 2018). It gives the impression that the RL agent is fix-
ated on the interaction costs already incurred, which limits
its subsequent learning capability and sample efficiency.

Specifically, the design limitations of traditional RL, i.e.,
lacking key mechanisms for autonomous stopping decisions,
can limit agents to repeatedly traverse low-quality (sub-
optimal) trajectories similar (uninformative) to those they
have encountered several times before. Although utilizing
experience replay buffers can improve sample efficiency
for off-policy deep RL (Fedus et al., 2020), the accumu-
lation of such experiences, particularly during early train-
ing stages, can require parameter-sensitive sampling meth-
ods (Schaul, 2015) to prevent overfitting to uninformative
experiences (Nikishin et al., 2022).

Furthermore, this constrained decision space and restricted
decision flexibility fail to optimize the environmental inter-
action budget (Yin et al., 2023). To address the aforemen-
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tioned fundamental challenge, we introduce Learn to Stop
(LEAST), a novel approach that empowers RL agents with
the ability to terminate episodes prematurely, illustrated in
Figure 1.

The agent learns to evaluate the trade-off between continu-
ing interaction with the environment and devotes more in-
teraction costs and potential benefits considering statistical
information of historical experiences. The core of LEAST
is an adaptive stopping mechanism that dynamically deter-
mines whether to terminate the current trajectory based on
its quality and how well we have learned such experiences.

Specifically, we construct an adaptive stopping threshold
by jointly analyzing two key aspects of the agents’ past
experiences, the central tendency of action values Q and
the gradient of critic, which reflect the quality and the learn-
ing potential of recent transitions (how well the agent has
mastered the current trajectory), separately.

During environment interaction, LEAST compares the pre-
dicted Q-value Q̂ against the adaptive threshold. When Q̂
falls below the threshold, it provides an indication that the
current partial trajectory’s quality and similarity to well-
learned experiences can be inferior to the historical statistics
in memory, triggering a strategic early termination of the
current episode.

We conduct extensive experiments in standard continuous
control MuJoCo tasks and the challenging DeepMind Con-
trol Suite benchmarks to demonstrate its effectiveness. On
all benchmark tasks, LEAST significantly outperforms the
baseline algorithms. Our work opens up a novel direction
by teaching agents when to “cut losses”1, which is a funda-
mental capability in human decision-making and represents
a novel and orthogonal approach to existing methods for
improving efficiency. The main contributions of this paper
are summarized as follows:

• We identify a critical limitation in current deep RL frame-
works where agents continue interacting with the envi-
ronment even when encountering familiar low-quality
trajectories, leading to wasted environmental interactions
and increased sample complexity.

• We propose LEAST: a simple yet effective mechanism
that enables strategic stopping, significantly improving
sample efficiency and performance of existing algorithms.

• We validate the effectiveness of LEAST through compre-
hensive experiments across standard benchmarks includ-
ing MuJoCo (Brockman, 2016) and visual RL scenarios
with DeepMind Control (Tassa et al., 2018). Our results
demonstrate consistent and significant improvement, il-
lustrating LEAST’s efficiency and versatility.

1Please refer to Appendix 5 for detailed related work on sample
efficiency and early stopping.

2. Backgrond
Deep RL The problem of reinforcement learning is com-
monly framed within the framework of a Markov decision
process (MDP), which is defined by a tuple (S,A,P,R, γ).
Here, S represents the state space, A denotes the action
space, P describes the transition dynamics as a function
S × A × S → [0, 1], R is the reward function defined as
S ×A → R, and γ (where γ ∈ [0, 1)) signifies the discount
factor.

The agent interacts with the environment with its policy
π, which maps states to actions. The goal is to acquire an
optimal policy that maximizes the expected discounted long-
term reward. The expected value of a state-action pair (s, a)
is defined as Qπ(s, a) = Eπ[

∑
t = 0∞γtR(st, at)|s0 =

s, a0 = a], which means the sum of discounted rewards
starting from current transition (s, a).

In actor-critic methods, the actor πϕ and the critic Qθ

are typically implemented using neural networks, where
the parameters of the actor and critic networks are de-
noted as ϕ and θ, respectively. The critic network is
updated by minimizing the temporal difference loss, i.e.,
LQ(θ) = ED

[
(Qθ(s, a) − QT

θ (s, a))
2
]
, where QT (s, a)

denotes the bootstrapping targetR(s, a) + γQθ̄(s
′, πϕ̄(s

′))

computed using target network parameterized by ϕ̄ and
θ̄ based on data sampled from a replay buffer D.
The actor network ϕ is typically updated to maximize
the Q-function approximation according to ∇ϕJ(ϕ) =

ED

[
∇aQθ(s, a)|a=πϕ(s)

∇ϕπϕ(s)
]
.

Sunk Cost Fallacy Sunk cost fallacy (Turpin et al., 2019),
also known as sunk cost bias (Arkes & Blumer, 1985), is
widely discussed in cognitive science. It describes the ten-
dency to follow through with something that people have
already invested heavily in (be it time, money, effort, or
emotional energy), even when giving up is clearly a better
idea. This phenomenon is particularly prevalent in the world
of investments (Dijkstra & Hong, 2019). Whether it’s in
the stock market, real estate, or even a business venture,
investors often fall into the trap of holding onto underper-
forming assets because they’ve already sunk so much money
into them (Haita-Falah, 2017). In this paper, we investigate
whether deep RL agents deployed on cumulative reward
maximization tasks also suffer from sunk cost fallacy.

3. Learn to Stop (LEAST)
In this section, we initially investigate whether the sampling
process within the current deep RL algorithm could induce
the agent to exhibit signs of sunk cost fallacy and explore
the impact of the sunk cost fallacy on learning efficiency,
as discussed in §3.1. Subsequently, we introduce a straight-
forward and general optimization to the conventional algo-
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rithmic framework in §3.2, aimed at enabling the agent to
dynamically overcome sunk cost fallacy, thereby enhancing
the learning efficiency of prevalent deep RL methods.

3.1. Motivating Example

The sunk cost fallacy, a prevalent cognitive bias where
agents persist with their current course of action consid-
ering prior efforts (Dijkstra & Hong, 2019), is inherently
present in current deep RL frameworks. Without the deci-
sion flexibility to terminate episodes strategically, agents
using popular deep RL algorithms, like TD3 (Fujimoto et al.,
2018) and SAC (Haarnoja et al., 2018), lack the capability to
learn to stop, forcing them to complete entire episodes even
when already traversing familiar low-quality trajectories. It
leads to increased interaction costs, and can also result in the
replay buffer becoming filled with suboptimal experiences.

This phenomenon aligns with findings in value-based deep
RL, where using smaller batch sizes has been shown to
improve performance by increasing gradient noise, which
serves as a form of implicit regularization and mitigates over-
fitting to low-quality transitions in the replay buffer (Ceron
et al., 2023). To quantify the impact of this limitation, we
conduct controlled experiments to assess the performance
disparity between vanilla ‘fully executed’ deep RL agent
and an advanced agent, i.e., our method LEAST, equipped
with auto-stopping capability (which learns to stop upon
entering a low-quality trajectory that it is already familiar).
LEAST is introduced in §3.2.

We implement both agents based on Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) as the backbone algorithm,
and evaluate its learning efficiency on a challenging Point-
Maze benchmark as detailed introduced in Appendix A.2
from Hu et al. (2023), where there are a number of lengthy
branches that can trap agents in unproductive trajectories.
To ensure fairness, both agents are trained for 106 timesteps
with identical hyperparameters and a replay buffer size of
105. The statistics of the trajectories are visualized in Ap-
pendix A.2 which shows that the vanilla agent spends too
much time in the “unproductive trajectories”.

Figure 2 demonstrates significantly higher learning effi-
ciency of the advanced agent with auto-stopping capability
compared to the vanilla agent. As the horizon of the maze
expands, interaction budgets become more constrained, lead-
ing to a correspondingly greater demand for sample effi-
ciency. The vanilla agent’s performance is significantly
reduced (maintaining at 60 score), which proves that it is
trapped in suboptimal trajectories and unable to escape, and
the optimization speed is slow due to the decreased sample
efficiency. However, the advanced agent nearly maintains
a stable performance by avoiding wasteful exploration of
known low-quality transitions. This advantage becomes
even more pronounced in long-horizon tasks.

Figure 2. Comparison between the vanilla agent and our pro-
posed LEAST agent across three PointMaze environments with
identical layouts but varying horizon lengths (10, 18, 24). Re-
sults are averaged over 5 seeds. The Y-axis denotes the normalized
score (out of 100), while the X-axis indicates training timesteps.
Task details are provided in Appendix A.2.

Finally, we analyze the data distribution within the agents’
replay buffer (Figure 3). We partition the data into quadrants
based on the mean values of Q (expected reward) and loss
(learning signal) from the advanced agent’s buffer samples.
The advanced agent significantly reduces the proportion
of uninformative samples in the buffer, specifically, those
with both low Q-values and low loss (shown in white),
which offer little to no effective learning signal. This is
achieved by terminating low quality trajectories early. As
a result, the buffer contains a higher proportion of high
quality data (shown in black), enabling the agent to sample
more informative experiences during training and thereby
improving learning efficiency.
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Figure 3. Replay buffer data distribution at 2× 105 timesteps.
Compared to the vanilla agent, the advanced agent with LEAST sig-
nificantly reduces the proportion of low-quality transitions (white
region: low Q-value and low learning signal) and increases the
density of high-quality samples (black region: high Q-value and
high gradient magnitude), resulting in a more informative and effi-
cient training dataset.

3.2. Proposed Method

In §3.1, we observed that agents could mitigate the impact
of the sunk cost fallacy by stopping and resetting before
descending into suboptimal behaviors. In this section, we
propose a lightweight general mechanism Learn to Stop
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(LEAST) to unlock the agent’s auto-stop ability. The high-
level idea is to use the recent central tendency of behavior to
construct a sensitivity-aware stop threshold for the current
execution. Based on this adaptive threshold, agents can
evaluate the risk of falling into suboptimality and decide
whether to stop. Empirically, we find that two key factors are
essential for the effectiveness of LEAST: (i) identifying the
quantifiable and common elemental data to systematically
characterize recent policies, and (ii) statistics features of
dynamic time scales to sensitively fit on-changing policies.

Autonomous Stopping Mechanism The key challenge in
designing an effective stopping mechanism is to evaluate the
quality and potential learning value of ongoing trajectories
during agent-environment interaction, and making timely
stopping decisions to save interaction costs to redirect the
limited interaction budget to more promising experiences for
improving sample efficiency. To address these challenges,
we propose a dual-criteria approach that dynamically evalu-
ates current trajectories from complementary perspectives
including the quality and learning potential.

We leverageQ-values as the primary quality metric for deter-
mining whether an ongoing trajectory is worth continuing.2

This choice is motivated by its property that they quantify
the expected cumulative rewards for state-action pairs and
capture the long-term values of decisions (Van Hasselt et al.,
2016). Specifically, we maintain a two-dimensional buffer
BQ ∈ RK×L that stores Q-values from the K most recent
episodes (L indicates the maximum episode length), which
provides a dynamic reference for quality assessment. Then,
we compare the current Q-value Q̂(si, ai) at step i with a
threshold ϵ derived from historical experience.

When Q̂i < ϵ, it indicates that the expected return of the
ongoing trajectory falls below the historical average, sug-
gesting potentially suboptimal behavior that warrants early
termination. However, different stages of an episode have
inherently different Q-value scales and behavioral require-
ments. We therefore consider step-based independent thresh-
olds {ϵ1, ..., ϵl} for each step instead of a single universal
threshold throughout the episode.3 Considering the noisy
distribution of Q-values particularly in the early stages of
training, we use the median instead of the arithmetic mean
for a more robust threshold calculation against outliers. For-
mally, for each intra-episode step i, the quality-based crite-
rion is defined as:

LEAST := Stop & Reset if Q̂i < Median(BQ[:, i]) (1)

The effectiveness of the design choice is empirically vali-
dated in Figure 4, where the comparison between the orange

2Note that our method is built upon clipped double Q-learning
that mitigates overestimation bias of Q-values.

3We use each minimum value of the subsequent g step-axis
after the stop step (min(BQ[:, g :]) to fill the empty positions.

and brown boxes demonstrates the improved stopping be-
havior derived by our method.

While Q-values provide a measure of expected returns for
quality, relying solely on them for stopping decisions over-
looks a crucial aspect of RL that learns through trial and
error: the value of exploration and learning from informa-
tive and novel experiences (Pathak et al., 2017; Rashid et al.,
2020). Even trajectories with temporarily lower Q-values
can provide valuable learning opportunities if they explore
unfamiliar state-action regions.

Inspired by Sujit et al. (2023); Terven et al. (2023), we
leverage the magnitude of the gradient of theQ-function as a
proxy for learning potential, without introducing additional
training module and use readily available information from
the Q-function.

The intuition is that larger gradients indicate that the agent
is encountering novel or poorly understood situations that
merit further exploration. We maintain a parallel gradient
buffer BG (with the same structure as BQ), storing the gra-
dient magnitudes from recent episodes. For each step i, we
compute a dynamic weight ωi as

ωi =
Median(BG[:, i])

Gi
, (2)

where Gi is the current gradient magnitude at step i.

To jointly consider quality and learning potential, we modu-
late our original quality-based threshold ϵi with the learning
potential weight ωi according to ωi × ϵi. Consider the case
with a positive ϵi, ωi < 1 indicates high exploration and
learning potential for unfamiliar states (current gradient Gi

exceeds the historical median), which leads to a reduced
threshold that encourages continued interaction. On the
contrary, ωi > 1 will lead to stricter stopping criteria. Our
complete stopping criterion in LEAST for each intra-episode
step i is formalized as follows:

ϵi ≥ 0 : LEAST := Stop & Reset if Q̂i < ωi × ϵi
ϵi < 0 : LEAST := Stop & Reset if Q̂i < ω−1

i × ϵi. (3)

When ϵi < 0, using ω will lead to the opposite effect, for
which we switch to ω−1. Figure 4 shows this dual-criteria
threshold (ωi × ϵi ) significantly outperforms purely Q-
based threshold and further improves the performance by
effectively trading off quality with potential learning value.

Entropy-Aware Dynamic Buffer Size An unstable pol-
icy may cause adjacent collected trajectories to vary sig-
nificantly, thereby increasing the distributional uncertainty
within BQ and making it difficult to estimate its cen-
tral tendency. To address this, we compute the entropy
H(BQ) = −

∑
P (BQ) logP (BQ) every c training steps to

assess the orderliness of BQ, and dynamically adjust the size
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Figure 4. Validation of modules, normalized performance on a
high-dim task, i.e., large maze (10 seeds). The box records the
final scores of all seeds, the black line inside the box represents
the median, while the horizontal line outside the box records the
maximum and minimum values.

of the local buffer BQ,L. If the current entropy Ht exceeds
(1 + γ)× H̄ , where H̄ is a predefined baseline, we add (or
remove) h recent episodes from BQ,L accordingly.

Algorithm 1 TD3 with LEAST
1: Actor: πϕ. Double critic networks: Qθ{1,2} . Start

timestep of LEAST: tstart. TD loss: L. Estimated
Q value: Q̂. Reflection Sets: BQ,BG. Dynamic weight:
ω. Stop threshold: ϵ. Replay buffer: D. pre-set entropy
of BQ: H̄ . Current entropy of BQ: Ht. Maximum
overflow rate: γ, Adjusting scale: h.

2: while t < maximum training time do
3: for i in range(fixed episode length) do
4: a← πϕ(s) (+ noise schedule){Eq.4}
5: Observe r and new state s′

6: # Update buffers
7: Fill D with (s, a, r, s′)
8: Q̂1, Q̂2 ← Qθ{1,2}(s, a); Li ← TD error
9: Fill BQ with min(Q̂1, Q̂2); Fill BG with Li

10: # Entropy-based dynamic reflection set
11: if Ht > (1 + γ)× H̄ then
12: Add (remove) h episodes→ BQ,L{§3.2}
13: # Start LEAST
14: if t ≥ tstart then
15: ωi ← Median(BG[:,i])

Li

16: ϵi ←Median(BQ[:, i])
17: Stop&Reset or not←

LEAST(ωi, ϵi){Eq.3}
18: Update Qθ{1,2} , πϕ via Fujimoto et al. (2018)

Adjusting Exploration Noise Empirically, we find that
on individual tasks, e.g. Ant, agents have a probability of
falling into the familiar suboptimal trajectory after stop & re-
set due to the unchanged policy, which may limit the benefits
of adaptive stopping. However, the cumulative Q estimating

error in algorithms makes the idea of accelerating behav-
ior change by increasing the UTD affect the performance
(Related experiments located in Appendix C.2).

Thus, inspired by Xu et al. (2023), we introduce a general
episode-level schedule for regulating the exploration noise:
if agents are forced to stop at an early stage frequently,
which means the policy may stuck in a suboptimal land-
scape, we will increase the exploration noise σ (standard
deviation of the Gaussian noise) to help them escape from
current behavior. Equation 4 defines how noise is adaptively
increased when early stopping occurs frequently:

σ = max(
σ̄

1 + exp(−β × τ + µ)
, σ∗), σ ∈ [σ∗, σ̄), (4)

β is the frequency of the most recent m episodes to stop
before the e-th step, where σ̄ denotes the upper bound of
the noise and σ∗ is the original setting (lower bond), τ, µ
are the pre-set temperatures to make sure σ can decay to σ∗.
A visualization of the noise schedule is shown in Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Schedule of exploration noise adjustment. As the fre-
quency of premature stopping increases, indicating potential stag-
nation in policy improvement, the standard deviation of the ex-
ploration noise is gradually increased to encourage behavioral
diversification and escape from suboptimal trajectories.

The curve of our complete method in Figure 4 shows that
the performance of LEAST becomes more stable with a
dynamic buffer size and noise schedule.

Practical Implementation Pseudocode 1 illustrates the
implementation of LEAST integrated with TD3, serving as
a representative example of how our method can be applied
to deterministic policy gradient algorithms.

4. Experiments
In this section, we conduct comprehensive experiments to
evaluate whether LEAST module is necessary for deep RL.
We investigate the following key questions: (i(§4.1)) Can
LEAST improve the learning performance of mainstream
deep RL algorithms? (ii(§4.2)) Is learning to stop also
effective in more complex, image-based visual RL tasks?
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(a) Verification LEAST built upon TD3

(b) LEAST built upon SAC

(c) LEAST built upon REDQ

Figure 6. Empirical validation of LEAST across diverse deep RL algorithms in MuJoCo environments. Results show mean ±
standard deviation over 5 runs. LEAST consistently improves both sample efficiency and final performance across: (a) TD3, representing
deterministic policy methods; (b) SAC, based on maximum entropy reinforcement learning; and (c) REDQ, which employs an ensemble
of critics for improved value estimation.

iii(§4.3)) How sensitive is LEAST to key parameters in each
module, as revealed by detailed ablation studies?

4.1. Improvements for mainstream algorithms

Experimental Setup To verify the generality of LEAST,
we select several widely used and mature deep RL algo-
rithms as baselines: (i) TD3 (Fujimoto et al., 2018), repre-
senting deterministic policy methods; (ii) SAC (Haarnoja
et al., 2018), as a representative of stochastic policies; (iii)
REDQ (Chen et al., 2021), a sample-efficient method that
uses an ensemble of critics to improve Q-function fitting;
and (iv) DroQ (Hiraoka et al., 2021), a recent variant of
SAC that incorporates dropout regularization.

We evaluate all methods on four core tasks from OpenAI
Mujoco-v4, specifically, tasks that SAC and TD3 fail to
solve effectively, serving as challenging benchmarks. To
ensure fair comparison, we implement all methods using
the official codebases and apply consistent hyperparame-
ters across experiments. Detailed parameter settings are
provided in Appendix B.

Results Overall, Figure 6 shows that LEAST significantly
improves both learning efficiency and final performance
across all three categories of deep RL algorithms, demon-
strating its general effectiveness for mainstream deep RL.
Specifically, for TD3 and SAC (Figure 6(a, b)), LEAST ac-

celerates early-stage learning and helps the agent converge
to better policies, with particularly notable gains in the Ant
and Walker2d tasks. Interestingly, while TD3 with LEAST
achieves higher final scores in HalfCheetah, its convergence
is slower in the early phase. This may be due to vanilla TD3
prematurely converging to suboptimal strategies. LEAST
mitigates this by promoting more effective exploration, en-
abling the agent to eventually discover better behaviors in
complex decision spaces.

In the case of REDQ (Figure 6(c)), since REDQ already en-
hances Q-function fitting via additional critics, its baseline
performance is relatively strong. As a result, the perfor-
mance gains from LEAST are less pronounced during early
training. However, LEAST improves sample efficiency dur-
ing the middle and later stages and further optimizes final
performance.

Figure 7 provides a visual summary of sample efficiency im-
provements. The results indicate that LEAST significantly
accelerates learning across all three algorithms, with partic-
ularly clear gains for TD3 compared to the stochastic-policy
baselines. Finally, Figure 8 presents normalized scores
across the four tasks to quantify the overall improvements.
With LEAST, all algorithms show substantial performance
gains: SAC with LEAST reaches performance comparable
to DroQ, and REDQ with LEAST achieves the highest over-
all scores. However, we observe that LEAST may increase
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the score variance of the algorithms (e.g., wider spread and
outliers in the box plots), suggesting a potential direction
for future work, refining the adaptive evaluation mechanism
to enhance training stability.

TD3 SAC REDQ

4200000
4000000
3800000
3600000
3400000
3200000
3000000
2800000
2600000
2400000
2200000
2000000
1800000

Vanilla

LEAST

Figure 7. Comparison of sample efficiency across MuJoCo
tasks. For each algorithm, we report the average number of
training steps required to reach the maximum normalized score
achieved by its corresponding vanilla (baseline) variant. Lower
values indicate faster learning.

0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78

TD3

TD3
w/ LEAST

SAC

SAC
w/ LEAST

DroQ

REDQ

REDQ
w/ LEAST

Max Normalized Score

Figure 8. Final performance on MuJoCo task, aggregated using
the same evaluation metrics as in Figure 4. Results are normalized
and averaged over 5 random seeds. Higher values indicate better
overall task performance.

4.2. Effectiveness on Visual Reinforcement Learning

Experimental Setup To evaluate the generalization of
LEAST to the visual domain, we adopt DrQv2 (Yarats et al.,
2021), a state-of-the-art Vision RL algorithm, as our back-
bone. We select four image-based control tasks from the
DeepMind Control Suite (Tassa et al., 2018) to examine
whether the benefits of LEAST transfer to visual RL set-
tings. Additionally, we include several DrQv2-based base-
lines that introduce observation encoders: CURL (Laskin
et al., 2020), A-LIX (Cetin et al., 2022), and TACO (Zheng
et al., 2024). Among these, TACO represents a recently
proposed variant of DrQv2, which we use as the SOTA

reference. Hyperparameters for DrQv2 are kept consistent
across all experiments; see Appendix B for details.

Quadruped RunHopper Hop

Finger Turn Hard Cartpole Swingup

Figure 9. Performance on image-based control tasks. The hor-
izontal axis represents training steps; the vertical axis shows the
cumulative score. Each curve depicts the mean performance over
5 random seeds, with shaded regions indicating standard deviation

0.55 0.60 0.65 0.70 0.75 0.80

CURL

DrQv2

A-LIX

DrQv2
w /LEAST

TACO

Max Normalized Score

Figure 10. Final performance on DMC tasks. Results are ag-
gregated using the same metric as in Figure 4. LEAST performs
competitively with feature-based baselines.

Figure 9 shows that although DrQv2 enhances SAC with
data augmentation and representation learning, LEAST still
provides stable improvements in learning efficiency. For ex-
ample, in the Finger Turn Hard task, convergence is approx-
imately 30% faster than vanilla DrQv2. Figure 10 reports
normalized scores across all tasks. While CURL and A-
LIX improve feature representations to accelerate learning,
LEAST outperforms both and approaches the performance
of TACO. These results suggest that in visual RL, unlock-
ing adaptive stopping can be a promising and cost-effective
alternative to heavy architectural modifications, requiring
no additional networks to improve sample efficiency.

4.3. Robustness of Median Threshold Estimation

As analyzed in §3.2, we evaluate the individual contributions
of LEAST components. Here, we compare the use of the
median vs. the arithmetic mean to estimate the central
tendency of BQ on the Ant task. Figure 11 shows that the
median yields a more stable estimate, avoiding spikes. This
robustness arises because the median is less sensitive to
outliers from recent trajectories, thereby mitigating policy
collapse caused by frequent early stopping.
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Figure 11. Comparison of methods for estimating the central
tendency of BQ on the Ant task. Using the median provides more
stable and robust estimates than the arithmetic mean, particularly
in the presence of outliers. This stability helps mitigate overesti-
mation in early stopping decisions and improves the reliability of
the adaptive threshold used in LEAST.

4.4. Sensitivity to the Learning Potential Weight (ω)

We now examine the role of the learning potential weight
ω in LEAST, which modulates the Q-value threshold to
balance trajectory quality with potential learning value. Fig-
ure 12 illustrates the effect of varying the importance weight
ω in the threshold calculation. Compared to TD3, SAC
is more sensitive to this parameter. A value in the range
[0.3, 0.6] provides a robust trade-off between ϵ and ω for
both algorithms. This highlights the importance of balanc-
ing quality-based stopping with learning potential signals
when designing adaptive termination criteria.
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Figure 12. Sensitivity analysis of the weighting factor ω in the
adaptive stopping threshold of LEAST. We vary the scaling
coefficient applied to ω across a range of values and evaluate its
impact on final performance. Results are averaged over 5 seeds.
This analysis reveals that LEAST is robust to moderate changes in
ω, with the best performance typically achieved when ω lies in the
range [0.3, 0.6].

4.5. Effect of Adaptive Noise Scaling

This section analyzes the sensitivity of our method to param-
eters in the noise schedule. Table 1 shows that the optimal
value of σ̄ lies within [0.25, 0.35] for TD3 and [0.15, 0.25]
for SAC. We hypothesize that SAC, being a stochastic pol-
icy, inherently exhibits behavioral diversity and thus benefits
less from large noise. Table 2 evaluates the length threshold
e. For MuJoCo, a range of [400, 500] is empirically robust
with m = 50 episodes used for statistical estimation.

Task 0.15 0.25 0.35 0.45

TD3 0.684± 0.026 0.695± 0.035 0.694± 0.028 0.671± 0.049
SAC 0.697± 0.032 0.706± 0.039 0.688± 0.057 0.663± 0.074

Table 1. Ablation study of σ̄. Values average over 5 random seeds.

Task 300 400 500 600

TD3 0.681± 0.062 0.685± 0.028 0.696± 0.037 0.679± 0.053
SAC 0.692± 0.038 0.706± 0.039 0.696± 0.034 0.701± 0.036

Table 2. Ablation study of e. Values average over 5 random seeds.

4.6. Impact of Entropy-Guided Buffer Resizing

This section evaluates the sensitivity of LEAST to the
entropy-based dynamic scaling parameter γ. We test this
using TD3 and DrQv2 across all scenarios. Table 3 shows
that γ ∈ [0, 0.1] yields robust performance. We attribute
this to the instability of early-stage trajectories, where larger
γ may mischaracterize the behavioral distribution due to
noise.

Task 0 0.05 0.10 0.15 0.20

DMC 0.724± 0.047 0.743± 0.052 0.756± 0.076 0.712± 0.056 0.715± 0.042
MuJoCo 0.683± 0.043 0.706± 0.039 0.703± 0.041 0.702± 0.021 0.688± 0.064

Table 3. Ablation study of γ. Values average over 5 random seeds.

4.7. Influence of Start Time and Initial Set Size

Table 4 analyzes the impact of the LEAST start time. For
MuJoCo tasks, initiating at 10–20% of training is optimal,
while visual tasks (e.g., DMC) benefit from earlier starts
(5–15%). Table 5 investigates the effect of the initial set
size for BQ. We recommend using 250 episodes. Too small
a set may lead to poor statistical estimates, while too large
may over-smooth recent behavior.

Task 0.25M 0.5M 0.75M 1M

Ant 5492.48± 318.71 6647.57± 441.39 6836.36± 305.43 6408.22± 246.13
Quadruped run 947.61± 32.25 953.28± 26.83 937.44± 54.75 916.52± 44.16

Table 4. Ablation study of start time. Values average over 5 random
seeds.

Task 50 150 250 350

Ant 4718.47± 1069.37 6310.15± 726.05 6836.36± 305.43 6792.46± 327.58
Quadruped run 751.33± 86.53 941.37± 25.35 953.28± 26.83 951.07± 30.49

Table 5. Ablation study of initial set size. Values average over 5
random seeds.

5. Related Work

Sample Efficiency in Deep RL Clipped Double Q-
learning (Fujimoto et al., 2018) is a landmark approach
that introduces a double Q network to mitigate overestima-
tion in reinforcement learning (Hasselt, 2010; Van Hasselt
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et al., 2016; Song et al., 2019; Pan et al., 2019; 2020; 2021).
Building on this, Moskovitz et al. (2021) proposed an online
method to tune pessimism and correct for the underestima-
tion introduced by TD3. Nauman et al. (2024) demonstrated
that using a residual network backbone can further alleviate
pessimistic Q-learning. Chen et al. (2021) addressed esti-
mation bias by increasing the number of Q networks to an
ensemble of ten. Other studies have shown that scaling up
DQN architectures (Schwarzer et al., 2023; Obando-Ceron
et al., 2024b;a; Sokar et al., 2025) and increasing the replay
ratio (D’Oro et al., 2022) can also accelerate Q-function
learning.

Another line of work focuses on optimistic exploration
strategies (Wang et al., 2019; Moskovitz et al., 2021). For
instance, ICM (Pathak et al., 2017) uses forward prediction
error as a curiosity signal to encourage exploration of novel
states. Recent research also advocates the use of generative
models such as VAEs (Imre, 2021), GANs (Huang et al.,
2017; Daniels et al., 2022), and diffusion models (Lu et al.,
2024; Yu et al., 2023) to augment data and meet sampling
requirements. However, existing methods largely overlook
the impact of sunk cost fallacy in deep RL. This paper aims
to fill that gap by proposing adaptive stop sampling as a cost-
effective strategy to improve the performance of deep RL
algorithms, a direction that has been largely underexplored
by the community.

Early Stopping in Deep RL To the best of our knowl-
edge, there is limited work on adaptive termination in online
deep RL. Existing studies primarily examine performance in
environments with uncertain episode lengths or time limits
(Pardo et al., 2018). Poiani et al. (2023; 2024) theoretically
demonstrate that truncating trajectories based on prior ex-
perience can accelerate learning in Monte Carlo methods.
Mandal et al. (2023) show that policies can benefit from
episode lengths that increase linearly in extended-duration
tasks. In the context of Constrained Markov Decision Pro-
cesses (CMDPs), some works have explored early termina-
tion based on prior safety signals or contextual knowledge
(Sun et al., 2021), as well as using offline data to estimate
reward distributions (Killian et al., 2023), with applications
in domains such as healthcare (Fatemi et al., 2021). These
insights on how trajectory length influences policy learning
provide useful foundations and motivation for our research.

6. Future Work and Limitations
We encourage the community to further investigate the sunk
cost bias in reinforcement learning. Based on our find-
ings, we identify three promising directions for future work:
(i) While LEAST improves performance, stability can still
be enhanced. Future research could focus on developing
more sensitive and robust evaluators to improve stopping

decisions in complex scenarios, e.g., optimizing the combi-
nation of Q-value and loss to more accurately characterize
trajectory quality. (ii) As shown in Figure 3, the proportion
of samples with high loss but low Q-value (blue region)
remains largely unchanged. These are likely low-quality
transitions with minimal expected return. Future work could
investigate refining the sampling threshold by incorporating
additional indicators to better filter out such data. (iii) After
reset, agents may re-enter previously suboptimal trajectories.
Introducing a noise-based diversification module could help,
though care must be taken to properly schedule the noise
magnitude and timing to balance exploration with training
stability.

To ensure consistency and reduce computational demands,
we adopted the default hyperparameters provided by each
baseline model for all experiments. While this choice facil-
itates reproducibility, it is well known that RL algorithms
can exhibit significant sensitivity to hyperparameter settings
(Ceron et al., 2024; Ceron & Castro, 2021). A thorough
hyperparameter sweep for each experimental configuration
would be preferable in principle, but remains impractical
given the associated computational expense

7. Conclusion
In this paper, we highlight the presence of sunk cost fal-
lacy in mainstream deep RL algorithms. This fallacy leads
agents to persist in executing entire episodes, even when
trajectories become suboptimal, resulting in unnecessary
interactions and buffer contamination, ultimately hindering
learning. We identify this as a previously overlooked lim-
itation in the literature: the inability of current algorithms
to terminate bad trajectories early may significantly impact
overall performance. To address this, we propose LEAST, a
direct optimization approach that quantifies trajectory qual-
ity and enables early stopping, without requiring additional
network components. LEAST effectively mitigates the sunk
cost fallacy and improves learning efficiency across a vari-
ety of tasks. We hope that our findings will inspire further
research aimed at optimizing sampling and learning effi-
ciency.
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A. Related Preliminaries
A.1. Baselines

TD3 In our paper, we utilize TD3 as the representative of a deterministic policies. TD3, an Actor-Critic algorithm, is
widely used in various decision scenarios as the baseline (Li et al., 2021; Liu et al.), and has derived a wide range of variants
to establish new SOTA many times. Differs from the traditional policy gradient method, DDPG (Lillicrap et al., 2015), TD3
employs two heterogeneous critic networks, denoted as Qθ1,2 to mitigate the issue of over-optimization in Q-learning. Thus,
the Loss function of critics is:

LQ(θi) = Es,a,s′
[
(y −Qθi(s, a))

2
]

for ∀i ∈ {1, 2}. (5)

Where y = r + γ min
j=1,2

Qθ̄j (s
′, πϕ̄(s

′)), ϕ̄ denotes the target network parameters. The actor is updated according to the

Deterministic Policy Gradient (Fujimoto et al., 2018):

∇ωJ(ϕ) = Es

[
∇πϕ(s)Qθ1(s, πϕ(s))∇ϕπϕ(s)

]
. (6)

SAC We choose SAC (Haarnoja et al., 2018) as a representative of the stochastic policy in combination with LEAST
in the main experiment. SAC is designed to maximize expected cumulative rewards while also promoting exploration
through the principle of maximum entropy. The actor aims to learn a stochastic policy that outputs a distribution over
actions, while the critics estimate the value of taking a particular action in a given state. This allows for a more diverse set of
actions, facilitating better exploration of the action space. In traditional reinforcement learning, the objective is to maximize
the expected return. However, SAC introduces an additional term that maximizes the entropy of the policy, encouraging
exploration. The goal is to optimize the following objective:

J(π) = Est,at
[r(st, at) + αH(π(·|st))]

H(π(·|st) is the entropy of the policy. α is a temperature parameter that balances the trade-off between the reward and the
entropy. The training process for SAC consists of two main updates: updating the value function and updating the policy.
The value function is updated by minimizing the following loss:

L(Q) = E(s,a,r,s′)∼D[
1

2
(Q(s, a)− (r + γV (s′)))2)]

γ is the discount factor, dictating how much future rewards are valued. V (s′) is the value function of the next state, typically
approximated using a separate neural network. The policy is updated by maximizing the following objective:

J(π) = Est∼D[Eat∼π[Q(st, at)− α log π(at|st)]]

−α log π(at|st) represents the entropy of the policy, promoting exploration.

REDQ Chen et al. (2021) found that the accumulation of the learned Q functions’ estimation bias over multiple update
steps in SAC can destabilize learning. To remedy this bias, they increase the number of Q networks from 2 to an ensemble
of 10. Its training procedure is consistent with SAC. REDQ is recognized as an effective algorithm to improve the sampling
efficiency of deep RL.

DrQv2 DrQv2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2, an actor-critic approach
that uses data augmentation to learn directly from pixels. We introduce several improvements including: switch the base RL
learner from SAC to DDPG, Incorporating n-step returns to estimate TD error. They also find it useful to apply bilinear
interpolation on top of the shifted image for the random image augmentation and to optimize the exploration schedule.

A-LIX & TACO In this paper we chose two well-known variants of DrQv2 as the baseline to evaluate the research value
of adaptive stopping as a new research line. A-LIX try to mitigate catastrophic self-overfitting in DrQv2 from the feature
representation level, that is, providing adaptive regularization to the encoder’s gradients to stabilize temporal difference
learning from encoders. And it improves the performance of DrQv2 on diverse image input tasks.

TACO also optimize DrQv2 by adding an additional feature extraction model. Practivally, TACO incorporates an auxiliary
temporal action-driven contrastive learning objective to learn state and action representations through mutual information,
and self-prediction representations. It established a new SOTA on DMC and metaworld benchmarks.
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A.2. Maze

We use the widely used open-source Point Maze scenario to build the three tasks of small, medium and large. The specific
layout is shown in Figure 13.

Target 
area

Agent

Figure 13. Layout of the maze.

The agent, a 2D point, is noisily initialized in the bottom left. At test time, we evaluate it on reaching the right corner. The
2-D state and action space correspond to the planar position and velocity, respectively. The episode length is 50 steps. The
top right corner is the hardest to reach, so we set this to be the test-time goal. We increase the point size to 1.25×, with a
speed factor of 0.9. The dense reward is designed according to the L2 distance from the center of the target region to the
point. The parameters for SAC are consistent with the recommendations, with γ set to 0.95.

We further count the final positions of the last 50 episodes of each run for the vanilla agent as well as the advanced agent
(LEAST) in Figure 14. The results show that the advanced agent can effectively avoid multiple dead ends and successfully
reach the target area under the limited interaction budget.

A.3. Measurement

Fraction of Active Units (FAU) Although the complete mechanisms underlying plasticity loss remain unclear, a reduction
in the number of active units within the network has been identified as a key factor contributing to this deterioration in both
visual RL (Ma et al., 2023; Sokar et al., 2023) and traditional RL (Abbas et al., 2023; Liu et al., 2025). Consequently, the
fraction of active units (FAU) is widely utilized as a metric for assessing plasticity. Specifically, the FAU for neurons located
in layer N , denoted as ψN , is formally defined as:

ψN =

∑
n∈N 1(an(x) > 0)

N

where an(x) represent the activation of neuron n given the input x, and n is the neuron within layer N . The meaning of
this metric is the proportion of the number of activated parameters to the total number of parameters. That is to say, the
slower this ratio decreases, the slower the plasticity loss of the network is, so as to maintain the representation ability of the
quantity network for new data. This allows it to be visually visualized following the training time steps, which can be used
to evaluate the continuous learning ability of deep RL agents.
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(a) Vanilla Agent (b) Advanced Agent

Figure 14. Statistics of the final positions of two agents on the medium task.

A.4. Sunk Cost Fallacy

Sunk cost fallacy (Turpin et al., 2019), also known as sunk cost bias (Arkes & Blumer, 1985), is widely discussed in
cognitive science. It describes the tendency to follow through with something that people have already invested heavily in
(be it time, money, effort, or emotional energy), even when giving up is clearly a better idea. This phenomenon is particularly
prevalent in the world of investments (Dijkstra & Hong, 2019). Whether it’s in the stock market, real estate, or even a
business venture, investors often fall into the trap of holding onto underperforming assets because they’ve already sunk so
much money into them (Haita-Falah, 2017). In this paper, we investigate whether deep RL agents deployed on cumulative
reward maximization tasks also suffer from sunk cost fallacy.

B. Experimental Details
B.1. Structure

TD3 In this paper, we use the official architecture, and the detailed structure is shown in Tab 6.

Layer Actor Network Critic Network

Fully Connected (state dim, 256) (state dim, 256)
Activation ReLU ReLU

Fully Connected (256, 128) (256, 128)
Activation ReLU ReLU

Fully Connected (128, action dim) and (128, 1)
Activation Tanh None

Table 6. Network Structures for TD3

SAC & REDQ In this paper, we follow the setting that commonly used in Dep RL community, and the detailed structure is
shown in Tab 7. We set the number of ensembles to 10 according to the official setting of REDQ https://github.com/
BY571/Randomized-Ensembled-Double-Q-learning-REDQ-/blob/main, but for fairness, the UTD of all
algorithms is set to 1.
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Layer Actor Network Critic Network

Fully Connected (state dim, 256) (state dim, 256)
Activation ReLU ReLU

Fully Connected (256, 128) (256, 128)
Activation ReLU ReLU

Fully Connected (128, 2× action dim) and (128, 1)
Activation Tanh None

Table 7. Network Structures for SAC

DrQv2& TACO& A-LIX We use these three methods to conduct experiments on robot control tasks within
DeepMind Control using image input as the observation. All experiments are based on official codes. Code of
DrQv2 can be found at https://github.com/facebookresearch/drqv2, the website of TACO is https:
//github.com/FrankZheng2022/TACO and A-LIX code can be downloaded at https://github.com/
Aladoro/Stabilizing-Off-Policy-RL/tree/master. We maintain the unchanged architecture from the
official setting.

B.2. Implementation Details

Our code is implemented with Python 3.8 and Torch 1.12.1. All experiments were run on NVIDIA GeForce GTX 3090
GPUs. Each single training trial ranges from 10 hours to 21 hours, depending on the algorithms and environments, e.g.
DrQv2 spends more time than TD3 to handle the image input and DMC needs more time than OpenAI mujoco for image
rendering.

TD3 Our TD3 is implemented with reference to github.com/sfujim/TD3 (TD3 source-code). The hyper-parameters
for TD3 are presented in Table 8. Notably, for all OpenAI MuJoCo experiments, we use the raw state and reward from
the environment, and no normalization or scaling is used. An exploration noise sampled from N(0, 0.1) (Lillicrap, 2015)
is added to all baseline methods when selecting an action. The discounted factor is 0.99 and we use Adam Optimizer (?)
for all algorithms. Tab.8 shows the hyperparameters of TD3 used in all our experiments. We suggest using seed 0→ 7 to
reproduce the learning curve in the main text.

Hyperparameter TD3 TD3 w/ LEAST

Actor Learning Rate 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3

Discount Factor 0.99 0.99
Batch Size 128 128
Buffer Size 1e6 1e6

Table 8. Shared hyperparameter setting of TD3.

SAC Our TD3 is implemented based on https://github.com/tyq1024/RLx2/tree/master/RLx2_SAC, a
reliable open source implement in Pytorch style). The hyper-parameters for SAC are recorded in Table 9.

DrQv2 We use DrQv2 as the backbone to verify our methods on DeepMind Control tasks. The details can be seen in
Tab.10. We follow the setting used in DrQv2, for Walker Stand/Walk/Run tasks, we set the mini-batch size as 512 and n-step
return of 1. In the Quadruped Run task, we use a replay buffer of size 105 and set the learning rate to 8× 10−5. We also
increase the feature dimensionality to 100 in Humanoid scenarios.

Lern to Stop For our Learn to stop schedule in TD3, we generally set the start time as 0.6M step for most OpenAI
MuJoCo tasks, expect Ant (start at 0.75M )and HalfCheetah (start at 0.25M ). For our Learn to stop schedule in SAC
(REDQ), we set the start time as 0.5M step for most OpenAI MuJoCo tasks, expect Ant (start at 0.65M )and HalfCheetah
(start at 0.25M ). And for DMC tasks, the schedule will be turn on at 0.4M step. As for the initial size of the reflection sets,
we set 150 for both TD3 and SAC for OpenAI muJoCo tasks, and 250 for image input tasks. The scale of Loss ratio ω is set
as 0.5 for all tasks, but 0.7 for Humanoid and 0.6 for HalfCheetah in SAC. The max threshold is the max Q value in BQ
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Hyperparameter SAC SAC w/ LEAST

Optimizer Adam Adam
Learning rate 3× 10−4 3× 10−4

Discount factor 0.99 0.99
Number of hidden layers 2 2

Number of hidden units per layer 256 256
Activation Function ReLU ReLU

Batch size 256 256
Warmup steps 5000 5000

Target update rate 0.005 0.005
Target update interval 1 1
Actor update interval 1 1

Entropy target −|A| −|A|

Table 9. Shared hyperparameter setting of SAC.

Hyperparameter DrQ DrQ w/ LEAST

Replay buffer capacity 1e6 1e6
Action repeat 2 2
Seed frames 4000 4000

Exploration steps 2000 2000
n-step returns 3 3

Mini-batch size 256 256
Discount γ 0.99 0.99
Optimizer Adam Adam

Learning rate 1e− 4 1e− 4
Agent update frequency 2 2

Critic Q-function soft-update rate 0.01 0.01
Features dim. 50 50
Hidden dim. 1024 1024

Exploration stddev. clip 0.3 0.3
Exploration stddev. schedule linear(1.0, 0.1, 500000), Humanoid tsks: linear(1.0, 0.1, 2000000) linear(1.0, 0.1, 500000), Humanoid tsks: linear(1.0, 0.1, 2000000)

Table 10. A default set of hyper-parameters used in our DrQv2-based methods.

(we find that 0.75∗median Q can aslo be a magic number) and the min threshold is set as min value in BQ (0.25∗ median
Q is a also good choice). Too many sensitive parameters are also an issue to be optimized in the future of this work. To
prevent extreme threshold adjustments, we use Clip function to limit ωi × ϵ ∈ [Qmin[i], Qmax[i]], where Qmax[i] denotes
the highest Q value among intra-episode step i, Qmin[i] is the min value.

C. Additional Experiments
C.1. Effects on Continuous Learning and Plasticity

Nikishin et al. (2022) finds that the rapid loss of plasticity in network caused by overfitting to noisy data in the early training
is a key reason for losing continuous learning ability. In §3.2, we observe that LEAST can effectively optimize the data
distribution in the buffer, thus avoiding the agent from training via useless (noisy) transitions too often. This may go some
way to overcoming aformentioned issue and maintaining the continuous learning ability (mitigating the loss of network
plasticity).

In this section, we verify in detail whether the above advantage exists in our method. We conduct a evaluation on the difficult
long-time learning task – humanoid walk, i.e. DrQv2 needs about 6× steps than normal DMC tasks to learn a sequential of
skills (15M ). The parameters remain the same as in §4.2. Notably, we introduce a widely used metric,the Fraction of Active
Units (FAU4), to quantify the plasticity of the network. FAU is used in such a way that the gentler the downward trend of the
curve indicates the better-maintained plasticity of the network. Figure 15 shows that our method decreases FAU slower
than the baseline and achieves impressive performance on long-term learning tasks. This corroborates the positive effect
of LEAST on maintaining the continuous learning ability. In the future, we will deeply analyze the theoretical correlation
between plasticity and adaptive stopping.

4Plasticity measurement is introduced in Appendix A.3.

17



The Courage to Stop: Overcoming Sunk Cost Fallacy in Deep Reinforcement Learning

Figure 15. Performance on long-term training task. The curve and shade denote the mean and the standard deviation over 5 runs.

C.2. Ablation Study of Update-to-Data

We use TD3 as the backbone and try to improve UTD to enable fast iteration of policies to better capture the advantages
of LEAST. However, it can be seen from Figure 16 that with the increase of UTD, the efficiency of policy optimization
becomes slower, which we think is due to the inaccuracy of the fitting of Q function by basic algorithms such as TD3, which
cannot adapt to high UTD (Chen et al., 2021).
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Figure 16. Sensitivity to UTD. Average of 5 runs on Ant.
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