
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CROCHETBENCH: CAN VISION-LANGUAGE MODELS
MOVE FROM DESCRIBING TO DOING IN CROCHET DO-
MAIN?

Anonymous authors
Paper under double-blind review

ABSTRACT

We present CrochetBench, a benchmark for evaluating the ability of multimodal
large language models to perform fine-grained, low-level procedural reasoning
in the domain of crochet. Unlike prior benchmarks that focus on high-level de-
scription or visual question answering, CrochetBench shifts the emphasis from
describing to doing: models are required to recognize stitches, select structurally
appropriate instructions, and generate compilable crochet procedures. We adopt
the CrochetPARADE DSL as our intermediate representation, enabling structural
validation and functional evaluation via execution. The benchmark covers tasks
including stitch classification, instruction grounding, and both natural language
and image-to-DSL translation. Across all tasks, performance sharply declines
as the evaluation shifts from surface-level similarity to executable correctness,
exposing limitations in long-range symbolic reasoning and 3D-aware procedural
synthesis. CrochetBench offers a new lens for assessing procedural competence
in multimodal models and highlights the gap between surface-level understanding
and executable precision in real-world creative domains.

1 INTRODUCTION

Procedural crafts such as crochet present a distinctive frontier for multimodal learning. Unlike
traditional captioning or recipe datasets (Li et al., 2024; Hu et al., 2022; Mohbat & Zaki, 2024), cro-
chet patterns intertwine three interdependent modalities: (i) structured symbolic language, where
stitch abbreviations and counts define a precise grammar of construction; (ii) long-form natural
language, which provides contextual guidance such as materials and sizing; and (iii) visual evi-
dence, including photographs of completed objects and motif diagrams. Success requires not just
alignment across modalities but step-wise reasoning that preserves procedural fidelity, making the
challenge closer to program synthesis than generic description.

Crochet also offers a unique testbed for 3D-aware reasoning. Each stitch encodes both local ge-
ometry and global connectivity, forming a topological structure that must be preserved across steps.
Generating or interpreting patterns thus demands reasoning over how sequential operations accumu-
late into volumetric form. In effect, crochet couples symbolic instruction following with embodied
spatial reasoning, cultivating abilities essential for domains where language must ground into phys-
ical tasks.

Despite the rapid growth of multimodal benchmarks (Fu et al., 2025; Li et al., 2023a; Zhang et al.,
2025; Yue et al., 2024), existing datasets have largely focused on description or grounding. COCO
(Lin et al., 2014) catalyzed captioning research, TextCaps (Sidorov et al., 2020) extended it to text-
in-the-wild, and Recipe1M (Marin et al., 2018) explored cross-modal cooking instructions. While
recipes also involve multi-step procedures, validating correctness typically requires real-world ex-
ecution, making large-scale evaluation slow and resource-intensive. Crochet, by contrast, provides
a symbolic domain where outputs can be automatically verified through DSL compilation, enabling
scalable and efficient study of step-wise reasoning. Yet these benchmarks stop short of testing
whether models can follow symbolic grammars, respect numerical and spatial constraints, and pro-
duce outputs that are executable. Current systems can describe, but not reliably do.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: End-to-end data construction and benchmarking workflow for CrochetBench. The
left panel illustrates the data collection pipeline: we download PDF files and image links from
crochet pattern websites, and parse them using GPT-4o-mini to produce structured JSON files con-
taining pattern metadata, stitch abbreviations, instructions, and product images. From each JSON
record, we derive four supervised datasets: (A) stitch-level labels, (B) multiple-choice instruction
selection items, (C) natural-language instruction generation pairs, and (D) expert-annotated DSL
programs for procedural synthesis. The right panel summarizes the four benchmarking tasks: Task
A evaluates multi-label visual stitch recognition; Task B measures vision-to-instruction grounding
via MCQ selection; Task C assesses vision-conditioned natural-language instruction generation;
and Task D tests stateful procedural reasoning via NL-to-DSL (Natrual language to Domain Spe-
cific Language) translation with execution-based metrics.

CrochetBench fills this gap by centering evaluation on instructional fidelity: can models not
only recognize and generate, but also output step-wise, compilable instructions that respect sym-
bolic, numerical, and topological structure? Each example in CrochetBench is a multimodal pack-
age—structured JSON metadata (stitch inventories and abbreviations), full-text procedures with
rows/rounds and conditionals, and paired images of finished objects and motifs. Crucially, Crochet-
Bench is paired with CrochetPARADE (Tassev, 2025), a domain-specific language (DSL) enabling
executable evaluation, where natural language instructions are translated into compilable code en-
forcing geometric and topological coherence.

Our contributions are fourfold: (1) CrochetBench, the first executable benchmark for procedural
textile crafts, unifying symbolic, textual, and visual modalities with evaluation protocols emphasiz-
ing procedural fidelity and 3D-aware reasoning; (2) a comprehensive task suite spanning recog-
nition, comprehension, generation, and DSL translation; (3) integration of CrochetPARADE into
an executable pipeline, enabling scalable, automated verification of outputs—unlike domains such
as cooking, which require real-world execution—thereby shifting evaluation from surface similar-
ity to procedural fidelity; and (4) baseline analyses of state-of-the-art VLMs/MLLMs, revealing
systematic weaknesses including hallucinations, captioning bias, and structural artifacts.

2 RELATED WORK

Multimodal learning has traditionally focused on descriptive image–text pairs, such as COCO (Lin
et al., 2014) and Flickr30k (Plummer et al., 2015). Recent benchmarks extend to procedural or
instructional understanding, including Recipe1M+ (Marin et al., 2018) and large instructional video
corpora such as YouCook2 and HowTo100M (Zhou et al., 2018; Miech et al., 2019). However, these
tasks primarily evaluate semantic alignment or retrieval rather than whether a model can follow or
generate a correct procedure. This gap motivates grounding multimodal evaluation in domains

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where procedures are explicit, structured, and verifiable. To help readers unfamiliar with crochet,
we provide a brief primer in Appendix A summarizing stitch types and pattern conventions.

Texile crafts provide precisely such a domain. Crochet patterns specify symbolic, stepwise pro-
cedures that determine the topology and geometry of a final physical artifact. Prior work in this
area including Digital Crochet (Seitz et al., 2022) and Neural Inverse Knitting (Kaspar et al., 2019)
demonstrates the feasibility of representing textile structures in machine-readable form but remains
limited in scale and modality. By moving from general instructional data to a structured craft do-
main, we enable multimodal models to be evaluated on artifact-centric procedural reasoning rather
than temporal action recognition. CrochetBench builds on this emerging direction by providing
thousands of real crochet patterns with paired images and natural-language instructions.

To evaluate procedural correctness, CrochetBench adopts an executable domain-specific language
(CrochetPARADE), linking our tasks to program synthesis benchmarks such as HumanEval (Chen,
2021), MBPP (Austin et al., 2021), and Spider (Yu et al., 2018). In multimodal settings, image-
to-program benchmarks such as Im2LaTeX-100K (Deng et al., 2017) and pix2code (Beltramelli,
2018) similarly leverage executable formalisms for rendering-based evaluation. CrochetBench ex-
tends this executable perspective to textile crafts: patterns compile to structured instructions that
can be rendered and validated, providing functional evaluation that tests whether a model’s output
actually works. This offers a lightweight alternative to domains such as chemistry or cooking, where
validating a procedure requires physical or chemical experiments that are slow, costly, or impractical
to scale.

3 DATASET DESCRIPTION

37.1%

9.9%
8.3%

7.7%

7.1%

6.8%

6.7%

5.8%

5.4%
5.2% Project Types

Afghans & Blankets
Hats
Sweaters & Cardigans
Shawls & Wraps
Scarves
Pillows & Poufs
Amigurumi & Toys
Bags & Purses
Décor
Dishcloths

Figure 2: Distribution of the top-10 most
common project types in CrochetBench.

CrochetBench is a large-scale, structured bench-
mark comprising 6,085 crochet patterns across 55
distinct project categories. As shown in the left panel
of Figure 1, the dataset is constructed from pub-
licly available patterns on the Yarnspirations web-
site1, a widely used repository in the fiber-arts com-
munity. The raw patterns—originally distributed
as PDF documents—were parsed and normalized
through a GPT-4o-mini–based conversion pipeline
that extracted and standardized key fields such as
metadata, materials, measurements, gauge, abbrevi-
ations, and full step-by-step instructions. Each pat-
tern was then transformed into a machine-readable
JSON object following a consistent schema. No-
tably, 98.77% of patterns include an associated product image, enabling multimodal supervision
for both recognition and generation tasks.

7.6%

58.7%

32.3%

1.3%

Skill Levels
Beginner
Easy
Intermediate
Experienced

Figure 3: Skill level distribution across the
CrochetBench dataset.

The dataset supports diverse real-world crochet prac-
tices, with project types ranging from simple acces-
sories to complex garments. Figure 2 lists the ten
most common categories by frequency. The major-
ity of patterns belong to a small number of dominant
types—Afghans and Blankets alone account for over
one-quarter of the dataset. More details can be found
at Appendix B.

Each pattern is labeled with one of four primary
skill levels, including beginner, easy, intermediate,
or experienced. This allows for stratified evaluation
across complexity tiers. Figure 3 shows the skill
level distribution, which is strongly skewed toward
beginner-friendly content. Only one pattern (0.02%)
is missing a skill level label. More details can be found at Appendix B.

1https://www.yarnspirations.com/collections/patterns

3

https://www.yarnspirations.com/collections/patterns

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Instructional complexity varies substantially across patterns. The number of characters in each in-
struction ranges from 20 to over 30,000, with a mean of 3,216 and a median of 2,453. Abbreviation
counts (i.e., unique stitch tokens per pattern) range from 1 to 31, with an average of 10.6. These
statistics are summarized in Appendix B.1. We observe a clear correlation between skill level and
instruction length: beginner patterns tend to be short and use fewer abbreviations, while experienced
patterns are significantly longer and more symbolically dense.

In addition to symbolic complexity, the dataset contains 3,143 abbreviation instances mapped to 789
unique standardized stitch tokens. This lexical mapping enables tasks such as vocabulary translation,
sequence generation, and instruction validation. Beyond raw instructions, the structured schema also
records rich metadata, including gauge, hook size, yarn weight, and measurements. A representative
dataset entry is provided in Appendix 5.

Overall, CrochetBench provides a rich resource for multimodal modeling, symbolic reasoning, and
structure-aware generation. Its coverage across diverse categories and complexity levels enables
broad benchmarking of both open-ended generation and instruction fidelity tasks.

Table 1: Overall statistics of the CrochetBench dataset.

Total Patterns Image Coverage Avg. Instr. Length #Project Types
CrochetBench 6,085 98.77% 3,216 characters 55

4 TASKS

A central goal of CrochetBench is to evaluate whether multimodal LLMs can move beyond surface-
level visual description and produce procedurally correct crochet instructions. Prior work shows that
current models can describe crochet items (e.g., shape, color, texture) with high fluency, yet such
descriptive competence does not imply an understanding of stitch structure or executable crafting
procedures. To expose this gap, CrochetBench is organized as a progression of four tasks that isolate
the core cognitive abilities required for real-world crochet reasoning, as summarized in Table 2.

Tasks A and B focus on perception and comprehension, representing the minimum prerequisites
for procedural understanding. Stitch recognition and instruction selection evaluate whether models
can ground visual cues in a structured stitch vocabulary and track local procedural dependencies
within a pattern. However, identifying stitches or selecting a plausible next step does not guaran-
tee the ability to synthesize a valid crochet procedure. Tasks C and D therefore target procedural
generation and formalization, requiring models to produce coherent, stepwise natural-language
instructions or executable CrochetPARADE programs. These tasks demand the integration of vi-
sual grounding, temporal consistency, symbolic manipulation, and domain-specific constraints. The
following subsections describe each task in detail.

Table 2: Overview of benchmark tasks in CrochetBench. Tasks progress from recognition to com-
prehension, generation, and executable synthesis.

ID Ability Tested Task Evaluation Metrics Test Size

A Recognition Stitch Recognition F1, Precision, Recall 6,009
(CrochetBench-A)

B Comprehension Instruction Selection Accuracy 6,003
(CrochetBench-B)

C Generation Instruction Generation BLEU, ROUGE, ChrF 6,009
(CrochetBench-C)

D Formalization Instr.-to-DSL (Step) Valid Pattern Rate 119
(CrochetBench-Dstep)

Instr.-to-DSL (Project) Valid Pattern Rate,
Dino Similarity

100
(CrochetBench-Dproj)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 TASK A: STITCH RECOGNITION

Task A evaluates a model’s ability to identify crochet stitch types from an image of a finished prod-
uct. We construct CrochetBench-A, a subset of 6,009 examples from the full benchmark, where
each product image is paired with ground-truth stitch annotations. These labels are derived from the
official pattern instructions and normalized into a standardized set of stitch abbreviations (e.g., sc,
hdc, dc) to ensure consistency across patterns. Unlike standard image classification, this is a multi-
label prediction problem: multiple stitches may co-occur within the same image, often with subtle
visual differences in texture and geometry. This task therefore probes fine-grained visual grounding
of structured crochet semantics.

Evaluation. For each example, we compute overlap between the predicted and reference stitch
sets. True Positives (TP) are stitches correctly predicted; False Positives (FP) are stitches predicted
but not in the reference; and False Negatives (FN) are stitches in the reference but missed by the
model. From these counts, we compute precision (fraction of correct predictions among all predic-
tions), recall (fraction of ground-truth stitches recovered), and F1 score (harmonic mean) Powers
(2020). Metrics are averaged across examples to provide overall performance. This formulation
rewards models that recover all present stitches while avoiding spurious predictions.

Accurate stitch recognition is foundational for the benchmark, as later tasks (e.g., instruction selec-
tion and instruction generation) depend on robust detection of stitch primitives.

4.2 TASK B: INSTRUCTION SELECTION

Task B evaluates whether a model can correctly associate an image of a finished crochet artifact with
its corresponding natural-language instruction. We construct CrochetBench-B, a subset of 6,003
examples, where each instance contains one ground-truth instruction and three distractor instructions
sampled from the same project category (e.g., hats, rugs). Because distractors originate from the
same category, they share similar visual and lexical structure, thereby increasing task difficulty and
preventing solutions based on superficial lexical overlap. The answer distribution across options is
approximately uniform (A: 24.9%, B: 25.7%, C: 23.7%, D: 25.7%), ensuring no positional bias.

Evaluation. To support scalable and reproducible benchmarking, we formulate the task as a four-
way multiple-choice question (MCQ). The model must select one option (A–D), with exactly one
correct answer. Predictions are extracted using a deterministic regex-based parser that identifies
explicit letter-based responses (e.g., “A”, “Option B”, “The answer is D”). Responses without a
parsable choice are marked as unanswered. Accuracy is used as the evaluation metric.

This task provides a controlled measure of visual grounding and semantic alignment between images
and procedural text, without requiring free-form generation. By forcing discrimination among near-
neighbor instructions, Task B probes whether models can leverage fine-grained visual cues and
domain-specific stitch semantics, which are essential precursors to reliable procedural instruction
generation.

4.3 TASK C: INSTRUCTION GENERATION

Task C evaluates a model’s ability to generate natural-language crochet instructions from an image
of a finished item. We construct CrochetBench-C, a subset of 6,009 examples in which each image
is paired with the corresponding ground-truth textual pattern. In contrast to captioning or stylistic
description, this task requires generating a sequence of domain-specific commands (e.g., “Rnd 1: ch
4, 6 sc in ring”), each of which encodes precise stitch operations, counts, and ordering. Because real
crochet patterns may include tens of steps, hierarchical structure (rounds, rows, substeps), and long-
range dependencies, this task assesses whether models can infer the underlying procedural logic
implied by the final visual product. The generated text must maintain consistent stitch semantics,
preserve temporal ordering, and follow established formatting conventions used by human crafters.

Evaluation. We evaluate generation quality using BLEU, ROUGE-L, and ChrF (Papineni et al.,
2002; Lin, 2004; Popović, 2015), which together capture complementary aspects of textual fidelity
in procedural instructions. BLEU measures overlap of word-level n-grams and thus reflects local

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

lexical accuracy in stitch tokens and command sequences. ROUGE-L evaluates the longest com-
mon subsequence between the generated and reference patterns, capturing larger-scale ordering and
structural alignment across multi-step procedures. ChrF operates on character-level n-grams, which
makes it effective for crochet patterns where stitch abbreviations (e.g., sc, sc2tog) often differ by
only a few characters. Word-based metrics treat such tokens as entirely distinct, whereas character-
level comparisons can capture partial matches and small but semantically important variations.

However, textual overlap metrics alone cannot reveal whether the generated instructions form a
coherent or executable procedure. A model may generate instructions that appear fluent and pattern-
like while still violating fundamental structural constraints, including inconsistent stitch counts,
infeasible transitions, or unbalanced repeat constructions. To directly assess structural correctness
and program-level understanding, we introduce Task D, which requires models to formalize correct
natural-language instructions into a machine-checkable DSL representation.

4.4 TASK D: INSTRUCTION-TO-DSL TRANSLATION

Tasks A–C evaluate perception, retrieval, and natural-language generation, but they do not test
whether a model can represent crochet procedures in a structured, machine-interpretable form. Cro-
chet patterns are inherently programmatic: they contain loops, repeats, and counting logic that nat-
ural language expresses only implicitly, and that text-based metrics cannot reliably validate. Task D
isolates this structural dimension by requiring models to translate correct natural-language instruc-
tions into an executable DSL, thereby revealing whether models grasp the underlying program-like
structure of crochet. This capability is essential for true procedural reasoning, and we instantiate it
using the CROCHETPARADE DSL.

We construct two variants of Task D: CrochetBench-Dstep (119 items) for step-level formalization
and CrochetBench-Dproj (100 items) for project-level program synthesis.

Step-Level Translation The step-level task evaluates whether a model can perform incremental
NL→DSL translation, where “NL” refers to the natural-language crochet instructions written by
human designers. Crochet patterns evolve step by step, and each instruction updates the underly-
ing stitch state. Correctly translating a single step therefore requires maintaining consistency with
all previous steps. In this setting, the model is provided with a prefix of correct NL–DSL pairs
representing the portion of the pattern translated so far. Given the next natural-language instruc-
tion, the model must generate the corresponding DSL line. This formulation tests whether models
can map local textual cues, such as stitch counts, increases/decreases, repeat structures, and turning
logic, into the structured, symbolic operations of CrochetPARADE. Because crochet patterns are
stateful, earlier context is essential for interpreting ambiguous constructs, ensuring round-to-round
consistency, and encoding the correct update to the stitch topology. To capture variation in pattern
progression, CrochetBench-Dstep includes 52 early (steps 1–2), 34 mid (steps 3–4), and 33 late
(steps 5–6) examples.

Project-Level Translation In the project-level setting, the model is provided with the complete
crochet instruction in natural language together with the corresponding product image, and must
generate an entire CrochetPARADE program. This variant is globally self-contained but consider-
ably more challenging than the step-level task: models must track stitch states over long horizons,
resolve ambiguities in natural language, and produce code that is both syntactically valid and se-
mantically aligned with the final design. This setting reflects how crochet instructions are used in
practice, where each step depends on the correctness of all preceding steps. Image grounding is
especially helpful for interpreting repeated motifs, symmetry, shaping, and termination conditions
that may be under-specified in text alone.

Evaluation. Because crochet patterns are inherently free-form—where multiple distinct programs
can yield the same final product and a single natural-language instruction may admit several seman-
tically equivalent DSL realizations—there is no canonical gold program for Task D. Exact string
matching would therefore misjudge many correct solutions. Instead, CrochetBench evaluates cor-
rectness through functional executability using the CROCHETPARADE validator, which checks
whether a predicted DSL program is syntactically valid, structurally consistent, and fully executable.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We use two complementary evaluation settings. For step-level translation, we report the Valid Pat-
tern Rate, defined as the proportion of generated DSL steps that successfully compile. For project-
level translation, we compute the Valid Pattern Rate for full programs and, for those that compile,
render the executable portion into a crochet-like image and compute its DINO Similarity (Oquab
et al., 2023) to the ground-truth product image, providing a coarse measure of semantic fidelity
beyond syntax. To diagnose failure modes, we further identify the first point of failure for each
invalid prediction and categorize it using our fine-grained error taxonomy (Appendix E), enabling
us to distinguish local symbolic errors from broader state-tracking failures or misinterpretations of
the natural-language instruction.

Table 3: Combined evaluation results across all three CrochetBench tasks: Stitch Recognition, In-
struction Selection, and Instruction Generation. Best values are bold; second-best are underlined.

Model Size Stitch Recognition (%) Instr. Sel. (%) Instr. Gen. (%)

Prec Rec F1 Acc BLEU R-L ChrF

Open
Source

BLIP-2 Flan-T5 XL 3B 29.53 23.03 22.50 25.62 0.21 9.26 9.32
Google Gemma 3 4B 20.54 10.21 12.65 24.94 0.10 3.29 5.17
Google Gemma 3 27B 17.19 18.14 16.05 24.94 0.40 5.17 6.55
DeepSeek-VL 7B 54.47 74.76 60.60 28.92 1.33 19.68 18.12
Qwen2-VL 7B 54.14 69.74 58.16 41.96 1.60 20.84 15.76
Qwen2-VL 72B 71.86 42.68 50.19 68.85 2.25 21.43 19.82

Closed
Source

GPT-4o – 62.14 59.39 58.01 58.11 3.33 23.53 23.80
Gemini 2.5 Flash-Lite – 74.49 49.77 56.83 55.63 4.82 25.83 30.20
Claude Sonnet 4 – 78.61 53.12 60.94 57.39 3.31 25.16 22.95

5 EXPERIMENTS

BLIP
-2

Gem
ma-3

-4B

Gem
ma-3

-27
B

Dee
pS

ee
k-V

L

Qwen
2-V

L-7
B

Qwen
2-V

L-7
2B

GPT-
4o

Gem
ini

Clau
de

0

20

40

60

80

100

Va
lid

 D
SL

 p
at

te
rn

 (%
)

Step-Level Valid Pattern Rates Across Models and Step Groups
Steps 1 2
Steps 3 4
Steps 5 6

Figure 5: Task D step-level translation results showing the
proportion of generated DSL lines that successfully com-
pile for early (Steps 1–2), middle (Steps 3–4), and late
(Steps 5–6) stages of crochet patterns. Across all models,
valid pattern rates increase as more context is provided, but
overall accuracy remains low. Even the strongest models
struggle in early steps, indicating difficulty establishing cor-
rect stitch state and structural dependencies. Larger mod-
els (e.g., Qwen2-VL-72B and Gemma-27B) do not consis-
tently outperform their smaller counterparts, highlighting
that scale alone does not improve program-level structural
reasoning.

We evaluate a representative set of
widely used vision–language mod-
els spanning open and closed ecosys-
tems. For open source models, we in-
clude BLIP-2 Flan-T5 XL (Li et al.,
2023b), Google Gemma 3 (4B and
27B) (Team et al., 2024), DeepSeek-
VL 7B (Lu et al., 2024), and Qwen2-
VL (7B and 72B) (Wang et al., 2024),
covering a range of architectures and
parameter scales. For closed source
models, we evaluate GPT-4o (Hurst
et al., 2024) , Gemini 2.5 Flash-Lite
(Comanici et al., 2025), and Claude
Sonnet 4 (Anthropic, 2025), which
represent the strongest publicly ac-
cessible multimodal systems. These
models span diverse architectures and
parameter scales, providing a diverse
and meaningful basis for assessing
current multimodal capabilities on
perception, retrieval, and procedural
reasoning tasks.

Perception and grounding improve
with scale, but procedural generation collapses. Table 3 summarizes results across Stitch
Recognition (Task A), Instruction Selection (Task B), and Instruction Generation (Task C). Closed-
source models achieve the strongest recognition performance, with Claude Sonnet 4 obtaining the
highest F1 score (60.94%), and Qwen2-VL 72B leading among open models (50.19%). Although

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

...A Midnight Blue ...

...B Copper Brown ... Ch4.
Join with sl st to first
ch to form ring ... 4th
rnd: Sl st in next dc. Ch
2. 3 hdc in same dc as sl
st. *Bobble in next st...
Tassels (make 7)...

(a) Ground Truth

... With Color A (Blue),
make a magic ring ... Join
Color B (Brown) ... Rnd
4:Sl st into ch-2 sp. Ch
1, (Bobble ... Make 7
tassels with Color B and
attach one to each ch-2
point of the star...

(b) Gemini

... Star-Shaped Crochet
Blanket Pattern ... Yarn:
Brown and Blue... With
Brown yarn, make a magic
ring. ... Tassels: Cut 4
lengths of Brown yarn ...

(c) GPT-4o

... 8-Point Star Afghan

... Worsted weight yarn in
blue and brown ... With
blue, ch 4, join with
sl st to form ring. ...
Tassels: Cut ...

(d) Claude

... Star Motif Crochet
Pattern ... Worsted weight
yarn in navy blue and brown
... Tassels... Round 1:Ch
10, join with sl st to form
a ring ...

(e) Qwen-VL-7B

ch 100, sc in 2nd ch from
hook, sc in each ch across,
join with sl st in 1st sc,
100 loops made.

(f) Deepseek VL

Figure 4: Case study for Task C: Instruction Generation. Each row shows the DSL-rendered
output generated from the model’s natural-language instructions and the color-coded instruction
extract below it. Matching colors denote semantically corresponding elements across the reference
and model outputs, while red marks incorrect or hallucinated steps. The ground truth is a seven-
point star with alternating blue and brown yarn and tassels attached at each point. Gemini and
GPT-4o generate structured and mostly coherent instructions but misconstruct the global geometry,
producing a circular motif rather than a star. Claude and Qwen2-VL-7B misinterpret the shape more
severely, producing circular or distorted wireframe-like forms. DeepSeek-VL collapses entirely into
a degenerate single-loop pattern. Gemini is the only model to explicitly recognize the motif as a
seven-point star, but its instructions still fail to produce the correct star topology.

larger models capture more fine-grained visual cues, accuracy remains far from saturated, and In-
struction Selection shows similarly limited progress: Qwen2-VL 72B reaches 68.85%, while GPT-
4o and Claude perform in the mid–50s, indicating that visual–textual alignment still depends on
shallow correlations rather than robust grounding. These limitations become dramatically more pro-
nounced in Task C. Natural-language instruction generation remains extremely challenging for all
model, with BLEU, ROUGE-L, and ChrF scores uniformly low; even the strongest system, Gemini

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2.5 Flash-Lite, achieves only 4.82 BLEU and 30.20 ChrF. The sharp drop from Tasks A–B to C
shows that models capable of recognizing stitches or retrieving plausible text still fail to synthe-
size coherent multi-step procedures, reflecting fundamental gaps in procedural reasoning, symbolic
consistency, and pattern-structure understanding.

Surface-level fluency does not imply procedural correctness. To better understand why instruc-
tion generation fails despite moderate performance on recognition and retrieval, Figure 4 presents a
case study comparing model-generated natural-language instructions with their corresponding DSL
renderings. Qwen2-VL-7B and DeepSeek-VL collapse into non-star geometries, revealing unsta-
ble procedural logic. GPT-4o and Claude produce coherent crochet-pattern-like text and correctly
capture local yarn colors, yet fundamentally misinterpret the global motif: GPT-4o reconstructs a
four-point star and begins with the brown yarn instead of blue, while Claude generates an eight-point
motif rather than the intended seven. Gemini most accurately identifies the seven-point structure and
selects plausible constructs such as bobbles for the star tips, but structural inconsistencies remain
and yield visibly distorted shapes. These examples demonstrate that models can generate fluent,
crochet-like descriptions while failing to preserve the algorithmic structure required for faithful pat-
tern synthesis.

0 20 40 60 80 100
Percentage (%)

BLIP-2

Gemma-3-4B

Gemma-3-27B

DeepSeek-VL

Qwen2-VL-7B

Qwen2-VL-72B

GPT-4o

Gemini

Claude

5.6

8.1

21.0

5.0

4.0

5.0

27.4

42.6

28.3

13.6

72.0

29.0

25.0

27.0

37.0

29.0

9.3

26.3

14.8

10.0

46.0

40.0

33.0

59.0

21.0

3.7

22.2

10.0

14.0

6.0

8.1

20.4

4.0

6.2

4.0

11.0

9.3

9.0

3.2

9.1

40.7

9.0

9.7

7.4

8.0

9.0

8.0

Project-Level DSL Translation Outcomes Across Models (Valid vs. Error Types)

Components

Valid
Undefined Stitch
Unbalanced Brackets
Multiple Reference
Label Not Found
Runtime Error
Non-adjacent Labels
Variable Name Conflict
Syntax Error
Other

Figure 6: Distribution of project-level DSL translation
outcomes for each model, broken down into valid out-
puts and error categories. Across all models, invalid pro-
grams dominate, with most failures arising from undefined
stitches, unbalanced brackets, and multiple-reference errors.
The wide spread of error types further illustrates the diffi-
culty of maintaining global consistency and symbolic cor-
rectness when generating full crochet programs.

Early-step instability reveals limits
of procedural reasoning. Figure 5
shows step-level results on Task D.
Valid Pattern Rate increases with pat-
tern depth but remains low overall:
most models achieve under 15% va-
lidity in the first two steps, improve
modestly in steps 3–4, and reach only
55–65% in later steps. This pattern
reflects the difficulty of the initial
steps, which must correctly initial-
ize the program state such as defin-
ing stitch variables and maintain-
ing balanced grouping. Errors made
early propagate irreversibly, and later
correctness often occurs only when
the initial state is accidentally valid,
indicating reliance on continuation
heuristics rather than genuine proce-
dural understanding. Larger models
do not consistently perform better:
Qwen2-VL-72B underperforms Qwen2-VL-7B, and Gemma-27B underperforms Gemma-4B, sug-
gesting that increased capacity improves descriptive fluency more readily than symbolic stability,
and that scaling alone is insufficient for grammar-sensitive procedural tasks.

Project-level synthesis exposes severe structural weaknesses. Figure 6 further demonstrates the
fragility of model performance when generating full CrochetPARADE programs. Valid outputs are
exceedingly rare: even the strongest systems (Claude, Gemini, Qwen2-VL-7B) produce only 5–8%
executable programs, while most others fall below 3%. The dominant failure modes (undefined
stitches and unbalanced brackets) reflect unstable control over the DSL’s vocabulary and grouping
structure, and many models also exhibit multiple references, non-adjacent labels, and runtime er-
rors. These error profiles indicate that models struggle to maintain consistent state and long-range
structural dependencies across an entire pattern.

Image-based similarity confirms lack of global structural fidelity. Compilation verifies syn-
tactic and structural correctness but cannot determine whether two DSL programs are semantically
equivalent. To address this gap, we compute DINO similarity between the target crochet product
image and the rendering produced from each model’s executable program (valid outputs only). Fig-
ure 7 shows that similarity scores remain uniformly low across all models (0.10–0.17), far below
the typical threshold for visually matched crochet images. Even when a model produces a compil-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

able DSL program, the resulting rendering generally bears little resemblance to the intended pattern,
indicating that syntactic validity does not imply correct procedural structure. The consistently low
similarities reinforce that current multimodal LLMs fail to capture the global geometry and layout
required for visually faithful crochet synthesis.

6 LIMITATIONS AND FUTURE WORK

Gem
ma-3

-4B

Gem
ma-3

-27
B

Dee
pS

ee
k-V

L

Qwen
2-V

L-7
B

Qwen
2-V

L-7
2B

GPT-
4o

Gem
ini

Clau
de

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DI
NO

 S
im

ila
rit

y

0.144 0.138
0.168

0.149 0.157

0.109 0.115
0.137

Typical good DINO similarity 0.6

DINO Similarity Between DSL-Rendered Crochet Patterns and Ground-Truth Products

Figure 7: Task D Project-level translation results evaluat-
ing with DINO similarity between ground-truth images and
DSL-rendered outputs generated from each model’s DSL
program (valid executable portion only). The red line marks
an approximate “good” similarity threshold. All models fall
well below this level, indicating that even executable DSL
programs rarely reproduce the correct visual structure of the
intended crochet design.

Future improvements to Crochet-
Bench span both dataset construc-
tion and modeling methodology. On
the dataset side, CrochetBench cur-
rently relies on single product im-
ages and written instructions; ex-
tending the benchmark to multi-view
and video settings would better cap-
ture aspects of crocheting that de-
pend on motion, perspective, and
temporal sequencing. The Crochet-
PARADE DSL models the core of
common crochet operations, but ex-
panding it to cover additional con-
struction techniques, advanced stitch
types, and designer-specific conven-
tions would broaden the range of pat-
terns the benchmark can support. In-
corporating richer supervision, such
as expert ratings, correction traces, or
human-verified program variants, would further strengthen evaluation in cases where multiple pro-
cedurally valid solutions exist.

On the modeling side, our results highlight the need for architectures that go beyond visual recog-
nition and text generation to support explicit state tracking, consistent counting logic, and long-
range structural planning. Approaches that combine neural perception with symbolic scaffolds or
memory-augmented components may help mitigate the drift and instability observed in DSL trans-
lation. Multimodal pretraining that includes procedural and topological data—such as assembly
instructions, instructional videos, or structured manipulation tasks—may also narrow the gap be-
tween natural-language descriptions and executable program synthesis. Evaluation can likewise be
expanded through hybrid pipelines that pair compilation checks with image-based comparisons of
rendered outputs, providing complementary views of structural and perceptual fidelity.

More broadly, casting crochet as a program-synthesis task opens connections to established work in
domain-specific languages for knitting, graphics, and robotics. This perspective naturally aligns with
CAD/CAM workflows used in industrial crochet and warp-knitting machines, where pattern designs
are compiled into machine-executable instructions. CrochetPARADE could serve as a standardized
intermediate representation for such pipelines, bridging human-authored patterns with automated
manufacturing systems. Finally, CrochetBench offers a platform for exploring neuro-symbolic ap-
proaches that integrate visual grounding with symbolic reasoning, aiming toward models that can
generate procedures that are not only fluent, but also structurally correct and reliably executable.

7 CONCLUSION

CrochetBench provides a structured benchmark for assessing whether multimodal LLMs can move
from recognizing visual content to executing the step-by-step procedures required to produce a cro-
chet pattern. Across all four tasks, models demonstrate a consistent gap: they can identify stitches
and retrieve plausible instructions, but they fail to generate structurally valid procedures or produce
executable programs that match the intended design. Even when compilation succeeds, rendered
outputs rarely capture the correct global geometry, revealing weaknesses in state tracking, counting
logic, and long-horizon structural planning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge that the original crochet pattern PDFs are protected under copyright and therefore
do not distribute raw files or full texts. Instead, we release only structured JSON annotations gen-
erated with GPT, reference URLs to the original sources, and our parsing and annotation scripts.
The benchmark is provided strictly for non-commercial academic use. This approach enables repro-
ducible research while respecting intellectual property and ensuring that our dataset serves as a tool
for studying structured generation rather than redistributing creative works.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets, task templates,
and evaluation procedures are documented in the main text and appendix. An anonymous repository
containing the full source code, experiment scripts, and detailed reproduction instructions has been
made publicly available at: https://anonymous.4open.science/r/crochet-82E6/
README.md. This ensures that all reported results can be independently verified and extended by
the research community.

REFERENCES

Anthropic. Claude 4 sonnet – model card. https://docs.aimlapi.com/
api-references/text-models-llm/anthropic/claude-4-sonnet, 2025.
Accessed: 2025-12-04.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In Pro-
ceedings of the ACM SIGCHI symposium on engineering interactive computing systems, pp. 1–6,
2018.

Mark Chen. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M Rush. Image-to-markup generation
with coarse-to-fine attention. In International Conference on Machine Learning, pp. 980–989.
PMLR, 2017.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. In The Thirty-ninth Annual Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2025.

Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, and Jiebo Luo. Promptcap:
Prompt-guided task-aware image captioning. arXiv preprint arXiv:2211.09699, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr Kellnhofer, and Wojciech Matusik. Neural
inverse knitting: From images to manufacturing instructions. In International Conference on
Machine Learning, pp. 3272–3281. PMLR, 2019.

11

https://anonymous.4open.science/r/crochet-82E6/README.md
https://anonymous.4open.science/r/crochet-82E6/README.md
https://docs.aimlapi.com/api-references/text-models-llm/anthropic/claude-4-sonnet
https://docs.aimlapi.com/api-references/text-models-llm/anthropic/claude-4-sonnet

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal llms with generative comprehension. arXiv preprint arXiv:2307.16125,
2023a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023b.

Peiyu Li, Xiaobao Huang, Yijun Tian, and Nitesh V Chawla. Cheffusion: Multimodal foundation
model integrating recipe and food image generation. In Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Management, pp. 3872–3876, 2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81. Association for Computational Linguistics, 2004. URL https://
aclanthology.org/W04-1013/.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar
Weber, and Antonio Torralba. Recipe1m+: a dataset for learning cross-modal embeddings for
cooking recipes and food images. arXiv preprint arXiv:1810.06553, 2018.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated
video clips. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
2630–2640, 2019.

Fnu Mohbat and Mohammed J Zaki. Llava-chef: A multi-modal generative model for food recipes.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge Man-
agement, pp. 1711–1721, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics (ACL 2002), pp. 311–318. Association for Computational Linguistics,
2002. URL https://aclanthology.org/P02-1040/.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of the IEEE international conference on computer vision, pp.
2641–2649, 2015.

Maja Popović. chrf: character n-gram f-score for automatic mt evaluation. In Proceedings of the
tenth workshop on statistical machine translation, pp. 392–395, 2015.

David MW Powers. Evaluation: from precision, recall and f-measure to roc, informedness, marked-
ness and correlation. arXiv preprint arXiv:2010.16061, 2020.

Klara Seitz, Patrick Rein, Jens Lincke, and Robert Hirschfeld. Digital crochet: toward a visual
language for pattern description. In Proceedings of the 2022 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Software, pp. 48–62,
2022.

12

https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/P02-1040/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for
image captioning with reading comprehension. In European conference on computer vision, pp.
742–758. Springer, 2020.

Svetlin Tassev. Crochetparade: Crochet pattern renderer, analyzer, and debugger, 2025. URL
https://www.crochetparade.org/. Accessed: 2025-09-24.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Zheyuan Zhang, Yiyang Li, Nhi Ha Lan Le, Zehong Wang, Tianyi Ma, Vincent Galassi, Keerthiram
Murugesan, Nuno Moniz, Werner Geyer, Nitesh V Chawla, et al. Ngqa: a nutritional graph ques-
tion answering benchmark for personalized health-aware nutritional reasoning. In Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 5934–5966, 2025.

Luowei Zhou, Chenliang Xu, and Jason Corso. Towards automatic learning of procedures from web
instructional videos. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

13

https://www.crochetparade.org/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A CROCHET PRIMER

Crochet patterns describe how to construct a textile artifact through a sequence of symbolic stitch
instructions. Each instruction specifies an operation performed with a hook and yarn, and the re-
sulting pattern is defined by the order, repetition, and spatial arrangement of these stitches. This
appendix summarizes only the conventions needed to interpret the examples in our benchmark.

Basic stitch types. Crochet relies on a small vocabulary of atomic stitches, each producing a loop
with a characteristic height and structure. The most common stitches in U.S. notation are:

• ch (chain): foundational stitch used to begin rows or rounds.

• sc (single crochet): a short, dense stitch.

• hdc (half double crochet) and dc (double crochet): taller stitches that build height more
quickly.

• sl st (slip stitch): a joining stitch used for connecting motifs or closing rounds.

• bobble (bobble stitch): a cluster of 5 partially completed double crochet stitches closed
together into a single stitch.

These stitches can be combined in rows (worked back and forth) or rounds (worked in a circle).

Pattern syntax and structure. Crochet instructions follow a compact symbolic notation. A pat-
tern is organized into rows or rounds, each specifying a sequence of stitches. For example:

Row 3: Ch 1, sc in each st across, turn.

Instructions may include:

• Repetition: indicated by parentheses and a multiplier, e.g., (sc, ch 1) 3 times.

• Increases/decreases: e.g., 2 sc in next st (increase) or sc2tog (single-crochet
two stitches together; decrease).

• Stitch counts: patterns often end rows or rounds with “—N sc,” indicating the number of
stitches that should remain.

Relationship to symbolic representations. Each crochet instruction corresponds to a local mod-
ification of the fabric’s topology. This makes crochet patterns naturally suited to symbolic or
program-like representations such as CrochetPARADE, which encode stitches as structured primi-
tives with explicit control flow (loops, groups, labels). Because stitch sequences fully determine the
geometry of the final artifact, correctness can be assessed by verifying the structure of the generated
program or by rendering the corresponding stitch graph.

This primer covers the minimal terminology required to interpret our dataset and evaluation tasks.
For readers interested in additional background, standard crochet references provide extended stitch
catalogs and diagram conventions.

B ADDITIONAL DATASET STATISTICS

B.1 INSTRUCTION COMPLEXITY BY SKILL LEVEL

Skill Level Avg. Length Median Length Avg. Abbr. Count
Beginner 1,674 1,365 9.2 465
Easy 2,761 2,182 10.8 3,569
Intermediate 4,221 3,387 10.7 1,967
Experienced 7,689 6,729 9.8 80

Table 4: Instruction complexity by skill level. Length is measured in characters.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 EXAMPLE DATASET ENTRY

B.3 SKILL LEVEL DISTRIBUTION

B.3.1 OVERALL DISTRIBUTION

Table 6 summarizes the overall distribution of skill levels across the CrochetBench dataset. The
majority of patterns are labeled as easy (58.7%), followed by intermediate (32.3%). Only a small
fraction are classified as beginner (7.6%) or experienced (1.3%).2

One pattern (0.02%) is missing an annotated skill level.

B.3.2 DISTRIBUTION BY PROJECT TYPE

We further break down skill levels by the top 10 most common project types. Results are shown in
Table 7. In most categories, easy patterns dominate, typically ranging between 53–70%. Interme-
diate is the second most common, while beginner and experienced remain consistently low across
categories.

Overall, the predominance of easy patterns reflects the accessibility of crochet as a craft and aligns
with the goal of many project types to cater to a wide audience. The relative scarcity of experienced-
level patterns suggests that most published resources emphasize broad usability rather than advanced
expertise.

B.4 PATTERN COMPLEXITY ANALYSIS

B.4.1 INSTRUCTION LENGTH STATISTICS

We first analyze the distribution of instruction lengths, measured in raw character counts. As shown
in Table 8, the average instruction length is over 3,200 characters, while the median is substantially
lower at 2,453 characters, reflecting a long-tailed distribution. The most complex patterns extend
beyond 30,000 characters, while some very short patterns are as small as 20 characters.

Out of 6,085 total patterns, 6,084 (99.98%) contain full instructions.

B.4.2 ABBREVIATION STATISTICS

Abbreviations, such as sc, dc, and hdc, are a distinctive element of crochet instructions. Table 9
reports abbreviation counts across all patterns. Most patterns contain about 10 abbreviations, with
values ranging from 1 to 31.

B.4.3 COMPLEXITY BY SKILL LEVEL

Instruction length correlates with the designated skill level. As shown in Table 10, beginner-level
patterns average under 2,000 characters, while intermediate patterns extend to over 4,200. Expe-
rienced patterns are the longest, averaging 7,689 characters. Rare categories such as easy to
intermediate skew extremely long due to outliers.

B.4.4 MOST AND LEAST COMPLEX PROJECT TYPES

Finally, we identify the most complex and simplest project types by average instruction length.
Tables 11 and 12 list the top 10 categories. Garments such as dresses, vests, pants, and tunics are
the most demanding, with average instructions exceeding 5,800 characters. By contrast, smaller
accessories such as cowls, washcloths, scarves, and headbands are substantially shorter, typically
under 2,000 characters.

Taken together, these results highlight strong alignment between project type, designated skill level,
and instruction length. Garment-oriented projects require substantially longer and more complex
instructions, while accessories and small decorative items remain simple and concise.

2Three additional rare labels were observed: easy to intermediate (1 pattern), beginners (1
pattern), and beginner/easy (1 pattern). Together they account for < 0.1% of the dataset.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROMPTS

C.1 TASK A: STITCH RECOGNITION PROMPT

This task evaluates a model’s ability to identify stitches present in a crochet product image.

Stitch Recognition Prompt (Rendered Example)

SYSTEM PROMPT You are a crochet stitch expert.
Given an image of a crochet product, identify all stitches that appear.
Requirements:
- Use only standard U.S. crochet abbreviations
(e.g., sc, hdc, dc, tr, ch, sl st, pop, etc.).
- Output must be a comma-separated list of abbreviations.
- Do not include explanations, extra text, or formatting beyond the list.

USER PROMPT Look at this crochet product image and list the stitches used.
[Image]

C.2 TASK B: INSTRUCTION SELECTION PROMPT

This task evaluates a model’s ability to choose the correct instructions from multiple-choice options.

Instruction Selection Prompt (Rendered Example)

SYSTEM PROMPT
You are a crochet expert. Your task is to determine which of the given options (A, B, C, or
D) contains the correct crochet instructions for the image shown.

USER PROMPT
Look at this crochet image and choose which option best matches the instructions for making
it.
[Image]
Options: {options text}
Choose exactly ONE option. Your answer should be only one letter: A, B, C, or D.

C.3 TASK C: INSTRUCTION GENERATION PROMPT

This task evaluates a model’s ability to generate complete crochet instructions from an image.

Instruction Generation Prompt (Rendered Example)

SYSTEM PROMPT
You are a professional crochet pattern writer. Examine the image of the finished crochet
product carefully. Write a complete set of crochet instructions in the standard style used in
published patterns.
Requirements:
- Use standard abbreviations: sc (single crochet), hdc (half double crochet),
dc (double crochet), tr (treble), ch (chain), sl st (slip stitch), rep (repeat).
- Organize the instructions row by row or round by round (e.g., ”Rnd 1: ...”, ”Row 2: ...”).
- If color changes are visible in the image, include them in the pattern.
- Keep the instructions concise and precise, as if for experienced crocheters.
- Output only the crochet pattern. Do not add any explanations, commentary, or extra text.

USER PROMPT
Generate step-by-step crochet instructions for this image.
[Image]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.4 TASK D (STEP-LEVEL): NL → DSL TRANSLATION PROMPT

This task evaluates whether a model can translate a single natural language instruction into exactly
one line of compilable CrochetPARADE DSL code.

Step-level NL → DSL Translation Prompt (Rendered Example)

SYSTEM PROMPT
You are a crochet compiler. Translate the next instruction NL into one line of CrochetPA-
RADE DSL.
Use consistent naming and syntax.
Important rules for translations:
1. Make sure your output ONLY contains the DSL code, nothing else.
2. Use the previous examples to understand the pattern of translation.
3. Be consistent in naming conventions with the examples.
4. Your output should be exactly one line of DSL code.

USER PROMPT
Now translate the NL into DSL:
NL:
DSL:

C.5 TASK D (PROJECT-LEVEL): NL → DSL TRANSLATION PROMPT

This task evaluates whether a model can convert natural language crochet instructions (with optional
images) into compilable CrochetPARADE DSL code.

NL → DSL Translation Prompt (Rendered Example)

SYSTEM PROMPT
You are a professional crochet pattern writer. Convert instructions + images into compilable
CrochetPARADE DSL code. Output only the DSL code. No explanations, commentary, or
extra text.
Example 1:

”image path”: https://www.yarnspirations.com/cdn/shop/files/
BRC0116-035467M.jpg,

INSTRUCTIONS
Note: Join with sl st to first sc at end of each rnd.
Ch 2.
Rnd 1: 6 sc in 2nd ch from hook. Join. (6 sc)
Rnd 2: Ch 1. 2 sc in each sc around. Join. (12 sc)
Rnd 3: Ch 1. (2 sc in next sc, 1 sc in next sc) repeat around. End with 1 sc. Join. (18

sc)
Rnd 4: Ch 1. (2 sc in next sc, 1 sc in each of next 2 sc) repeat. End with 1 sc in last

2 sc. Join. (24 sc)
Rnd 5: Ch 1. Sc in each sc around. Join. (24 sc)
Rnd 6: Ch 1. (2 sc in next sc, 1 sc in each of next 3 sc) repeat. End with 1 sc in last

3 sc. Join. (30 sc)
Rnds 7–8: Repeat Rnd 5 (sc in each sc). Join. (30 sc each round)
Rnd 9: Ch 1. **Working in back loops only**: (2 sc in next sc, 1 sc in each of next

2 sc) repeat. End with 1 sc in last 2 sc. Join. (40 sc)
Rnd 10: Ch 1. Sc in each sc around (both loops). Join. (40 sc)
Rnd 11: Ch 1. (2 sc in next sc, 1 sc in each of next 3 sc) repeat. End with 1 sc in last

3 sc. Join. (50 sc)
Finish: Fasten off.

DSL

17

https://www.yarnspirations.com/cdn/shop/files/BRC0116-035467M.jpg
https://www.yarnspirations.com/cdn/shop/files/BRC0116-035467M.jpg

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

¶ch.B
¶sc@B.A,5sc@B,ss@A
¶ch.A,sk,6sc2inc,ss@A
¶ch.A,sk,[sc2inc,sc]*6,ss@A
¶ch.A,sk,[sc2inc,2sc]*6,ss@A
¶ch.A,sk,24sc,ss@A
¶ch.A,sk,[sc2inc,3sc]*6,ss@A
¶[ch.A,sk,30sc,ss@A
¶]*2
¶ch.A,sk,[scbl,scbl@[@],2scbl]*10,ss@A
¶ch.A,sk,40sc,ss@A
¶ch.A,sk,[sc2inc,3sc]*10,ss@A

USER PROMPT
Now generate DSL code for the following:

[Image]

[Instructions]
Rnd 1: Ch 2, 6 sc in ring
Rnd 2: 2 sc in each (12)
Rnd 3: [Sc, sc, inc] around (16)
Rnd 4: [Tr, sc] repeat around

[DSL]

D CROCHETPARADE: PATTERN RENDERER, ANALYZER, AND DEBUGGER

CrochetPARADE (short for Crochet Pattern Renderer, Analyzer, and Debugger) is an interactive
platform that enables users to author, visualize, test, and export crochet patterns in both 2D and
3D (Tassev, 2025). By combining a custom pattern grammar with simulation and rendering tools,
CrochetPARADE addresses common issues of ambiguity, correctness, and interpretability in textual
crochet instructions.3

Core Capabilities.

• Interactive authoring and rendering. Users write pattern instructions in the CrochetPA-
RADE grammar and then invoke a “calculate” operation to convert those instructions into a
virtual model. The system supports both 2D and 3D views, along with interactive controls
such as zoom, rotation, and stitch highlighting.

• Validation and debugging. CrochetPARADE parses the input, checks for syntactic and
consistency errors (e.g., mismatched stitch counts, impossible attachments), and flags over-
or under-stretched stitches.

• Export and interoperability. From a rendered pattern, users can export:

– A standard crochet chart (SVG) with conventional stitch symbols and labeled stitch
connections.

– A 3D model (GLTF format) for integration into external tools such as Blender.
– The underlying pattern instructions text (in the CrochetPARADE grammar), ensuring

reproducibility and sharing.

Design Ideals and Rationale. CrochetPARADE is built to meet several design goals: (i) unam-
biguous precision, where the grammar is far more strict than free-form natural language, reducing

3https://www.crochetparade.org/

18

https://www.crochetparade.org/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

interpretive errors; (ii) local computation, since all parsing, simulation, and rendering occur client-
side in the browser with no user instructions sent to a central server; and (iii) open source extensibil-
ity, as the platform is released under GPLv3, with the grammar manual provided under a Creative
Commons BY-NC-SA license.

Role in Our Work. Within the context of CrochetBench, CrochetPARADE provides a rigorous
target representation: model predictions can be compiled into CrochetPARADE instructions, vali-
dated for syntactic and structural correctness, and then visualized or executed. This enables evalu-
ation beyond surface-level metrics (e.g., BLEU, ROUGE) toward executor correctness—whether a
generated pattern is valid, renderable, and stitch-balanced.

Figure 8: Example of the CrochetBench translation pipeline. (Left) Natural language crochet in-
structions from the dataset. (Second) Automatically translated into CrochetPARADE DSL, a formal
stitch grammar. (Third) Mesh rendering generated from the DSL. (Right) Target crocheted item
image provided in the dataset. This pipeline enables direct text-to-image consistency checks, auto-
mated validation, and future training of NL → DSL models, analogous to text-to-code generation.

E DSL ERROR TAXONOMY

To better understand failure cases in Task D, we extend the validator’s error analysis with detailed
subcategories and examples.

Unbalanced Brackets. Missing opening/closing parentheses or brackets.

Examples

Unbalanced brackets: (sc,hc5,sltr)infl)

Multiple References. Improper formatting of references.

Example

Multiple references defined without parenthesis:
(21ch),turn
sk,(20sc)
(2ndrow):Ch1.(1scbl)ineachchtoendofrow.Turn

Undefined Stitch. Undefined stitch types not in the dictionary.

Examples

ch1, ch3, scfp, hdc bar

Variable Naming Conflict. Conflicts between variable names and stitch names.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Example

Error: variable name matches stitch name. For
example, $ch=0$ cannot be used since ’ch’ is a stitch
name.

Label Not Found. Reference to a non-existent label.

Example

Label not found: C

Non-Adjacent Labels. Same label used for non-adjacent stitches.

Example

Cannot use same label over non-adjacent stitches.
Consider using different labels.

Turning Issue. Misplaced turning commands.

Example

Turning can happen only at the end of a row.

Runtime Errors. Low-level parsing failures from the JavaScript compiler.

Examples

Cannot read properties of null (reading ’0’)
Cannot use ’in’ operator to search for ’attach id’ in
NaN

Multiplier Issue. Improper formatting in multiplier.

Examples

Error: Exception during pattern parsing: Multiplier
set, but no stitch found: ch.B

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Representative pattern entry from CrochetBench.

Field Value
Pattern Name SKULL TRICK OR TREAT BAG (TO CROCHET)
Skill Level Intermediate
Project Type Bags or Purses
Measurements 15 cm diameter × 15 cm high (excluding handle)
Gauge 13 sc and 14 rows = 10 cm
Materials Lily® Sugar’n Cream (White, Black), 5 mm hook, cardboard
Image https://www.yarnspirations.com/cdn/shop/

products/SCC0303-005314M.jpg
Source input file/Bags+Purses/SCC0303-005314M.pdf
Instructions Instructions:

Note: Ch 2 at beg of each rnd counts as hdc.
BAG
With MC, ch 4. Join with sl st to form ring.
1st rnd: Ch 2. 11 hdc in ring. Join with sl st to top of ch 2. 12 hdc.
2nd rnd: Ch 2. 1 hdc in same sp as sl st. 2 hdc in each hdc around. Join.
24 hdc.
3rd rnd: Ch 2. 1 hdc in same sp. 1 hdc in next hdc. *2 hdc in next hdc,
1 hdc in next.* Rep around. Join. 36 hdc.
4th rnd: Ch 2. 1 hdc in each hdc around. Join.
5th rnd: Ch 2. 1 hdc in same sp. 1 hdc in next 2 hdc. *2 hdc, 1 hdc in
next 2.* Join. 48 hdc.
6th rnd: As 4th rnd.
7th rnd: Ch 2. 1 hdc in next 2 hdc. *2 hdc, 1 hdc in next 3.* Rep. 60
hdc.
8th rnd: Ch 2. Back loops only, 1 hdc around. Join.
9th–13th rnds: Ch 2. 1 hdc in each hdc around. Join.
14th rnd: Ch 2. 1 hdc in same sp. 1 hdc in next 4 hdc. *2 hdc, 1 hdc in
next 4.* Join. 72 hdc.
15th rnd: Ch 2. 1 hdc in same sp. 1 hdc in next 5 hdc. *2 hdc, 1 hdc in
next 5.* Join. 84 hdc.
16th–22nd rnds: Ch 2. 1 hdc in each hdc around. Join.
23rd rnd: Ch 2. 1 hdc in next 4 hdc. *Hdc2tog, 1 hdc in next 5.* Rep.
Hdc2tog. Join. 72 sts.
24th rnd: Ch 2. 1 hdc in next 3 hdc. *Hdc2tog, 1 hdc in next 4.* Rep.
Join. 60 sts.
25th rnd: Ch 2. 1 hdc in next 2 hdc. *Hdc2tog, 1 hdc in next 3.* Rep.
Join. 48 sts. Fasten off.
Eyes (Make 2)
With A, ch 8.
1st rnd: 2 sc in 2nd ch from hook. 1 sc in next 5 ch. 3 sc in last ch.
Continue on rem loops, 1 sc in each ch. Join. 17 sc.
2nd rnd: Ch 1. 3 sc in first sc. 1 sc in next 7 sc. 3 sc in next sc. 1 sc in
next 8 sc. Join. Fasten off.
Handle
With MC, ch 45.
1st row: 1 sc in 2nd ch from hook. 1 sc across. 44 sc. Turn.
2nd row: Ch 1. 1 sc across. Turn.
Rep last row 4 more times. Fasten off.
Finishing
Sew Eyes to Bag. Embroider mouth and teeth with A. Attach Handle.
Cut cardboard circle to fit bottom.

21

https://www.yarnspirations.com/cdn/shop/products/SCC0303-005314M.jpg
https://www.yarnspirations.com/cdn/shop/products/SCC0303-005314M.jpg

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Overall skill level distribution. Percentages are relative to all patterns with annotated skill
levels.

Skill Level Count Percentage
Easy 3569 58.66%
Intermediate 1967 32.33%
Beginner 465 7.64%
Experienced 80 1.31%

Total 6084 100%

Table 7: Skill level distribution by top 10 project types. Percentages are within each project category.

Project Type Easy Intermediate Beginner Experienced
Afghans & Blankets 56.1% 35.3% 7.0% 1.5%
Hats 61.3% 27.8% 10.1% 0.7%
Sweaters & Cardigans 56.6% 35.9% 5.0% 2.5%
Shawls & Wraps 52.7% 41.8% 4.2% 1.2%
Scarves 63.2% 20.7% 16.1% –
Pillows & Poufs 70.0% 22.9% 6.5% 0.7%
Amigurumi & Toys 64.0% 33.2% 2.1% 0.7%
Bags & Purses 53.8% 39.0% 6.8% 0.4%
Décor 58.4% 33.3% 6.5% 1.7%
Dishcloths 62.6% 27.5% 9.9% –

Table 8: Instruction length statistics (in characters).

Statistic Value
Average 3216.0
Median 2453.0
Min 20
Max 30634
25th percentile 1511.8
75th percentile 4136.2
90th percentile 6403.9

Table 9: Abbreviation count statistics.

Statistic Value
Average 10.6
Median 10.0
Min 1
Max 31

Table 10: Instruction length and abbreviation counts by skill level.

Skill Level Avg. Length Median Length Avg. Abbr. Count
Easy to intermediate 13812.0 13812.0 21.0 1
Experienced 7689.4 6729.0 9.8 80
Intermediate 4221.3 3387.0 10.7 1967
Easy 2760.7 2182.0 10.8 3569
Beginner 1673.9 1365.0 9.2 465
Beginners 1633.0 1633.0 11.0 1
Beginner/Easy 1063.0 1063.0 – 1

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: Top 10 most complex project types (by average instruction length).

Project Type Avg. Length Median Count
Dresses 6484.9 5799.0 34
Vests 6032.0 5193.5 64
Pants 5866.7 5409.0 11
Tunics 5850.4 5832.0 29
Sets 5625.5 4847.0 111
Sweaters & Cardigans 5429.2 5113.0 357
Amigurumi & Toys 5322.4 4505.0 286
Jackets 5311.9 4831.0 31
Onesies & Rompers 5263.4 5181.0 5
Aprons 4467.8 4494.0 11

Table 12: Top 10 simplest project types (by average instruction length).

Project Type Avg. Length Median Count
Cowls 1288.3 956.5 154
Washcloths & Mitts 1502.5 1420.0 28
Scarves 1567.3 1221.0 304
Headbands 1617.5 1475.5 38
Dishcloths 1688.4 1571.0 222
Coasters 1750.3 1625.0 26
Booties 1921.9 1938.5 24
Jewelry 1960.3 1549.0 55
Super Scarves 2007.6 1213.0 13
Tech Accessories 2011.1 2099.0 13

23

	Introduction
	Related Work
	Dataset Description
	Tasks
	Task A: Stitch Recognition
	Task B: Instruction Selection
	Task C: Instruction Generation
	Task D: Instruction-to-DSL Translation

	Experiments
	Limitations and Future Work
	Conclusion
	Crochet Primer
	Additional Dataset Statistics
	Instruction Complexity by Skill Level
	Example Dataset Entry
	Skill Level Distribution
	Overall Distribution
	Distribution by Project Type

	Pattern Complexity Analysis
	Instruction Length Statistics
	Abbreviation Statistics
	Complexity by Skill Level
	Most and Least Complex Project Types

	Prompts
	Task A: Stitch Recognition Prompt
	Task B: Instruction Selection Prompt
	Task C: Instruction Generation Prompt
	Task D (Step-level): NL DSL Translation Prompt
	Task D (Project-Level): NL DSL Translation Prompt

	CrochetPARADE: Pattern Renderer, Analyzer, and Debugger
	DSL Error Taxonomy

