
Published in Transactions on Machine Learning Research (05/2024)

Efficient Parallelized Simulation of Cyber-Physical Systems

Bas van der Heijden b.heijden@hotmail.com
Cognitive Robotics
Delft University of Technology

Laura Ferranti l.ferranti@tudelft.nl
Cognitive Robotics
Delft University of Technology

Jens Kober j.kober@tudelft.nl
Cognitive Robotics
Delft University of Technology

Robert Babuska r.babuska@tudelft.nl
Cognitive Robotics, Delft University of Technology,
CIIRC, Czech Technical University in Prague

Reviewed on OpenReview: https: // openreview. net/ forum? id= VzKXbCzNoU

Abstract

Advancements in accelerated physics simulations have greatly reduced training times for
reinforcement learning policies, yet the conventional step-by-step agent-simulator interac-
tion undermines simulation accuracy. In the real world, interactions are asynchronous, with
sensing, acting and processing happening simultaneously. Failing to capture this widens the
sim2real gap and results in suboptimal real-world performance. In this paper, we address
the challenges of simulating realistic asynchronicity and delays within parallelized simula-
tions, crucial to bridging the sim2real gap in complex cyber-physical systems. Our approach
efficiently parallelizes cyber-physical system simulations on accelerator hardware, including
physics, sensors, actuators, processing components and their asynchronous interactions. We
extend existing accelerated physics simulations with latency simulation capabilities by con-
structing a ‘supergraph’ that encodes all data dependencies across parallelized simulation
steps, ensuring accurate simulation. By finding the smallest supergraph, we minimize re-
dundant computation. We validate our approach on two real-world systems and perform an
extensive ablation, demonstrating superior performance compared to baseline methods.

1 Introduction

Physics simulations on accelerator hardware (NVIDIA, 2020; Hu et al., 2020; Freeman et al., 2021; Todorov
et al., 2012) have significantly reduced training times for reinforcement learning policies that conform to
traditional, sequentially-structured agent-simulator interactions (Rudin et al., 2022). Such interactions lead
to clear-cut and predictable execution paths, allowing for efficient parallelization, as shown in Fig. 1a.
However, this sequential approach fails to capture the concurrent and dynamic nature of the real world.

Accounting for latency is crucial in the simulation of cyber-physical systems (CPS), which integrate com-
putational algorithms with physical processes. In CPS, embedded computers and networks both monitor
and control these processes, typically through feedback loops where physical processes impact computations
and vice versa via sensors and actuators (Baheti & Gill, 2011). A critical application of CPS is vehicular
platooning, involving multiple vehicles that operate in close proximity, coordinating their actions based on
shared sensor data in real-time. This coordination is highly sensitive to time delays, making the accurate
simulation of these delays critical for developing robust platooning algorithms (Zhao et al., 2021).

1

Published in Transactions on Machine Learning Research (05/2024)

(a) Sequential interaction (b) Asynchronous interaction

Figure 1: Comparative illustration of computation graphs
with and without simulated delays. Vertices represent peri-
odic computations, and edges represent data dependencies.
(a) The absence of delay simulation creates consistent blocks
of computation, enabling efficient parallelization across sim-
ulation steps yet failing to capture the inherent asynchrony
of the real world. (b) While improving simulation fidelity,
simulated delays between various components turn every sim-
ulation step into a diverse mix of computation, challenging
parallelization efficiency.

Delayed sensor data causes an agent to choose ac-
tions based on outdated information. Similarly,
slow policy evaluation can unavoidably extend the
effect of previous actions beyond their planned du-
ration. Moreover, the focus has traditionally been
on single agents trained end-to-end (Singh et al.,
2019). In practice, however, AI systems deployed
in real-world settings often rely on a pipeline of
models. Accounting for the latency between these
models will become crucial as tasks grow in com-
plexity (Nishihara et al., 2017). Finally, physics
simulators often bundle physics, sensor, and ac-
tuator simulations into a single unit running at
a single rate. However, in reality, there are vital
asynchronous effects within this block that need to
be accounted for. Overlooking these asynchronous
effects in simulation widens the sim2real gap and
can lead to policies that do not perform well in
the real world.

To represent the asynchronous interactions between components, we advocate the division of the simulator
into separate parts. This matches the typical design in robotics, where systems consist of interconnected
nodes operating asynchronously at various rates (Quigley et al., 2009). This division enables the creation
of computation graphs that accurately represent data flow in real-world situations, including latency effects.
Consequently, each simulation step turns into a diverse mix of computation units from various components
that run at different time scales, as illustrated in Fig. 1b. These must be executed in a sequence that respects
the data dependencies outlined by the graph’s edges. Simulating with these diverse partitions improves
accuracy but complicates parallelization (i.e., simulating multiple copies of the simulation in parallel), as
distinct partitions may need to execute simultaneously across GPU threads, hindering GPU efficiency. Such
misalignment can happen with independent episodic resets, often initiated based on variable reset criteria.
One parallel simulation might reset because the agent reached its goal, while another continues because the
agent is still far away. Diverging execution paths can significantly reduce kernel efficiency (Shibata, 2010).
When GPU threads take different paths, they must be serialized, leading to more instructions and reduced
performance.

The main contribution of this paper is an approach to parallelize cyber-physical system simulations that
emulates asynchronicity and delays with minimized computational overhead on accelerator hardware. This
allows existing accelerated physics simulations to be extended with efficient latency simulation capabilities.
We achieve this by identifying a graph—ideally the smallest one possible—that encodes all the data de-
pendencies outlined by every simulation step’s edges. This universal graph, referred to as a supergraph,
is determined prior to simulation. Sorting the supergraph topologically yields a static execution order for
parallel processing of simulation steps without violating data dependencies. By targeting the smallest su-
pergraph, we minimize redundant computation. Finding the smallest supergraph is generally a complex,
NP-hard problem (Trimble, 2023); however, our greedy algorithm efficiently approximates this supergraph
by leveraging the inherent periodicity in cyber-physical systems.

In sum, we make four key claims: Our approach (i) emulates asynchronicity leading to more accurate
simulation, (ii) efficiently handles time-scale differences and asynchronicity, resulting in higher parallelized
simulation speeds than baseline approaches, and (iii) scales to complex system topologies. These claims
are supported by an experimental evaluation on two real-world robotic systems, followed by a scalability
analysis on two cyber-physical system topologies: vehicle-to-vehicle (V2V) platooning (Zhao et al., 2021) and
unmanned aerial vehicle (UAV) swarm control (Asaamoning et al., 2021). An ablation study on the effects
of the algorithmic simplifications was also conducted and included as an appendix. Finally, a motivational
video for our approach is included as supplementary material, together with example source code to efficiently
compile parallelized training environments with our approach.

2

Published in Transactions on Machine Learning Research (05/2024)

2 Preliminaries

Before diving into the details of our approach, we first lay down some basic definitions and notation that will
aid in the formalization of our problem and the description of our approach. We consider graphs G =

(
V, E

)
consisting of a set of vertices V (G) and a set of directed edges E(G). Edge (u, v) ∈ E(G) denotes an edge
from vertex u to vertex v. The notation |V (G)| denotes the number of vertices in G. Any subset of vertices
V ′ ⊆ V (G) induces a unique subgraph G′ ⊆ G. The difference G2 − G1, where G1 ⊆ G2, yields a graph G with
V (G) = V (G2) \ V (G1) and E(G) = E(G2) \ E(G1). The edges that connect G1 and G2 − G1 are defined as the
cut-set CG2(G1), which is a subset of E(G2). The union of graphs G1 and G2 with respect to a set of edges E12
is denoted as G = G1 ∪E12 G2, where V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ E12. The addition
G1+G2, where G1, G2 ⊆ G3, yields a subgraph G12 ⊆ G3, by unifying G1∪E12 G2 where E12 = CG3(G1)∩CG3(G2).
An edge contraction on an edge (u, v) ∈ E(G) yields a new graph G′ such that V (G′) = V (G) \ {u, v} ∪ {w}
and

E(G′) = (E(G) \ {(u, v), (v, u)})
∪ {(w, x) | (u, x) ∈ E(G) or (v, x) ∈ E(G)}
∪ {(x, w) | (x, u) ∈ E(G) or (x, v) ∈ E(G)}.

The ancestors of a vertex AG(u) are all vertices V ′(G) ⊆ V (G) that can reach u via a directed path in G.
The roots of a graph G are the set of vertices that have no incoming edges, formally R(G) = {u ∈ V (G) |
∀v ∈ V (G), (v, u) /∈ E(G)}. Similarly, the leafs of a graph G are the set of vertices that have no outgoing
edges. A Directed Acyclic Graph (DAG) is a directed graph that contains no cycles. A topological sort τ of
a directed acyclic graph G is a linear ordering of its vertices such that for every directed edge (u, v) ∈ E(G),
vertex u comes before v in the ordering. Multiple topological sorts may exist for a given graph G, and the
set of all possible topological sorts is denoted by T (G). A labeling function L : V → l is a function that
assigns a label to each vertex. The set of all vertices with label l is denoted by Vl(G) and is arranged as
a sorted list consistent with a topological sort of G. We denote the set of topological sorts where the final
vertex is of label l in G as T -1

l (G). Formally, this is defined as:

T -1
l (G) = {τ ∈ T (G) | I(τ, u) = |G|, u ∈ Vl(G)} ,

where I(τ, u) gives the position of vertex u in the sorted set τ . A matching function fm : V × V →
{True, False} is defined as follows:

fm(u, v) =
{

True if L(u) = L(v),
False otherwise.

A mapping between two graphs G1 and G2 is a bijective function M : V ′(G1) → V ′(G2) where V ′ represent
a subset of the vertices. Its domain dom(M) is V ′(G1) and its range rng(M) is V ′(G2). Operations like
union ∪, intersection ∩, and difference \ can be applied to both dom(M) and rng(M). A mapping M can
extend to M ′ by adding a new vertex pair (u, v) with M ′ = M ∪ {(u, v)} where u ∈ V (G1) \ dom(M) and
v ∈ V (G2) \ rng(M). A subgraph monomorphism M : V (G1) → V ′(G2) is a specialized mapping that maps
each vertex u to v such that L(u) = L(v) and each edge (u, v) corresponds to an edge (M(u), M(v)) in G2.
If such M exists, G2 is a supergraph of G1 and can be reduced to G1 by removing vertices and edges in G2.
The transformed set of edges EM (G1) under the mapping M is defined as follows:

EM (G1) = {(u′, v′) | (u, v) ∈ E(G1),
u′ = M(u) if u ∈ dom(M), u′ = u otherwise,

v′ = M(v) if v ∈ dom(M), v′ = v otherwise}

This set includes edges (u′, v′) where u′ and v′ are either mapped vertices of u and v under M if they are in
the domain of M , or are u and v themselves otherwise.

3

Published in Transactions on Machine Learning Research (05/2024)

3 Our Approach

Figure 2: This figure illustrates our approach to efficiently
simulating multi-rate asynchronous systems. Given vari-
able delays, computation graphs can differ across episodes
(left). We find a supergraph and predication masks, il-
lustrated by the grey shaded blocks, for every computa-
tion graph that enables parallel execution across partitions
(right). This mask, randomized during simulation, allows
us to efficiently emulate asynchronicity and time-scale dif-
ferences with minimal computational waste.

Consider the set of computation graphs generated
by multiple episodes of an asynchronous system, as
illustrated in Fig. 2, where vertices of the same color
represent the same periodic computation unit, and
edges represent data dependencies. These graphs
might be partially recorded from real-world exe-
cutions or synthetically created to reflect expected
computation and communication delays. Variations
in these graphs across episodes lead to distinct ex-
ecution paths. However, managing these variations
with conventional if-else branching for parallel exe-
cution on GPUs is inefficient, as highlighted in (Shi-
bata, 2010). Predication (Taylor & Li, 2011) is a
technique that sidesteps the need for if-else branch-
ing by executing all possible paths and masking out
the computations that are not needed. This ap-
proach, while eliminating branching, can be ineffi-
cient due to the execution of all vertices in the paths,
making it crucial to minimize the number of vertices.

To achieve this, we introduce an approach to identify
a minimum common supergraph (mcs) that is acyclic
and encapsulates all potential execution paths from
a collection of computation graphs, optimizing for
the fewest vertices (i.e., computational overhead).
Topologically sorting the supergraph yields an execution order that, via predication masking, is transformed
into a valid order for any given graph, as the supergraph encodes all data dependencies.

In aligning with standard simulator interfaces (Brockman et al., 2016), illustrated in Fig. 1, we first parti-
tion these computation graphs into disjoint subgraphs, each corresponding to a simulation step. Crucially,
we designate a supervisor node in each partition, a pivotal element that dictates the boundaries of these
subgraphs. In the context of reinforcement learning, the supervisor node is akin to the agent, while all other
nodes within the partition form the environment, providing observations to and receiving actions from the
supervisor node. The supervisor node’s operating rate sets the simulation time step, ensuring that each
partition accurately reflects a step of the simulation process. We then find a supergraph that accommodates
all possible paths in every partition with a minimum number of vertices. This supergraph serves as a tem-
plate that can be reduced to match any of the partitions (i.e., simulation steps) by masking (i.e., removing)
specific vertices and edges. This setup enables parallel execution of any partition on accelerated hardware.

3.1 Problem Definition

Consider a set of observed computation graphs denoted by {G0, G1, . . . }, where each Gi is a DAG. For a
given supervisor label s, our goal is to partition each Gi into disjoint subgraphs Pi,1, Pi,2, Each subgraph
corresponds to a discrete simulation step and contains exactly one leaf vertex labeled as s. The objective is
to determine these valid partitions along with the smallest DAG, S, that serves as a common supergraph
for all partitions. Similar to each partition, a single instance of the designated supervisor vertex in S must
be a leaf vertex. Here, ‘smallest’ is defined by the number of vertices to minimize computational overhead.
We aim to find a subgraph monomorphism Mi,j : V (Pi,j) → V ′(S) for each partition Pi,j . This mapping
allows us to reduce S into Pi,j using a predication mask. The predication mask is a binary mask applied to
S to selectively remove vertices and edges not present in Pi,j . Specifically, the mask is false for vertices and
edges not in rng(Mi,j) and EMi,j

(Pi,j), respectively, and true otherwise.

4

Published in Transactions on Machine Learning Research (05/2024)

Figure 3: Illustration of the Minimum Common Supergraph Search process (Alg. 1) at a midway point. First, read
from left to right, then top to bottom. A partial match is found for ui,2, leading to an updated S ′ with missing
ancestors P - and initiating a backtrack to re-evaluate previous partitions.

3.2 Supergraph Search

Algorithm 1: Minimum Common Supergraph Search (mcs)
Input: Designated supervisor label s
Input: Number of steps to backtrack β
Input: A set of observed computation graphs {G0,G1, . . . }
Output: A set of partitions {P0,1,P0,2, . . .Pi,j . . . }
Output: A supergraph S and mapping Mi,j for all

partitions Pi,j

1 S ← Initialize with V (S) = {u|L(u) = s} and E(S) = ∅
2 for Gi ∈ {G0,G1, . . . } do
3 Gu ← Initialize unmatched graph as Gi

/* Until all supervisor vertices are matched */
4 while Vs(Gu) ̸= ∅ do
5 ui,j ← Get next supervisor ui from sorted set Vs(Gu)

with index j = I(Vs(Gi), ui)
6 Au ← ui,j and its ancestors: AGu (ui,j) ∪ {ui,j}
7 M∗ ← Get largest map: Alg. 2 with (s,S,Gu, Au)
8 P∗ ← Partition subgraph: dom(M∗) ⊆ V (G)
9 P - ← Missing subgraph: AGu (ui,j) \ V (P∗) ⊆ V (G)

10 if V (P -) = ∅ then
/* All ancestors were matched */

11 Mi,j ← Store subgraph monomorphism M∗

12 Pi,j ← Store partition P∗

13 Gu ← Remove matched partition: Gu − Pi,j

14 else
/* Partial match */

15 Gu ← Restore β partitions in Gu ⊆ Gi with
Gu + Pi,j−β + Pi,j−β+1 + · · ·+ Pi,j−1

16 S ← Update to S′ with missing vertices and edges:(
V (S) ∪ V (P -), E(S) ∪ EM∗ (P∗ + P -)

)

Our approach, as outlined in Alg. 1 and illustrated
in Fig. 3, aims to simultaneously achieve three
main objectives: identifying the supergraph S, de-
termining the partitionings Pi,j , and discovering
the associated mappings Mi,j . For each compu-
tation graph Gi, the algorithm iterates until all
supervisor vertices are matched, as specified in
Line 4. In every iteration, the largest partition P∗

and its associated mapping M∗ are sought (Line 5-
7), following the method detailed in Alg. 2 and
explained later on in Sec. 3.3.

Depending on whether all ancestors are matched,
the algorithm finds either a complete or a partial
match corresponding to the supervisor vertex ui,j .
In the case of a complete match, both P∗ and M∗

are stored (Line 10-13). For partial matches, the
algorithm backtracks β iterations to reconsider
previously matched partitions (Line 15). In either
case, the supergraph S is updated using Eq. (1)
to ensure it remains a supergraph of its previous
version and incorporates all necessary ancestors
V (P -) for future matches, as follows:

S ′ =
(
V (S) ∪ V (P -), E(S) ∪ EM∗(P∗ + P -)

)
,
(1)

where P∗ + P - ⊆ Gi. More edges in the updated
supergraph S ′ effectively constrain the number of possible mappings for subsequent partitions by reducing
the number of topological sorts available in the supergraph. Conversely, more vertices in S ′ increase its
expressiveness by increasing the number of vertices that can be mapped to a vertex in subsequent partitions,
but also increase the computational overhead of the simulation. In the next section, we detail the algorithm
for finding the largest match, Alg. 2, which is a critical component of the supergraph search algorithm. It
may only result in mappings M∗ that ensure that collectively contracting all edges (u, v) ∈ E(P∗) in Gu
will not introduce any cycle in the resulting graph G′

u. This constraint is critical to ensure that the updated
supergraph S ′, as governed by equation Eq. (1), remains acyclic. This sets us apart from previous work
(Bunke et al., 2000; 2003), which do not consider this constraint.

5

Published in Transactions on Machine Learning Research (05/2024)

Figure 4: Midway illustration of Line 9-16 in the Largest Match Search (Alg. 2) linked to step (c) in Fig. 3.
The ✓ and ✗ symbols indicate whether a vertex in the candidate front F c is matched in Line 12. The first iteration
yields an empty mapping due to the absence of a yellow vertex in the supergraph. In the second iteration, the vertex
is excluded from the front, enabling a large partial match. The search is only displayed for a single topological sort.

3.3 Largest Match Search

Algorithm 2: Largest Match Search
Input: Designated supervisor label s
Input: Supergraph S
Input: Unmatched computation graph Gu
Input: Vertices to be matched Au
Output: Largest mapping M∗

1 M∗ ← Initialize an empty mapping
2 Gexcl ← Initialize search graph as Gu
3 while True do
4 Fexcl ← Initialize search front as roots R(Gexcl)
5 Fcon ← Determine constrained front: Fexcl ∩Au
6 forall Fcom ∈ k-comb(Fcon) do // Greedy: one Fcom per k

7 forall τ ∈ T -1
s (S) do // Greedy: only a single τ

8 Gc ← Remove u ∈ Fcon \ Fcom from V (Gexcl)
9 F c ← Initialize front: Fexcl \ (Fcon \ Fcom)

10 Mc ← Initialize an empty candidate mapping
11 forall v ∈ τ do
12 if ∃u ∈ F c : fm(u, v) = True then
13 u← {u ∈ F c : fm(u, v) = True}
14 Mc ← Extend mapping: Mc ∪ {(u, v)}
15 Gc ← Remove matched u from V (Gc)
16 F c ← Update front: F c \ {u} ∪R(Gc)

17 if |dom(Mc) ∩Au| > |dom(M∗) ∩Au| then
18 M∗ ←Mc /* Store largest mapping */

19 smax ← |Au|− |Au \V (Gexcl)|− (|Fcon|− |Fcom|)
20 if (|dom(M∗) ∩Au|) ≥ smax or |dom(M∗)| = |S|

then return M∗

21 Gexcl ← Exclude vertices from search graph:
V (Gexcl) \ Fcon

Our approach to identifying the largest valid map-
ping M∗ for each supervisor vertex ui,j in S is out-
lined in Alg. 2 and illustrated in Fig. 4. Initially,
it tries to match all ancestor vertices in candi-
date subgraphs Gc, extracted from the unmatched
graph Gexcl (Line 2). The search is refined by iter-
atively excluding ancestors in a breadth-first man-
ner from Gc (Line 8, and 21).

To this end, a refined search front F c is formed for
each iteration (Line 4-6, Line 9). The algorithm
explores all k-combinations of Fcon in descend-
ing order of k (Line 6). For each combination,
the largest candidate mapping M c is sought by
traversing all valid topologies of S, starting from
the refined search front F c (Line 7-10). Every
time a match is found, the mapping is extended
and the search front is updated (Line 11-16). Our
approach assumes that vertices are stateful, i.e.,
vertices of similar labels are connected with one
another, ensuring the uniqueness of the match
(Line 12-13). If a larger mapping is found, M∗

is updated (Line 17-18). The algorithm halts the
search if no larger match can be found (Line 19-
20). To lower computational complexity, we apply
crucial greedy approximations in lines 6 and 7, as
further motivated in Sec. 3.4.

We may only consider mappings M∗ that ensure that the updated supergraph S ′ remains acyclic after
updating with Eq. (1). To ensure this, we initiate each candidate search at the roots of Gexcl and S, as
specified in Line 4 and 7, adopting a search strategy aligned with the topological sort of S and a breadth-first
search of Gexcl. This approach guarantees that edges between matched vertices in dom(M∗), represented by
P∗, cannot create cycles in S ′. For vertices not matched in dom(M∗) (designated as P -), their positioning is
either strictly prior to or following P∗ in the topological sense, thus also ensuring acyclicity in S ′. This strict
placement is achieved by initially removing only root vertices from consideration (Line 4) and subsequently

6

Published in Transactions on Machine Learning Research (05/2024)

extending the search frontier solely upon removing a newly found match that subsequently leads to new root
vertices (Line 15-16).

3.4 Limitations and Approximations

The efficacy of our approach is contingent on a set of assumptions. Firstly, the best performance is achieved
when the computation graphs exhibit a recurring topological structure. Secondly, the model assumes sub-
stantial time-scale differences between what we term the supervisor vertex and other vertices. Finally, our
approach assumes that vertices are stateful, i.e., vertices of similar labels are connected with one another.
These assumptions are particularly well-suited for cyber-physical systems where components are stateful and
run at fixed target frequencies, and where the supervisor vertex often takes the form of a slower, learning
agent or an outer-loop controller. Moreover, the algorithm assumes that the computation graphs’ structure
does not depend on the data processed by the vertices. Specifically, we assume delays in the system are not
a function of the internal states, outputs, or incoming inputs.

Identifying the minimal common supergraph is an NP-hard problem (Trimble, 2023). To manage this
complexity, we make several approximations to Alg. 2. If all vertices are assumed to be stateful, then the
constrained front Fcon can contain at most one vertex for each label, i.e. |Fcon| = |rng(L)|. Then, the
worst-case time complexity for considering all topological sorts of the supergraph S and all combinations
of Fcon is O(2|rng(L)| + |V |!) (Line 6-7 in Alg. 2). We alleviate this by considering only a single topological
sort of S and a single combination per combination size k, reducing the worst-case time complexity to
O(|rng(L) + 1| + |V |). We have found that these approximations do not significantly impact the resultant
supergraph in our evaluations, as detailed in the ablation study in Appendix B. Lastly, the sequence in
which computation graphs are processed can affect the resultant supergraph. Similar to Bunke et al. (2003),
this has not proven to have a significant impact in our evaluations.

4 Experimental Evaluation

The main focus of this work is an efficient approach to simulate delays in parallelized simulation on accelerator
hardware. We present our experiments to show the capabilities of our approach and to support our key claims
that our approach (i) emulates asynchronicity leading to more accurate simulation, (ii) efficiently handles
time-scale differences and asynchronicity, resulting in higher parallelized simulation speeds than baseline
approaches, (iii) scales to complex system topologies. In the remainder of this section, we will use mcs to
refer to our proposed method.

4.1 Baselines

We outline three baseline methods for our experimental evaluation. The sequential baseline (seq) assumes
no delays in computation graph processing, illustrating a conventional approach as shown in Fig. 1a. This
baseline serves as a reference for evaluating the impact of realistic delays in simulations.

We then introduce two baselines that incorporate delays by randomizing predication masks in parallelized
simulations, but differ in supergraph construction. Given the absence of existing methods that can handle the
DAG constraint and partitioning requirements for our supergraph (as discussed in Sec. 3.3), these baselines
represent straightforward strategies for supergraph construction. Both baselines sequentially stack K layers
in the supergraph, with each layer containing a vertex for every non-supervisor label and concluding with
a final layer of a single supervisor vertex. This structure ensures the supergraph is a DAG and with its
size as |S| = K × (|rng(L)| − 1) + 1, thereby ensuring subgraph monomorphisms across partitions with an
adequate number of layers. The topological baseline (top) sets K equal to the number of vertices in the
largest partition. While this method guarantees a subgraph monomorphism with each partition, it can lead
to disproportionately large supergraphs with sparse layer utilization. The generational baseline (gen), on the
other hand, sets K as the maximum path distance across partitions. This approach is more space-efficient
but also tends to over-include vertices, as it does not account for time-scale differences between vertices.
Consequently, each layer incorporates every vertex label, even those infrequently used.

7

Published in Transactions on Machine Learning Research (05/2024)

0 50 100
efficiency (%)

2

4

6

sp
ee

d
(f

ps
)

1e6

seq mcs gen top

(a) Pendulum (b) Control diagram

0 20000 40000
steps

0

500

1000

co
st

(c) Training curve

seq mcs real
environment

0

500

1000

co
st

(d) Sim2real

0 50 100
efficiency (%)

2

4

6

sp
ee

d
(f

ps
)

1e6

(e) Speed

Figure 5: Sim2real evaluation of an RL policy trained to swing up a pendulum with (mcs) and without delays (seq).
Panels (a) and (b) depict the experimental setup and control diagram, respectively. Panels (c) and (d) show that mcs
outperforms seq in the real-world evaluation despite a slower convergence and lower simulated performance. This
discrepancy is attributed to seq’s inability to develop a robust policy, as evidenced by cross-evaluations in panel (d)
of mcs and seq in each others training environment, where mcs proved effective in both environments, unlike seq.
Panel (e) shows that mcs achieves a higher mean simulation speed with a compacter supergraph (mcs: |S| = 13)
than baseline approaches that also consider delays (gen: |S| = 31 and top: |S| = 43).

To evaluate these methods, we introduce the supergraph efficiency metric (η):

η = 100 × 1
N

∑
i,j

|Pi,j |
|S|

Here, N denotes the total number of partitions, with η indicating the mean partition size relative to the total
supergraph size. This metric effectively quantifies the proportion of vertices actively utilized (unmasked) in
emulating the computation graphs across episodes. Note that a 100% efficiency may not be achievable in
practice, as it would imply that all partitions have an equal number of vertices.

4.2 Performance

In this set of experiments, we aim to validate that randomizing predication masks during training enhances
the fidelity of robotic simulations and our approach to identifying the supergraph leads to more efficient
parallelized simulations. We validate the performance on two real-world systems: a pendulum swing-up task
and a vision-based robotic manipulation task. We use two different control strategies, reinforcement learning
(RL) and model predictive control (MPC), to demonstrate the utility of our approach in different real-world
settings.

4.2.1 Pendulum swing-up task

The pendulum swing-up task is a well-known RL benchmark with nonlinear, unstable, and underactuated
dynamics sensitive to delays (Derner et al., 2020). The choice for this task is deliberate; it highlights the core
challenge of delay compensation in reinforcement learning. By demonstrating how neglecting delay simulation
can impair policy transfer even in seemingly simple scenarios, we underscore the greater consequences for
complex systems where delays are unavoidable and complexity is greater, as discussed in prior work (Liu
et al., 2019; Asaamoning et al., 2021; Lou et al., 2019; Peters et al., 2014). The simplicity of the task serves
to clarify the fundamental importance of accounting for delays in sim2real approaches.

The experimental setup and control diagram are depicted in Figures 5a and 5b, respectively. A failure to
emulate the asynchronous real-world interactions between components makes a simulation-trained policy
ineffective when transferred to a real-world setting. Policies were trained using soft actor-critic (SAC)
(Haarnoja et al., 2018) in two simulators: one emulating delays (our approach: mcs) and another without
delays (sequential approach: seq). Note that the gen and top baselines are not included in the sim2real
evaluation. This exclusion is due to their replication of the same effective computation graphs as mcs,
leading to identical policy outcomes. Hence, we only consider these baselines later on in the simulation speed
evaluation within this section. We record 10 computation graphs from the real-world system to identify a

8

Published in Transactions on Machine Learning Research (05/2024)

0 50 100
efficiency (%)

2

4

6

8

sp
ee

d
(H

z)

seq mcs gen top

(a) Box pushing (b) Control diagram

0 4 8 12 16
time (s)

0

20

40

di
st

an
ce

 (
cm

)

(c) Peformance

10 12 14 16
time (s)

0

2

4

6

di
st

an
ce

 (
cm

)

(d) Final accuracy

0 50 100
efficiency (%)

2

4

6

8

sp
ee

d
(H

z)

(e) Planning rate

Figure 6: A comparison of four MPC strategies for a task where a manipulator moves a box to a target: three
consider delays (mcs, gen, top) and one does not (seq). Panels (a) and (b) depict the experimental setup and control
diagram, respectively. Panels (c) and (d) depict the mean convergence rate and final accuracy over 10 episodes with
95% confidence intervals, respectively, while (e) correlates these with the achieved replanning rate. The seq strategy,
although faster initially, leads to less accurate movements due to ignoring delays. The mcs method, while replanning
less frequently, achieves approximately 40% higher accuracy. Moreover, mcs exhibits the highest replanning rate with
a smaller supergraph (mcs: |G| = 54) compared to gen (|G| = 139) and top (|G| = 223) that also consider delays.

supergraph, partitioning and corresponding predication masks that were randomized during training. Each
experiment was replicated five times with different random seeds and the results are presented in Fig. 5.
Though the sequential (seq) approach exhibits quicker convergence and superior simulated performance, it
underperforms in real-world tests compared to our approach that includes latency simulation during training.
A smaller performance gap between simulation and reality suggests that our approach leads to more accurate
simulation, yielding more effective real-world policies. This is further supported by cross-evaluations of the
trained policies in each other’s training environment, where mcs proved effective in both environments, unlike
seq.

On average, it took 0.54 seconds to identify the supergraph and predication masks for the 10 recorded
computation graphs, which is a one-time startup cost that is small compared to the total training and
compilation time of 100 seconds. To establish the link between efficiency and simulation speed, we carried
out a parallelized performance evaluation of the swing up-task on an RTX 3070 GPU. We deliberately
measure simulation speed during policy evaluation rather than measuring the overall training time to clearly
separate simulation speed improvements from any learning algorithm and training-related overhead. We
compiled the supergraph with JAX (Frostig et al., 2018) and randomized the predication masks across 1000
parallelized episodes. We used the supergraphs produced by our approach with backtracking β = 5 and
both baseline methods and recorded the simulation frames per second (fps). As indicated in Fig. 5, our
method notably outperforms other baselines that include delays, achieving an approximate simulation speed
of 3 million fps. This improvement is largely attributed to a more compact supergraph. We observed a
clear linear relationship between η and simulation fps, which is consistent with the inverse proportionality
between simulation fps and supergraph size.

4.2.2 Manipulation task

In the manipulation task, a Viper 300x robotic manipulator moves a box to a target based on streaming
webcam images. The goal is to minimize the distance between the box and a goal position. Our experimental
setup and control diagram are shown in Figures 6a and 6b. Emphasizing the importance of delay simulation,
we use a consumer-grade Logitech C170 webcam, chosen for its low resolution, modest frame rate, and high
latency, to track the box’s position and orientation.

We adopt the MPC approach from Yang et al. (2020), planning actions based on the most recent robot
observations using the Cross Entropy Method (CEM) (Rubinstein & Kroese, 2004). CEM, known for its
efficient, derivative-free optimization, is particularly advantageous due to its parallelizability. Considering
the contact-rich nature of box pushing, we opt for Brax (Freeman et al., 2021) as our dynamics model within
the MPC framework, instead of learning complex contact dynamics. Brax, a differentiable physics simulator,
is optimized for GPU acceleration and effectively handles contact-rich tasks. In a similar approach, Pezzato

9

Published in Transactions on Machine Learning Research (05/2024)

(a) Schematic (b) Topology

10−1 100 101
elapsed time (s)

0

20

40

60

80

100

ef
fic

ie
nc

y
(%

) sigma
0.0
0.1
0.2
0.3
nodes
2
4

8
16
32
64
topology
uav
v2v

(c) Complexity analysis

Figure 7: Panel (a) shows the V2V platooning and UAV swarm control systems, with the former comprising a leader
and followers, and the latter a central controller and UAVs. Panel (b) depicts their respective topologies, where every
component communicates at 20 Hz with each other, while the simulator runs at 200 Hz. The leader and controller
are chosen as the supervisor nodes, respectively. Panel (c) shows the computational complexity versus efficiency for
different topologies, asynchronicity levels, and node counts, highlighting their impact on performance.

et al. (2023) recently used PhysX (NVIDIA, 2020) to solve a box-pushing task. Our implementation employs
CEM for three iterations, involving 75 samples per iteration and a planning horizon of two control steps,
each lasting 0.15 seconds. We implement our approach using JAX (Frostig et al., 2018) and execute it on
an RTX 3070 GPU.

We evaluate four MPC strategies: three accounting for delays (mcs, gen, top) and one ignoring them (seq).
Delay-inclusive strategies, following Yang et al. (2020), use past plans to predict future box positions and
orientations at action time. This prediction is based on the 10 recorded computation graphs of the system
that are used to identify a supergraph, partitioning, and corresponding predication masks. On average, it
took 1.53 seconds to identify the supergraph and predication masks for the 10 recorded computation graphs,
which is a one-time startup cost that is small compared to the total evaluation time of 160 seconds. Due
to their computational load, these strategies have a lower replanning rate compared to the delay-agnostic
seq. The slower the replanning rate, the further into the future the planner must predict, increasing the
likelihood of inaccurate predictions. As Fig. 6d shows, mcs achieves 40% higher accuracy than seq, despite
less frequent replanning. Moreover, the mcs method also results in smoother operations than seq, as can be
observed in the supplementary material’s video. The larger supergraphs in gen and top result in excessively
slow replanning, significantly reducing convergence rates, and final accuracy. This illustrates the trade-off
between accuracy and efficiency, where the improved accuracy must justify the additional computational
load.

4.3 Scalability

The next set of experiments support the claim that our approach scales to complex system topologies. In
Sec. 4.2, we showed that employing a supergraph with randomized predication masks can effectively emulate
direct delay simulation. We also identified an approximate linear correlation between graph efficiency η and
simulation speed. Next, we assess our method’s scalability, analyzing various system topologies and modifying
node counts and asynchronicity degrees to ascertain their effects on identifying efficient supergraphs. In this
section, we consider two cyber-physical systems for which delay simulation is crucial: vehicle-to-vehicle
(V2V) platooning (Zhao et al., 2021; Jia et al., 2015; Peters et al., 2014) and unmanned aerial vehicle (UAV)
swarm control (Asaamoning et al., 2021). Furthermore, a detailed analysis of the impact of different abstract
topological characteristics on supergraph efficiency is provided in Appendix A.

Fig. 7a illustrates the V2V platooning and UAV swarm control systems. In V2V platooning, vehicles maintain
a set distance and speed, following a leader. This requires each vehicle to respond to the leader, highlighting
the necessity for delay-aware simulation. Vehicles communicate with the leader and the vehicle ahead. For
UAV swarm control, a central entity directs the UAVs to prevent collisions and achieve formation, with
UAVs communicating solely with this controller. Additionally, each component connects to the simulator to

10

Published in Transactions on Machine Learning Research (05/2024)

0 50 100
matched (%)

0

50

100

el
ap

se
d

ti
m

e
(s

)

0.0 0.1 0.2 0.3

2 4 8 16 32 64
nodes

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

mcs gen top

2 4 8 16 32 64
nodes

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

mcs gen top

0 50 100
matched (%)

0

2

4

6

el
ap

se
d

ti
m

e
(s

)

(a) V2V

0 50 100
matched (%)

0

2

4

6

el
ap

se
d

ti
m

e
(s

)

(b) UAV

2 4 8 16 32 64
nodes

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

(c) V2V

2 4 8 16 32 64
nodes

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

(d) UAV

0.0 0.1 0.2 0.3
sigma

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

(e) V2V

0.0 0.1 0.2 0.3
sigma

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

(f) UAV

Figure 8: Panels (a) and (b) show the elapsed time for completion with N = 32 nodes across various asynchronicity.
Initial episodes are time-intensive due to numerous preliminary partial matches, followed by a consistent linear time
scaling in processing time. Panels (c-f) compare the efficiency of mcs (our approach), top, and gen. In panels (c)
and (d) the number of nodes is varied with no asynchronicity (σ = 0), while in panels (e) and (f) the asynchronicity
levels are varied with a fixed size of N = 8 nodes.

enable physics simulation. Accurate simulations require delays simulation in both systems, as discussed in
Zhao et al. (2021) and Asaamoning et al. (2021). Within systems encompassing N nodes, there is a single
simulator and one leader or controller designated as the supervisor, alongside N − 2 Followers and UAVs,
respectively, as illustrated in Fig. 7b. The simulator runs at 200Hz, while all other nodes communicate
with each other at a target rate of 20Hz. The effective sampling time of every node i is computed as
∆ti,k = ∆ti + max(0, xk∆ti), where xi,k is the delay of node i, experience during sequence number k, scaled
with the node’s nominal sampling time. An Ornstein-Uhlenbeck (OU) process (Bibbona et al., 2008) is used
to model every node’s delay to reflect the temporal correlation of delays, defined as follows:

xk = θxk−1 + σν, (2)

where θ is a correlation coefficient, σ is the standard deviation, and ν is a Gaussian random variable
with zero mean and unit variance. The standard deviation of an OU process is related to the standard
deviation of a Gaussian distribution with σg =

√
σ2

2θ . We artificially generate computation graphs for the
topologies depicted in Fig. 7b, varying the asynchronicity level σ ∈ {0, 0.1, 0.2, 0.3} and the number of
nodes N ∈ {2, 4, 8, 16, 32, 64}. We replicate each experiment 5 times using different random seeds. For each
configuration, we generate 10 computation graphs, each running for a duration of 10 seconds. Example
computation graphs are presented in Appendix C. We employ Alg. 1 to identify a supergraph on a single
core of an Intel Core i9-10980HK and compare its performance with two baseline approaches.

Fig. 7c presents an analysis of our method’s computational complexity in constructing the supergraph, con-
sidering both the computation graph’s characteristics (N, σ) and topology (v2v, uav). We observe that
efficiency is inversely related to the asynchronicity level and, to a lesser extent, to the number of nodes.
Moreover, a decrease in efficiency correlates with an increase in computation time, primarily because fewer
complete matches are found. Nevertheless, the one-time upfront cost of identifying the supergraph is usually
minor when compared to the overall simulation time, substantiating our claim that our approach scales effec-
tively to complex system topologies. Figures 8a and 8b detail the required computation time under varying
levels of asynchronicity, as it processes all recorded computation graphs. The initial episodes incur higher
computational costs due to the increased computational overhead of handling numerous partial matches
(Line 6-7 in Alg. 2), while subsequent episodes demonstrate linear scaling in time.

Figures 8c and 8d compare the performance of our algorithm with baseline approaches for different numbers
of nodes when there is no asynchronicity (σ = 0). Our approach achieves a 100% efficiency, whereas the
efficiency of baseline approaches declines rapidly as the number of nodes increases. Figures 8e and 8f
demonstrate the performance of our algorithm compared with baseline approaches for different levels of
asynchronicity when the topologies comprise N = 8 nodes. As asynchronicity increases, partitions become
more dissimilar, and the efficiency of our approach does decline, yet it remains multiples higher than that
of the baseline approaches. The supergraphs generated by our method, along with those from the baseline
approaches, are depicted in Appendix C.

11

Published in Transactions on Machine Learning Research (05/2024)

In summary, our evaluation suggests that our method successfully emulates asynchronicity, offering more
accurate and faster parallelized simulations compared to baseline approaches. At the same time, our method
scales well to larger system topologies by finding more efficient supergraphs than baseline methods. Thus,
we have substantiated all our key claims through this experimental evaluation.

5 Related Work

Accelerated Physics Simulation Accelerated physics simulators like Brax (Freeman et al., 2021), MJX
(Todorov et al., 2012), and PhysX (NVIDIA, 2020) are designed for GPU execution. However, they lack fea-
tures for simulating delays between their physics engine and other components, such as sensors and actuators.
Moreover, to mimic complete systems, these simulators must be extended with controllers and perception
modules. Yet, these extensions typically interact with simulators sequentially, ignoring the concurrent and
asynchronous nature of real-world systems. Our approach builds on this by dividing these simulators into
separate components, facilitating the simulation of asynchronous interactions between them.

Adressing Asynchronicity and Delays The ORBIT framework (Mittal et al., 2023) and research by
Bouteiller et al. (2021) have explored integrating delays into robotic simulations. While ORBIT introduces
actuator delays to PhysX, it overlooks the asynchronicity between other system components. Bouteiller
et al. (2021)’s work centers on compensating for system delays in the learning algorithm, not addressing the
dynamic interactions among delayed components. In contrast, our method extends beyond actuator delays,
encompassing asynchrony across all components.

Minimum Common Supergraph Our approach addresses a variant of the minimal universal supergraph
(MUG) problem, which seeks the smallest supergraph, i.e., the mcs, containing all graphs in a given set as
a subgraph (Trimble, 2021). Unlike the brute-force exact algorithm presented in Trimble (2021), which is
suitable only for small graph sets, our approximate greedy algorithm is capable of handling graphs with
more than 2000 vertices. In Bunke et al. (2003), an iterative update strategy, based on Bunke et al. (2000),
is utilized to approximate the mcs. Our method shares similarities but satisfies an additional constraint:
the resulting mcs must remain acyclic post-merge. Furthermore, our extended objective is to efficiently
partition a provided set of larger graphs into smaller subgraphs before finding the mcs for these partitioned
subgraphs. In contrast, Trimble (2021) and Bunke et al. (2003) start from a given and static collection of
graphs and focus strictly on the identification of the mcs, meaning the partitioning we perform together
with the supergraph identification is already a given in their scenario. Both Trimble (2021) and Bunke et al.
(2003), and our method, (approximately) solve the maximum common subgraph problem as a subroutine
to find the minimum common supergraph (mcs) (McCreesh et al., 2017; McGregor, 1982). However, our
focus is on subgraph monomorphisms, which allow for additional edges in the subgraph, rather than induced
subgraph isomorphisms, which require a one-to-one correspondence between every node and edge in the
subgraph and target graph. To efficiently identify the largest mapping, we introduce an algorithm that
leverages the acyclic nature of our mcs that accelerates the search for a large approximate mapping. Note
that our algorithm restricts the largest mapping to connected subgraphs, potentially overlooking larger
disconnected mapping candidates.

6 Conclusion

In this paper, we introduced a method for efficiently simulating inherently asynchronous systems on accelera-
tor hardware. Our approach leverages recorded computation graphs from real-world operations to accurately
model asynchronicity and time-scale differences. The experiments suggest that our approach provides a scal-
able, efficient, and accurate means for simulating cyber-physical systems. We evaluated our method in two
real-world scenarios against baselines and confirmed its efficacy in emulating asynchronicity and handling
time-scale differences efficiently. Our work opens avenues for developing fast and accurate cyber-physical
system simulations. Finally, our approach holds promise for enhancing the integration of other machine
learning algorithms that generate dynamic graphs into frameworks like Jax (Frostig et al., 2018), by aligning
dynamic computation graphs with static ones.

12

Published in Transactions on Machine Learning Research (05/2024)

7 Acknowledgments

This work is funded by the EU’s H2020 OpenDR project (grant No 871449) and the Dutch Science Foundation
NWO-TTW’s Veni project HARMONIA (18165).

References
Godwin Asaamoning, Paulo Mendes, Denis Rosário, and Eduardo Cerqueira. Drone swarms as networked

control systems by integration of networking and computing. Sensors, 21(8):2642, 2021.

Radhakisan Baheti and Helen Gill. Cyber-physical systems. The Impact of Control Technology, 12(1):
161–166, 2011.

Enrico Bibbona, Gianna Panfilo, and Patrizia Tavella. The Ornstein–Uhlenbeck process as a model of a low
pass filtered white noise. Metrologia, 45(6):S117, 2008.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Reinforcement
learning with random delays. In Proc. of the Int. Conf. on Learning Representations (ICLR), 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym. arXiv preprint, 2016.

Horst Bunke, Xiaoyi Jiang, and Abraham Kandel. On the minimum common supergraph of two graphs.
Computing, 65:13–25, 2000.

Horst Bunke, Pasquale Foggia, Corrado Guidobaldi, and Mario Vento. Graph clustering using the weighted
minimum common supergraph. Graph Based Representations in Pattern Recognition, pp. 235–246, 2003.

Erik Derner, Jiri Kubalik, Nicola Ancona, and Robert Babuska. Constructing parsimonious analytic models
for dynamic systems via symbolic regression. Applied Soft Computing, 94:106432, 2020.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. Brax-A
Differentiable Physics Engine for Large Scale Rigid Body Simulation. In Proc. of the Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via high-level
tracing. Systems for Machine Learning, 4(9), 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proc. of the Int. Conf. on Machine Learning
(ICML), pp. 1861–1870. PMLR, 2018.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo
Durand. DiffTaichi: Differentiable Programming for Physical Simulation. In Proc. of the Int. Conf. on
Learning Representations (ICLR), 2020.

Dongyao Jia, Kejie Lu, Jianping Wang, Xiang Zhang, and Xuemin Shen. A survey on platoon-based vehicular
cyber-physical systems. IEEE Communications Surveys & tutorials, 18(1):263–284, 2015.

Xing Liu, Hansong Xu, Weixian Liao, and Wei Yu. Reinforcement learning for cyber-physical systems. In
2019 IEEE International Conference on Industrial Internet (ICII), pp. 318–327. IEEE, 2019.

Xin Lou, Cuong Tran, David KY Yau, Rui Tan, Hongwei Ng, Tom Zhengjia Fu, and Marianne Winslett.
Learning-based time delay attack characterization for cyber-physical systems. In 2019 IEEE Interna-
tional Conference on Communications, Control, and Computing Technologies for Smart Grids (Smart-
GridComm), pp. 1–6. IEEE, 2019.

Ciaran McCreesh, Patrick Prosser, and James Trimble. A partitioning algorithm for maximum common
subgraph problems. Proc. of the Intl. Conf. on Artificial Intelligence (IJCAI), pp. 712–719, 2017.

13

Published in Transactions on Machine Learning Research (05/2024)

James J. McGregor. Backtrack search algorithms and the maximal common subgraph problem. Software:
Practice and Experience, 12, 1982.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik
Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State, Marco Hutter, and
Animesh Garg. Orbit: A Unified Simulation Framework for Interactive Robot Learning Environments.
IEEE Robotics and Automation Letters (RA-L), pp. 1–8, 2023. doi: 10.1109/LRA.2023.3270034.

Robert Nishihara, Philipp Moritz, Stephanie Wang, Alexey Tumanov, William Paul, Johann Schleier-Smith,
Richard Liaw, Mehrdad Niknami, Michael I Jordan, and Ion Stoica. Real-time machine learning: The
missing pieces. In Proc. of the Workshop on Hot Topics n Operating Systems (HTOS), pp. 106–110, 2017.

NVIDIA. NVIDIA PhysX, 2020. URL \url{https://developer.nvidia.com/physx-sdk}.

Andrés A Peters, Richard H Middleton, and Oliver Mason. Leader tracking in homogeneous vehicle platoons
with broadcast delays. Automatica, 50(1):64–74, 2014.

Corrado Pezzato, Chadi Salmi, Max Spahn, Elia Trevisan, Javier Alonso-Mora, and Carlos Hernandez
Corbato. Sampling-based model predictive control leveraging parallelizable physics simulations. arXiv
preprint, 2023.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, Andrew Y
Ng, et al. ROS: an open-source Robot Operating System. Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 3:5, 2009.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation, and machine learning. Springer, 133, 2004.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to Walk in Minutes Using Massively
Parallel Deep Reinforcement Learning. Proc. of the Conf. Robot Learning (CoRL), 164:91–100, 2022.

Naoki Shibata. Efficient Evaluation Methods of Elementary Functions Suitable for SIMD Computation.
Computer science-Research and development, 25:25–32, 2010.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic rein-
forcement learning without reward engineering. arXiv preprint, 2019.

Ryan Taylor and Xiaoming Li. Software-Based Branch Predication for AMD GPUs. SIGARCH Comput.
Archit. News, 38(4):66–72, 2011.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pp. 5026–5033, 2012.

James Trimble. Induced universal graphs for families of small graphs. arXiv preprint, 2021.

James Trimble. Partitioning algorithms for induced subgraph problems. PhD thesis, University of Glasgow,
2023.

Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Tingnan Zhang, Jie Tan, and Vikas Sindhwani. Data efficient
reinforcement learning for legged robots. Proc. of the Conf. Robot Learning (CoRL), pp. 1–10, 2020.

Fei Zhao, Yu Liu, Jian Wang, and Li Wang. Distributed model predictive longitudinal control for a connected
autonomous vehicle platoon with dynamic information flow topology. In Actuators, volume 10, pp. 204.
MDPI, 2021.

14

Published in Transactions on Machine Learning Research (05/2024)

(a) Unidirectional (b) Bidirectional (c) Unirandom

Figure 9: Three abstract topologies to evaluate the scalability of our approach. (a) Unidirectional: each node has
a single outgoing connection. (b) Bidirectional: each node has two outgoing connections. (c) Unirandom: akin to
Unidirectional, but with an extra random outgoing connection per node.

2 4 8 16 32 64
nodes

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

mcs gen top

2 4 8 16 32 64
nodes

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

(a) Unidirectional

2 4 8 16 32 64
nodes

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

(b) Bidirectional

2 4 8 16 32 64
nodes

0
20
40
60
80

100
ef

fic
ie

nc
y

(%
)

(c) Unirandom

0.0 0.1 0.2 0.3
sigma

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)
(d) Unidirectional

0.0 0.1 0.2 0.3
sigma

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

(e) Bidirectional

0.0 0.1 0.2 0.3
sigma

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

)

(f) Unirandom

Figure 10: Efficiency comparison of mcs (our approach), top, and gen. In panels (a-c) the number of nodes is varied
with no asynchronicity (σ = 0), while in panels (d-f) the asynchronicity levels are varied with a fixed size of N = 8
nodes.

A Scalability Analysis with Abstract Topologies

In this scalability study, we focus on artificially generated computation graphs, as they allow us to system-
atically vary the number of nodes, the level of asynchronicity, and the topology of the graph. We consider
three different topologies: unidirectional, bidirectional, and unirandom, depicted in Fig. 9.

The nominal sampling time of each node is set according to the node’s index i as ∆ti = 1
i s, except for

the last node’s sampling time which is set to ∆tN = 1
200 s. These topologies resemble cascaded control

schemes that are common in robotic systems, with slower learning-based nodes and faster simulator nodes
with intermediate controllers, estimators, sensors and actuators. The effective sampling time is computed
with Eq. (2) as further detailed in Sec. 4.3.

As in Sec. 4.3, we consider a different number of nodes N ∈ {2, 4, 8, 16, 32, 64}, and a varying levels of
asynchronicity σ ∈ {0, 0.1, 0.2, 0.3}, and replicate every experiment 5 times using different random seeds.
For each configuration, we generate 20 computation graphs, each running for a duration of 100 seconds.

Figures 10a, 10b, and 10c illustrate the performance of our algorithm for different numbers of nodes when
there is no asynchronicity (σ = 0). Our approach achieves a 100% efficiency for the unidirectional topology,
whereas the efficiency of baseline approaches declines rapidly as the number of nodes increases. The superior
efficiency of our approach in the unidirectional topology is attributed to its fewer connections. Figures 10d,
10e, and 10f demonstrate the performance of our algorithm for different levels of asynchronicity when the
network comprises N = 8 nodes. As asynchronicity increases, partitions become more dissimilar, and the
efficiency of our approach does decline, yet it remains multiples higher than that of the baseline approaches.

Figure 11 presents an analysis of our method’s computational complexity in constructing the supergraph,
considering both the computation graph’s characteristics and topology, and the scaling of supergraph search
complexity over all recorded computation graphs. Figures 11a, 11b, and 11c detail our algorithm’s complexity
under varying asynchronicity levels through time as it processes all recorded computation graphs. The initial
episodes incur higher computational costs due to the increased computational overhead of handling numerous
partial matches (Line 6-7 in Alg. 2), while subsequent episodes demonstrate linear scaling in time.

15

Published in Transactions on Machine Learning Research (05/2024)

0 50 100
matched (%)

0

50

100

el
ap

se
d

ti
m

e
(s

)

0.0 0.1 0.2 0.3

0 50 100
matched (%)

0

50

100

el
ap

se
d

ti
m

e
(s

)

(a) Unidirectional

0 50 100
matched (%)

0

50

100

el
ap

se
d

ti
m

e
(s

)

(b) Bidirectional

0 50 100
matched (%)

0

50

100

el
ap

se
d

ti
m

e
(s

)

(c) Unirandom

101 102 103
elapsed time (s)

0

20

40

60

80

100

ef
fic

ie
nc

y
(%

) sigma
0.0
0.1
0.2
0.3
nodes
2
4

8
16
32
64
topology
bi
rand
uni

(d) Complexity analysis

Figure 11: Performance analysis of computational complexity and efficiency. Panels (a-c) show the elapsed time for
completion with N = 32 nodes across various asynchronicity levels and topologies. Initial episodes are time-intensive
due to numerous preliminary partial matches, followed by a consistent linear time scaling in processing time. Panel
(d) shows the computational complexity versus efficiency for different topologies, asynchronicity levels, and node
counts, highlighting their impact on performance.

uni bi rand
topology

0

50

100

el
ap

se
d

ti
m

e
(s

)

0 5 10 15 20

uni bi rand
topology

102

103

el
ap

se
d

ti
m

e
(s

)
power
linear

uni bi rand
topology

0

10

20

30

40

el
ap

se
d

ti
m

e
(s

)

max-edge
arbitrary

uni bi rand
topology

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

) 0 5 10 15 20

(a) Backtrack

uni bi rand
topology

0
20
40
60
80

100

ef
fic

ie
nc

y
(%

) power
linear

(b) Combination

uni bi rand
topology

0
20
40
60
80

100
ef

fic
ie

nc
y

(%
) max-edge

arbitrary

(c) Sort

Figure 12: Ablation study on topologies with N = 32 and σ = 0.1, examining computational complexity and efficiency.
Sub-figures show: (a) Effects of varying β; (b) Efficiency-impact of considering one (linear) vs. all combinations per
size k (power); (c) Comparison of arbitrary and max-edge topological sorts.

In Fig. 11d, we again observe that efficiency is inversely related to both the asynchronicity level and the
number of connections per node within a topology. Specifically, the unidirectional topology outperforms the
bidirectional and unirandom topologies due to its fewer edges. A decrease in efficiency correlates with an
increase in computation time, primarily because fewer complete matches are found, which is consistent with
the results in Sec. 4.3. While the most substantial contributor to computation time is the number of nodes
in the topology, it does not affect efficiency as similar efficiency is achieved with different numbers of nodes.

B Ablation Study

In this study, our goal is to substantiate that our approach employs simplifications discussed in Sec. 3.4 that
reduce computational complexity without significantly affecting performance. For this ablation study, we
focus on the topologies in Fig. 9 with N = 32 and σ = 0.1, ablating the proposed simplifications.

Fig. 12 illustrates that the benefits of backtracking are limited. However, it neither increases the computa-
tional complexity of our approach nor adversely affects efficiency.

We also analyzed the effect of considering only a single combination for each size k, as opposed to exploring
all combinations. Fig. 12 demonstrates that this simplification has negligible impact on efficiency but consid-
erably reduces the computational complexity (note the log-scale). It is worth noting that only considering a
single combination even seems to perform slightly better in some cases. This outcome, while not statistically

16

Published in Transactions on Machine Learning Research (05/2024)

implausible, may also be caused by other factors, such as the order in which the graphs are processed. Our
hypothesis centers on the specific nature of the computation graphs generated by cyber-physical systems.
These graphs tend to exhibit a relatively fixed structure, meaning the variety of topological orderings is con-
siderably constrained compared to more generic graphs. Consequently, this structural rigidity could diminish
the advantages we might expect from checking all combinations.

Lastly, we explored the implications of using a single topological sort. Rather than exhaustively considering
all topological sorts—an approach that would be computationally prohibitive—we compared the effects of
using an arbitrary sort versus a max-edge sort. The max-edge sort of the supergraph is defined as one that
accommodates the maximum number of potential edges (i.e., constraints) and therefore increases the chance
of finding a match in Alg. 2. Due to the inherent unidirectionality of the unidirectional topology, the max-
edge sort arranges vertices of lower indices before those of higher indices. Since we lack max-edge sorting
criteria for bidirectional and unirandom topologies, we limited this part of the study to the unidirectional
topology. Fig. 12 shows that this simplification has negligible impact on efficiency.

C Graphs

0.00 0.05 0.10 0.15 0.20 0.25
time (s)

L

SIM

F1

F2

(a) Computation graph of V2V platooning

0 5 10 15 20 25
topological generation

F1

F2

SIM

L

(b) Our approach (mcs)

0 5 10 15 20 25
topological generation

F1

SIM

F2

L

(c) Topological (top)

0 5 10 15 20 25
topological generation

F1

SIM

F2

L

(d) Generational (gen)

Figure 13: Panel (a) presents a segment of a computational graph corresponding to the platooning scenario in Fig. 7b
with N = 4 and σ = 0.2. Vertices of identical color correspond to the same periodic computation unit, and edges
represent data dependencies. Panels (b-d) illustrate the supergraphs generated by our method (mcs), as well as
the topological (top) and generational (gen) methods. Our approach yields a supergraph with a reduced number of
vertices, indicating enhanced efficiency in identifying commonalities across the computation graphs.

17

Published in Transactions on Machine Learning Research (05/2024)

0.00 0.05 0.10 0.15 0.20 0.25
time (s)

C

SIM

UAV1

UAV2

(a) Computation graph of UAV swarm control

0 5 10 15 20 25
topological generation

UAV1

UAV2

SIM

C

(b) Our approach (mcs)

0 5 10 15 20 25
topological generation

UAV1

SIM

UAV2

C

(c) Topological (top)

0 5 10 15 20 25
topological generation

UAV1

SIM

UAV2

C

(d) Generational (gen)

Figure 14: Panel (a) presents a segment of a computational graph corresponding to the uav swarm scenario in Fig. 7b
with N = 4 and σ = 0.2. Vertices of identical color correspond to the same periodic computation unit, and edges
represent data dependencies. Panels (b-d) illustrate the supergraphs generated by our method (mcs), as well as
the topological (top) and generational (gen) methods. Our approach yields a supergraph with a reduced number of
vertices, indicating enhanced efficiency in identifying commonalities across the computation graphs.

18

