Under review as a conference paper at ICLR 2026

CROCHETBENCH: CAN VISION-LANGUAGE MODELS
MOVE FROM DESCRIBING TO DOING IN CROCHET DoO-
MAIN?

Anonymous authors
Paper under double-blind review

ABSTRACT

We present CrochetBench, a benchmark for evaluating the ability of multimodal
large language models to perform fine-grained, low-level procedural reasoning
in the domain of crochet. Unlike prior benchmarks that focus on high-level de-
scription or visual question answering, CrochetBench shifts the emphasis from
describing to doing: models are required to recognize stitches, select structurally
appropriate instructions, and generate compilable crochet procedures. We adopt
the CrochetPARADE DSL as our intermediate representation, enabling structural
validation and functional evaluation via execution. The benchmark covers tasks
including stitch classification, instruction grounding, and both natural language
and image-to-DSL translation. Across all tasks, performance sharply declines
as the evaluation shifts from surface-level similarity to executable correctness,
exposing limitations in long-range symbolic reasoning and 3D-aware procedural
synthesis. CrochetBench offers a new lens for assessing procedural competence
in multimodal models and highlights the gap between surface-level understanding
and executable precision in real-world creative domains.

1 INTRODUCTION

Procedural crafts such as crochet present a distinctive frontier for multimodal learning. Unlike
traditional captioning or recipe datasets (Li et al.|[2024; |Hu et al.| [2022; [Mohbat & Zakil, 2024}, cro-
chet patterns intertwine three interdependent modalities: (i) structured symbolic language, where
stitch abbreviations and counts define a precise grammar of construction; (ii) long-form natural
language, which provides contextual guidance such as materials and sizing; and (iii) visual evi-
dence, including photographs of completed objects and motif diagrams. Success requires not just
alignment across modalities but step-wise reasoning that preserves procedural fidelity, making the
challenge closer to program synthesis than generic description.

Crochet also offers a unique testbed for 3D-aware reasoning. Each stitch encodes both local ge-
ometry and global connectivity, forming a topological structure that must be preserved across steps.
Generating or interpreting patterns thus demands reasoning over how sequential operations accumu-
late into volumetric form. In effect, crochet couples symbolic instruction following with embodied
spatial reasoning, cultivating abilities essential for domains where language must ground into phys-
ical tasks.

Despite the rapid growth of multimodal benchmarks (Fu et al., [2025} [Li et al.l|2023a; [Zhang et al.,
2025} Yue et al., 2024)), existing datasets have largely focused on description or grounding. COCO
(Lin et al.,2014) catalyzed captioning research, TextCaps (Sidorov et al.||2020) extended it to text-
in-the-wild, and RecipelM (Marin et al., [2018)) explored cross-modal cooking instructions. While
recipes also involve multi-step procedures, validating correctness typically requires real-world ex-
ecution, making large-scale evaluation slow and resource-intensive. Crochet, by contrast, provides
a symbolic domain where outputs can be automatically verified through DSL compilation, enabling
scalable and efficient study of step-wise reasoning. Yet these benchmarks stop short of testing
whether models can follow symbolic grammars, respect numerical and spatial constraints, and pro-
duce outputs that are executable. Current systems can describe, but not reliably do.

Under review as a conference paper at ICLR 2026

Data Collection

Website

Download
Extract

PDF files MG links

GPT-4o-mini Parsing Append to

Extract image + _-{
Json files stitch abbreviations

{"pattern_name":
"Chunky Bucket Hat" Generate MCQ

(Correct instruction—>|

wabbreviations": +3 distractars)

"Ch = Chain(s)",

"Sc = Single crochet", ————

ey Extract \mage—b{
"instructions": ™ + instruction

Join with sl st to

first sc at

end of each rnd..." Expert DSL
“image_link": annotation

"https://...ipg"},

Task A dataset

Task B dataset

Task C dataset

Task D dataset

Benchmarking

Task A: Stitch Recognition

Output:

@

stitches abbreviations

Input:

crochet product img

Metric: Precision / Recall / F1

G Visual stitch ition (multi-label

Task C: NL Instruction Generation

- @

crochet product img

Output:

Rnd 1z Ch 2, 6 s¢ in 2nd ch from hook. Join.
Rind 2: Ch 1, 2 s¢ in each sc around. Join.

Join with sl stto first sc at end of each md. ‘

NL instruction

Metric: BLEU, ROUGE-L, ChrF
Capability: Vision — NL instruction generation

Task B: Instruction Selection

crochet product img

A, Join with sl st

C.Chd, work d xt st
D. Ch 3, sl stin first ch.

4 candidate NL instructions

Qutput: Correct Instruction Option (A/B/C/D)

Metric: Accuracy

Capability: Vision — instruction grounding

(choose the NL instruction consistent with the product image)

Task D: Instruction-to-DSL Translation
Input:

crochet product img
Output

2chB
sc@B.A55c@B ss@A
oA, 5k 65C2Inc, SS@A

DSL instruction

Rnd 1: Ch 2, 6 sc in 2nd ch from hook. Join,
Rnd 2: Ch 1, 2 ¢ in each s¢ around. Join.

Join with sl st to first se at end of each md. ‘

NL instruction

CrochetPARADE
program

rendered crochet img
Metric: Valid Pattern Rate, DINO Similarity

Capability: NL — DSL translation (stateful procedural reasoning)

Figure 1: End-to-end data construction and benchmarking workflow for CrochetBench. The
left panel illustrates the data collection pipeline: we download PDF files and image links from
crochet pattern websites, and parse them using GPT-40-mini to produce structured JSON files con-
taining pattern metadata, stitch abbreviations, instructions, and product images. From each JSON
record, we derive four supervised datasets: (A) stitch-level labels, (B) multiple-choice instruction
selection items, (C) natural-language instruction generation pairs, and (D) expert-annotated DSL
programs for procedural synthesis. The right panel summarizes the four benchmarking tasks: Task
A evaluates multi-label visual stitch recognition; Task B measures vision-to-instruction grounding
via MCQ selection; Task C assesses vision-conditioned natural-language instruction generation;
and Task D tests stateful procedural reasoning via NL-to-DSL (Natrual language to Domain Spe-
cific Language) translation with execution-based metrics.

CrochetBench fills this gap by centering evaluation on instructional fidelity: can models not
only recognize and generate, but also output step-wise, compilable instructions that respect sym-
bolic, numerical, and topological structure? Each example in CrochetBench is a multimodal pack-
age—structured JSON metadata (stitch inventories and abbreviations), full-text procedures with
rows/rounds and conditionals, and paired images of finished objects and motifs. Crucially, Crochet-
Bench is paired with CrochetPARADE (Tassev, [2025), a domain-specific language (DSL) enabling
executable evaluation, where natural language instructions are translated into compilable code en-
forcing geometric and topological coherence.

Our contributions are fourfold: (1) CrochetBench, the first executable benchmark for procedural
textile crafts, unifying symbolic, textual, and visual modalities with evaluation protocols emphasiz-
ing procedural fidelity and 3D-aware reasoning; (2) a comprehensive task suite spanning recog-
nition, comprehension, generation, and DSL translation; (3) integration of CrochetPARADE into
an executable pipeline, enabling scalable, automated verification of outputs—unlike domains such
as cooking, which require real-world execution—thereby shifting evaluation from surface similar-
ity to procedural fidelity; and (4) baseline analyses of state-of-the-art VLMs/MLLMs, revealing
systematic weaknesses including hallucinations, captioning bias, and structural artifacts.

2 RELATED WORK

Multimodal learning has traditionally focused on descriptive image—text pairs, such as COCO (Lin
et al) [2014) and Flickr30k (Plummer et al., 2015). Recent benchmarks extend to procedural or
instructional understanding, including Recipel M+ (Marin et al., 2018) and large instructional video
corpora such as YouCook2 and HowTo100M (Zhou et al., 2018} Miech et al.|[2019). However, these
tasks primarily evaluate semantic alignment or retrieval rather than whether a model can follow or
generate a correct procedure. This gap motivates grounding multimodal evaluation in domains

Under review as a conference paper at ICLR 2026

where procedures are explicit, structured, and verifiable. To help readers unfamiliar with crochet,
we provide a brief primer in Appendix [A]summarizing stitch types and pattern conventions.

Texile crafts provide precisely such a domain. Crochet patterns specify symbolic, stepwise pro-
cedures that determine the topology and geometry of a final physical artifact. Prior work in this
area including Digital Crochet and Neural Inverse Knitting (Kaspar et al, 2019)
demonstrates the feasibility of representing textile structures in machine-readable form but remains
limited in scale and modality. By moving from general instructional data to a structured craft do-
main, we enable multimodal models to be evaluated on artifact-centric procedural reasoning rather
than temporal action recognition. CrochetBench builds on this emerging direction by providing
thousands of real crochet patterns with paired images and natural-language instructions.

To evaluate procedural correctness, CrochetBench adopts an executable domain-specific language
(CrochetPARADE), linking our tasks to program synthesis benchmarks such as HumanEval
[2021), MBPP (Austin et al., [2021)), and Spider 2018). In multimodal settings, image-
to-program benchmarks such as Im2LaTeX-100K (Deng et al., 2017) and pix2code (Beltramelli,
similarly leverage executable formalisms for rendering-based evaluation. CrochetBench ex-
tends this executable perspective to textile crafts: patterns compile to structured instructions that
can be rendered and validated, providing functional evaluation that tests whether a model’s output
actually works. This offers a lightweight alternative to domains such as chemistry or cooking, where
validating a procedure requires physical or chemical experiments that are slow, costly, or impractical
to scale.

3 DATASET DESCRIPTION

CrochetBench is a large-scale, structured bench-
mark comprising 6,085 crochet patterns across 55
distinct project categories. As shown in the left panel
of Figure [T} the dataset is constructed from pub-
lic%l available patterns on the Yarnspirations web-

=== Bags & Purses

sitd'| a widely used repository in the fiber-arts com-
munity. The raw patterns—originally distributed (
as PDF documents—were parsed and normalized Décor

% mmm Dishcloths

Project Types
W Afghans & Blankets
- Hats
mmm Sweaters & Cardigans
mmm Shawls & Wraps
W= Scarves
mmm Pillows & Poufs

Amigurumi & Toys

through a GPT-40-mini—based conversion pipeline
that extracted and standardized key fields such as
metadata, materials, measurements, gauge, abbrevi- Figure 2: Distribution of the top-10 most
ations, and full step-by-step instructions. Each pat- common project types in CrochetBench.
tern was then transformed into a machine-readable

JSON object following a consistent schema. No-

tably, 98.77% of patterns include an associated product image, enabling multimodal supervision
for both recognition and generation tasks.

The dataset supports diverse real-world crochet prac-
tices, with project types ranging from simple acces-
sories to complex garments. Figure [2] lists the ten
most common categories by frequency. The major-
ity of patterns belong to a small number of dominant
types—Afghans and Blankets alone account for over
one-quarter of the dataset. More details can be found

at Appendix

Skill Levels
‘r mmm Beginner
mm Easy
B Intermediate
58.7% mmm Experienced
Each pattern is labeled with one of four primary
skill levels, including beginner, easy, intermediate,
or experienced. This allows for stratified evaluation Figure 3: Skill level distribution across the
across complexity tiers. Figure [3] shows the skill Crochetﬁench dataset
level distribution, which is strongly skewed toward '
beginner-friendly content. Only one pattern (0.02%)
is missing a skill level label. More details can be found at Appendix [B]

3%

'"https://www.yarnspirations.com/collections/patterns

https://www.yarnspirations.com/collections/patterns

Under review as a conference paper at ICLR 2026

Instructional complexity varies substantially across patterns. The number of characters in each in-
struction ranges from 20 to over 30,000, with a mean of 3,216 and a median of 2,453. Abbreviation
counts (i.e., unique stitch tokens per pattern) range from 1 to 31, with an average of 10.6. These
statistics are summarized in Appendix We observe a clear correlation between skill level and
instruction length: beginner patterns tend to be short and use fewer abbreviations, while experienced
patterns are significantly longer and more symbolically dense.

In addition to symbolic complexity, the dataset contains 3,143 abbreviation instances mapped to 789
unique standardized stitch tokens. This lexical mapping enables tasks such as vocabulary translation,
sequence generation, and instruction validation. Beyond raw instructions, the structured schema also
records rich metadata, including gauge, hook size, yarn weight, and measurements. A representative
dataset entry is provided in Appendix [3]

Overall, CrochetBench provides a rich resource for multimodal modeling, symbolic reasoning, and
structure-aware generation. Its coverage across diverse categories and complexity levels enables
broad benchmarking of both open-ended generation and instruction fidelity tasks.

Table 1: Overall statistics of the CrochetBench dataset.

Total Patterns Image Coverage Avg. Instr. Length #Project Types
CrochetBench 6,085 98.77% 3,216 characters 55

4 TASKS

A central goal of CrochetBench is to evaluate whether multimodal LLMs can move beyond surface-
level visual description and produce procedurally correct crochet instructions. Prior work shows that
current models can describe crochet items (e.g., shape, color, texture) with high fluency, yet such
descriptive competence does not imply an understanding of stitch structure or executable crafting
procedures. To expose this gap, CrochetBench is organized as a progression of four tasks that isolate
the core cognitive abilities required for real-world crochet reasoning, as summarized in Table[2]

Tasks A and B focus on perception and comprehension, representing the minimum prerequisites
for procedural understanding. Stitch recognition and instruction selection evaluate whether models
can ground visual cues in a structured stitch vocabulary and track local procedural dependencies
within a pattern. However, identifying stitches or selecting a plausible next step does not guaran-
tee the ability to synthesize a valid crochet procedure. Tasks C and D therefore target procedural
generation and formalization, requiring models to produce coherent, stepwise natural-language
instructions or executable CrochetPARADE programs. These tasks demand the integration of vi-
sual grounding, temporal consistency, symbolic manipulation, and domain-specific constraints. The
following subsections describe each task in detail.

Table 2: Overview of benchmark tasks in CrochetBench. Tasks progress from recognition to com-
prehension, generation, and executable synthesis.

ID | Ability Tested Task Evaluation Metrics Test Size
A | Recognition Stitch Recognition F1, Precision, Recall (Croch6e’t(])30egnch- A)
B | Comprehension Instruction Selection Accuracy (Crochée’g;)SHCh—B)
C | Generation Instruction Generation BLEU, ROUGE, ChrF (Croch6e’tOB?e9nch—C)
D | Formalization Instr.-to-DSL (Step) Valid Pattern Rate (Croche t]131e?10h-Dstep)
Instr.-to-DSL (Project) V{ilid . P?lttqrn Rate, (Crochetll3(c)‘,(r)10h-mej)
Dino Similarity

Under review as a conference paper at ICLR 2026

4.1 TASK A: STITCH RECOGNITION

Task A evaluates a model’s ability to identify crochet stitch types from an image of a finished prod-
uct. We construct CrochetBench-A, a subset of 6,009 examples from the full benchmark, where
each product image is paired with ground-truth stitch annotations. These labels are derived from the
official pattern instructions and normalized into a standardized set of stitch abbreviations (e.g., sc,
hdc, dc) to ensure consistency across patterns. Unlike standard image classification, this is a multi-
label prediction problem: multiple stitches may co-occur within the same image, often with subtle
visual differences in texture and geometry. This task therefore probes fine-grained visual grounding
of structured crochet semantics.

Evaluation. For each example, we compute overlap between the predicted and reference stitch
sets. True Positives (TP) are stitches correctly predicted; False Positives (FP) are stitches predicted
but not in the reference; and False Negatives (FN) are stitches in the reference but missed by the
model. From these counts, we compute precision (fraction of correct predictions among all predic-
tions), recall (fraction of ground-truth stitches recovered), and F1 score (harmonic mean) Powers
(2020). Metrics are averaged across examples to provide overall performance. This formulation
rewards models that recover all present stitches while avoiding spurious predictions.

Accurate stitch recognition is foundational for the benchmark, as later tasks (e.g., instruction selec-
tion and instruction generation) depend on robust detection of stitch primitives.

4.2 TASK B: INSTRUCTION SELECTION

Task B evaluates whether a model can correctly associate an image of a finished crochet artifact with
its corresponding natural-language instruction. We construct CrochetBench-B, a subset of 6,003
examples, where each instance contains one ground-truth instruction and three distractor instructions
sampled from the same project category (e.g., hats, rugs). Because distractors originate from the
same category, they share similar visual and lexical structure, thereby increasing task difficulty and
preventing solutions based on superficial lexical overlap. The answer distribution across options is
approximately uniform (A: 24.9%, B: 25.7%, C: 23.7%, D: 25.7%), ensuring no positional bias.

Evaluation. To support scalable and reproducible benchmarking, we formulate the task as a four-
way multiple-choice question (MCQ). The model must select one option (A-D), with exactly one
correct answer. Predictions are extracted using a deterministic regex-based parser that identifies
explicit letter-based responses (e.g., “A”, “Option B”, “The answer is D). Responses without a
parsable choice are marked as unanswered. Accuracy is used as the evaluation metric.

This task provides a controlled measure of visual grounding and semantic alignment between images
and procedural text, without requiring free-form generation. By forcing discrimination among near-
neighbor instructions, Task B probes whether models can leverage fine-grained visual cues and
domain-specific stitch semantics, which are essential precursors to reliable procedural instruction
generation.

4.3 TASK C: INSTRUCTION GENERATION

Task C evaluates a model’s ability to generate natural-language crochet instructions from an image
of a finished item. We construct CrochetBench-C, a subset of 6,009 examples in which each image
is paired with the corresponding ground-truth textual pattern. In contrast to captioning or stylistic
description, this task requires generating a sequence of domain-specific commands (e.g., “Rnd 1: ch
4, 6 sc in ring”), each of which encodes precise stitch operations, counts, and ordering. Because real
crochet patterns may include tens of steps, hierarchical structure (rounds, rows, substeps), and long-
range dependencies, this task assesses whether models can infer the underlying procedural logic
implied by the final visual product. The generated text must maintain consistent stitch semantics,
preserve temporal ordering, and follow established formatting conventions used by human crafters.

Evaluation. We evaluate generation quality using BLEU, ROUGE-L, and ChrF (Papinent et al.,
2002; Lin, |2004; |Popovic} |2015), which together capture complementary aspects of textual fidelity
in procedural instructions. BLEU measures overlap of word-level n-grams and thus reflects local

Under review as a conference paper at ICLR 2026

lexical accuracy in stitch tokens and command sequences. ROUGE-L evaluates the longest com-
mon subsequence between the generated and reference patterns, capturing larger-scale ordering and
structural alignment across multi-step procedures. ChrF operates on character-level n-grams, which
makes it effective for crochet patterns where stitch abbreviations (e.g., sc, sc2tog) often differ by
only a few characters. Word-based metrics treat such tokens as entirely distinct, whereas character-
level comparisons can capture partial matches and small but semantically important variations.

However, textual overlap metrics alone cannot reveal whether the generated instructions form a
coherent or executable procedure. A model may generate instructions that appear fluent and pattern-
like while still violating fundamental structural constraints, including inconsistent stitch counts,
infeasible transitions, or unbalanced repeat constructions. To directly assess structural correctness
and program-level understanding, we introduce Task D, which requires models to formalize correct
natural-language instructions into a machine-checkable DSL representation.

4.4 TASK D: INSTRUCTION-TO-DSL TRANSLATION

Tasks A—C evaluate perception, retrieval, and natural-language generation, but they do not test
whether a model can represent crochet procedures in a structured, machine-interpretable form. Cro-
chet patterns are inherently programmatic: they contain loops, repeats, and counting logic that nat-
ural language expresses only implicitly, and that text-based metrics cannot reliably validate. Task D
isolates this structural dimension by requiring models to translate correct natural-language instruc-
tions into an executable DSL, thereby revealing whether models grasp the underlying program-like
structure of crochet. This capability is essential for true procedural reasoning, and we instantiate it
using the CROCHETPARADE DSL.

We construct two variants of Task D: CrochetBench-Dg, (119 items) for step-level formalization
and CrochetBench-Dp,,; (100 items) for project-level program synthesis.

Step-Level Translation The step-level task evaluates whether a model can perform incremental
NL—DSL translation, where “NL” refers to the natural-language crochet instructions written by
human designers. Crochet patterns evolve step by step, and each instruction updates the underly-
ing stitch state. Correctly translating a single step therefore requires maintaining consistency with
all previous steps. In this setting, the model is provided with a prefix of correct NL-DSL pairs
representing the portion of the pattern translated so far. Given the next natural-language instruc-
tion, the model must generate the corresponding DSL line. This formulation tests whether models
can map local textual cues, such as stitch counts, increases/decreases, repeat structures, and turning
logic, into the structured, symbolic operations of CrochetPARADE. Because crochet patterns are
stateful, earlier context is essential for interpreting ambiguous constructs, ensuring round-to-round
consistency, and encoding the correct update to the stitch topology. To capture variation in pattern
progression, CrochetBench-Dg,,, includes 52 early (steps 1-2), 34 mid (steps 3—4), and 33 late
(steps 5—-6) examples.

Project-Level Translation In the project-level setting, the model is provided with the complete
crochet instruction in natural language together with the corresponding product image, and must
generate an entire CrochetPARADE program. This variant is globally self-contained but consider-
ably more challenging than the step-level task: models must track stitch states over long horizons,
resolve ambiguities in natural language, and produce code that is both syntactically valid and se-
mantically aligned with the final design. This setting reflects how crochet instructions are used in
practice, where each step depends on the correctness of all preceding steps. Image grounding is
especially helpful for interpreting repeated motifs, symmetry, shaping, and termination conditions
that may be under-specified in text alone.

Evaluation. Because crochet patterns are inherently free-form—where multiple distinct programs
can yield the same final product and a single natural-language instruction may admit several seman-
tically equivalent DSL realizations—there is no canonical gold program for Task D. Exact string
matching would therefore misjudge many correct solutions. Instead, CrochetBench evaluates cor-
rectness through functional executability using the CROCHETPARADE validator, which checks
whether a predicted DSL program is syntactically valid, structurally consistent, and fully executable.

Under review as a conference paper at ICLR 2026

We use two complementary evaluation settings. For step-level translation, we report the Valid Pat-
tern Rate, defined as the proportion of generated DSL steps that successfully compile. For project-
level translation, we compute the Valid Pattern Rate for full programs and, for those that compile,
render the executable portion into a crochet-like image and compute its DINO Similarity (Oquab
et al., 2023) to the ground-truth product image, providing a coarse measure of semantic fidelity
beyond syntax. To diagnose failure modes, we further identify the first point of failure for each
invalid prediction and categorize it using our fine-grained error taxonomy (Appendix [E), enabling
us to distinguish local symbolic errors from broader state-tracking failures or misinterpretations of
the natural-language instruction.

Table 3: Combined evaluation results across all three CrochetBench tasks: Stitch Recognition, In-
struction Selection, and Instruction Generation. Best values are bold; second-best are underlined.

Model Size Stitch Recognition (%) Instr. Sel. (%) Instr. Gen. (%)
Prec Rec F1 Acc BLEU R-L ChrF
BLIP-2 Flan-T5 XL 3B 29.53 23.03 22.50 25.62 0.21 9.26 9.32
Google Gemma 3 4B 20.54 1021 12.65 24.94 0.10 329 517
Open Google Gemma 3 27B 17.19 18.14 16.05 24.94 0.40 5.17 6.55
Source DeepSeek-VL 7B 5447 17476 60.60 28.92 1.33 19.68 18.12
Qwen2-VL 7B 54.14 69.74 58.16 41.96 1.60 20.84 15.76
Qwen2-VL 72B 71.86 42.68 50.19 68.85 225 2143 19.82
Closed GPT-40 — 62.14 59.39 58.01 58.11 3.33 23.53 23.80
Source Gemini 2.5 Flash-Lite - 74.49 49.77 56.83 55.63 4.82 2583 30.20
Claude Sonnet 4 — 78.61 53.12 60.94 57.39 3.31 25.16 22.95

5 EXPERIMENTS

We evaluate a representative set of Step-Level Vald Pattern Rates Across Models and Step Groups

widely used vision-language mod- - ae
els spanning open and closed ecosys- = =
tems. For open source models, we in-

clude BLIP-2 Flan-T5 XL (Li et al.,
2023b), Google Gemma 3 (4B and
27B) (Team et al.,|2024), DeepSeek-
VL 7B (Lu et al.}|2024), and Qwen2-
VL (7B and 72B) (Wang et al.,[2024), ol
covering a range of architectures and S &S s

parameter scales. For closed source . A . .
models, we evaluate GPT-4o (Hurst Figure 5: Task D step-level translation results showing the

ot all 024) , Gemini 2.5 Flash-Lite proportion of generated DSL lines that successfully com-
(Comanici et al), 2023), and Claude pile for early (Steps 1-2), middle (Steps 3—4), and late
Sonnet 4 (Anthropic, [2025), which (Steps 5-6) stages of crochet patterns. Across all models,
valid pattern rates increase as more context is provided, but
overall accuracy remains low. Even the strongest models
struggle in early steps, indicating difficulty establishing cor-
rect stitch state and structural dependencies. Larger mod-
els (e.g., Qwen2-VL-72B and Gemma-27B) do not consis-
tently outperform their smaller counterparts, highlighting
that scale alone does not improve program-level structural
reasoning.

Valid DSL pattern (%)

represent the strongest publicly ac-
cessible multimodal systems. These
models span diverse architectures and
parameter scales, providing a diverse
and meaningful basis for assessing
current multimodal capabilities on
perception, retrieval, and procedural
reasoning tasks.

Perception and grounding improve

with scale, but procedural generation collapses. Table [3| summarizes results across Stitch
Recognition (Task A), Instruction Selection (Task B), and Instruction Generation (Task C). Closed-
source models achieve the strongest recognition performance, with Claude Sonnet 4 obtaining the
highest F1 score (60.94%), and Qwen2-VL 72B leading among open models (50.19%). Although

Under review as a conference paper at ICLR 2026

...A Midnight Blue With Color A (Blue)
..B Coy r Brown .. Ch4. make a magic ring ... Join
first Color B (Brown) ... Rnd
4:S1 st into ch-2 sp. Ch ... Yarn:
Ch 1, (Bobble ... Make 7 srown and Blue... With
2. 3 hdc in same dc as sl tassels with Color B and Brown yarn, make a magic
st. *Bobble in next st... attach one to each ch-2 ring. ... Tassels: Cut 4
Tassels (make 7)... point of the coo lengths of Brown yarn ...
(a) Ground Truth (b) Gemini (c) GPT-40

8-Point 500 Motif Crochet
Worsted weight yarn in Pattern ... Worsted weight
blue and brown ... With yarn in navy blue and brown ch 100, sc in 2nd ch from
blue, 4, join with ... Tassels... Round 1:Ch hook, sc in each ch across,
sl st form ring. ... 10, join with sl st to form join with sl st in 1st sc,
Tassels: Cut ... a ring ... 100 loops made.
(d) Claude (e) Qwen-VL-7B (f) Deepseek VL

Figure 4: Case study for Task C: Instruction Generation. Each row shows the DSL-rendered
output generated from the model’s natural-language instructions and the color-coded instruction
extract below it. Matching colors denote semantically corresponding elements across the reference
and model outputs, while red marks incorrect or hallucinated steps. The ground truth is a seven-
point star with alternating blue and brown yarn and tassels attached at each point. Gemini and
GPT-40 generate structured and mostly coherent instructions but misconstruct the global geometry,
producing a circular motif rather than a star. Claude and Qwen2-VL-7B misinterpret the shape more
severely, producing circular or distorted wireframe-like forms. DeepSeek-VL collapses entirely into
a degenerate single-loop pattern. Gemini is the only model to explicitly recognize the motif as a
seven-point star, but its instructions still fail to produce the correct star topology.

larger models capture more fine-grained visual cues, accuracy remains far from saturated, and In-
struction Selection shows similarly limited progress: Qwen2-VL 72B reaches 68.85%, while GPT-
40 and Claude perform in the mid-50s, indicating that visual-textual alignment still depends on
shallow correlations rather than robust grounding. These limitations become dramatically more pro-
nounced in Task C. Natural-language instruction generation remains extremely challenging for all
model, with BLEU, ROUGE-L, and ChrF scores uniformly low; even the strongest system, Gemini

Under review as a conference paper at ICLR 2026

2.5 Flash-Lite, achieves only 4.82 BLEU and 30.20 ChrF. The sharp drop from Tasks A-B to C
shows that models capable of recognizing stitches or retrieving plausible text still fail to synthe-
size coherent multi-step procedures, reflecting fundamental gaps in procedural reasoning, symbolic
consistency, and pattern-structure understanding.

Surface-level fluency does not imply procedural correctness. To better understand why instruc-
tion generation fails despite moderate performance on recognition and retrieval, Figure [presents a
case study comparing model-generated natural-language instructions with their corresponding DSL
renderings. Qwen2-VL-7B and DeepSeek-VL collapse into non-star geometries, revealing unsta-
ble procedural logic. GPT-40 and Claude produce coherent crochet-pattern-like text and correctly
capture local yarn colors, yet fundamentally misinterpret the global motif: GPT-40 reconstructs a
four-point star and begins with the brown yarn instead of blue, while Claude generates an eight-point
motif rather than the intended seven. Gemini most accurately identifies the seven-point structure and
selects plausible constructs such as bobbles for the star tips, but structural inconsistencies remain
and yield visibly distorted shapes. These examples demonstrate that models can generate fluent,
crochet-like descriptions while failing to preserve the algorithmic structure required for faithful pat-
tern synthesis.

Early-step instability reveals limits Project Level DSL Translation Outcomes Across Models (vald vs Error Types)
of procedural reasoning. Figure 3]
shows step-level results on Task D.
Valid Pattern Rate increases with pat-
tern depth but remains low overall:
most models achieve under 15% va-
lidity in the first two steps, improve
modestly in steps 3—4, and reach only
55-65% in later steps. This pattern
reflects the difficulty of the initial
steps, which must correctly initial- I . -

ize the program state such as defin- L. Per:emeee'%fo . .
ing stitch variables and maintain- Figure 6: Distribution of project-level DSL translation

ing balanced grouping. Errors made ©utcomes for each model, broken down into. Valid out-
early propagate irreversibly, and later Puts and error categories. Across all models, invalid pro-
correctness often occurs only when grams dominate, with most failures arising from undefined
the initial state is accidentally valid, Stitches, unbalanced brackets, and multiple-reference errors.
indicating reliance on continuation 1The wide spread of error types further illustrates the diffi-
heuristics rather than genuine proce- culty of maintaining global consistency and symbolic cor-
dural understanding. Larger models rectness when generating full crochet programs.

do not consistently perform better:

Qwen2-VL-72B underperforms Qwen2-VL-7B, and Gemma-27B underperforms Gemma-4B, sug-
gesting that increased capacity improves descriptive fluency more readily than symbolic stability,
and that scaling alone is insufficient for grammar-sensitive procedural tasks.

Components
Valid

Undefined Stitch
Unbalanced Brackets
Multiple Reference
Label Not Found
Runtime Error
Non-adjacent Labels
Variable Name Conflict
Syntax Error

Other

80 100

Project-level synthesis exposes severe structural weaknesses. Figure|§|further demonstrates the
fragility of model performance when generating full CrochetPARADE programs. Valid outputs are
exceedingly rare: even the strongest systems (Claude, Gemini, Qwen2-VL-7B) produce only 5-8%
executable programs, while most others fall below 3%. The dominant failure modes (undefined
stitches and unbalanced brackets) reflect unstable control over the DSL’s vocabulary and grouping
structure, and many models also exhibit multiple references, non-adjacent labels, and runtime er-
rors. These error profiles indicate that models struggle to maintain consistent state and long-range
structural dependencies across an entire pattern.

Image-based similarity confirms lack of global structural fidelity. Compilation verifies syn-
tactic and structural correctness but cannot determine whether two DSL programs are semantically
equivalent. To address this gap, we compute DINO similarity between the target crochet product
image and the rendering produced from each model’s executable program (valid outputs only). Fig-
ure [7] shows that similarity scores remain uniformly low across all models (0.10-0.17), far below
the typical threshold for visually matched crochet images. Even when a model produces a compil-

Under review as a conference paper at ICLR 2026

able DSL program, the resulting rendering generally bears little resemblance to the intended pattern,
indicating that syntactic validity does not imply correct procedural structure. The consistently low
similarities reinforce that current multimodal LL.Ms fail to capture the global geometry and layout
required for visually faithful crochet synthesis.

6 LIMITATIONS AND FUTURE WORK

Future improvements to Crochet- DINO Similarity Between DSL-Rendered Crochet Patterns and Ground-Truth Products
Bench span both dataset construc-

tion and modeling methodology. On
the dataset side, CrochetBench cur-
rently relies on single product im-
ages and written instructions; ex-

DINO Similarity

tending the benchmark to multi-view 0
and video settings would better cap- 0 ' '
ture aspects of crocheting that de- .

. . ® 4 & f’ < »® & ?\&z
pend on motion, perspective, and &S # & & & s

temporal sequencing. The Crochet- «
PARADE DSL models the core of Figure 7: Task D Project-level translation results evaluat-
common crochet operations, but ex- ing with DINO similarity between ground-truth images and
panding it to cover additional con- DSL-rendered outputs generated from each model’s DSL
struction techniques, advanced stitch ~Program (valid executable portion only). The red line marks
types, and designer-specific conven- a1 approximate “good” similarity threshold. All models fall
tions would broaden the range of pat- well below this level, indicating that even executable DSL
programs rarely reproduce the correct visual structure of the

terns the benchmark can support. In- ! :
intended crochet design.

corporating richer supervision, such
as expert ratings, correction traces, or
human-verified program variants, would further strengthen evaluation in cases where multiple pro-
cedurally valid solutions exist.

On the modeling side, our results highlight the need for architectures that go beyond visual recog-
nition and text generation to support explicit state tracking, consistent counting logic, and long-
range structural planning. Approaches that combine neural perception with symbolic scaffolds or
memory-augmented components may help mitigate the drift and instability observed in DSL trans-
lation. Multimodal pretraining that includes procedural and topological data—such as assembly
instructions, instructional videos, or structured manipulation tasks—may also narrow the gap be-
tween natural-language descriptions and executable program synthesis. Evaluation can likewise be
expanded through hybrid pipelines that pair compilation checks with image-based comparisons of
rendered outputs, providing complementary views of structural and perceptual fidelity.

More broadly, casting crochet as a program-synthesis task opens connections to established work in
domain-specific languages for knitting, graphics, and robotics. This perspective naturally aligns with
CAD/CAM workflows used in industrial crochet and warp-knitting machines, where pattern designs
are compiled into machine-executable instructions. CrochetPARADE could serve as a standardized
intermediate representation for such pipelines, bridging human-authored patterns with automated
manufacturing systems. Finally, CrochetBench offers a platform for exploring neuro-symbolic ap-
proaches that integrate visual grounding with symbolic reasoning, aiming toward models that can
generate procedures that are not only fluent, but also structurally correct and reliably executable.

7 CONCLUSION

CrochetBench provides a structured benchmark for assessing whether multimodal LLMs can move
from recognizing visual content to executing the step-by-step procedures required to produce a cro-
chet pattern. Across all four tasks, models demonstrate a consistent gap: they can identify stitches
and retrieve plausible instructions, but they fail to generate structurally valid procedures or produce
executable programs that match the intended design. Even when compilation succeeds, rendered
outputs rarely capture the correct global geometry, revealing weaknesses in state tracking, counting
logic, and long-horizon structural planning.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge that the original crochet pattern PDFs are protected under copyright and therefore
do not distribute raw files or full texts. Instead, we release only structured JSON annotations gen-
erated with GPT, reference URLs to the original sources, and our parsing and annotation scripts.
The benchmark is provided strictly for non-commercial academic use. This approach enables repro-
ducible research while respecting intellectual property and ensuring that our dataset serves as a tool
for studying structured generation rather than redistributing creative works.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets, task templates,
and evaluation procedures are documented in the main text and appendix. An anonymous repository
containing the full source code, experiment scripts, and detailed reproduction instructions has been
made publicly available at: https://anonymous.4open.science/r/crochet-82E6/
README . md. This ensures that all reported results can be independently verified and extended by
the research community.

REFERENCES
Anthropic. Claude 4 sonnet — model -card. https://docs.aimlapi.com/
api-references/text-models—-11lm/anthropic/claude—4-sonnet, 2025.

Accessed: 2025-12-04.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In Pro-
ceedings of the ACM SIGCHI symposium on engineering interactive computing systems, pp. 1-6,
2018.

Mark Chen. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M Rush. Image-to-markup generation
with coarse-to-fine attention. In International Conference on Machine Learning, pp. 980-989.
PMLR, 2017.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. In The Thirty-ninth Annual Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2025.

Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, and Jiebo Luo. Promptcap:
Prompt-guided task-aware image captioning. arXiv preprint arXiv:2211.09699, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr Kellnhofer, and Wojciech Matusik. Neural

inverse knitting: From images to manufacturing instructions. In International Conference on
Machine Learning, pp. 3272-3281. PMLR, 2019.

11

https://anonymous.4open.science/r/crochet-82E6/README.md
https://anonymous.4open.science/r/crochet-82E6/README.md
https://docs.aimlapi.com/api-references/text-models-llm/anthropic/claude-4-sonnet
https://docs.aimlapi.com/api-references/text-models-llm/anthropic/claude-4-sonnet

Under review as a conference paper at ICLR 2026

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal 1lms with generative comprehension. arXiv preprint arXiv:2307.16125,
2023a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730-19742. PMLR, 2023b.

Peiyu Li, Xiaobao Huang, Yijun Tian, and Nitesh V Chawla. Cheffusion: Multimodal foundation
model integrating recipe and food image generation. In Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Management, pp. 3872-3876, 2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74-81. Association for Computational Linguistics, 2004. URL https://
aclanthology.org/w04-1013/l

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar
Weber, and Antonio Torralba. Recipelm+: a dataset for learning cross-modal embeddings for
cooking recipes and food images. arXiv preprint arXiv:1810.06553, 2018.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated

video clips. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
2630-2640, 2019.

Fnu Mohbat and Mohammed J Zaki. Llava-chef: A multi-modal generative model for food recipes.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge Man-
agement, pp. 1711-1721, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics (ACL 2002), pp. 311-318. Association for Computational Linguistics,
2002. URL https://aclanthology.org/P02-1040/.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE international conference on computer vision, pp.
2641-2649, 2015.

Maja Popovié. chrf: character n-gram f-score for automatic mt evaluation. In Proceedings of the
tenth workshop on statistical machine translation, pp. 392-395, 2015.

David MW Powers. Evaluation: from precision, recall and f-measure to roc, informedness, marked-
ness and correlation. arXiv preprint arXiv:2010.16061, 2020.

Klara Seitz, Patrick Rein, Jens Lincke, and Robert Hirschfeld. Digital crochet: toward a visual
language for pattern description. In Proceedings of the 2022 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Software, pp. 48-62,
2022.

12

https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/P02-1040/

Under review as a conference paper at ICLR 2026

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for
image captioning with reading comprehension. In European conference on computer vision, pp.
742-758. Springer, 2020.

Svetlin Tassev. Crochetparade: Crochet pattern renderer, analyzer, and debugger, 2025. URL
https://www.crochetparade.org/. Accessed: 2025-09-24.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556-9567, 2024.

Zheyuan Zhang, Yiyang Li, Nhi Ha Lan Le, Zehong Wang, Tianyi Ma, Vincent Galassi, Keerthiram
Murugesan, Nuno Moniz, Werner Geyer, Nitesh V Chawla, et al. Ngqa: a nutritional graph ques-
tion answering benchmark for personalized health-aware nutritional reasoning. In Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 5934-5966, 2025.

Luowei Zhou, Chenliang Xu, and Jason Corso. Towards automatic learning of procedures from web
instructional videos. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

13

https://www.crochetparade.org/

Under review as a conference paper at ICLR 2026

A CROCHET PRIMER

Crochet patterns describe how to construct a textile artifact through a sequence of symbolic stitch
instructions. Each instruction specifies an operation performed with a hook and yarn, and the re-
sulting pattern is defined by the order, repetition, and spatial arrangement of these stitches. This
appendix summarizes only the conventions needed to interpret the examples in our benchmark.

Basic stitch types. Crochet relies on a small vocabulary of atomic stitches, each producing a loop
with a characteristic height and structure. The most common stitches in U.S. notation are:

* ch (chain): foundational stitch used to begin rows or rounds.
* sc (single crochet): a short, dense stitch.

* hdc (half double crochet) and dc (double crochet): taller stitches that build height more
quickly.

* sl st (slip stitch): a joining stitch used for connecting motifs or closing rounds.

* bobble (bobble stitch): a cluster of 5 partially completed double crochet stitches closed
together into a single stitch.

These stitches can be combined in rows (worked back and forth) or rounds (worked in a circle).

Pattern syntax and structure. Crochet instructions follow a compact symbolic notation. A pat-
tern is organized into rows or rounds, each specifying a sequence of stitches. For example:

Row 3: Ch 1, sc in each st across, turn.

Instructions may include:

* Repetition: indicated by parentheses and a multiplier, e.g., (sc, ch 1) 3 times.

* Increases/decreases: e.g., 2 sc in next st (increase) or sc2tog (single-crochet
two stitches together; decrease).

* Stitch counts: patterns often end rows or rounds with “—AN sc,” indicating the number of
stitches that should remain.

Relationship to symbolic representations. Each crochet instruction corresponds to a local mod-
ification of the fabric’s topology. This makes crochet patterns naturally suited to symbolic or
program-like representations such as CrochetPARADE, which encode stitches as structured primi-
tives with explicit control flow (loops, groups, labels). Because stitch sequences fully determine the
geometry of the final artifact, correctness can be assessed by verifying the structure of the generated
program or by rendering the corresponding stitch graph.

This primer covers the minimal terminology required to interpret our dataset and evaluation tasks.
For readers interested in additional background, standard crochet references provide extended stitch
catalogs and diagram conventions.

B ADDITIONAL DATASET STATISTICS

B.1 INSTRUCTION COMPLEXITY BY SKILL LEVEL

Skill Level ~ Avg. Length Median Length Avg. Abbr. Count

Beginner 1,674 1,365 9.2 465
Easy 2,761 2,182 10.8 3,569
Intermediate 4,221 3,387 10.7 1,967
Experienced 7,689 6,729 9.8 80

Table 4: Instruction complexity by skill level. Length is measured in characters.

14

Under review as a conference paper at ICLR 2026

B.2 EXAMPLE DATASET ENTRY
B.3 SKILL LEVEL DISTRIBUTION

B.3.1 OVERALL DISTRIBUTION

Table [6] summarizes the overall distribution of skill levels across the CrochetBench dataset. The
majority of patterns are labeled as easy (58.7%), followed by intermediate (32.3%). Only a small
fraction are classified as beginner (7.6%) or experienced (1.3%)

One pattern (0.02%) is missing an annotated skill level.

B.3.2 DISTRIBUTION BY PROJECT TYPE

We further break down skill levels by the top 10 most common project types. Results are shown in
Table[/] In most categories, easy patterns dominate, typically ranging between 53—-70%. Interme-
diate is the second most common, while beginner and experienced remain consistently low across
categories.

Overall, the predominance of easy patterns reflects the accessibility of crochet as a craft and aligns
with the goal of many project types to cater to a wide audience. The relative scarcity of experienced-
level patterns suggests that most published resources emphasize broad usability rather than advanced
expertise.

B.4 PATTERN COMPLEXITY ANALYSIS

B.4.1 INSTRUCTION LENGTH STATISTICS

We first analyze the distribution of instruction lengths, measured in raw character counts. As shown
in Table[§] the average instruction length is over 3,200 characters, while the median is substantially
lower at 2,453 characters, reflecting a long-tailed distribution. The most complex patterns extend
beyond 30,000 characters, while some very short patterns are as small as 20 characters.

Out of 6,085 total patterns, 6,084 (99.98%) contain full instructions.

B.4.2 ABBREVIATION STATISTICS

Abbreviations, such as sc, dc, and hdc, are a distinctive element of crochet instructions. Table [J]
reports abbreviation counts across all patterns. Most patterns contain about 10 abbreviations, with
values ranging from 1 to 31.

B.4.3 COMPLEXITY BY SKILL LEVEL

Instruction length correlates with the designated skill level. As shown in Table beginner-level
patterns average under 2,000 characters, while intermediate patterns extend to over 4,200. Expe-
rienced patterns are the longest, averaging 7,689 characters. Rare categories such as easy to
intermediate skew extremely long due to outliers.

B.4.4 MoST AND LEAST COMPLEX PROJECT TYPES

Finally, we identify the most complex and simplest project types by average instruction length.
Tables E] and@] list the top 10 categories. Garments such as dresses, vests, pants, and tunics are
the most demanding, with average instructions exceeding 5,800 characters. By contrast, smaller
accessories such as cowls, washcloths, scarves, and headbands are substantially shorter, typically
under 2,000 characters.

Taken together, these results highlight strong alignment between project type, designated skill level,
and instruction length. Garment-oriented projects require substantially longer and more complex
instructions, while accessories and small decorative items remain simple and concise.

>Three additional rare labels were observed: easy to intermediate (1 pattern), beginners (1
pattern), and beginner/easy (1 pattern). Together they account for < 0.1% of the dataset.

15

Under review as a conference paper at ICLR 2026

C PROMPTS

C.1 TASK A: STITCH RECOGNITION PROMPT

This task evaluates a model’s ability to identify stitches present in a crochet product image.

Stitch Recognition Prompt (Rendered Example)

SYSTEM PROMPT You are a crochet stitch expert.

Given an image of a crochet product, identify all stitches that appear.
Requirements:

- Use only standard U.S. crochet abbreviations

(e.g., sc, hdc, dc, tr, ch, sl st, pop, etc.).

- Output must be a comma-separated list of abbreviations.

- Do not include explanations, extra text, or formatting beyond the list.

USER PROMPT Look at this crochet product image and list the stitches used.
[Image]

C.2 TASK B: INSTRUCTION SELECTION PROMPT

This task evaluates a model’s ability to choose the correct instructions from multiple-choice options.

Instruction Selection Prompt (Rendered Example)

SYSTEM PROMPT
You are a crochet expert. Your task is to determine which of the given options (A, B, C, or
D) contains the correct crochet instructions for the image shown.

USER PROMPT

Look at this crochet image and choose which option best matches the instructions for making
it.

[Image]

Options: {options text}

Choose exactly ONE option. Your answer should be only one letter: A, B, C, or D.

C.3 TASK C: INSTRUCTION GENERATION PROMPT

This task evaluates a model’s ability to generate complete crochet instructions from an image.

Instruction Generation Prompt (Rendered Example)

SYSTEM PROMPT

You are a professional crochet pattern writer. Examine the image of the finished crochet
product carefully. Write a complete set of crochet instructions in the standard style used in
published patterns.

Requirements:

- Use standard abbreviations: sc (single crochet), hdc (half double crochet),

dc (double crochet), tr (treble), ch (chain), sl st (slip stitch), rep (repeat).

- Organize the instructions row by row or round by round (e.g., "Rnd 1: ...”, "Row 2: ...”).

- If color changes are visible in the image, include them in the pattern.

- Keep the instructions concise and precise, as if for experienced crocheters.

- Output only the crochet pattern. Do not add any explanations, commentary, or extra text.

USER PROMPT
Generate step-by-step crochet instructions for this image.
[Image]

16

Under review as a conference paper at ICLR 2026

C.4 TASK D (STEP-LEVEL): NL — DSL TRANSLATION PROMPT

This task evaluates whether a model can translate a single natural language instruction into exactly
one line of compilable CrochetPARADE DSL code.

Step-level NL — DSL Translation Prompt (Rendered Example)

SYSTEM PROMPT

You are a crochet compiler. Translate the next instruction NL into one line of CrochetPA-
RADE DSL.

Use consistent naming and syntax.

Important rules for translations:

1. Make sure your output ONLY contains the DSL code, nothing else.

2. Use the previous examples to understand the pattern of translation.

3. Be consistent in naming conventions with the examples.

4. Your output should be exactly one line of DSL code.

USER PROMPT

Now translate the NL into DSL:
NL:

DSL:

C.5 TASK D (PROJECT-LEVEL): NL — DSL TRANSLATION PROMPT

This task evaluates whether a model can convert natural language crochet instructions (with optional
images) into compilable CrochetPARADE DSL code.

NL — DSL Translation Prompt (Rendered Example)

SYSTEM PROMPT
You are a professional crochet pattern writer. Convert instructions + images into compilable
CrochetPARADE DSL code. Output only the DSL code. No explanations, commentary, or
extra text.
Example 1:

“image path”: https://www.yarnspirations.com/cdn/shop/files/
BRC0116-035467M. jpg,

INSTRUCTIONS

Note: Join with sl st to first sc at end of each rnd.

Ch 2.

Rnd 1: 6 sc in 2nd ch from hook. Join. (6 sc)

Rnd 2: Ch 1. 2 sc in each sc around. Join. (12 sc)

Rnd 3: Ch 1. (2 sc in next sc, 1 sc in next sc) repeat around. End with 1 sc. Join. (18
SC)

Rnd 4: Ch 1. (2 sc in next sc, 1 sc in each of next 2 sc) repeat. End with 1 sc in last
2 sc. Join. (24 sc)

Rnd 5: Ch 1. Sc in each sc around. Join. (24 sc)

Rnd 6: Ch 1. (2 sc in next sc, 1 sc in each of next 3 sc) repeat. End with 1 sc in last
3 sc. Join. (30 sc)

Rnds 7-8: Repeat Rnd 5 (sc in each sc). Join. (30 sc each round)

Rnd 9:*%* Ch 1. **Working in back loops only: (2 sc in next sc, 1 sc in each of next
2 sc) repeat. End with 1 sc in last 2 sc. Join. (40 sc)

Rnd 10: Ch 1. Sc in each sc around (both loops). Join. (40 sc)

**Rnd 11:%* Ch 1. (2 sc in next sc, 1 sc in each of next 3 sc) repeat. End with 1 sc in last
3 sc. Join. (50 sc)

Finish: Fasten off.

DSL

17

https://www.yarnspirations.com/cdn/shop/files/BRC0116-035467M.jpg
https://www.yarnspirations.com/cdn/shop/files/BRC0116-035467M.jpg

Under review as a conference paper at ICLR 2026

Jch.B

Jsc@B.A,5sc@B,ss@A
Qch.A,sk,6sc2inc,ss@A
Jch.A,sk,[sc2inc,sc]*6,ss@A
Qch.A,sk,[sc2inc,2sc]*6,ss @A
Qch.A,sk,24sc,ss@A
Qch.A,sk,[sc2inc,3sc]*6,ss @A
Q[ch.A,sk,30sc,ss@A

q+2

Jch.A,sk,[scbl,scbl@[@],2scbl]*10,ss @ A
Jch.A,sk,40sc,ss@A
Qch.A,sk,[sc2inc,3sc]*10,ss@A

USER PROMPT
Now generate DSL code for the following:

[Image]

[Instructions]

Rnd 1: Ch 2, 6 sc in ring

Rnd 2: 2 sc in each (12)

Rnd 3: [Sc, sc, inc] around (16)
Rnd 4: [Tr, sc] repeat around

[DSL]

D CROCHETPARADE: PATTERN RENDERER, ANALYZER, AND DEBUGGER

CrochetPARADE (short for Crochet Pattern Renderer, Analyzer, and Debugger) is an interactive
platform that enables users to author, visualize, test, and export crochet patterns in both 2D and
3D (Tassev, 2025). By combining a custom pattern grammar with simulation and rendering tools,
CrochetPARADE addresses common issues of ambiguity, correctness, and interpretability in textual
crochet instructions

Core Capabilities.

* Interactive authoring and rendering. Users write pattern instructions in the CrochetPA-
RADE grammar and then invoke a “calculate” operation to convert those instructions into a
virtual model. The system supports both 2D and 3D views, along with interactive controls
such as zoom, rotation, and stitch highlighting.

* Validation and debugging. CrochetPARADE parses the input, checks for syntactic and
consistency errors (e.g., mismatched stitch counts, impossible attachments), and flags over-
or under-stretched stitches.

* Export and interoperability. From a rendered pattern, users can export:
— A standard crochet chart (SVG) with conventional stitch symbols and labeled stitch
connections.
— A 3D model (GLTF format) for integration into external tools such as Blender.

— The underlying pattern instructions text (in the CrochetPARADE grammar), ensuring
reproducibility and sharing.

Design Ideals and Rationale. CrochetPARADE is built to meet several design goals: (i) unam-
biguous precision, where the grammar is far more strict than free-form natural language, reducing

Shttps://www.crochetparade.org/

18

https://www.crochetparade.org/

Under review as a conference paper at ICLR 2026

interpretive errors; (ii) local computation, since all parsing, simulation, and rendering occur client-
side in the browser with no user instructions sent to a central server; and (iii) open source extensibil-
ity, as the platform is released under GPLv3, with the grammar manual provided under a Creative
Commons BY-NC-SA license.

Role in Our Work. Within the context of CrochetBench, CrochetPARADE provides a rigorous
target representation: model predictions can be compiled into CrochetPARADE instructions, vali-
dated for syntactic and structural correctness, and then visualized or executed. This enables evalu-
ation beyond surface-level metrics (e.g., BLEU, ROUGE) toward executor correctness—whether a
generated pattern is valid, renderable, and stitch-balanced.

size
One Size to it Adut.

GAUGE
5scand S rows =4" (10 cm).

INSTRUCTIONS.
Note veteal
- Join with s st to first sc at end.

of eachmd.

ch2 sc.
15t md: 6scin 2nd ch from hook.
Join. 10th

i N
LT TN
LLITTISSSS

Figure 8: Example of the CrochetBench translation pipeline. (Left) Natural language crochet in-
structions from the dataset. (Second) Automatically translated into CrochetPARADE DSL, a formal
stitch grammar. (Third) Mesh rendering generated from the DSL. (Right) Target crocheted item
image provided in the dataset. This pipeline enables direct text-to-image consistency checks, auto-
mated validation, and future training of NL. — DSL models, analogous to text-to-code generation.

E DSL ERROR TAXONOMY

To better understand failure cases in Task D, we extend the validator’s error analysis with detailed
subcategories and examples.

Unbalanced Brackets. Missing opening/closing parentheses or brackets.

Unbalanced brackets: (sc,hch5,sltr)infl)

Multiple References. Improper formatting of references.

Multiple references defined without parenthesis:
(21ch),turn

sk, (20sc)

(2ndrow) :Chl. (1scbl) ineachchtoendofrow.Turn

Undefined Stitch. Undefined stitch types not in the dictionary.

chl, ch3, scfp, hdc_bar

Variable Naming Conflict. Conflicts between variable names and stitch names.

19

Under review as a conference paper at ICLR 2026

1026
1027
1028

Error: variable name matches stitch name. For
1029 example, $ch=0$ cannot be used since ’ch’ is a stitch
1030 name.

1031
1032 Label Not Found. Reference to a non-existent label.
1033
1034
1035
1036
1037
1038
1039
1040
1041 Cannot use same label over non-adjacent stitches.
1042 Consider using different labels.

1043
1044 Turning Issue. Misplaced turning commands.
1045
1046
1047
1048
1049
1050
1051

1052
1053 Cannot read properties of null (reading '0’)

1054 Cannot use ’'in’ operator to search for ’"attach_id’ in
1055 Nal

1056
1057
1058
1059
1060 Error: Exception during pattern parsing: Multiplier
1061 set, but no stitch found: <ch.B

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Label not found: C

Non-Adjacent Labels. Same label used for non-adjacent stitches.

Turning can happen only at the end of a row.

Runtime Errors. Low-level parsing failures from the JavaScript compiler.

Multiplier Issue. Improper formatting in multiplier.

20

Under review as a conference paper at ICLR 2026

Table 5: Representative pattern entry from CrochetBench.

Field Value
Pattern Name SKULL TRICK OR TREAT BAG (TO CROCHET)
Skill Level Intermediate
Project Type Bags or Purses
Measurements 15 cm diameter x 15 cm high (excluding handle)
Gauge 13 sc and 14 rows = 10 cm
Materials Lily® Sugar’n Cream (White, Black), 5 mm hook, cardboard
Image https://www.yarnspirations.com/cdn/shop/
products/SCC0303-005314M. jpg
Source input_file/Bags+Purses/SCC0303-005314M.pdf
Instructions Instructions:
Note: Ch 2 at beg of each rnd counts as hdc.
BAG

With MC, ch 4. Join with sl st to form ring.

Ist rnd: Ch 2. 11 hdc in ring. Join with sl st to top of ch 2. 12 hdc.

2nd rnd: Ch 2. 1 hdc in same sp as sl st. 2 hdc in each hdc around. Join.
24 hdc.

3rd rnd: Ch 2. 1 hdc in same sp. 1 hdc in next hdc. *2 hdc in next hdc,
1 hdc in next.* Rep around. Join. 36 hdc.

4th rnd: Ch 2. 1 hdc in each hdc around. Join.

5th rnd: Ch 2. 1 hdc in same sp. 1 hdc in next 2 hdc. *2 hdc, 1 hdc in
next 2.* Join. 48 hdc.

6th rnd: As 4th rnd.

7th rnd: Ch 2. 1 hdc in next 2 hdc. *2 hdc, 1 hdc in next 3.* Rep. 60
hdc.

8th rnd: Ch 2. Back loops only, 1 hdc around. Join.

9th—13th rnds: Ch 2. 1 hdc in each hdc around. Join.

14th rnd: Ch 2. 1 hdc in same sp. 1 hdc in next 4 hdc. *2 hdc, 1 hdc in
next 4.* Join. 72 hdc.

15th rnd: Ch 2. 1 hdc in same sp. 1 hdc in next 5 hdc. *2 hdc, 1 hdc in
next 5.* Join. 84 hdc.

16th—-22nd rnds: Ch 2. 1 hdc in each hdc around. Join.

23rd rnd: Ch 2. 1 hdc in next 4 hdc. *Hdc2tog, 1 hdc in next 5.* Rep.
Hdc2tog. Join. 72 sts.

24th rnd: Ch 2. 1 hdc in next 3 hdc. *Hdc2tog, 1 hdc in next 4.* Rep.
Join. 60 sts.

25th rnd: Ch 2. 1 hdc in next 2 hdc. *Hdc2tog, 1 hdc in next 3.* Rep.
Join. 48 sts. Fasten off.

Eyes (Make 2)

With A, ch 8.

1st rnd: 2 sc in 2nd ch from hook. 1 sc in next 5 ch. 3 sc in last ch.
Continue on rem loops, 1 sc in each ch. Join. 17 sc.

2nd rnd: Ch 1. 3 sc in first sc. 1 sc in next 7 sc. 3 sc in next sc. 1 sc in
next 8 sc. Join. Fasten off.

Handle

With MC, ch 45.

1st row: 1 sc in 2nd ch from hook. 1 sc across. 44 sc. Turn.

2nd row: Ch 1. 1 sc across. Turn.

Rep last row 4 more times. Fasten off.

Finishing

Sew Eyes to Bag. Embroider mouth and teeth with A. Attach Handle.
Cut cardboard circle to fit bottom.

21

https://www.yarnspirations.com/cdn/shop/products/SCC0303-005314M.jpg
https://www.yarnspirations.com/cdn/shop/products/SCC0303-005314M.jpg

Under review as a conference paper at ICLR 2026

Table 6: Overall skill level distribution. Percentages are relative to all patterns with annotated skill
levels.

Skill Level Count Percentage

Easy 3569 58.66%
Intermediate 1967 32.33%
Beginner 465 7.64%
Experienced 80 1.31%
Total 6084 100%

Table 7: Skill level distribution by top 10 project types. Percentages are within each project category.

Project Type Easy Intermediate Beginner Experienced
Afghans & Blankets 56.1% 35.3% 7.0% 1.5%
Hats 61.3% 27.8% 10.1% 0.7%
Sweaters & Cardigans 56.6% 35.9% 5.0% 2.5%
Shawls & Wraps 52.7% 41.8% 4.2% 1.2%
Scarves 63.2% 20.7% 16.1% -
Pillows & Poufs 70.0% 22.9% 6.5% 0.7%
Amigurumi & Toys 64.0% 33.2% 2.1% 0.7%
Bags & Purses 53.8% 39.0% 6.8% 0.4%
Décor 58.4% 33.3% 6.5% 1.7%
Dishcloths 62.6% 27.5% 9.9% -

Table 8: Instruction length statistics (in characters).

Statistic Value
Average 3216.0
Median 2453.0
Min 20
Max 30634

25th percentile 1511.8
75th percentile 4136.2
90th percentile 6403.9

Table 9: Abbreviation count statistics.

Statistic Value

Average 10.6
Median 10.0
Min 1
Max 31

Table 10: Instruction length and abbreviation counts by skill level.

Skill Level Avg. Length Median Length Avg. Abbr. Count
Easy to intermediate 13812.0 13812.0 21.0 1
Experienced 7689.4 6729.0 9.8 80
Intermediate 4221.3 3387.0 10.7 1967
Easy 2760.7 2182.0 10.8 3569
Beginner 1673.9 1365.0 9.2 465
Beginners 1633.0 1633.0 11.0 1
Beginner/Easy 1063.0 1063.0 - 1

22

Under review as a conference paper at ICLR 2026

Table 11: Top 10 most complex project types (by average instruction length).

Project Type Avg. Length Median Count
Dresses 64849 5799.0 34
Vests 6032.0 5193.5 64
Pants 5866.7 5409.0 11
Tunics 5850.4 5832.0 29
Sets 56255 4847.0 111
Sweaters & Cardigans 5429.2 5113.0 357
Amigurumi & Toys 53224 4505.0 286
Jackets 53119 4831.0 31
Onesies & Rompers 52634 5181.0 5
Aprons 4467.8 44940 11

Table 12: Top 10 simplest project types (by average instruction length).

Project Type Avg. Length Median Count
Cowls 1288.3 956.5 154
Washcloths & Mitts 1502.5 1420.0 28
Scarves 1567.3 1221.0 304
Headbands 1617.5 1475.5 38
Dishcloths 1688.4 1571.0 222
Coasters 1750.3 1625.0 26
Booties 1921.9 1938.5 24
Jewelry 1960.3 1549.0 55
Super Scarves 2007.6 1213.0 13
Tech Accessories 2011.1 2099.0 13

23

	Introduction
	Related Work
	Dataset Description
	Tasks
	Task A: Stitch Recognition
	Task B: Instruction Selection
	Task C: Instruction Generation
	Task D: Instruction-to-DSL Translation

	Experiments
	Limitations and Future Work
	Conclusion
	Crochet Primer
	Additional Dataset Statistics
	Instruction Complexity by Skill Level
	Example Dataset Entry
	Skill Level Distribution
	Overall Distribution
	Distribution by Project Type

	Pattern Complexity Analysis
	Instruction Length Statistics
	Abbreviation Statistics
	Complexity by Skill Level
	Most and Least Complex Project Types

	Prompts
	Task A: Stitch Recognition Prompt
	Task B: Instruction Selection Prompt
	Task C: Instruction Generation Prompt
	Task D (Step-level): NL DSL Translation Prompt
	Task D (Project-Level): NL DSL Translation Prompt

	CrochetPARADE: Pattern Renderer, Analyzer, and Debugger
	DSL Error Taxonomy

