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ABSTRACT

Recent text-to-image generation models have demonstrated impressive capability
of generating text-aligned images with high fidelity. However, generating images
of novel concepts specified by a reference image remains a challenging task. To
address this problem, researchers have been exploring various methods for cus-
tomizing pre-trained text-to-image generation models. Currently, most existing
methods for customizing pre-trained text-to-image generation models involve the
use of regularization techniques to prevent over-fitting. Although regularization
will ease the challenge of customization and leads to successful content creation
with respect to text guidance, it may restrict the model capability, resulting in the
loss of detailed information and inferior performance. In this work, we propose
ProFusion, a novel framework for customized text-to-image generation, which can
tackle the over-fitting problem without the widely used regularization. Specifi-
cally, it consists of an encoder network and a novel sampling method. Given a
single user-provided image from an arbitrary domain, the proposed framework
can customize a pre-trained text-to-image generation model within half a minute.
Empirical results demonstrate that our proposed framework outperforms existing
methods.

1 INTRODUCTION

Text-to-image generation is a research topic that has been explored for years (Xu et al., 2018; Zhu
et al., 2019; Zhang et al., 2021; Tao et al., 2021; Zhou et al., 2021), with remarkable progresses
recently. Starting from DALL-E (Ramesh et al., 2021) and CogView (Ding et al., 2021), numerous
methods have been proposed (Rombach et al., 2021; Ding et al., 2022; Gafni et al., 2022; Ramesh
et al., 2022; Saharia et al., 2022; Yu et al., 2022; Zhou et al., 2022; Chang et al., 2023), leading to
impressive zero-shot capability in generating text-aligned images of high resolution with exceptional
fidelity. Although aforementioned large-scale text-to-image generation models are able to perform
text-aligned and creative generation, they may face difficulties in generating novel and unique con-
cepts (Gal et al., 2022) specified by users, especially when the concept is presented via few or only
single image. Researchers have exploited different methods in customizing pre-trained text-to-image
generation models. For instance, Kumari et al. (2022) and Ruiz et al. (2022) propose to fine-tune
the pre-trained generative models with few samples, where different regularization methods are ap-
plied to prevent over-fitting. Gal et al. (2022; 2023); Wei et al. (2023) propose to encode the novel
concept of user input image in a word embedding, which is obtained by an optimization method or
from an encoder network. All these methods lead to customized generation for the novel concept,
while satisfying additional requirements described in arbitrary user input text.

Despite these progresses, recent research also makes us suspect that the use of regularization may
potentially restrict the capability of customized generation, leading to the information loss of fine-
grained details. In this paper, we propose a novel framework called ProFusion, which consists of
an encoder called PromptNet and a novel sampling method called Fusion Sampling. Different from
previous methods, our ProFusion propose to tackle the potential over-fitting problem by the proposed
Fusion Sampling method at inference instead of using regularization, which leads to effective and
efficient customization of pre-trained generative models. Our main contributions can be summarized
as follows:
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Figure 1: Generated examples from the proposed framework. Given only single testing image from
arbitrary downstream domain, ProFusion can perform customized generation in 5 to 25 seconds.

• We propose ProFusion, a novel framework for customized generation. Given a single image
containing a unique concept, we can obtain a customized generative model in about 5 to
25 seconds with single GPU. Then the customized model can generate infinite number
of creative contents for the unique concept and meets additional requirement specified in
arbitrary text;

• The proposed framework does not require any regularization method to prevent over-fitting,
which significantly reduces training time as there is no need to tune regularization hyper-
parameters. The absence of regularization also allows the proposed framework to achieve
enhanced preservation of fine-grained details;

• Extensive results, including qualitative, quantitative and human evaluation results, have
demonstrated the effectiveness of the proposed ProFusion. Ablation studies are also con-
ducted to better understand the components in the proposed framework;
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Figure 2: Illustration of the proposed framework. A PromptNet will be trained to output an embed-
ding S∗ based on input image. Then Fusion Sampling performs customized generation based on S∗

and arbitrary text input.

2 METHODOLOGY

Our proposed framework is presented in Figure 2, which consists of a neural network called Prompt-
Net and a novel sampling method called Fusion Sampling. PromptNet is an encoder network which
infers a text embedding S∗ from the reference image x̄0 and current noisy generation xt. Fusion
Sampling is a sampling method to generate the desired image conditioned on S∗ and arbitrary text.

During training, we augment xt by random affine transformation, as shown in the figure. Mean-
while, a corresponding mask m can be obtained, which will be used in the training loss for Prompt-
Net to make sure that our model only learns the required information.

LDiffusion = Ex,y(S∗),t,ϵ∼N (0,I)

[
∥m⊙ {ϵ− ϵθ(xt,y(S

∗), t)}∥22
]
, (1)

where y(S∗) denotes the constructed prompt containing S∗, e.g. “A photo of S∗”, ⊙ denotes
element-wise multiplication. The above training strategy ensures that S∗ belongs to the input em-
bedding space of the text encoder from pre-trained Stable Diffusion, which makes it possible for
S∗ to be combined with arbitrary text for creative generation, e.g., ”S∗ from a superhero movie
screenshot”.

Some existing works (Gal et al., 2022; 2023) also try to obtain S∗ for customized generation. How-
ever, regularization is often applied in these works. For instance, E4T (Gal et al., 2023) proposes to
use an encoder to generate S∗, which is optimized with

L = LDiffusion + λ∥S∗∥22, (2)
where the L2 norm of S∗ is regularized. Similarly, Textual Inversion (Gal et al., 2022) proposes to
directly obtain S∗ by solving

S∗ = argminS′LDiffusion + λ∥S′ − S∥22
with optimization method, where S denotes a coarse embedding1.

In this work, we argue that although the use of regularization will ease the challenge and enable suc-
cessful content creation with respect to testing text. It also leads to the loss of detailed information,
resulting in inferior performance. To verify this argument, we conduct a simple experiment by train-
ing several encoders on the FFHQ dataset (Karras et al., 2019), with different levels of regularization
using different λ in equation 2. Details of encoder architecture will be provided in experiment sec-
tion. The resulting models are then evaluated by performing customized generation, as shown in
Figure 3. From the figure we can know that:

• Small regularization leads to less information loss, which results in better detail preserva-
tion. However, the learned information could be too strong to prevent creative generation
with respect to user input text;

• Large regularization leads to successful content creation, while fails to capture fine-grained
details of the input image, resulting in unsatisfactory results;

A consequent question is, is it possible to perform successful customized generation using S∗

obtained without regularization so that the details from original image can be well-preserved?
To answer this question, we propose a novel sampling method called Fusion Sampling.

1For example, S∗ is the target embedding for a human face image, S is set as the embedding of the word
”face”.
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Figure 3: The performance of customized generation is impacted by the level of regularization.

2.1 FUSION SAMPLING

Given a PromptNet trained without regularization which can map input image x̄0 into word embed-
ding S∗, our goal is to successfully perform customized generation which preserves details of x̄0,
and meets the requirements specified in arbitrary prompt containing S∗.

The task can be formulated as a conditional generation task with conditions S∗ and C, where C
denotes arbitrary user input text. We start with the most commonly used classifier-free sampling (Ho
& Salimans, 2021). To sample xt−1 given the current noisy sample xt and conditions [S∗, C], the
diffusion model first outputs the predictions of conditional noise ϵθ(xt, S

∗, C) and unconditional
noise ϵθ(xt). Then an updated prediction

ϵ̃θ(xt, S
∗, C) = (1 + ω)ϵθ(xt, S

∗, C)− ωϵθ(xt), (3)

will be used in different sampling strategies (Ho et al., 2020; Karras et al.; Song et al., 2020; Song
et al.), where ω is a hyper-parameter for classifier-free guidance.

In previous methods, the reason that vanilla classifier-free sampling does not work is that the in-
formation from S∗ can become too strong without regularization. As a result, ϵθ(xt, S

∗, C) will
degenerate to ϵθ(xt, S

∗) and information of C will be lost. Thus, we need to propose a new sam-
pling method to produce a new prediction for ϵ̃θ(xt, S

∗, C) so that it is enforced to be conditioned
on both S∗ and C.

Sampling with independent conditions We begin by assuming that S∗ and C are independent.
According to Ho & Salimans (2021), we know that

ϵθ(xt, S
∗, C) = −

√
1− ᾱt∇ log p(xt|S∗, C), (4)

where ᾱt is a hyper-parameter as defined in Ho et al. (2020). By equation 4 and Bayes’ rule, we can
re-write equation 3 as

ϵ̃θ(xt, S
∗, C) = ϵθ(xt)− (1 + ω)

√
1− ᾱt∇ log p(S∗, C|xt). (5)

Since we assume that S∗, C are independent, we can further rewrite the above as

ϵ̃θ(xt, S
∗, C) = ϵθ(xt)− (1 + ω)

√
1− ᾱt∇ log p(S∗|xt)− (1 + ω)

√
1− ᾱt∇ log p(C|xt)

= ϵθ(xt) + (1 + ω){ϵθ(xt, S
∗)− ϵθ(xt)}+ (1 + ω){ϵθ(xt, C)− ϵθ(xt)}.

We rewrite it as

ϵ̃θ(xt, S
∗, C) = ϵθ(xt) + (1 + ω1){ϵθ(xt, S

∗)− ϵθ(xt)}+ (1 + ω2){ϵθ(xt, C)− ϵθ(xt)}
(6)

for more flexibility. Furthermore, equation 6 can also be extended to more complicated scenarios,
where a list of conditions {S∗

1 , S
∗
2 , ..., S

∗
k , C} are provided:

ϵ̃θ(xt, {S∗
i }ki=1, C) = ϵθ(xt) +

k∑
i=1

(1 + ωi){ϵθ(xt, S
∗
i )− ϵθ(xt)}+ (1 + ωC){ϵθ(xt, C)− ϵθ(xt)}.
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Algorithm 1 Fusion Sampling at Timestep t
1: Require: Conditions S∗ and C, noisy sample xt, diffusion model ϵθ, hyper-parameters

0 < σt, 0 ≤ γ ≤ 1.
2: Set x̃t = xt

3: // Fusion Stage
4: for i = 1, ..., m do
5: Generate ϵ̃θ(x̃t, γS

∗, C) by equation 3.

6: Generate predicted sample x̃0 =
x̃t −

√
1− ᾱtϵ̃θ(x̃t, γS

∗, C)√
ᾱt

.

7: Inject fused information into x̃t−1 by sampling x̃t−1 ∼ q(x̃t−1|x̃t, x̃0).
8: if Use refinement stage then
9: Inject fused information into x̃t by sampling x̃t ∼ q(x̃t|x̃t−1, x̃0).

10: else
11: Return xt−1 = x̃t−1.
12: end if
13: end for
14: // Refinement Stage
15: if Use refinement stage then
16: Generate ϵ̃θ(x̃t, S

∗, C) by equation 6 and perform classifier-free sampling step. Return xt−1.
17: end if

Fusion Sampling with dependent conditions One major drawback of equation 6 is that the inde-
pendence does not always hold in practice. As we will show in later experiment, assuming that S∗

and C are independent can lead to inferior generation.

To solve this problem, we propose Fusion Sampling, which consists of two stages at each timestep
t: a fusion stage which encodes information from both S∗ and C into xt with an updated x̃t, and
a refinement stage which predicts xt−1 based on Equation equation 6. The proposed algorithm is
presented in Algorithm 1. Sampling with independent conditions can be regarded as a special case
of Fusion Sampling with m = 0. We set m = 1 in practice because it works well enough.

The remaining challenge in Algorithm 1 is sampling x̃t−1 ∼ q(x̃t−1|x̃t, x̃0) and x̃t ∼
q(x̃t|x̃t−1, x̃0). We take the Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020)
as an example, while the following derivation can be extended to other diffusion models. Let I be
the identity matrix, σt denotes a hyper-parameter controlling randomness. In DDIM, we have

q(x̃t|x̃0) = N (x̃t;
√
ᾱtx̃0, (1− ᾱt)I) (7)

and

q(x̃t−1|x̃t, x̃0) = N (x̃t−1;
√
ᾱt−1x̃0 +

√
1− ᾱt−1 − σ2

t

x̃t −
√
ᾱtx̃0√

1− ᾱt
, σ2

t I). (8)

By the property of Gaussian distributions (Bishop & Nasrabadi, 2006), we know that

q(x̃t|x̃t−1, x̃0) = N (x̃t;Σ(ATL(x̃t−1 − b) +Bµ),Σ) (9)
where

Σ =
(1− ᾱt)σ

2
t

1− ᾱt−1
I, µ =

√
ᾱtx̃0, b =

√
ᾱt−1x̃0 −

√
ᾱt(1− ᾱt−1 − σ2

t )√
1− ᾱt

x̃0

A =

√
1− ᾱt−1 − σ2

t√
1− ᾱt

I, L =
1

σ2
t

I, B =
1

1− ᾱt
I

which leads to

x̃t =

√
(1− ᾱt)(1− ᾱt−1 − σ2

t )

1− ᾱt−1
x̃t−1 +

(1− ᾱt)σ
2
t

1− ᾱt−1
z

+
x̃0

1− ᾱt−1
{
√
ᾱt(1− ᾱt−1)−

√
ᾱt−1(1− ᾱt)(1− ᾱt−1 − σ2

t ))}, z ∼ N (0, I). (10)

With further derivation, we can summarize a single update in our fusion stage as:

x̃t ← x̃t −
σ2
t

√
1− ᾱt

1− ᾱt−1
ϵ̃θ(x̃t, γS

∗, C) +

√
(1− ᾱt)(2− 2ᾱt−1 − σ2

t )

1− ᾱt−1
σtz, z ∼ N (0, I). (11)
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Remark 1 Recall ϵ̃θ(x̃t, γS
∗, C) = −

√
1− ᾱt∇ log p̃ω(x̃t|γS∗, C), we can rewrite equation 11

as

x̃t ← x̃t +
σ2
t (1− ᾱt)

1− ᾱt−1
∇ log p̃ω(x̃t|γS∗, C) +

√
(1− ᾱt)(2− 2ᾱt−1 − σ2

t )

1− ᾱt−1
σtz. (12)

From equation 12, we know that our fusion stage is actually a gradient-based optimization method
similar to Langevin dynamics (Welling & Teh, 2011). Compared to Langevin dynamics which is

x̃t ← x̃t + λ∇ log p̃ω(x̃t|γS∗, C) +
√
2λz. (13)

with λ being the step size, equation 12 has less randomness, because
(1− ᾱt)(2− 2ᾱt−1 − σ2

t )σ
2
t

(1− ᾱt−1)2
≤ 2σ2

t (1− ᾱt)

1− ᾱt−1
.

Remark 2 If we set σt =
√
1− ᾱt−1, then equation 11 becomes

x̃t ← x̃t −
√
1− ᾱtϵ̃(x̃t, γS

∗, C) +
√
1− ᾱtz, z ∼ N (0, I)

which is equivalent to directly sampling x̃t using equation 7 without sampling intermediate x̃t−1 in
our Algorithm 1. Thus, directly sampling x̃t using equation 7 is a special case of Fusion Sampling.

3 EXPERIMENTS

We conduct extensive experiments to compare the proposed framework with several baseline meth-
ods including Stable Diffusion2 (Rombach et al., 2021), Textual Inversion (Gal et al., 2022), Dream-
Booth (Ruiz et al., 2022) and E4T (Gal et al., 2023).

3.1 IMPLEMENTATION DETAILS

Model Architecture Our PromptNet is initialized from the U-Net encoder of pre-trained Stable
Diffusion 2. We add an extra convolutional layer so that the model can take both xt and x0 as inputs.
An extra convolutional layer is introduced for each intermediate layer in the backbone, which will
map all intermediate features into the same dimensionality. Resulting features will be concatenated
and projected into the text embedding space of Stable Diffusion 2 by a fully-connected layer.

Pre-training Details We implement our framework on Nvidia A100 GPUs, based on Hugging
Face Diffusers (von Platen et al., 2022). Our PromptNet is pre-trained for 300,000 steps on Concep-
tual Captions (CC3M) dataset (Sharma et al., 2018). Although CC3M contains 3 millions of image-
text pairs, only image samples are used in training our PromptNet. We use AdamW (Loshchilov &
Hutter, 2018) optimizer with learning rate of 1e-5 and batch size of 128. Data augmentation is not
used during pre-training stage. Our pre-trained model will be publicly available upon acceptance.

Fine-tuning Details Given a test image, PromptNet and all cross-attention layers of Stable Diffu-
sion 2 are fine-tuned with a batch size of 16 and learning rate of 5e-5. Random affine transformation
is applied as data augmentation, details are provided in the Appendix. 31 augmented data samples
are generated for a given image, which only requires 0.7 second thus the computation cost can be
ignored. Fine-tuning a model with ProFusion for 10 steps only needs 5 seconds on a single A100
GPU, indicating the efficiency of the proposed method, especially considering the impressive results
we could obtain. In most experiments, we fine-tune our model for 50 steps for a given image un-
less specified. We also conduct ablation study with different fine-tuning steps, showing that slightly
fine-tuning the model for a few seconds can already lead to good results.

3.2 MAIN RESULTS

Some generated results are shown in Figure 1, where only single image is provided to our model
for customization. From the results, we can see that the proposed framework effectively achieves
customized generation in arbitrary downstream domain. Our customized generation meets the spec-
ified text requirements while maintaining fine-grained details of the input image. More results are
provided in the Appendix.

2Results of Stable Diffusion is obtained by directly feeding corresponding prompts into the model.
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Figure 4: Comparison with baseline methods. Our proposed approach exhibits superior capability
for preserving fine-grained details.

Figure 5: Results on human face
domain.

Human Face Domain Following Gal et al. (2023), we
first evaluate our method on human face images provided
in Gal et al. (2023). For simplicity, we fix some
hyper-parameters including ω1 = ω2 = 7.5, σt =√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1, and only tune γ ∈

{0.4, 0.5, 0.6, 0.7, 0.8} during sampling. In general, larger γ
leads to better identity similarity at the expense of creativity.
The qualitative comparison are presented in Figure 4, from
which we can see that our framework results in better preser-
vation of fine-grained details. Results of the related methods
are directly taken from Gal et al. (2023).

We also conduct quantitative evaluation. We use the prompts
and images provided in Gal et al. (2023) and generate 10 im-
ages for each prompt-researcher combination. The generated images are fed into pre-trained CLIP
models (Radford et al., 2021) to calculate the average image-prompt similarity3. We then calcu-
late the identity similarity between generation and reference, which is the cosine similarity between
features extracted by pre-trained face recognition models. The identity similarity is also averaged
across different pre-trained models (Taigman et al., 2014; Schroff et al., 2015; Parkhi et al., 2015;
Deng et al., 2019; Kim et al., 2022; Serengil & Ozpinar, 2020; 2021). The results are shown in Fig-
ure 5. Overall, our ProFusion performs better both in image-prompt and identity similarity, showing
the effectiveness of the proposed method.

3The results are averaged over CLIP ViT-B/32, ViT-B/16, ViT-L/14, ViT-L/14@336px, RN101, RN50,
RN50x4, RN50x16 and RN50x64.
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(a) vs. Stable Diffusion (b) vs. Textual Inversion (c) vs. DreamBooth (d) vs. E4T

Figure 6: Results of human evaluation.

Figure 7: Results on DreamBooth benchmark.

Figure 8: Generation on DreamBooth benchmark.

DreamBooth Benchmark We conduct
evaluation on the DreamBooth bench-
mark, which contains 30 subjects from dif-
ferent domains. 25 prompts are also pro-
vided for each subject. Following Ruiz
et al. (2022), we generate 4 images for
each prompt-subject combination. The
generated images are used to compute
the image-prompt similarity with CLIP,
and the identity similarity with CLIP and
DINO (Caron et al., 2021). The results
are presented in Figure 7, along with
some generated examples in Figure 8. As
expected, our ProFusion obtains higher
image-prompt similarity and image simi-
larity than baselines, indicating better de-
tail preservation and creativity.

Human Evaluation We also conduct human evaluation with Amazon Mechanical Turk (MTurk).
All workers are presented with two generated images from different methods along with original
image and text requirements. Then they are asked to indicate their preferred choice. More details
are provided in the Appendix. The results are shown in Figure 6, where we can find that our method
obtains a higher preference rate compared to all other methods, indicating the effectiveness of our
proposed framework.

3.3 ABLATION STUDY

We conduct several ablation studies to further investigate the proposed ProFusion.

Fusion Sampling vs Baseline First of all, we apply the proposed Fusion Sampling with both
pre-trained and fine-tuned PromptNet. As shown in Figure 9, Fusion Sampling always leads to suc-
cessful generation with respect to text condition, obtains better results than baseline classifier-free
sampling. We then investigate the effects of removing fusion stage or refinement stage in the pro-
posed Fusion Sampling. As we can see from Figure 12, removing refinement stage leads to the loss
in detailed information, while removing fusion stage leads to a generated image with disorganized

8
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Figure 9: Fusion sampling always outperforms baseline classifier-free sampling because baseline
can not solve overfitting problem thus fails to generate images aligned with text condition.

Figure 10: Data augmentation leads to better performance in terms of image fidelity and diversity.

Figure 11: Results with different fine-tuning time.

Figure 12: The impact of different stages in Fusion Sampling.

structure. Intuitively, S∗, which is the output of PromptNet, tries to generate a human face image
following the structural information from the original image, while the text “is wearing superman
costume” aims to generate a half-length photo. The conflicting nature of these two conditions results
in an undesirable generation with a disorganized structure after we remove the fusion stage.

Data Augmentation We then analyze the effects of data augmentation. In particular, we conduct
separate fine-tuning experiments: one with data augmentation and one without, both models are
tested with Fusion Sampling after fine-tuning. The results are shown in Figure 10, data augmentation
leads to an performance improvement in terms of both generation fidelity and diversity.

Fine-tuning Time We also conduct an ablation study to investigate the influence of fine-tuning
time. Several models are fine-tuned then tested with Fusion Sampling, as shown in Figure 11.
As expected, longer fine-tuning time leads to better performance. We also notice that reasonable
result can actually be obtained with only 5 seconds of fine-tuning, which indicates the potential of
ProFusion in real-world applications.

4 CONCLUSION

In this paper, we present ProFusion, a novel framework for customized text-to-image generation.
Distinct from all previous methods that employ regularization, ProFusion successfully performs
customized generation without any regularization, thus exhibits superior capability to preserve fine-
grained detail with less training time. Extensive experiments have demonstrated the effectiveness of
the proposed ProFusion.
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