Under review as a conference paper at ICLR 2026

CROCHETBENCH: CAN VISION-LANGUAGE MODELS
MOVE FROM DESCRIBING TO DOING IN CROCHET DoO-
MAIN?

Anonymous authors
Paper under double-blind review

ABSTRACT

We present CrochetBench, a benchmark for evaluating the ability of multimodal
large language models to perform fine-grained, low-level procedural reasoning
in the domain of crochet. Unlike prior benchmarks that focus on high-level de-
scription or visual question answering, CrochetBench shifts the emphasis from
describing to doing: models are required to recognize stitches, select structurally
appropriate instructions, and generate compilable crochet procedures. We adopt
the CrochetPARADE DSL as our intermediate representation, enabling structural
validation and functional evaluation via execution. The benchmark covers tasks
including stitch classification, instruction grounding, and both natural language
and image-to-DSL translation. Across all tasks, performance sharply declines
as the evaluation shifts from surface-level similarity to executable correctness,
exposing limitations in long-range symbolic reasoning and 3D-aware procedural
synthesis. CrochetBench offers a new lens for assessing procedural competence
in multimodal models and highlights the gap between surface-level understanding
and executable precision in real-world creative domains.

1 INTRODUCTION

Procedural crafts such as crochet present a distinctive frontier for multimodal learning. Unlike
traditional captioning or recipe datasets (Li et al.,|2024; Hu et al., 2023 |Mohbat & Zaki, [2024)), cro-
chet patterns intertwine three interdependent modalities: (i) structured symbolic language, where
stitch abbreviations and counts define a precise grammar of construction; (ii) long-form natural
language, which provides contextual guidance such as materials and sizing; and (iii) visual evi-
dence, including photographs of completed objects and motif diagrams. Success requires not just
alignment across modalities but step-wise reasoning that preserves procedural fidelity, making the
challenge closer to program synthesis than generic description.

Crochet also offers a unique testbed for 3D-aware reasoning. Each stitch encodes both local ge-
ometry and global connectivity, forming a topological structure that must be preserved across steps.
Generating or interpreting patterns thus demands reasoning over how sequential operations accumu-
late into volumetric form. In effect, crochet couples symbolic instruction following with embodied
spatial reasoning, cultivating abilities essential for domains where language must ground into phys-
ical tasks.

Despite the rapid growth of multimodal benchmarks (Fu et al., [2024; [Li et al., [2023a; Zhang et al.,
20255 |Yue et al., [2024)), existing datasets have largely focused on description or grounding. COCO
(Lin et al., 2015)) catalyzed captioning research, TextCaps (Sidorov et al.||2020) extended it to text-
in-the-wild, and RecipelM (Marin et al. [2019) explored cross-modal cooking instructions. While
recipes also involve multi-step procedures, validating correctness typically requires real-world ex-
ecution, making large-scale evaluation slow and resource-intensive. Crochet, by contrast, provides
a symbolic domain where outputs can be automatically verified through DSL compilation, enabling
scalable and efficient study of step-wise reasoning. For a more detailed survey, see Appendix
Yet these benchmarks stop short of testing whether models can follow symbolic grammars, respect
numerical and spatial constraints, and produce outputs that are executable. Current systems can
describe, but not reliably do.

Under review as a conference paper at ICLR 2026

CrochetBench fills this gap by centering evaluation on instructional fidelity: can models not
only recognize and generate, but also output step-wise, compilable instructions that respect sym-
bolic, numerical, and topological structure? Each example in CrochetBench is a multimodal pack-
age—structured JSON metadata (stitch inventories and abbreviations), full-text procedures with
rows/rounds and conditionals, and paired images of finished objects and motifs. Crucially, Crochet-
Bench is paired with CrochetPARADE 2025), a domain-specific language (DSL) enabling
executable evaluation, where natural language instructions are translated into compilable code en-
forcing geometric and topological coherence.

Our contributions are fourfold: (1) CrochetBench, the first executable benchmark for procedu-
ral crafts, unifying symbolic, textual, and visual modalities with evaluation protocols emphasizing
procedural fidelity and 3D-aware reasoning; (2) a comprehensive task suite spanning recognition,
comprehension, generation, and DSL translation; (3) integration of CrochetPARADE into an ex-
ecutable pipeline, enabling scalable, automated verification of outputs—unlike domains such as
cooking, which require real-world execution—thereby shifting evaluation from surface similarity to
procedural fidelity; and (4) baseline analyses of state-of-the-art VLMs/MLLMs, revealing system-
atic weaknesses including hallucinations, captioning bias, and structural artifacts.

Taken together, CrochetBench opens a new direction for multimodal research: moving beyond de-
scribing what we see, toward generating executable procedures that respect symbolic grammar, nu-
merical accuracy, and topological coherence—paving the way for models that can reason in struc-
tured 3D spaces.

2 DATASET DESCRIPTION

CrochetBench is a large-scale, structured bench-
mark consisting of 6,085 crochet patterns spanning
55 distinct project categories. It was constructed
by collecting publicly available patterns from the
Yarnspirations websiteﬂ a widely used repository
for fiber arts. The raw patterns were originally
formatted as PDF documents, which were parsed
and normalized using a GPT-40-mini-based conver-
sion pipeline. This process extracted and standard-
ized key fields including pattern metadata, materials,
measurements, gauge, abbreviations, and full step-
by-step instructions. Each entry was converted into
a machine-readable JSON object with a consistent
schema, and 98.77% of patterns include an associ-
ated product image, enabling multimodal supervision.

Project Types
W Afghans & Blankets
mam Hats
mmm Sweaters & Cardigans
mmm Shawls & Wraps
W= Scarves
mmm Pillows & Poufs
Amigurumi & Toys
mmm Bags & Purses
Décor
mmm Dishcloths

Figure 1: Distribution of the top-10 most
common project types in CrochetBench.

The dataset supports diverse real-world crochet prac-
tices, with project types ranging from simple acces-
sories to complex garments. Figure [T] lists the ten
most common categories by frequency. The major-
ity of patterns belong to a small number of dominant
types—Afghans and Blankets alone account for over
one-quarter of the dataset. More details can be found
at Table ??.

3%

1.
Skill Levels
mmm Beginner
s Easy
mmm Intermediate
58.7% B Experienced

Figure 2: Skill level distribution across the
CrochetBench dataset. Note that the “Expe-
rienced” slice (1.3%) is annotated externally
due to its small size.

Each pattern is labeled with one of four primary
skill levels—beginner, easy, intermediate, or expe-
rienced. This allows for stratified evaluation across
complexity tiers. Figure 2] shows the skill level dis-
tribution, which is strongly skewed toward beginner-
friendly content. Only one pattern (0.02%) is miss-
ing a skill level label. More detail can be found at
Table 2??

'"https://www.yarnspirations.com/collections/patterns

https://www.yarnspirations.com/collections/patterns

Under review as a conference paper at ICLR 2026

Instructional complexity varies substantially across patterns. The number of characters in each in-
struction ranges from 20 to over 30,000, with a mean of 3,216 and a median of 2,453. Abbreviation
counts (i.e., unique stitch tokens per pattern) range from 1 to 31, with an average of 10.6. These
statistics are summarized in Appendix We observe a clear correlation between skill level and
instruction length: beginner patterns tend to be short and use fewer abbreviations, while experienced
patterns are significantly longer and more symbolically dense.

In addition to symbolic complexity, the dataset contains 3,143 abbreviation instances mapped to 789
unique standardized stitch tokens. This lexical mapping enables tasks such as vocabulary translation,
sequence generation, and instruction validation. Beyond raw instructions, the structured schema also
records rich metadata, including gauge, hook size, yarn weight, and measurements. A representative
dataset entry is provided in Appendix

Overall, CrochetBench provides a rich resource for multimodal modeling, symbolic reasoning, and
structure-aware generation. Its coverage across diverse categories and complexity levels enables
broad benchmarking of both open-ended generation and instruction fidelity tasks.

Total Patterns Image Coverage Avg. Instr. Length #Project Types
CrochetBench 6,085 98.77% 3,216 characters 55

Table 1: Overall statistics of the CrochetBench dataset.

3 EXPERIMENT

We empirically evaluate CrochetBench by defining a set of structured tasks and benchmarking a di-
verse pool of multimodal large language models. Our experiments are designed to test models across
progressively challenging stages, from low-level recognition to high-level executable synthesis.

Benchmark Tasks. Table 2] summarizes the four evaluation tasks in CrochetBench, which
progress systematically from recognition to comprehension, generation, and ultimately executable
synthesis. Task A (Stitch Recognition) evaluates a model’s ability to detect symbolic primitives
in crochet images, establishing the foundation for multimodal perception. Task B (Instruction Se-
lection) requires models to align visual evidence with candidate textual instructions, thereby testing
multimodal grounding and fine-grained comprehension. Unlike conventional description tasks, the
candidates are procedural steps rather than captions, and correct selection often requires reasoning
about how local steps contribute to the final product. Task C (Instruction Generation) advances
from comprehension to open-ended production, challenging models to generate natural-language
procedural instructions that are both perceptually grounded and linguistically faithful to domain
conventions. Evaluation here emphasizes lexical and symbolic fidelity, but does not directly cap-
ture structural validity. Task D (Instruction-to-DSL Translation) addresses this gap by requiring
models to output a compilable program in a domain-specific language (DSL). The step-level variant
tests local semantic grounding, while the project-level variant demands global structural consistency
across the entire pattern. Compilation-based evaluation directly measures executable faithfulness,
ensuring that generated instructions are not only linguistically plausible but also structurally sound.
Together, these tasks form a structured evaluation ladder that moves from perceptual recognition to
programmatic execution, probing both low-level perception and high-level symbolic reasoning.

Model Selection. We evaluate a diverse set of vision—language models (VLMs) spanning both
open-source and closed-source families. The open-source group includes Salesforce BLIP-2 Flan-
T5 XL (3B), a perception-focused baseline widely used in image—text tasks; Google Gemma 3
(4B) and Qwen2-VL (7B), two recent models trained with large-scale multimodal alignment; and
DeepSeek-VL (7B), a larger open-source model designed for stronger vision—language reasoning.
On the closed-source side, we assess GPT-40, Gemini 2.5 Flash-Lite, and Claude Sonnet 4, which
represent state-of-the-art commercial VLMs that push the limits of multimodal reasoning. This

Under review as a conference paper at ICLR 2026

Table 2: Overview of benchmark tasks in CrochetBench. Tasks progress from recognition to com-
prehension, generation, and executable synthesis.

ID | Ability Tested Task Evaluation Metrics Test Size

A | Recognition Stitch Recognition F1, Precision, Recall (Croch%tolfe?nch— A)

B | Comprehension Instruction Selection Accuracy (Croch%gé)jnch-B)

C | Generation Instruction Generation BLEU, ROUGE, ChrF (Crochée’g;)egnch— 0

D | Formalization Instr.-to-DSL (Step) Valid Pattern Rate (Croche tIIBIe?lch—Ds[ep)
Instr.-to-DSL (Project) Valid Pattern Rate (Croche tl;(;?lch—Dproj)

selection spans perception-heavy baselines to general-purpose multimodal reasoning systems, en-
abling us to evaluate capabilities across both research-grade and production-grade settingsE]

3.1 TASK A: STITCH RECOGNITION

The first task evaluates a model’s ability to identify crochet stitch types from an image of a finished
product. We construct CrochetBench-A, a subset of 6,009 examples from the full benchmark,
where each product image is paired with ground-truth stitch annotations. These labels are derived
from the official pattern instructions and normalized into a standardized set of stitch abbreviations
(e.g., sc, hdc, dc) to ensure consistency across patterns. Unlike standard image classification, this
is a multi-label prediction problem: multiple stitches may co-occur within the same image, often
with subtle visual differences in texture and geometry. This task therefore probes fine-grained visual
grounding of structured crochet semantics.

Evaluation. For each example, we compute overlap between the predicted and reference stitch
sets. True Positives (TP) are stitches correctly predicted; False Positives (FP) are stitches predicted
but not in the reference; and False Negatives (FN) are stitches in the reference but missed by the
model. From these counts, we compute precision (fraction of correct predictions among all predic-
tions), recall (fraction of ground-truth stitches recovered), and F1 score (harmonic mean). Metrics
are averaged across examples to provide overall performance. This formulation rewards models that
recover all present stitches while avoiding spurious predictions.

Accurate stitch recognition is foundational for the benchmark, as later tasks (e.g., instruction selec-
tion and instruction generation) depend on robust detection of stitch primitives.

Table 3: Evaluation results on the Stitch Recognition task. We report Precision, Recall, and F1. Best
results are bold; second-best are underlined.

Model Size Precision Recall F1
Salesforce BLIP-2 Flan-T5 XL 3B 0.2953 0.2303 0.2250
Open Source Google Gemma 3 4B 0.2054 0.1021 0.1265
p DeepSeek-VL 7B 0.5447 0.7476 0.6060
Qwen2-VL 7B 0.5414 0.6974 0.5816
GPT-4o0 - 0.6214 0.5939 0.5801
Closed Source Gemini 2.5 Flash-Lite - 0.7449 0.4977 0.5683
Claude Sonnet 4 - 0.7861 0.5312 0.6094

Results. Claude Sonnet 4 achieves the best overall F1 score, demonstrating strong precision in stitch
recognition. Among open-source models, DeepSeek-VL performs best, with notably high recall,
while Qwen2-VL offers a competitive balance. These results highlight the gap between commercial

>We use the term “VLM” broadly to include both traditional vision-language models (e.g., BLIP-2) and
modern multimodal large language models (e.g., GPT-40, Gemini, Claude).

Under review as a conference paper at ICLR 2026

VLMs and open-source alternatives, but also suggest that large open-source models are beginning
to approach closed-source performance in fine-grained recognition.

3.2 TASK B: INSTRUCTION SELECTION

The second task evaluates whether a model can correctly align a finished crochet product image
with its corresponding natural-language instruction. We construct CrochetBench-B, a subset of
6,003 examples, where each item consists of one correct instruction and three distractor instruc-
tions sampled from the same project category (e.g., hats, rugs). Distractors are carefully chosen
to share structural motifs and vocabulary, thereby increasing difficulty and requiring fine-grained
visual-textual alignment rather than reliance on superficial cues. The answer distribution across
options is approximately uniform (A: 24.9%, B: 25.7%, C: 23.7%, D: 25.7%).

Evaluation. To enable scalable assessment, we formulate the task as a 4-way multiple-choice
question (MCQ). The model must select one option (A-D), with exactly one correct answer. Pre-
dictions are extracted using a lightweight regex-based method that identifies explicit letter outputs
(e.g., “A”, “The answer is B”). If no parsable choice is found, the response is marked as unanswered.
Accuracy is reported as the evaluation metric.

This task provides a controlled measure of visual grounding and semantic alignment between image
content and procedural text, without requiring generative modeling. It highlights the challenge of
distinguishing between subtle visual cues and domain-specific terminology, which is essential for
bridging perception and structured instruction understanding.

Table 4: Evaluation results on the Instruction Selection task (4-way multiple choice). We report
Accuracy. Best results are bold; second-best are underlined.

Model Size Accuracy
Salesforce BLIP-2 Flan-T5 XL 3B 0.2562
Open Source Google Gemma 3 4B 0.2494
p DeepSeek-VL 7B 0.2892
Qwen2-VL 7B 0.4196
GPT-40 - 0.5811
Closed Source Gemini 2.5 Flash-Lite - 0.5563
Claude Sonnet 4 - 0.5739

Results. GPT-40 achieves the highest accuracy, closely followed by Claude and Gemini, all of
which substantially outperform open-source VLMs. Among open-source models, Qwen2-VL is
the strongest, while BLIP-2 and Gemma remain near chance level, underscoring the difficulty of
visually grounded instruction matching in this domain.

3.3 TASK C: INSTRUCTION GENERATION

The third task evaluates a model’s ability to generate natural-language crochet instructions directly
from an image of a finished product. We construct CrochetBench-C, a subset of 6,009 examples,
where each product image is paired with its full pattern. Unlike classification or selection, this task
requires producing a multi-step sequence that follows domain-specific syntax, ordering, and stitch
logic. Outputs are expected to resemble real-world crochet patterns, written line by line (e.g., “Rnd
1: ch 4, 6 sc in ring”). This setting challenges models to translate visual evidence into coherent
procedural text that preserves both symbolic accuracy and structural consistency.

Evaluation. We evaluate generation quality using standard text-generation metrics and a domain-
specific structural measure. BLEU and ROUGE-L capture lexical and n-gram overlap with the
reference instructions. ChrF, computed over character n-grams, provides a finer-grained signal of
similarity and is particularly suited to stitch abbreviations. While these metrics measure surface-
level overlap, they do not directly test whether the generated instructions are structurally consistent
(e.g., balanced stitch counts, valid round progression). To address this limitation, we complement

Under review as a conference paper at ICLR 2026

Task C with Task D, where compilation-based evaluation of DSL translations directly assesses ex-
ecutable consistency. Together, these tasks allow us to probe both linguistic fidelity and procedural
correctness.

Table 5: Evaluation results on the Instruction Generation task. We report BLEU, ROUGE-L, and
ChrF. Higher is better. Best results are bold; second-best are underlined.

Model Size BLEU ROUGE-L ChrF

Salesforce BLIP-2 Flan-T5 XL 3B 0.0021 0.0926 9.32

Open Source Google Gemma 3 4B 0.0010 0.0329 5.17
P Qwen2-VL 7B 0.0160 0.2084 15.76
DeepSeek-VL 7B 0.0133 0.1968 18.12

GPT-40 - 0.0333 0.2353 23.80

Closed Source Gemini 2.5 Flash-Lite - 0.0482 0.2583 30.20
Claude Sonnet 4 - 0.0331 0.2516 22.95

Results. Gemini achieves the strongest overall performance across all metrics, substantially outper-
forming other closed-source models. GPT-40 and Claude follow closely, while open-source models
lag behind with significantly lower BLEU and ChrF scores. This gap highlights the difficulty of
generating structurally faithful crochet instructions, which requires models to capture both visual
details and domain-specific procedural logic.

3.4 TASK D: INSTRUCTION-TO-DSL TRANSLATION

We construct two subsets for Task D: CrochetBench-Dy, (119 items) and CrochetBench-Dy,;
(100 items). For CrochetBench-Dye,, we manually annotate the correct CrochetPARADE DSL for
the previous context of each pattern (a prefix of NL (natural language) —DSL pairs). The model is
then given this prefix along with the next natural-language instruction, and must predict the corre-
sponding DSL line. Predictions are evaluated by checking compilation validity with the Crochet-
PARADE validator. For CrochetBench-Dy,,;, we adopt a few-shot prompting setup rather than full
manual annotation. Annotators provide a single reference program in CrochetPARADE as context,
which is paired with a new natural-language instruction and its product image. The model must
then generate a complete DSL program, and outputs are assessed by whether they compile fully or
partially using the validator.

Design Rationale. Crochet patterns admit many valid DSL realizations (e.g., alternative groupings
or equivalent constructs), meaning that no single gold reference is canonical. A reference-based
metric could unfairly penalize models that produce semantically correct but structurally different
programs. By instead relying on the validator, CrochetBench shifts evaluation away from surface-
level string matching toward functional executability—the central criterion for crochet synthesis.
This design is consistent with other program synthesis benchmarks, such as semantic parsing and
SQL generation, where execution accuracy is often preferred over exact string match.

3.4.1 STEP-LEVEL TRANSLATION

In the step-level setting, the model receives a prefix of NL-DSL pairs and must generate the DSL line
corresponding to the next natural-language instruction. This setup reflects an incremental synthesis
process in which correctness depends on maintaining stitch-level consistency across steps. Since
crochet patterns are inherently stateful, earlier context is critical for resolving constructs such as
increases, repeats, and turning chains. To capture progression through a pattern, we sample 52 early
examples (steps 1-2), 34 mid examples (steps 3—4), and 33 late examples (steps 5—6). Step-level
inputs are formatted as:

Prefix (NL-DSL pairs) + Next NL instruction — Next DSL line.

This formulation allows models to generate locally plausible DSL steps, but global correctness ulti-
mately requires stronger contextual reasoning.

Under review as a conference paper at ICLR 2026

Evaluation. We evaluate models using Compilation Success Rate (CSR), defined as the propor-
tion of generated DSL outputs that compile successfully with the CrochetPARADE validator. This
validator-based metric is a key strength of CrochetBench: unlike reference-based string matching,
CSR directly measures whether generated programs are executable, rewarding functional correct-
ness rather than surface similarity. To better understand systematic errors, we also conduct fine-
grained error analysis across four categories: (1) syntax structure errors, (2) stitch definition errors,
(3) labeling and reference errors, and (4) structural or formatting issues. A detailed taxonomy with
illustrative examples is provided in the Appendix.

CrochetBench further supports multimodal verification, as CrochetPARADE programs can be ren-
dered into simulated product images. These renderings can be compared with ground-truth product
images using pretrained vision—language models (e.g., CLIP), enabling evaluation of both structural
validity and visual faithfulness. While current model performance leaves ample room for progress,
the combination of validator-based execution checks and prospective image-grounded verification
establishes CrochetBench as a uniquely rigorous testbed for structured multimodal reasoning.

Table 6: Verification results across models, grouped by category.

Model CSR (%) Undef. Br. MRef Other Tot. Err.
Open Source
~ Salesforce BLIP-2 Flan-T5 XL~ 4.2 298 482 202 1.8 114
Google Gemma 3 34 26.1 104 635 - 115
DeepSeek-VL 32.8 36.2 38.8 11.2 13.8 80
Qwen2-VL 353 429 39.0 1.3 16.8 77
Closed Source
"GPT-40 361 395 434 - 171 76
Gemini 2.5 Flash-Lite 41.2 514 214 57 21.5 70
Claude Sonnet 4 52.1 456 28.1 - 26.3 57

Results. Step-level translation is locally tractable: models often produce syntactically valid lines,
but compilation failures reveal semantic underspecification. Claude achieves the highest valid rate
(52.1%), while DeepSeek-VL and Qwen2-VL are the strongest among open-source models. Errors
are dominated by syntax (brackets, references) and undefined stitches, underscoring the difficulty of
maintaining state consistency even when local syntax is correct.

3.4.2 PROJECT-LEVEL TRANSLATION

In the project-level setting, the model is provided with the complete crochet instruction in natural
language together with the corresponding product image, and must generate an entire CrochetPA-
RADE program. This variant is globally self-contained but considerably more challenging than the
step-level task: models must track stitch states over long horizons, resolve ambiguities in natural
language, and produce code that is both syntactically valid and semantically aligned with the final
design. Image grounding plays a crucial role in disambiguating constructs such as repeated motifs,
symmetry, and termination conditions.

Evaluation. We assess model outputs using two complementary metrics. The first is Compila-
tion Success Rate (CSR), and the second is Partial Executable Rate (PER), which measures the
average fraction of a program that compiles successfully before failure. While CSR captures all-
or-nothing executability, PER provides a finer-grained view of structural alignment, offering credit
to models that generate correct prefixes even if the full program does not compile. Error types are
categorized using the same taxonomy as in the step-level evaluation.

Results. Project-level translation remains highly challenging. Qwen2-VL achieves the best valid
rate (21.0%) and strong PER, surpassing all closed-source systems. DeepSeek-VL demonstrates
robust partial executability despite a lower valid rate. By contrast, GPT-40, Gemini, and Claude
achieve lower scores, highlighting that even state-of-the-art VLMs struggle with long-range struc-
tural consistency in executable synthesis. Error analysis (Table[8) reveals that closed-source models
often fail due to label and reference inconsistencies, while open-source models more frequently
exhibit undefined stitches and syntax errors.

Under review as a conference paper at ICLR 2026

Table 7: Project-level verification results. We report Compilation Success Rate (CSR) and Partial
Executable Rate (PER). Best scores are bold, second-best are underlined.

Model Size CSR (%) PER (%)
Salesforce BLIP-2 Flan-T5 XL 3B 1.0 0.00
Open Source Google Gemma 3 4B 1.6 5.29
p DeepSeek-VL 7B 8.1 37.49
Qwen2-VL 7B 21.0 30.28
GPT-4o0 - 4.0 2.76
Closed Source Gemini 2.5 Flash-Lite - 4.0 5.67
Claude Sonnet 4 - 5.0 8.16

Table 8: Project-level error type distribution across models (percentage). Abbreviations: Un-
def. (Undefined), Br. (Brackets), Lbl. (Labels Missing), Non-adj. (Non-adjacent), MRef (Multi-
Reference), Other (Other/Runtime).

Model Undef. Br. Lbl. Non-adj. MRef Other
Open Source
~ Salesforce BLIP-2 Flan-TS XL 20 374 - - 586 20
Google Gemma 3 39.3 148 115 8.2 14.8 11.5
DeepSeek-VL 363 451 44 11.0 - 33
Qwen2-VL 25.0 125 7.8 51.6 - 3.1
Closed Source
" GPT40 615 73 167 42 42 62
Gemini 2.5 Flash-Lite 51.1 18.1 9.6 8.5 43 8.6
Claude Sonnet 4 46.3 14.7 21.1 7.4 53 53

4 DISCUSSION

The results across CrochetBench highlight both the promise and current limitations of Visual lan-
guage models in bridging perception, procedural reasoning, and executable synthesis. By struc-
turing tasks in a progressive ladder, we expose clear gradients of difficulty: while contemporary
models demonstrate competence in low-level recognition and mid-level comprehension, their per-
formance declines substantially when asked to generate or formalize instructions into compilable
domain-specific programs. This pattern underscores both methodological bottlenecks in multimodal
grounding and fundamental challenges in symbolic reasoning over long-horizon structures.

In Task A, stitch recognition is feasible for both open- and closed-source models, though preci-
sion—recall tradeoffs differ. Claude Sonnet 4 prioritizes precision for a higher F1, while DeepSeek-
VL favors recall via richer visual encoders. This reflects divergent inductive biases: commercial
models better regularize spurious predictions, while open-source models overpredict to capture sub-
tle textures. Crucially, this is a multi-label, fine-grained texture classification task with symbolic
implications, distinguishing it from generic object recognition. Baselines like BLIP-2, designed for
captioning, underperform due to insufficient symbolic grounding (Li et al., 2023b; [Radford et al.,
2021). Task B amplifies these challenges. Closed-source models, especially GPT-40, outperform
open models by a wide margin, underscoring the difficulty of aligning visual cues with procedural se-
mantics. Distractor instructions are intentionally plausible, demanding reasoning over local—global
coherence, not just token overlap (Hendricks et al.l 2016; |Agrawal et al., 2016; Miech et al., [2019).
Qwen2-VL’s competitive performance suggests that scale and pretraining diversity help, but com-
mercial systems benefit from stronger instruction tuning and better vision—language alignment.

Task C exposes the steep drop in open-ended procedural generation. Gemini 2.5 leads across BLEU,
ROUGE, and ChrF (Papinent et al.||2002; |Linl [2004; |[Popovic, 2015)), reflecting fluency in structured
text. Yet absolute scores are low, and outputs often fail to conform to crochet-specific syntax. Open
models hallucinate frequently, lacking exposure to domain-aligned distributions. This highlights
a broader issue: fluency in general language modeling does not imply competence in structured,
domain-specific generation (Miech et al.,2019; Alayrac et al., 2022).

Under review as a conference paper at ICLR 2026

Task D proves most demanding. Even top closed-source models rarely exceed 6% project-level
compilation success, while Qwen2-VL unexpectedly achieves 21%, suggesting better symbolic gen-
eralization under execution constraints. Syntax errors (e.g., undefined stitches, malformed brackets)
dominate in open models, while closed models produce syntactically valid but semantically inconsis-
tent programs. These complementary failure modes hint at differing generalization paths: symbolic
robustness versus lexical fluency. Notably, Task D also tests 3D-aware procedural fidelity—models
must translate visual or textual cues into symbolic programs that unfold into spatially coherent struc-
tures, not just grammatically valid sequences.

Taken together, these results demonstrate that success in linguistic generation does not translate
directly to executable synthesis. Performance decays sharply when evaluation moves from surface-
level fidelity (BLEU, ROUGE) to structural validity (compilation), reinforcing the importance of
execution-grounded metrics for procedural tasks. The relative strength of Qwen2-VL at the project
level further suggests that progress may come not from scaling alone, but from architectural or train-
ing adjustments that better capture long-range dependencies and stateful operations. More broadly,
CrochetBench exposes a critical frontier for multimodal reasoning: models must not only ground
text in vision but also internalize procedural invariants that guarantee functional correctness.

However, our analysis must be contextualized within certain constraints. The benchmarks reflect
standardized stitch sets and normalized instructions, which, while ensuring comparability, simplify
the variability encountered in real-world crochet practice (e.g., designer-specific shorthand, uncon-
ventional repeats). Moreover, evaluation metrics in Task C rely on string overlap, which may under-
estimate semantically correct but lexically divergent outputs. Even the compilation-based metric in
Task D, though stronger, cannot assess visual fidelity unless paired with image-render verification.
Finally, the sample size for project-level DSL translation remains limited, and absolute validity rates
are low, constraining fine-grained statistical comparisons.

5 FUTURE WORK

A central avenue for future research is advancing models that translate free-form natural language
crochet instructions into the formal CrochetPARADE DSL. As a domain-specific programming
language, CrochetPARADE not only enables executable verification of multimodal outputs but also
positions crochet as a program synthesis problem, where compilers map symbolic grammars into
machine-executable instructions, extending ideas from prior DSL work in domains such as knitting
(Hofmann et al., 2023)), graphics (Ellis et al., 2018), and robotics (Mu et al., 2024). This perspec-
tive connects naturally to CAD/CAM integration: industrial crochet and warp-knitting machines
(e.g., COMEZ, Jakob Miiller) already rely on pipelines from graphical design interfaces, to in-
termediate graph-based representations, to low-level machine code. CrochetPARADE could serve
as a standardized intermediate layer in this workflow, bridging human-facing authoring tools with
machine-facing execution systems (Khan et al., 2024).

Several technical directions arise from this framing. First, incorporating explicit state-tracking
mechanisms—whether through memory-augmented architectures (Graves et al.| 2016)) or symbolic
scaffolds (Nye et al.,[2021)—could mitigate long-range inconsistencies in DSL translation. Second,
multimodal pretraining enriched with procedural and topological domains (e.g., assembly instruc-
tions (Cao et al., |2023)), instructional videos (Miech et al., [2019)) may narrow the gap between
natural-language fluency and executable synthesis. Third, hybrid evaluation pipelines that com-
bine compilation checks with visual render comparisons could more holistically assess structural
and perceptual fidelity, building on metrics used in programmatic 3D generation (Jain et al., [2022;
Paschalidou et al.,|2021)). Finally, CrochetBench offers a testbed for exploring neuro-symbolic inte-
gration, where neural perception is paired with symbolic reasoning to reconcile fine-grained visual
cues with globally coherent program execution.

In sum, CrochetBench and CrochetPARADE highlight a pronounced frontier at the intersection
of multimodal learning, program synthesis, and digital fabrication. Progress here may one
day close the loop from human intent to automated textile production, advancing both structured
multimodal reasoning and computational craft.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge that the original crochet pattern PDFs are protected under copyright and therefore
do not distribute raw files or full texts. Instead, we release only structured JSON annotations gen-
erated with GPT, reference URLSs to the original sources, and our parsing and annotation scripts.
The benchmark is provided strictly for non-commercial academic use. This approach enables repro-
ducible research while respecting intellectual property and ensuring that our dataset serves as a tool
for studying structured generation rather than redistributing creative works.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets, task templates,
and evaluation procedures are documented in the main text and appendix. An anonymous repository
containing the full source code, experiment scripts, and detailed reproduction instructions has been
made publicly available at: https://anonymous.4open.science/r/crochet-82E6/
README . md. This ensures that all reported results can be independently verified and extended by
the research community.

REFERENCES

Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell, C. Lawrence Zitnick, Dhruv
Batra, and Devi Parikh. Vqa: Visual question answering, 2016. URL https://arxiv.org/
abs/1505.00468.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
model for few-shot learning, 2022. URL https://arxiv.org/abs/2204.14198,.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732,

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot, 2017. URL
https://arxiv.org/abs/1705.07962.

Yizhak Ben-Shabat, Xin Yu, Fatemeh Sadat Saleh, Dylan Campbell, Cristian Rodriguez-Opazo,
Hongdong Li, and Stephen Gould. The ikea asm dataset: Understanding people assembling
furniture through actions, objects and pose, 2023. URL https://arxiv.org/abs/2007.
00394.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection
for tuning large language models. arXiv preprint arXiv:2307.06290, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. Image-to-markup generation
with coarse-to-fine attention, 2017. URL https://arxiv.org/abs/1609.04938.

10

https://anonymous.4open.science/r/crochet-82E6/README.md
https://anonymous.4open.science/r/crochet-82E6/README.md
https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/2007.00394
https://arxiv.org/abs/2007.00394
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1609.04938

Under review as a conference paper at ICLR 2026

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum. Learning to in-
fer graphics programs from hand-drawn images, 2018. URL https://arxiv.org/abs/
1707.09627.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models, 2024. URL https://arxiv.org/abs/
2306.13394.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiriska, Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471-476, 2016.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor
Darrell. Generating visual explanations, 2016. URL https://arxiv.org/abs/1603.
08507.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021. URL https://arxiv.org/abs/2105.09938!.

Megan Hofmann, Lea Albaugh, Tongyan Wang, Jennifer Mankoff, and Scott E Hudson. Knitscript:
A domain-specific scripting language for advanced machine knitting. In Proceedings of the
36th Annual ACM Symposium on User Interface Software and Technology, UIST 23, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701320. doi:
10.1145/3586183.3606789. URL https://doi.org/10.1145/3586183.3606789,

Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A. Smith, and Jiebo Luo. Promptcap:
Prompt-guided image captioning for vqa with gpt-3. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 2963-2975, October 2023.

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided
object generation with dream fields. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 867-876, 2022.

Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr Kellnhofer, Jacqueline Aslarus, and Woj-
ciech Matusik. Neural inverse knitting: From images to manufacturing instructions, 2019. URL
https://arxiv.org/abs/1902.02752.

Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin Sheikh, Didier Stricker, Sk Aziz Ali, and
Muhammad Zeshan Afzal. Text2cad: Generating sequential cad models from beginner-to-expert
level text prompts, 2024. URL https://arxiv.org/abs/2409.17106,

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal 1lms with generative comprehension. arXiv preprint arXiv:2307.16125,
2023a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models, 2023b. URL https://
arxiv.org/abs/2301.12597.

Peiyu Li, Xiaobao Huang, Yijun Tian, and Nitesh V. Chawla. Cheffusion: Multimodal foundation
model integrating recipe and food image generation. In Proceedings of the 33rd ACM Inter-
national Conference on Information and Knowledge Management, CIKM ’24, pp. 3872-3876,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704369. doi:
10.1145/3627673.3679885. URL https://doi.org/10.1145/3627673.3679885|

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text Summarization

Branches Out, pp. 74-81. Association for Computational Linguistics, 2004. URL https://
aclanthology.org/wW04-1013/.

11

https://arxiv.org/abs/1707.09627
https://arxiv.org/abs/1707.09627
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/1603.08507
https://arxiv.org/abs/1603.08507
https://arxiv.org/abs/2105.09938
https://doi.org/10.1145/3586183.3606789
https://arxiv.org/abs/1902.02752
https://arxiv.org/abs/2409.17106
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://doi.org/10.1145/3627673.3679885
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/

Under review as a conference paper at ICLR 2026

Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen WU, Mingyi Yan, Zhengyuan Yang, Lijuan
Wang, and Mike Zheng Shou. Videogui: A benchmark for gui automation from instructional
videos, 2024. URL https://arxiv.org/abs/2406.10227.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar
Weber, and Antonio Torralba. Recipelm+: A dataset for learning cross-modal embeddings for
cooking recipes and food images, 2019. URL https://arxiv.org/abs/1810.06553|

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated video
clips, 2019. URL https://arxiv.org/abs/1906.03327.

Fnu Mohbat and Mohammed J Zaki. Llava-chef: A multi-modal generative model for food recipes.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge Man-
agement, pp. 1711-1721, 2024.

Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian Ge, Runjian Chen,
Zhixuan Liang, Mengkang Hu, Chaofan Tao, Peize Sun, Haibao Yu, Chao Yang, Wenqi Shao,
Wenhai Wang, Jifeng Dai, Yu Qiao, Mingyu Ding, and Ping Luo. Robocodex: Multimodal code
generation for robotic behavior synthesis, 2024. URL https://arxiv.org/abs/2402.
16117

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021. URL https://arxiv.org/abs/2112.00114.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics (ACL 2002), pp. 311-318. Association for Computational Linguistics,
2002. URL https://aclanthology.org/P02-1040/.

Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, and Sanja Fidler. Neural parts:
Learning expressive 3d shape abstractions with invertible neural networks, 2021. URL https:
//arxiv.org/abs/2103.10429.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models, 2016. URL https://arxiv.org/abs/1505.04870.

Maja Popovié. chrf: character n-gram f-score for automatic mt evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation (WMT 2015), pp. 392-395. Association for
Computational Linguistics, 2015. URL https://aclanthology.org/W15-3049/.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Klara Seitz, Patrick Rein, Jens Lincke, and Robert Hirschfeld. Digital crochet: Toward a visual
language for pattern description. In Proceedings of the 2022 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Software, Onward!
2022, pp. 48-62, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450399098. doi: 10.1145/3563835.3567657. URL https://doi.org/10.1145/
3563835.3567657.

Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, Robert Wang, and
Angela Yao. Assemblyl01: A large-scale multi-view video dataset for understanding procedural
activities, 2022. URL https://arxiv.org/abs/2203.14712.

12

https://arxiv.org/abs/2406.10227
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1810.06553
https://arxiv.org/abs/1906.03327
https://arxiv.org/abs/2402.16117
https://arxiv.org/abs/2402.16117
https://arxiv.org/abs/2112.00114
https://aclanthology.org/P02-1040/
https://arxiv.org/abs/2103.10429
https://arxiv.org/abs/2103.10429
https://arxiv.org/abs/1505.04870
https://aclanthology.org/W15-3049/
https://arxiv.org/abs/2103.00020
https://doi.org/10.1145/3563835.3567657
https://doi.org/10.1145/3563835.3567657
https://arxiv.org/abs/2203.14712

Under review as a conference paper at ICLR 2026

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for im-
age captioning with reading comprehension, 2020. URL https://arxiv.org/abs/2003.
12462.

Svetlin Tassev. Crochetparade: Crochet pattern renderer, analyzer, and debugger, 2025. URL
https://www.crochetparade.org/. Accessed: 2025-09-24.

Haiwan Wei, Yitian Yuan, Xiaohan Lan, Wei Ke, and Lin Ma. Instructionbench: An instructional
video understanding benchmark, 2025. URL https://arxiv.org/abs/2504.05040.

Yejing Xie, Harold Mouchere, Foteini Simistira Liwicki, Sumit Rakesh, Rajkumar Saini, Masaki
Nakagawa, Cuong Tuan Nguyen, and Thanh-Nghia Truong. Icdar 2023 crohme: Competition
onnbsp;recognition ofnbsp;handwritten mathematical expressions. In Document Analysis and
Recognition - ICDAR 2023: 17th International Conference, San José, CA, USA, August 21-26,
2023, Proceedings, Part II, pp. 553-565, Berlin, Heidelberg, 2023. Springer-Verlag. ISBN 978-
3-031-41678-1. doi: 10.1007/978-3-031-41679-8_33. URL https://doi.org/10.1007/
978-3-031-41679-8_33.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
mine aligned code and natural language pairs from stack overflow. In International Conference
on Mining Software Repositories, MSR, pp. 476-486. ACM, 2018. doi: https://doi.org/10.1145/
3196398.3196408.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale human-
labeled dataset for complex and cross-domain semantic parsing and text-to-sql task, 2019. URL
https://arxiv.org/abs/1809.08887.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556-9567, 2024.

Zheyuan Zhang, Yiyang Li, Nhi Ha Lan Le, Zehong Wang, Tianyi Ma, Vincent Galassi, Keerthi-
ram Murugesan, Nuno Moniz, Werner Geyer, Nitesh V Chawla, Chuxu Zhang, and Yanfang Ye.
NGOQA: A nutritional graph question answering benchmark for personalized health-aware nutri-
tional reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 5934-5966, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.296.
URLhttps://aclanthology.org/2025.acl-1ong.296/.

Luowei Zhou, Chenliang Xu, and Jason J. Corso. Towards automatic learning of procedures from
web instructional videos, 2017. URL https://arxiv.org/abs/1703.09788.

13

https://arxiv.org/abs/2003.12462
https://arxiv.org/abs/2003.12462
https://www.crochetparade.org/
https://arxiv.org/abs/2504.05040
https://doi.org/10.1007/978-3-031-41679-8_33
https://doi.org/10.1007/978-3-031-41679-8_33
https://arxiv.org/abs/1809.08887
https://aclanthology.org/2025.acl-long.296/
https://arxiv.org/abs/1703.09788

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 MULTI-MODAL DATASETS BEYOND CAPTIONING

Most multimodal benchmarks have centered on descriptive pairing of images and natural language.
Large-scale resources such as COCO (Lin et al, |2015) and Flickr30k (Plummer et al., 2016) pro-
vide dense captions of everyday scenes, advancing vision—-language representation learning. More
recent datasets extend beyond captioning to procedural or instructional domains. Recipel M+ aligns
food images with ingredient lists and cooking steps (Marin et alJ [2019), while instructional video
corpora such as YouCook2 (Zhou et al., [2017) and HowTo100M (Miech et al., 2019) pair narrated
demonstrations with visual segments. These resources emphasize semantic alignment but generally
evaluate with retrieval- or similarity-based metrics.

Our benchmark departs from this paradigm by pairing images with executable procedures. Rather
than asking models to generate a semantically similar description, we require them to synthesize a
program (CrochetPARADE DSL) that can be rendered and structurally verified. This shift enables
functional evaluation—akin to program synthesis—and reduces reliance on subjective similarity
measures.

A.2 BRIDGING VISUAL REASONING AND PROCEDURAL LANGUAGE

Procedural understanding benchmarks highlight the importance of sequential, state-dependent rea-
soning. Datasets such as Assemblyl101 (Sener et al., 2022) and IKEA-ASM (Ben-Shabat et al.,
2023)) capture human assembly activities, modeling dependencies across actions, objects, and pre-
conditions. Instructional video benchmarks further test long-horizon understanding and error de-
tection (Wei et al.| 2025} [Lin et al.l [2024). Our task complements this line of work by grounding
supervision not in temporally segmented actions but in artifact-centric procedures—finished crochet
items paired with symbolic, stepwise instructions. This enables models to reason about topology,
geometry, and sequential dependencies in a single unified representation.

A.3 CRAFTING AND DOMAIN-SPECIFIC PROCEDURAL DATA

Closer to our domain, prior work has begun to explore fiber crafts. Seitz et al. introduced Digital
Crochet, a visual, graph-based notation system for representing crochet patterns (Seitz et al., [2022).
In knitting, Kaspar et al. developed Neural Inverse Knitting, mapping images of knitted patterns
to machine instructions (Kaspar et al2019). These works underscore the feasibility of executable
supervision in crafts, but remain limited in scale and scope. Our benchmark builds on this founda-
tion by providing thousands of real, community-tested crochet patterns, along with a compiler and
renderer for executable evaluation.

A.4 RELATION TO CODE BENCHMARKS

The executable nature of CrochetPARADE connects it directly to program synthesis benchmarks.
HumanEval (Chen et al.|[2021), MBPP (Austin et al.,[2021), and APPS (Hendrycks et al.,2021) eval-
uate code generation by execution against unit tests. Similarly, Spider (Yu et al.,2019)) and CoNaLa
(Yin et al., 2018) frame natural language to code translation tasks. In vision, Im2LaTeX-100K
(Deng et al., |2017) and pix2code (Beltramelli, |2017) evaluate image-to-program translation with
render fidelity as the metric. Our tasks—ranging from text-to-DSL translation to image-to-stitch
recognition—extend this paradigm to the crafting domain, introducing structured 2D/3D topology
as part of the evaluation. This grounds multimodal learning in a setting where success requires both
semantic alignment and structural correctness.

A.5 DOMAIN-SPECIFIC LANGUAGES FOR EXECUTABLE EVALUATION

A key enabler of our benchmark is the use of a domain-specific language. Prior DSL-based bench-
marks, such as Im2LaTeX and the CROHME competition on handwritten math recognition (Xie
et al.| |2023), demonstrate how symbolic formalisms enable reproducible rendering and structural
evaluation. CrochetPARADE adopts this principle for fiber crafts: each pattern compiles into an

14

Under review as a conference paper at ICLR 2026

abstract syntax tree that can be rendered and tested, supporting metrics such as ExecPass @K, struc-
tural unit tests, and image—render similarity. This functional perspective moves beyond surface-level
similarity to test whether a model’s output actually works.

B ADDITIONAL DATASET STATISTICS

B.1 INSTRUCTION COMPLEXITY BY SKILL LEVEL

Skill Level Avg. Length Median Length Avg. Abbr. Count

Beginner 1,674 1,365 9.2 465
Easy 2,761 2,182 10.8 3,569
Intermediate 4,221 3,387 10.7 1,967
Experienced 7,689 6,729 9.8 80

Table 9: Instruction complexity by skill level. Length is measured in characters.

EXAMPLE DATASET ENTRY

Table 10: Representative pattern entry from CrochetBench.

Field Value

Pattern Name SKULL TRICK OR TREAT BAG (TO CROCHET)

Skill Level Intermediate

Project Type Bags or Purses

Measurements 15 cm diameter x 15 cm high (excluding handle)

Gauge 13 sc and 14 rows = 10 cm

Materials Lily® Sugar’n Cream (White, Black), 5 mm hook, cardboard

Image https://www.yarnspirations.com/cdn/shop/
products/SCC0303-005314M. jpg

Source input_file/Bags+Purses/SCC0303-005314M.pdf

Instructions (truncated for brevity)

B.2 SKILL LEVEL DISTRIBUTION

B.2.1 OVERALL DISTRIBUTION

Table [[1] summarizes the overall distribution of skill levels across the CrochetBench dataset. The
majority of patterns are labeled as easy (58.7%), followed by intermediate (32.3%). Only a small
fraction are classified as beginner (7.6%) or experienced (1.3%)E]

Table 11: Overall skill level distribution. Percentages are relative to all patterns with annotated skill
levels.

Skill Level Count Percentage

Easy 3569 58.66%
Intermediate 1967 32.33%
Beginner 465 7.64%
Experienced 80 1.31%
Total 6084 100%

One pattern (0.02%) is missing an annotated skill level.

*Three additional rare labels were observed: easy to intermediate (1 pattern), beginners (1
pattern), and beginner/easy (1 pattern). Together they account for < 0.1% of the dataset.

15

https://www.yarnspirations.com/cdn/shop/products/SCC0303-005314M.jpg
https://www.yarnspirations.com/cdn/shop/products/SCC0303-005314M.jpg

Under review as a conference paper at ICLR 2026

B.2.2 DISTRIBUTION BY PROJECT TYPE

We further break down skill levels by the top 10 most common project types. Results are shown in
Table[T2] In most categories, easy patterns dominate, typically ranging between 53-70%. Interme-
diate is the second most common, while beginner and experienced remain consistently low across

categories.

Table 12: Skill level distribution by top 10 project types. Percentages are within each project cate-
gory.

Project Type Easy Intermediate Beginner Experienced
Afghans & Blankets 56.1% 35.3% 7.0% 1.5%
Hats 61.3% 27.8% 10.1% 0.7%
Sweaters & Cardigans 56.6% 35.9% 5.0% 2.5%
Shawls & Wraps 52.7% 41.8% 4.2% 1.2%
Scarves 63.2% 20.7% 16.1% -
Pillows & Poufs 70.0% 22.9% 6.5% 0.7%
Amigurumi & Toys 64.0% 33.2% 2.1% 0.7%
Bags & Purses 53.8% 39.0% 6.8% 0.4%
Décor 58.4% 33.3% 6.5% 1.7%
Dishcloths 62.6% 27.5% 9.9% -

Overall, the predominance of easy patterns reflects the accessibility of crochet as a craft and aligns
with the goal of many project types to cater to a wide audience. The relative scarcity of experienced-
level patterns suggests that most published resources emphasize broad usability rather than advanced

expertise.

B.3 PATTERN COMPLEXITY ANALYSIS

B.3.1 INSTRUCTION LENGTH STATISTICS

We first analyze the distribution of instruction lengths, measured in raw character counts. As shown
in Table[I3] the average instruction length is over 3,200 characters, while the median is substantially
lower at 2,453 characters, reflecting a long-tailed distribution. The most complex patterns extend
beyond 30,000 characters, while some very short patterns are as small as 20 characters.

Table 13: Instruction length statistics (in characters).

Statistic Value
Average 3216.0
Median 2453.0
Min 20
Max 30634

25th percentile 1511.8
75th percentile 4136.2
90th percentile 6403.9

Out of 6,085 total patterns, 6,084 (99.98%) contain full instructions.

B.3.2 ABBREVIATION STATISTICS

Abbreviations, such as sc, dc, and hdc, are a distinctive element of crochet instructions. Table[14]
reports abbreviation counts across all patterns. Most patterns contain about 10 abbreviations, with

values ranging from 1 to 31.

16

Under review as a conference paper at ICLR 2026

Table 14: Abbreviation count statistics.
Statistic Value

Average 10.6
Median 10.0
Min 1
Max 31

B.3.3 COMPLEXITY BY SKILL LEVEL

Instruction length correlates with the designated skill level. As shown in Table beginner-level
patterns average under 2,000 characters, while intermediate patterns extend to over 4,200. Expe-
rienced patterns are the longest, averaging 7,689 characters. Rare categories such as easy to
intermediate skew extremely long due to outliers.

Table 15: Instruction length and abbreviation counts by skill level.

Skill Level Avg. Length Median Length Avg. Abbr. Count
Easy to intermediate 13812.0 13812.0 21.0 1
Experienced 7689.4 6729.0 9.8 80
Intermediate 4221.3 3387.0 10.7 1967
Easy 2760.7 2182.0 10.8 3569
Beginner 1673.9 1365.0 9.2 465
Beginners 1633.0 1633.0 11.0 1
Beginner/Easy 1063.0 1063.0 - 1

B.3.4 MOoOST AND LEAST COMPLEX PROJECT TYPES

Finally, we identify the most complex and simplest project types by average instruction length.
Tables @] and list the top 10 categories. Garments such as dresses, vests, pants, and tunics are
the most demanding, with average instructions exceeding 5,800 characters. By contrast, smaller
accessories such as cowls, washcloths, scarves, and headbands are substantially shorter, typically
under 2,000 characters.

Table 16: Top 10 most complex project types (by average instruction length).

Project Type Avg. Length Median Count
Dresses 6484.9 5799.0 34
Vests 6032.0 5193.5 64
Pants 5866.7 5409.0 11
Tunics 5850.4 5832.0 29
Sets 5625.5 4847.0 111
Sweaters & Cardigans 5429.2 5113.0 357
Amigurumi & Toys 53224 4505.0 286
Jackets 53119 4831.0 31
Onesies & Rompers 52634 5181.0 5
Aprons 4467.8 44940 11

Taken together, these results highlight strong alignment between project type, designated skill level,
and instruction length. Garment-oriented projects require substantially longer and more complex
instructions, while accessories and small decorative items remain simple and concise.

17

Under review as a conference paper at ICLR 2026

Table 17: Top 10 simplest project types (by average instruction length).

Project Type Avg. Length Median Count
Cowls 1288.3 956.5 154
Washcloths & Mitts 1502.5 1420.0 28
Scarves 1567.3 1221.0 304
Headbands 1617.5 1475.5 38
Dishcloths 1688.4 1571.0 222
Coasters 1750.3 1625.0 26
Booties 1921.9 1938.5 24
Jewelry 1960.3 1549.0 55
Super Scarves 2007.6 1213.0 13
Tech Accessories 2011.1 2099.0 13

C PROMPTS

C.1 TASK A: STITCH RECOGNITION PROMPT

This task evaluates a model’s ability to identify stitches present in a crochet product image.

Stitch Recognition Prompt (Rendered Example)

SYSTEM PROMPT You are a crochet stitch expert.

Given an image of a crochet product, identify all stitches that appear.
Requirements:

- Use only standard U.S. crochet abbreviations

(e.g., sc, hdc, dc, tr, ch, sl st, pop, etc.).

- Output must be a comma-separated list of abbreviations.

- Do not include explanations, extra text, or formatting beyond the list.

999999

USER PROMPT Look at this crochet product image and list the stitches used.
[Image]

C.2 TASK B: INSTRUCTION SELECTION PROMPT

This task evaluates a model’s ability to choose the correct instructions from multiple-choice options.

Instruction Selection Prompt (Rendered Example)

SYSTEM PROMPT
You are a crochet expert. Your task is to determine which of the given options (A, B, C, or
D) contains the correct crochet instructions for the image shown.”””

USER PROMPT

Look at this crochet image and choose which option best matches the instructions for making
it.

[Image]

Options: {options text}

Choose exactly ONE option. Your answer should be only one letter: A, B, C, or D.

C.3 TASK C: INSTRUCTION GENERATION PROMPT

This task evaluates a model’s ability to generate complete crochet instructions from an image.

18

Under review as a conference paper at ICLR 2026

Instruction Generation Prompt (Rendered Example)

SYSTEM PROMPT

You are a professional crochet pattern writer. Examine the image of the finished crochet
product carefully. Write a complete set of crochet instructions in the standard style used in
published patterns.

Requirements:

- Use standard abbreviations: sc (single crochet), hdc (half double crochet),

dc (double crochet), tr (treble), ch (chain), sl st (slip stitch), rep (repeat).

- Organize the instructions row by row or round by round (e.g., "Rnd 1: ...”, "Row 2: ...”).

- If color changes are visible in the image, include them in the pattern.

- Keep the instructions concise and precise, as if for experienced crocheters.

- Output only the crochet pattern. Do not add any explanations, commentary, or extra text.

USER PROMPT
Generate step-by-step crochet instructions for this image.
[Image]

C.4 TASK D (STEP-LEVEL): NL — DSL TRANSLATION PROMPT

This task evaluates whether a model can translate a single natural language instruction into exactly
one line of compilable CrochetPARADE DSL code.

Step-level NL. — DSL Translation Prompt (Rendered Example)

SYSTEM PROMPT

You are a crochet compiler. Translate the next instruction NL into one line of CrochetPA-
RADE DSL.

Use consistent naming and syntax.

Important rules for translations:

1. Make sure your output ONLY contains the DSL code, nothing else.

2. Use the previous examples to understand the pattern of translation.

3. Be consistent in naming conventions with the examples.

4. Your output should be exactly one line of DSL code.

USER PROMPT

Now translate the NL into DSL:
NL:

DSL:

C.5 TASK D (PROJECT-LEVEL): NL — DSL TRANSLATION PROMPT

This task evaluates whether a model can convert natural language crochet instructions (with optional
images) into compilable CrochetPARADE DSL code.

NL — DSL Translation Prompt (Rendered Example)

SYSTEM PROMPT
You are a professional crochet pattern writer. Convert instructions + images into compilable
CrochetPARADE DSL code. Output only the DSL code. No explanations, commentary, or
extra text.
Example 1:

“image path”: https://www.yarnspirations.com/cdn/shop/files/
BRC0116-035467M. jpg,

INSTRUCTIONS
Note: Join with sl st to first sc at end of each rnd.

19

https://www.yarnspirations.com/cdn/shop/files/BRC0116-035467M.jpg
https://www.yarnspirations.com/cdn/shop/files/BRC0116-035467M.jpg

Under review as a conference paper at ICLR 2026

Ch 2.

Rnd 1: 6 sc in 2nd ch from hook. Join. (6 sc)

Rnd 2: Ch 1. 2 sc in each sc around. Join. (12 sc)

Rnd 3: Ch 1. (2 sc in next sc, 1 sc in next sc) repeat around. End with 1 sc. Join. (18
SC)

Rnd 4: Ch 1. (2 sc in next sc, 1 sc in each of next 2 sc) repeat. End with 1 sc in last
2 sc. Join. (24 sc)

Rnd 5: Ch 1. Sc in each sc around. Join. (24 sc)

Rnd 6: Ch 1. (2 sc in next sc, 1 sc in each of next 3 sc) repeat. End with 1 sc in last
3 sc. Join. (30 sc)

Rnds 7-8: Repeat Rnd 5 (sc in each sc). Join. (30 sc each round)

Rnd 9:%* Ch 1. **Working in back loops only: (2 sc in next sc, 1 sc in each of next
2 sc) repeat. End with 1 sc in last 2 sc. Join. (40 sc)

Rnd 10: Ch 1. Sc in each sc around (both loops). Join. (40 sc)

**Rnd 11:%* Ch 1. (2 sc in next sc, 1 sc in each of next 3 sc) repeat. End with 1 sc in last
3 sc. Join. (50 sc)

Finish: Fasten off.

DSL

Qch.B

Jsc@B.A,5sc@B,ss@A
Jch.A,sk,6sc2inc,ss@A
Jch.A,sk,[sc2inc,sc]*6,ss@A
Jch.A,sk,[sc2inc,2sc]*6,ss @A
Qch.A,sk,24sc,ss@A
Qch.A,sk,[sc2inc,3sc]*6,ss@A
J[ch.A,sk,30sc,ss@A

q1*2

Qch.A,sk,[scbl,scbl@[@],2scbl]*10,ss @ A
Jch.A,sk,40sc,ss@A
Qch.A,sk,[sc2inc,3sc]*10,ss@A

USER PROMPT
Now generate DSL code for the following:

[Image]

[Instructions]

Rnd 1: Ch 2, 6 sc in ring

Rnd 2: 2 sc in each (12)

Rnd 3: [Sc, sc, inc] around (16)
Rnd 4: [Tr, sc] repeat around

[DSL]

D CROCHETPARADE: PATTERN RENDERER, ANALYZER, AND DEBUGGER

CrochetPARADE (short for Crochet Pattern Renderer, Analyzer, and Debugger) is an interactive
platform that enables users to author, visualize, test, and export crochet patterns in both 2D and
3D (Tassev, 2025). By combining a custom pattern grammar with simulation and rendering tools,
CrochetPARADE addresses common issues of ambiguity, correctness, and interpretability in textual
crochet instructions [

Core Capabilities.

*nttps://www.crochetparade.org/

20

https://www.crochetparade.org/

Under review as a conference paper at ICLR 2026

* Interactive authoring and rendering. Users write pattern instructions in the CrochetPA-
RADE grammar and then invoke a “calculate” operation to convert those instructions into a
virtual model. The system supports both 2D and 3D views, along with interactive controls
such as zoom, rotation, and stitch highlighting.

 Validation and debugging. CrochetPARADE parses the input, checks for syntactic and
consistency errors (e.g., mismatched stitch counts, impossible attachments), and flags over-
or under-stretched stitches.

* Export and interoperability. From a rendered pattern, users can export:

— A standard crochet chart (SVG) with conventional stitch symbols and labeled stitch
connections.

— A 3D model (GLTF format) for integration into external tools such as Blender.

— The underlying pattern instructions text (in the CrochetPARADE grammar), ensuring
reproducibility and sharing.

Design Ideals and Rationale. CrochetPARADE is built to meet several design goals: (i) unam-
biguous precision, where the grammar is far more strict than free-form natural language, reducing
interpretive errors; (ii) local computation, since all parsing, simulation, and rendering occur client-
side in the browser with no user instructions sent to a central server; and (iii) open source extensibil-
ity, as the platform is released under GPLv3, with the grammar manual provided under a Creative
Commons BY-NC-SA license.

Role in Our Work. Within the context of CrochetBench, CrochetPARADE provides a rigorous
target representation: model predictions can be compiled into CrochetPARADE instructions, vali-
dated for syntactic and structural correctness, and then visualized or executed. This enables evalu-
ation beyond surface-level metrics (e.g., BLEU, ROUGE) toward executor correctness—whether a
generated pattern is valid, renderable, and stitch-balanced.

size
One size to it Adult

GAUGE
55cand S rows = 4" (10 cm,

INSTRUCTIONS
Note

15k, [scbl, scble(e], 25cbl110, ss:

15k, 405¢, 55
15k, [sc2inc, 35c1+10, 55

Figure 3: Example of the CrochetBench translation pipeline. (Left) Natural language crochet in-
structions from the dataset. (Second) Automatically translated into CrochetPARADE DSL, a formal
stitch grammar. (Third) Mesh rendering generated from the DSL. (Right) Target crocheted item
image provided in the dataset. This pipeline enables direct text-to-image consistency checks, auto-
mated validation, and future training of NL. — DSL models, analogous to text-to-code generation.

E DSL ERROR TAXONOMY

To better understand failure cases in Task D, we extend the validator’s error analysis with detailed
subcategories and examples. Errors fall into four major groups:

1. SYNTAX STRUCTURE ERRORS

Unbalanced Brackets. Missing opening/closing parentheses or brackets.

Unbalanced brackets: (sc,hch5,sltr)infl)

21

Under review as a conference paper at ICLR 2026

1:2: Multiple References Without Parentheses. Improper formatting of references.
1136

1137

1138 Multiple references defined without parenthesis:
1139 (210h),turn

1140 sk, (20sc)

1141 (2ndrow) :Chl. (1scbl) ineachchtoendofrow.Turn
1142

1142 2. STITCH DEFINITION ERRORS

1144

1145 Stitch Not Found. Undefined stitch types not in the dictionary.

1146

1147

e hl, ch3 fp, hdc. b

1149 chl, ch3, scfp, hdc_bar

1150

1151 3 LABELING AND REFERENCE ERRORS

1152

1152 Label Not Found. Reference to a non-existent label.

1154

1155

1156 Label not found: C

1157

1158 Reusing Labels Incorrectly. Same label used for non-adjacent stitches.

1159

1160

1161 . .
1162 Cannot use same label over non—-adjacent stitches.
Lien Consider using different labels.

1164

1185 4, STRUCTURAL AND FORMATTING ISSUES
1166

117 Turning Errors. Misplaced turning commands.
1168
1169

1170 Turning can happen only at the end of a row.
1171

1172 Variable Naming Issues. Conflicts between variable names and stitch names.
1173

1174

1175

1176 Error: variable name matches stitch name. For

1177 example, S$ch=0$ cannot be used since ’'ch’ 1is a stitch
s name.

1:;3 Runtime Errors. Low-level parsing failures from the JavaScript compiler.

1181

1182

1183 Cannot read properties of null (reading ’0’)

1184 Cannot use ’'in’ operator to search for ’'attach_id’ in
1185 NaN

1186

1187

22

	Introduction
	Dataset Description
	Experiment
	Task A: Stitch Recognition
	Task B: Instruction Selection
	Task C: Instruction Generation
	Task D: Instruction-to-DSL Translation
	Step-Level Translation
	Project-Level Translation

	Discussion
	Future Work
	Related Work
	Multi-modal Datasets Beyond Captioning
	Bridging Visual Reasoning and Procedural Language
	Crafting and Domain-Specific Procedural Data
	Relation to Code Benchmarks
	Domain-Specific Languages for Executable Evaluation

	Additional Dataset Statistics
	Instruction Complexity by Skill Level
	Skill Level Distribution
	Overall Distribution
	Distribution by Project Type

	Pattern Complexity Analysis
	Instruction Length Statistics
	Abbreviation Statistics
	Complexity by Skill Level
	Most and Least Complex Project Types

	Prompts
	Task A: Stitch Recognition Prompt
	Task B: Instruction Selection Prompt
	Task C: Instruction Generation Prompt
	Task D (Step-level): NL DSL Translation Prompt
	Task D (Project-Level): NL DSL Translation Prompt

	CrochetPARADE: Pattern Renderer, Analyzer, and Debugger
	DSL Error Taxonomy

