
VV-DASH: A Framework for Volumetric Video DASH Streaming
Hadi Heidarirad

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada
hadi.heidarirad@ucalgary.ca

Mea Wang
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada
meawang@ucalgary.ca

Abstract
With the increasing demand for immersive experiences, volumetric
video has emerged as a critical technology, offering users six de-
grees of freedom (6DoF) to fully explore three-dimensional scenes.
However, despite significant advancements, there remains a lack of
a comprehensive and flexible adaptive streaming framework capa-
ble of delivering volumetric video over dynamic network conditions.
To address this gap, we present VV-DASH, an end-to-end frame-
work for adaptive volumetric video streaming over DASH (Dynamic
Adaptive Streaming over HTTP). Our framework covers the en-
tire streaming pipeline, from video source to video playback. We
propose a codec-agnostic DASH Volumetric Video (DVV) segment
format that consolidates compressed video content into DASH-
ready segments. This segmentation improves achievable streaming
throughput by 13.2%, effectively reduces bandwidth demand, and
enhances the achievable streaming bitrate by up to 37.8%. In sum-
mary, VV-DASH provides a practical, high-performance framework
for scalable and adaptive volumetric video streaming.

CCS Concepts
• Information systems → Multimedia streaming.

Keywords
Volumetric Video, DASH, Point Cloud, Streaming
ACM Reference Format:
Hadi Heidarirad and Mea Wang. 2025. VV-DASH: A Framework for Volu-
metric Video DASH Streaming. In Proceedings of the 16th ACM Multimedia
Systems Conference (MMSys ’25), March 31–April 4, 2025, Stellenbosch, South
Africa. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3712676.
3718339

1 Introduction
While video streaming has become the primary form for multi-
media entertainment (e.g., YouTube [6] and Netflix [23]), demand
for immersive and interactive experiences is growing alongside in-
creasing computing and networking capacity. In volumetric video,
dynamic objects and scenes are captured using multiple cameras
from different angles to represent them in true 3D, offering users six
degrees of freedom (6DoF) within the video scene. Unlike 2D frames

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys ’25, March 31–April 4, 2025, Stellenbosch, South Africa
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1467-2/25/03
https://doi.org/10.1145/3712676.3718339

in conventional videos, volumetric video frames are formed by 3D
Meshes or Point Clouds, significantly increasing size and bitrate.
Point clouds are more widely used and studied as they are easier to
process and manipulate (e.g., better suited for tiling complex scenes
[39]), thus, we resort to point cloud format in this paper.

To accommodate varying network conditions and the wide range
of bitrates provided by compression algorithms, Dynamic HTTP
Adaptive Streaming (DASH) [33] and HTTP Live Streaming (HLS)
[25] are among the widely adopted adaptive streaming protocols,
utilized by major streaming service providers such as YouTube
and Netflix. They are designed to stream video content segment
by segment at appropriate quality levels—characterized by a bi-
trate ladder—subject to the network dynamics. The demand for
volumetric streaming has drawn research attention to making it
available over DASH for quality adaptation over general network
[12, 18, 26, 40–42]. The research challenges have been primarily
concerning the trade-off between fast compression/decompression
and efficient bitrate for transmission. These challenges motivate
the proposal of VV-DASH, an end-to-end framework for advancing
the design and analysis of volumetric streaming systems.

In this paper, we propose VV-DASH1, a highly-efficient DASH
framework for volumetric video streaming. The modular design of
VV-DASH spans the entire streaming pipeline, from video source to
transmission and rendering. The framework is codec-agnostic, with
encoder and decoder wrappers enabling integration of any codec.
Along with VV-DASH, we introduce a segmentation method for
volumetric video content that enables efficient streaming and de-
coding. Our evaluation results show that the segmentation method
effectively improves the achievable streaming bitrate by 37.8% on
average, and the decoding speed by up to 51%.

The rest of this paper is organized as follows. Section 2 provides
an overview of the background knowledge on volumetric video
streaming and related work. Section 3 introduces the codec-agnostic
design of VV-DASH, followed by implementation and experiment
setup in Section 4. We then present two case studies to showcase
that VV-DASH can support streaming with Draco (Section 5) and V-
PCC (Section 6). Finally, Section 7 presents the concluding remarks.

2 Background and Related Work
DASH is known for quality adaptation across various network con-
ditions [32]. End-to-end DASH streaming involves the following
steps on the server side: (1) compressing the original video into mul-
tiple quality levels based on a predefined bitrate ladder (henceforth,
compression), (2) packaging the compressed videos into segments
and preparing a manifest file (i.e.,MPD) containing metadata and
segment URLs, and (3) serving these segments from an HTTP server
that responds to segment requests via URLs.

1https://github.com/Rad6/vv-dash

256

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 11, 2025.

https://doi.org/10.1145/3712676.3718339
https://doi.org/10.1145/3712676.3718339
https://doi.org/10.1145/3712676.3718339
https://github.com/Rad6/vv-dash
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712676.3718339&domain=pdf&date_stamp=2025-03-31


MMSys ’25, March 31–April 4, 2025, Stellenbosch, South Africa Hadi Heidarirad and Mea Wang

Though there are server-side quality adaptation proposals [44],
the most common DASH approach is client-based adaptation, al-
lowing the use of ordinary HTTP servers ([15, 16, 19, 20] for con-
ventional DASH and [13, 28] for volumetric DASH). Thus, a DASH
streaming involves the following steps on client end: (1) Receiving
the MPD file from the server and preparing the streaming accord-
ingly. The bitrate ladder can be fetched from the MPD file. (2) Re-
questing the next segment at a specific quality level selected by the
adaptation algorithm (according to observed/estimated bandwidth
and buffer health). Quality adaptation may depend on playback
buffer state [15], the estimated bandwidth [19], or a combination
of factors (including, but not limited to buffer status, bandwidth
estimation, codec property [16, 20]). (3) Receiving the segment and
queuing it into the buffer, which will be dequeued by the decoder.
(4) Decoding the segment and then rendering for playback. (5) Re-
peat Steps 2-4 until the end of the streaming session (either the user
terminates the streaming or the end of the video has reached).

ViVo [13] has been one of the pioneering systems for volumetric
video streaming on mobile devices. However, the system lacks sup-
port for a DASH implementation and does not support encoders
other than Draco, limiting the range of encoded bitrates available to
accommodate wider network conditions. Away from the V-PCC and
Draco codecs, Kyungjin et al. targeted mobile point-cloud streaming
and proposed a novel data structure called the Parallel Decodable
Tree (PD-Tree) [17], which differs from traditional structures like
Octree and KD-Tree. The GROOT framework, proposed based on
this data structure, can achieve real-time decoding through parallel
processing. These proposals are aiming to transform specific en-
codings of volumetric video for streaming, which are orthogonal
work to VV-DASH.

Closely related to VV-DASH, we found vvtk [34], an open-source
framework consisting of individual modules for encoding, decod-
ing, rendering, and transmission. However, these modules are not
streamlined to form an end-to-end streaming system. Moreover,
vvtk provides only a simulation of DASH, without using an actual
manifest (MPD) file, making it not suitable for conducting realistic
research on volumetric DASH streaming. To the best of our knowl-
edge, VV-DASH is the first general end-to-end framework that can
work with different codecs and bitrate reduction algorithms, as
well as efficient encoding and decoding processes. In particular, we
propose a codec-agnostic DVV container format that wraps around
volumetric video data (encoded in any format) along with informa-
tion necessary for decoding and playback of DASH segments. Any
existing or new video compression techniques can be incorporated
into VV-DASH, as exemplified by the two case studies in the paper.

3 Design of VV-DASH
This section presents the design of VV-DASH. As shown in Fig-
ure 1, VV-DASH spans the entire streaming pipeline, from video
source to rendering for playback. The video source module supports
Video-on-Demand. The Encoder module prepares videos at multiple
quality levels based on a bitrate ladder. The DASH Volumetric Video
(DVV) Segmenter bundles encoded media content with metadata
into DVV segments, akin to video segments in conventional DASH
streaming. These segments are packaged by a DASH Packager into

DASH segments along with an MPD file and stored on an HTTP
server.

On the client side, VV-DASH is adaptable by any DASH client,
allowing integration with any bitrate adaptation algorithm to select,
request, and receive segments based on buffer status and network
conditions. VV-DASH wraps a DASH client with a DVV parser, a
decoder module, and a renderer. The DVV parser extracts embed-
ded media and playback information from DVV segments. These
are passed to a codec-specific decoder module, which decodes the
segments and places them into a playback buffer for the renderer
module to dequeue and render. VV-DASH also supports headless
delivery of media content to external modules, enabling rendering
on diverse devices (e.g., head-mounted displays) or for objective
quality assessment tools.

Overall, VV-DASH is a comprehensive end-to-end framework
for DASH streaming of VoD voluemtric video. Since bottlenecks
are potentially presented in every part of this pipeline, VV-DASH
is designed to be lightweight and resource-efficient for optimal
performance. Not only is VV-DASH a complete setup that facilitates
research on any part of the pipeline individually or as a whole, but
it is also designed to be modular and flexible, allowing seamless
integration of DASH volumetric video streaming into most existing
DASH players. The rest of this section details VV-DASH’s server-
side (Section 3.1) and client-side (Section 3.2) designs.

3.1 VV-DASH Server-side
The Encoder module in VV-DASH adopts any specific encoder (e.g.,
Google Draco [7] and MPEG V-PCC [9]), and encodes raw volu-
metric video into multiple quality levels as specified by the bitrate
ladder. The Encoder module can also adopt codec-independent
bitrate reduction algorithms such as down-sampling [14, 30] for
simpler processing.

Diverse bitrate reduction algorithms impose different DASH
implementations. For instance, V-PCC provides its own segmenta-
tion format, while Draco encodes content frame by frame, which
is inefficient for DASH streaming. For a 30 fps video, each frame
represents only 0.033 seconds. Frame-level streaming results in
frequent requesting and fetching, leading to high control and com-
munication overhead, as well as inefficient decoding. This would
make DASH streaming impractical. VV-DASH introduces a novel
DVV Segmenter that transforms any coded volumetric video into
DASH-ready segments.

The DVV Segmenter can aggregate discrete frames or codec-
specific segments, or wrap only one codec-specific segment, along
with the necessary presentation and playback information for DASH.
This would not only enable more efficient streaming of indepen-
dently encoded frames but would also allow the system to support
the streaming of both the independently encoded frames (as in
Draco or down-sampled raw frames) and regular media segments
(such as V-PCC V3C) within the same system, using a unified seg-
ment format. To the best of our knowledge, no such segment format
currently exists for either raw or encoded point cloud-based me-
dia. Therefore, we propose the DVV segment format packing one
or more encoded media contents (e.g., frames or segments) for a
specific playback duration.

257

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 11, 2025.



VV-DASH: A Framework for Volumetric Video DASH Streaming MMSys ’25, March 31–April 4, 2025, Stellenbosch, South Africa

Figure 1: Overall design of VV-DASH framework
As shown in Figure 2, the DVV segment format bundles frames

or codec-specific segments and includes essential information for
decoding and playback. The bitstream starts with a 3-byte DVV
format version and a 4-byte Header Encoding field (e.g., "JSON")
to specify header serialization. A 4-byte field defines the header
size, separating header and payload. A 2-byte Sequence Number
field follows for error-checking, along with a 3-byte Timescale field
specifying the segment’s time units (e.g., 90, 000 ticks per second).
Before the header, a 4-byte Codec field identifies the codec (e.g.,
"DRCO" for Draco or "VPCC" for VPCC).

Figure 2: DVV segment format

The header contains metadata for each media payload, including
a 4-byte offset for its position in the bitstream, a 4-byte size for its
length, and a 3-byte PTS for its presentation timestamp (relative to
the timescale). The payload section follows, containing the encoded
data. This structured design ensures the DVV bitstream efficiently
encapsulates both metadata and frame data, enabling precise access
and synchronization during decoding and playback.

3.2 VV-DASH Client-side
The client side of VV-DASH builds on a typical DASH client, which
streams DVV-formatted segments at appropriate quality levels.
Upon receiving a segment, the DVV Parser identifies the codec
and timescale, parses the header, and extracts encoded frames or
codec-specific segments. These are passed to the Decoder module,
which wraps the appropriate decoder (e.g., Draco for DRC frames
and V-PCC for V3C bitstream segments). The Decoder module uses
parallel computing directives to accelerate decoding when possible.
Since DVV payloads are independently decodable, VV-DASH em-
ploys multiprocessing on multi-core systems, with one decoder per
payload, boosting the decoding rate. It also minimizes disk I/O by
keeping the entire data flow in memory for further optimization.

Decoded frames are passed to the Renderer module for play-
back. The renderer retrieves frames from the buffer, loads the point

cloud data and associated colors, and displays them in an Open3D
window at the correct presentation timestamp. To the best of our
knowledge, there is currently no dedicated rendering library for
dynamic sequences of point clouds. Therefore, to ensure seamless
playback, we update the points at their exact presentation times-
tamp in the same renderer window and display each frame for
the appropriate duration of 1/𝑓 𝑝𝑠 seconds. To enhance usability,
a walk-around view on 2D screens allows users to correct the 3D
object in any direction using the cursor. Similar to the Decoder mod-
ule, the Renderer module is designed to ensure efficient playback
of video segments by utilizing asynchronous operations, multipro-
cessing, and concurrent programming techniques. Due to the lack
of a real-time renderer for highly dense video datasets, VV-DASH
also captures detailed analytical data from the streaming session
(e.g., stalls and quality switches from DASH) to aid research and
examination regardless of the rendering being real-time. These
analytical tools offer a practical playback alternative for dense vol-
umetric video streaming until rendering techniques advance (or
alternatively utilizing HMD-based native rendering)

4 Implementation and Experiment Setup
In VV-DASH, we use [2] as the DASH player, that implements a
DASH protocol with bandwidth-based, buffer-based, and hybrid
Adaptive Bitrate (ABR) algorithms. For our experiments, we utilized
the bandwidth-based ABR.

The DASH player is wrapped with VV-DASH modules, as shown
in Figure 1, and an NGINX [27] server serves as the HTTP server.
To emulate bandwidth scenarios, we employ a network module
using the Linux Traffic Control utility on a HAProxy [5] proxy. Po-
sitioned between the DASH server and player, the proxy throttles
inbound and outbound traffic to accurately emulate desired band-
width profiles. All components, including the server, client, and
network emulator, are containerized and run on a laptop equipped
with an Intel Core i9-14900HX CPU, NVIDIA GeForce RTX 4090
GPU, and 64GB of memory.

We evaluate VV-DASH using three point cloud-based volumet-
ric video datasets: On the high quality end, we use the "Ricardo-
10" video from the MVUB (Microsoft Voxelized Upper Bodies)
dataset [21], featuring dense point clouds with an average of 1𝑀
points/frame and high spatial resolution of 1024𝑥1024 voxels per
cube (i.e., a spatial depth of 10). On the low quality end, we use the
"Phil-9" video from the same dataset [21], with a sparse point cloud
(average 334𝐾 points/frame) and lower spatial resolution (512𝑥512
voxels/cube, spatial depth 9). Videos from the MVUB dataset have
been used in proposals for volumetric streaming in [11, 24, 41]. In
between, we use the "Longdress-10" video from the 8i Voxelized Full
Bodies (8i VFB v2) dataset [4], with a relatively dense point cloud
(average 834𝐾 points/frame) and high spatial resolution (1024𝑥1024

258

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 11, 2025.



MMSys ’25, March 31–April 4, 2025, Stellenbosch, South Africa Hadi Heidarirad and Mea Wang

voxels/cube, depth 10). Videos from the 8i VFB dataset are also
widely used in volumetric streaming research [14, 17, 30]. All three
videos have 30 fps, a common frame rate for smooth motion and
detailed video playback. These datasets represent a good range of
point-cloud densities and spatial depths, providing ample room
for codec compression. Table 1 compares the average point cloud
density and frame size (ranging from 7.43 to 21.05 MB). To ensure
uniform test durations, each video is concatenated with itself to
extend to 30 seconds.

Table 1: Video datasets

Video Avg # of Points Avg Frame Size # of Frames
Ricardo-10 1.002M 21.05 MB 216

Longdress-10 834K 18.9 MB 300
Phil-9 334K 7.43 MB 245

We used the Open3D library [43] as the renderer for volumetric
video playback, which is a widely used and powerful tool for 3D
graphics visualization. We plan to extend VV-DASH’s implemen-
tation with a Unity [36, 37] module to enable natural volumetric
rendering in head-mounted displays like Meta Quest [22]. With this
setup, we will present two case studies demonstrating VV-DASH’s
capability to support two codec standards: Draco (Section 5) and
V-PCC (Section 6). Using bandwidth profiles covering respective
bitrate ladders, we will evaluate performance improvements from
DVV segmentation. Each section will conclude with results from
active DASH sessions under different bandwidth profiles.

5 Case Study #1: Streaming with Draco
We encode all three videos with five rate parameter sets using Draco
(via DracoPy [29]) to define a 5-level bitrate ladder, detailed in Ta-
ble 2. Parameter settings are selected carefully to ensure smooth
progression in bitrate and visual quality. Compression level (CL)
values span the full range (1–10) with a step size of two. Position
and texture quantization parameters (PQP and TQP), which control
the number of bits for position and texture quantization, are opti-
mized by analyzing commonly used position and color values across
datasets and evaluating decoded frame quality. The bitrate ladder
is shown in Table 2. The "Ricardo" video exhibits the widest bitrate
range when encoded with Draco, while the "Phil" video achieves
high compression with a smaller bitrate range. The "Longdress"
video has the highest average bitrate.

Table 2: Draco bitrate ladder

Rate CL PQP TQP Average Bitrate (Mbps)
Longdress Ricardo Phil

R1 10 7 6 309.9 141.8 143.4
R2 8 9 8 431.1 276.6 197.5
R3 6 11 10 568.8 454.1 256.4
R4 4 13 12 749.7 838.0 348.4
R5 2 15 14 982.3 1175.7 453.0

Figure 3 illustrates server-side DVV segmentation, showing an
example of encapsulating the first 30 frames of a video into a DVV
segment. Each frame, independently encoded as a DRC-encoded
frame, is placed in an individual payload within the DVV segment.
For each DRC frame, the DVV header includes a record with its

starting byte offset in the payload bitstream, its size, and its pre-
sentation timestamp (PTS) relative to the timescale. The PTS starts
from the SeqNum (0 for the first frame) and increments by 3, 000 per
frame, as the timescale for this 1-second segment is 90, 000.

Figure 3: DVV segmentation and parallel encoding/decoding
for Draco

Once a DVV segment containing Draco-encoded frames is re-
ceived on the client side, frames are extracted based on the DVV
header. Since each frame is independently decodable, they are de-
coded in parallel by separate instances of the Draco decoder. The
original Draco decoder processes frames one at a time, requir-
ing disk I/O for loading, decoding, and writing outputs, which
introduces delays. To address this, we implement an in-memory
Draco wrapper using DracoPy [29], allowing received and extracted
frames to pass directly to decoders from memory. Decoded frames
are then directly pushed into the renderer buffer, eliminating disk
I/O delays entirely, as shown in Figure 3.

5.1 DVV Segmentation
The key enabling concept in VV-DASH for volumetric video stream-
ing is DVV segmentation, which significantly enhances streaming
performance. To create 1-second segments for testing videos, we
package 30 frames into a DVV segment. DVV segmentation primar-
ily improves average frame decoding time and system throughput.
We conducted an experiment comparing decoding times for DVV
segments and Draco frames. A DASH streaming session without
bandwidth limits was run on the "Longdress" video to eliminate
transmission bottlenecks and focus solely on decoding. For DVV
segments, the DASH client sends all 30 frames in a segment to the
Decoder module for parallel decoding. For Draco frames, a new
decoding process is forked upon receiving each frame, maximizing
parallelism for a fair comparison. As shown in Figure 4, DVV seg-
mentation reduces average decoding time for 1-second of frames by
up to 51%. This improvement is due to frames arriving in batches
matching the frame rate (30 fps), enabling better CPU utilization.
Process creation and scheduling overheads are minimized since 30
processes are launched simultaneously, rather than one every 0.033
seconds in the worst-case scenario for stall-free streaming.

Next, we compare the streaming experience using 1-second DVV
segments versus individual frames (Draco default). With DVV seg-
ments, the DASH client requests a new segment at most every 1
second, provided segment transmission completes within this time

259

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 11, 2025.



VV-DASH: A Framework for Volumetric Video DASH Streaming MMSys ’25, March 31–April 4, 2025, Stellenbosch, South Africa

0

0.3

0.6

0.9

Longdress Ricardo Phil

Draco Frames
DVV Segments

Av
er

ag
e 

De
co

di
ng

 T
im

e 
(s

)

Videos
Figure 4: Impact of DVV segmentation on decoding time

for smooth streaming. Without segmentation, the player must re-
quest 30 frames consecutively within 1 second (i.e., one request
every 0.033 seconds at worst) to maintain the same quality level.
To assess the impact of DVV segmentation, we created bandwidth
profiles enabling each video to stream at specific quality levels. For
example, streaming the "Longdress" video at quality level 𝑅2 (as per
Table 2) requires bandwidth between 431.1 Mbps and 568.8 Mbps.
We selected 475 Mbps, ensuring the quality adaptation algorithm
consistently picks 𝑅2 for DVV segments. Similar bandwidth profiles
were created for levels 𝑅2–𝑅5, detailed in Table 3. We measured
the average bitrate achieved during streaming for all three videos
under these bandwidth profiles. Figure 5 shows that DVV segments
consistently achieve the target quality level, whereas Draco frames
mix the target and lower quality levels. Bitrates improved by 36.2%,
44.9%, and 32.4% for the "Longdress," "Ricardo," and "Phil" videos,
respectively, leading to an overall throughput gain under identical
network conditions.
Table 3: Bandwidth profiles for evaluating impact of DVV
segmentation

Profiles Bandwidth Setting (Mbps)
Longdress Ricardo Phil

L2 475 300 215
L3 610 500 270
L4 850 950 380
L5 1050 1280 490

Av
er

ag
e 

Bi
tra

te
 (M

bp
s)

250

500

750

1000

L2 L3 L4 L5

DVV Segments Draco Frames

L2 L3 L4 L5L2 L3 L4 L5

Longdress Ricardo Phil

Bandwidth Profiles
Figure 5: Average streaming bitrate with and without DVV
segmentation

The bitrate gain from DVV segmentation is due to reduced pro-
tocol overhead. We analyzed the streaming timeline and plotted
segment-by-segment and frame-by-frame transmissions for the
"Longdress" video under a fixed bandwidth of 900 Mbps (maintain-
ing quality level R4). As shown in Figure 6, the average turnaround
time for requesting and downloading the first DVV segment is 0.91

seconds, while individually requesting and downloading 30 Draco
frames from the same segment takes over 1 second. This pattern
is consistent across other DVV segments and Draco frames of this
video, explaining the 13.2% throughput gain. The improvement not
only allows the player to switch to a higher quality level if close
to its boundary—thereby improving the Quality-of-Experience un-
der the same network conditions, but also helps prevent stalls or
shorten stall duration under poor network conditions.

Figure 6: Segment-by-segment download time versus frame-
by-frame download timeline from streaming “Longdress”
video with 900Mbps fixed bandwidth

5.2 DASH with Draco
To demonstrate VV-DASH’s adaptive bitrate streaming capability,
we conducted experiments on the Draco-encoded "Longdress" video
under two bandwidth profiles (as similar to [1]). The first profile,
shown in Figure 7 (top), was designed for smooth, stall-free stream-
ing with quality switches across all five quality levels. Bandwidth
levels were adjusted every 5 seconds to enable DASH streaming at
the marked quality levels. As shown in Figure 7 (top), the DASH ses-
sion successfully adapted to the available bandwidth and selected
appropriate quality levels.

Figure 7: DASH streaming of Draco "Longdress" video: (Top)
Smooth playback under sufficient bandwidth supply, (Bot-
tom) Stall recovery after a bandwidth drop at 10 second.

The second profile, shown in Figure 7(bottom), included a stall
period. Similar to the first profile, bandwidth levels were adjusted
every 5 seconds, but at the 11th second, the bandwidth dropped
below level R1. This drop lasted 5 seconds, exceeding the buffer

260

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 11, 2025.



MMSys ’25, March 31–April 4, 2025, Stellenbosch, South Africa Hadi Heidarirad and Mea Wang

duration (4 seconds) and causing the buffer to deplete, resulting in
playback stalls. As shown in Figure 7(bottom), the DASH session
streamed at R1 for 9 consecutive segments following the bandwidth
drop, with 1.32 seconds of stall observed during playback.

6 Case Study #2: Streaming with V-PCC
TMC2 is a reference implementation of the MPEG V-PCC codec
standard [10], providing both encoder and decoder functionality.
The encoder processes raw point cloud frames with a set of con-
figurations, performing intra- and inter-frame 2D encoding, and
outputs an encoded V3C bitstream. Key rate parameters include
Geometry Quantization (GeoQP) and Attribute Quantization (At-
tQP), which control compression levels for geometric and attribute
data, respectively—higher QP values yield greater compression and
lower bitrates. Occupancy Precision (OP) defines the granularity of
the occupancy map, with higher precision ensuring more accurate
point capture within the voxel grid. For DASH streaming, we define
a 5-level bitrate ladder. Rate configurations for V-PCC are based on
recommended sample configurations from the TMC2 implementa-
tion [10], using the reference HM implementation [31, 35] as the
2D video encoder. As the original TMC2 decoder is slow (e.g., taking
over 40 seconds to decode a 1-second "Longdress" segment), we use
the faster TMC2-RS [3], which is up to 15 times faster and has been
adopted in frameworks like [34]. VV-DASH employs TMC2-RS as
the V-PCC decoder. The GeoQP, AttQP, and OP settings for the
bitrate ladder are detailed in Table 4.

Table 4: V-PCC bitrate ladder

Rate GeoQP AttQP OP Average Bitrate (Mbps)
Longdress Ricardo Phil

R1 32 42 4 4.35 1.84 1.84
R2 28 37 4 7.49 2.48 2.72
R3 24 32 4 13.1 3.68 4.48
R4 20 27 4 24.5 5.84 8.32
R5 16 22 2 44.2 10.4 15.3

Figure 8 illustrates the integration of the V-PCC encoder into
VV-DASH and a sample crafted DVV segment. The DVV Segmenter
can pack any number of V3C bitstreams (Figure 8 shows one ex-
ample). In this case, since the only existing V3C bitstream bundles
all 30 frames into a segment, the entire timescale is assigned to the
segment’s PTS, which is 90, 000, equivalent to 1 second in length.
Utilizing the fast TMC2-RS V-PCC implementation and configuring
the DVV segments with 2 frames bundled in each V3C bitstream
(adding up to 30 frames in total, which are packed into a payload
to form a 30-frame, 1-second segment) with negligible compres-
sion ratio loss enables us to conduct a DASH streaming session
for the "Phil" video. This segmentation preserves the compression
ratio while enabling quick decoding of individual V3C bitstreams,
making practical streaming possible.

6.1 DASH with V-PCC
Given the real-time decoding rate achieved for the "Phil" video, we
are able to showcase DASH streaming with V-PCC. Similar to the
Draco case, we created two bandwidth profiles: one for smooth
streaming and one for stall recovery. The bandwidth profile along
with the target quality levels is illustrated in Figure 9. Bandwidth

Figure 8: Parallel encoding/decoding and DVV segmentation
for V-PCC

levels were adjusted every 5 seconds to enable DASH streaming
at the quality levels shown in Figure 9. The DASH session with
V-PCC, under the first profile, successfully adapted to the varying
bandwidth conditions and selected the appropriate quality level
accordingly. With the second profile, the DASH session streamed
at the R1 level for four consecutive segments after the bandwidth
drop, with stalls during playback.

Figure 9: DASH streaming of V-PCC “Phil” video: (Top)
Smooth playback under sufficient bandwidth supply, (Bot-
tom) Stall recovery after a bandwidth drop at 10 second.

7 Conclusion
In this study, we proposed VV-DASH, a high-performance end-to-
end framework for volumetric video streaming over DASH. VV-
DASH improves performance through DVV segmentation, and
efficient and parallel computing techniques. We presented two case
studies: streaming with Draco and V-PCC, as well as demonstrating
support for any bitrate reduction module and uniform packing
of encoded/compressed video content. Consistent results in both
studies confirm VV-DASH’s effectiveness with DASH. We analyzed
the impact of DVV segmentation on streaming throughput and
decoding rate. Combining DVV segmentation with DASH results in
up to 51% faster decoding rate Draco-encoded videos, and a 13.2%
system throughput gain under the identical network conditions (i.e.,
reducing bandwidth demands for smooth playback). In summary,
VV-DASH enables practical adaptive volumetric video streaming
and lays a foundation for and facilitates future research. While
VV-DASH is a complete setup, future work includes containerizing
DVV components into an ISOBMFF-compliant segment [8, 38] to
facilitate broader modular adoption.

261

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 11, 2025.



VV-DASH: A Framework for Volumetric Video DASH Streaming MMSys ’25, March 31–April 4, 2025, Stellenbosch, South Africa

References
[1] Navid Akbari, Reza Hedayati Majdabadi, Akram Ansari, Mea Wang, and Di-

wakar Krishnamurthy. 2023. iStream: A Flexible Container-Based Testbed for
Multimedia Streaming. In 2023 IEEE 6th International Conference on Multime-
dia Information Processing and Retrieval (MIPR). 1–6. https://doi.org/10.1109/
MIPR59079.2023.00038

[2] Akram Ansari and Mea Wang. 2023. iStream Player: A Versatile Video Player
Framework. In Proceedings of the 33rd Workshop on Network and Operating System
Support for Digital Audio and Video (Vancouver, BC, Canada) (NOSSDAV ’23).
Association for Computing Machinery, New York, NY, USA, 65–71. https://doi.
org/10.1145/3592473.3592569

[3] B. Clement. 2022. Fast VPCC Point Cloud Decoder. https://github.com/benclmnt/
tmc2-rs?tab=readme-ov-file

[4] Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A Chou. 2017. 8i Voxelized
Full Bodies-A Voxelized Point Cloud Dataset. ISO/IEC JTC1/SC29 JointWG11/WG1
(MPEG/JPEG) input document WG11M40059/WG1M74006 7, 8 (2017), 11.

[5] HAProxy Enterprise. 2024. HAProxy. https://www.haproxy.com
[6] Google. 2024. https://youtube.com.
[7] Google. 2024. Draco: A Library for Compressing and Decompressing 3D Geo-

metric Meshes and Point Clouds. https://github.com/google/draco
[8] MPEG Group. 2008. Information Technology – Coding of Audio- Visual Objects –

Part 12: ISO base media file format. standard. ISO/IEC.
[9] MPEG Group. 2023. Information Technology — Coded Representation of Immersive

Media — Part 5: Visual Volumetric Video-based Coding (V3C) and Video-based Point
Cloud Compression (V-PCC). standard. ISO/IEC.

[10] MPEGGroup. 2024. TMC2: Video Codec Based Point Cloud Compression (V-PCC)
Test Model. https://github.com/MPEGGroup/mpeg-pcc-tmc2

[11] Shuai Gu, Junhui Hou, Huanqiang Zeng, Hui Yuan, and Kai-Kuang Ma. 2020.
3D Point Cloud Attribute Compression Using Geometry-Guided Sparse Rep-
resentation. IEEE Transactions on Image Processing 29 (2020), 796–808. https:
//doi.org/10.1109/TIP.2019.2936738

[12] Srinivas Gudumasu, Gireg Maury, Ariel Glasroth, and Ahmed Hamza. 2023. Adap-
tive Streaming of Visual Volumetric Video-based Coding Media. In Proceedings
of the 15th International Workshop on Immersive Mixed and Virtual Environment
Systems. ACM, Vancouver, Canada, 30–33.

[13] Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-aware Mobile Volumetric
Video Streaming. In Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking (London, United Kingdom) (MobiCom ’20).
Association for Computing Machinery, New York, NY, USA, Article 11, 13 pages.
https://doi.org/10.1145/3372224.3380888

[14] Mohammad Hosseini and Christian Timmerer. 2018. Dynamic Adaptive Point
Cloud Streaming. In Proceedings of the 23rd Packet Video Workshop. IEEE, San
Jose, CA, USA, 25–30.

[15] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A Buffer-based Approach to Rate Adaptation: Evidence from a
Large Video Streaming Service. In Proceedings of the 2014 ACM conference on
SIGCOMM. ACM, Chicago, IL, USA, 187–198.

[16] Jonathan Kua, Grenville Armitage, and Philip Branch. 2017. A Survey of Rate
Adaptation Techniques for Dynamic Adaptive Streaming over HTTP. IEEE
Communications Surveys & Tutorials 19, 3 (2017), 1842–1866.

[17] Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim. 2020.
GROOT: A Real-time Streaming System of High-fidelity Volumetric Videos. In
Proceedings of the 26th Annual International Conference on Mobile Computing and
Networking. MobiCom, Virtual, 1–14.

[18] Jie Li, Cong Zhang, Zhi Liu, Richang Hong, and Han Hu. 2022. Optimal Volumet-
ric Video Streaming With Hybrid Saliency based Tiling. IEEE Transactions on
Multimedia 25 (2022), 2939–2953.

[19] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. 2011. Rate Adaptation for
Adaptive HTTP Streaming. In Proceedings of the second annual ACM conference
on Multimedia systems. ACM, San Jose, CA, USA, 169–174.

[20] Chenghao Liu, Imed Bouazizi, Miska M Hannuksela, and Moncef Gabbouj. 2012.
Rate Adaptation for Dynamic Adaptive Streaming Over HTTP in Content Distri-
bution Network. Signal Processing: Image Communication 27, 4 (2012), 288–311.

[21] Charles Loop, Qin Cai, Sergio Orts Escolano, and Philip A. Chou. 2016. Microsoft
Voxelized Upper Bodies - A Voxelized Point Cloud Dataset. http://plenodb.jpeg.
org/pc/microsoft/

[22] "Meta". 2024. Meta Quest 3D. https://www.meta.com/ca/quest/quest-3s/.
[23] Netflix. 2024. https://netflix.com
[24] Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, and Pierre Duhamel.

2021. Lossless Coding of Point Cloud Geometry Using a Deep Generative Model.
IEEE Transactions on Circuits and Systems for Video Technology 31, 12 (2021),
4617–4629. https://doi.org/10.1109/TCSVT.2021.3100279

[25] Roger Pantos and William May. 2017. HTTP Live Streaming.
[26] Feng Qian, Bo Han, Jarrell Pair, and Vijay Gopalakrishnan. 2019. Toward Practical

Volumetric Video Streaming on Commodity Smartphones. In Proceedings of the
20th International Workshop on Mobile Computing Systems and Applications. ACM,
CA, USA, 135–140.

[27] Will Reese. 2008. Nginx: The High-Performance Web Server and Reverse Proxy.
Linux Journal 2008, 173 (2008), 2.

[28] Michael Rudolph and Amr Rizk. 2022. View-Adaptive Streaming of Point Cloud
Scenes through Combined Decomposition and Video-based Coding. In Proceed-
ings of the 1st International Workshop on Advances in Point Cloud Compression, Pro-
cessing and Analysis (Lisboa, Portugal) (APCCPA ’22). Association for Computing
Machinery, New York, NY, USA, 41–49. https://doi.org/10.1145/3552457.3555732

[29] seung lab. 2024. Python Wrapper for Google’s Draco Mesh Compression Library.
https://github.com/seung-lab/DracoPy

[30] Yuang Shi, Pranav Venkatram, Yifan Ding, and Wei Tsang Ooi. 2023. Enabling
Low Bit-rate MPEG V-PCC-encoded Volumetric Video Streaming With 3D Sub-
sampling. In Proceedings of the 14th Conference on ACM Multimedia Systems.
ACM, Toronto, Canada, 108–118.

[31] HEVC Test Model (HM) Reference Software. 2013. The H.265 Reference Software
HM. https://github.com/listenlink/HM

[32] Thomas Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP– Stan-
dards and Design Principles. In Proceedings of the second annual ACM conference
on Multimedia systems. ACM, San Jose, CA, USA, 133–144.

[33] T. Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP: Standards
and Design Principles. In in Proc. of the 3rd ACM Multimedia Systems Conference
(MMSys). ACM, New York, NY, USA, 133–144.

[34] NUS Volumetric Video Streams. 2022. A Toolkit for Volumetric Video Research.
https://github.com/nus-vv-streams/vvtk/tree/main

[35] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand. 2012. Overview of the Hight
Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuit and
Systems for Video Technology 22, 12 (Sept 2012), 1649–1668.

[36] Keijiro Takahashi. 2017. Pcx: Point Cloud Importer & Renderer for Unity. https:
//github.com/keijiro/Pcx

[37] Unity Technologies. 2024. Unity - Real-time Development Platform. https:
//unity.com. Accessed: 2024-11-23.

[38] Christian Timmerer and Christopher Müller. 2010. HTTP Streaming of MPEG
Media. Streaming Day 10 (2010), 1–1.

[39] Jeroen van der Hooft, Hadi Amirpour, Maria Torres Vega, Yago Sanchez, Raimund
Schatz, Thomas Schierl, and Christian Timmerer. 2023. A Tutorial on Immersive
Video Delivery: From Omnidirectional Video to Holography. IEEE Communica-
tions Surveys & Tutorials 25, 2 (2023), 1336–1375. https://doi.org/10.1109/COMST.
2023.3263252

[40] Yizong Wang, Dong Zhao, Huanhuan Zhang, Teng Gao, Zixuan Guo, Chenghao
Huang, and Huadong Ma. 2024. Bandwidth-Efficient Mobile Volumetric Video
Streaming by Exploiting Inter-Frame Correlation. IEEE Transactions on Mobile
Computing 1, 1 (2024), 1–15.

[41] YizongWang, Dong Zhao, Huanhuan Zhang, ChenghaoHuang, Teng Gao, Zixuan
Guo, Liming Pang, and Huadong Ma. 2023. Hermes: Leveraging Implicit Inter-
frame Correlation for Bandwidth-Efficient Mobile Volumetric Video Streaming.
In Proceedings of the 31st ACM International Conference on Multimedia. ACM,
Ottawa, Canada, 9185–9193.

[42] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2021. Efficient Volu-
metric Video Streaming Through Super Resolution. In Proceedings of the 22nd
International Workshop on Mobile Computing Systems and Applications (Virtual,
United Kingdom) (HotMobile ’21). Association for Computing Machinery, New
York, NY, USA, 106–111. https://doi.org/10.1145/3446382.3448663

[43] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. 2018. Open3D: A Modern Library
for 3D Data Processing. arXiv preprint arXiv:1801.09847 1, 1 (2018), 1–10.

[44] Junni Zou, Chenglin Li, Chengming Liu, Qin Yang, Hongkai Xiong, and Eckehard
Steinbach. 2019. Probabilistic Tile Visibility-based Server-side Rate Adaptation
for Adaptive 360-degree Video Streaming. IEEE Journal of Selected Topics in Signal
Processing 14, 1 (2019), 161–176.

262

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 11, 2025.

https://doi.org/10.1109/MIPR59079.2023.00038
https://doi.org/10.1109/MIPR59079.2023.00038
https://doi.org/10.1145/3592473.3592569
https://doi.org/10.1145/3592473.3592569
https://github.com/benclmnt/tmc2-rs?tab=readme-ov-file
https://github.com/benclmnt/tmc2-rs?tab=readme-ov-file
https://www.haproxy.com
https://youtube.com
https://github.com/google/draco
https://github.com/MPEGGroup/mpeg-pcc-tmc2
https://doi.org/10.1109/TIP.2019.2936738
https://doi.org/10.1109/TIP.2019.2936738
https://doi.org/10.1145/3372224.3380888
http://plenodb.jpeg.org/pc/microsoft/
http://plenodb.jpeg.org/pc/microsoft/
https://www.meta.com/ca/quest/quest-3s/
https://netflix.com
https://doi.org/10.1109/TCSVT.2021.3100279
https://doi.org/10.1145/3552457.3555732
https://github.com/seung-lab/DracoPy
https://github.com/listenlink/HM
https://github.com/nus-vv-streams/vvtk/tree/main
https://github.com/keijiro/Pcx
https://github.com/keijiro/Pcx
https://unity.com
https://unity.com
https://doi.org/10.1109/COMST.2023.3263252
https://doi.org/10.1109/COMST.2023.3263252
https://doi.org/10.1145/3446382.3448663

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design of VV-DASH
	3.1 VV-DASH Server-side
	3.2 VV-DASH Client-side

	4 Implementation and Experiment Setup
	5 Case Study #1: Streaming with Draco
	5.1 DVV Segmentation
	5.2 DASH with Draco

	6 Case Study #2: Streaming with V-PCC
	6.1 DASH with V-PCC

	7 Conclusion
	References

