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ABSTRACT

Despite the availability of large datasets for tasks like image classification and
image-text alignment, labeled data for more complex recognition tasks, such as
detection and segmentation, is less abundant. In particular, for instance segmenta-
tion annotations are time-consuming to produce, and the distribution of instances
is often highly skewed across classes. While semi-supervised teacher-student dis-
tillation methods show promise in leveraging vast amounts of unlabeled data, they
suffer from miscalibration, resulting in overconfidence in frequently represented
classes and underconfidence in rarer ones. Additionally, these methods encounter
difficulties in efficiently learning from a limited set of examples. We introduce
a dual-strategy to enhance the teacher model’s training process, substantially im-
proving the performance on few-shot learning. Secondly, we propose a calibration
correction mechanism that that enables the student model to correct the teacher’s
calibration errors. Using our approach, we observed marked improvements over a
state-of-the-art supervised baseline performance on the LVIS dataset, with an in-
crease of 2.8% in average precision (AP) and 10.3% gain in AP for rare classes.

1 INTRODUCTION

Despite large-scale datasets being available for a variety of tasks, such as image classification and
image-text alignment, label scarcity is a persistent issue in “dense” recognition tasks, including
object detection, semantic segmentation, and instance segmentation. Moreover, the distribution of
training instances per class is often heavily skewed (Gupta et al., 2019), which results in reduced
segmentation performance in the long tail of classes for which there are few training samples. To
address the lack of training data for the “long tail” classes, several directions have been explored,
such as resampling or re-weighting of rare classes (Chen et al., 2023; Lin et al., 2017). These
approaches are inherently limited, though, for rare classes with, say, less than ten training samples.
Others have explored the use of diffusion models to generate additional training instances (Zhao
et al., 2023). The latter, however, relies on the availability of a generative model for rare classes,
without a domain shift w.r.t. the training data of the segmentation model, which is problematic
in itself. A third approach is to use semi-supervised learning to leverage unlabeled data which is
often abundantly available. Although student-teacher distillation approaches have been found very
effective (Berrada et al., 2024; Filipiak et al., 2022), the one-hot pseudo-labels provided by the
teacher can be sub-optimal due to mis-calibration and biases towards frequent classes.

In our work we improve the quality of the pseudo-labels. First, rather than using one-hot labels, we
use label-smoothing to obtain soft-labels to train the teacher. Second, we find that instead of uniform
smoothing it is more effective to smooth towards similar classes, and to boost smoothing towards
rare classes. Third, we modulate the soft-labels for the student to explicitly reduce miscalibration of
the confidence scores. To validate our approach, we conduct instance segmentation experiments on
the challenging LVIS dataset, which contains over 1,000 classes, and for more than 300 classes there
are less than ten annotated training images. Therefore, rather than dropping the labels of part of the
training dataset to evaluate our semi-supervised learning approach, we instead augment the LVIS
training set with additional unlabeled images. Using our approach we obtain marked improvements
over semi-supervised learning without our improved distillation labels, and improve the AP of a
state-of-the-art supervised baseline performance 10.3 points for rare classes. While for baselines the
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Figure 1: Average precision on LVIS across all
classes (green) and rare classes (yellow), for super-
vised and semi-supervised baselines (left, middle),
and our approach (right). We improve over both
baselines, in particular for rare classes where we in-
crease the APr by more than 7 points w.r.t. the semi-
supervised baseline and by more than 10 points over
the supervised one.

AP of rare classes is significantly worse than the overall AP, our approach boosts the performance
of rare classes to such an extent that this difference disappears, see Fig. 1.

2 RELATED WORK

Instance segmentation. Among class-level recognition tasks, instance segmentation is the most
spatially detailed: the goal is to identify each individual instance and segment it from its background.
It generalizes both object detection (which produces instance bounding boxes, but no segmentation)
and semantic segmentation (which assigns pixels to classes, but does not separate object instances).
Most approaches for instance segmentation are derived from object detection methods, by adding
a separate branch to the network that for each bounding box produces a segmentation map. This
is for example the case for Mask-RCNN (He et al., 2017) which extends the Faster RCNN object
detector (Ren et al., 2015). Cascade Mask-RCNN (Cai & Vasconcelos, 2019) improves upon Mask-
RCNN by applying a series of detector with increasingly strict IoU detection thresholds. Each stage
refines the predictions from the previous one, thus improving the accuracy of both bounding box
localization and mask generation. The cascade structure is particularly effective for dealing with
varying object scales, a common challenge in long-tail datasets. In our work we use Cascade Mask-
RCNN, with an EVA02 backbone (Fang et al., 2023), pretrained with masked-image-modeling, for
its superior performance as a basis for our semi-supervised instance segmentation approach.

Semi-supervised learning with teacher-student distillation. In the most basic form of distillation-
based semi-supervised learning for instance segmentation, a teacher is pretrained on labeled data
only, and then used to generate pseudo labels for a set of unlabeled images. The student model is
then trained on the original labeled data supplemented with the unlabeled images and their pseudo-
labels, see e.g. Wang et al. (2022). To ensure high-quality pseudo-labels weakly augmented images
are fed to the teacher, and strong augmentations are used for the student to obtain sufficient train-
ing signal and generalization. Rather than keeping the teacher model fixed during the training of
the student, it is possible to benefit from the student’s improvements to increase the quality of the
pseudo-labels. This can be done via exponential moving average (EMA) updates of the teacher
weights from the student model (Filipiak et al., 2022; Berrada et al., 2024). To mitigate the intro-
duction of noise from lower-quality pseudo-labels, confidence threshold filtering can be used on the
teacher’s output. Setting the threshold appropriately is crucial to maintain a good balance between
excluding misleading labels and maintaining enough useful training signal on the unlabeled images.
Filtering confidence scores is problematic, however, due to miscalibration that results in overconfi-
dence in frequent classes and underconfidence in rare classes. This in turn, may result in relatively
few pseudo-labels for rare classes, which are precisely the classes for which additional labels are
needed the most. In our work we aim to counter the miscalibration of confidence scores, and so to
obtain more useful pseudo-labels for semi-supervised instance segmentation.

Label smoothing. The typical (binary) cross-entropy loss used to train most visual recognition
systems can lead to overfitting for big networks. Label smoothing consists in mixing the one-hot
prediction targets with a uniform distribution, which can reduce overconfident, and more gener-
ally miscalibrated, predictions (Szegedy et al., 2016; Müller et al., 2019). Besides uniform label
smoothing, He et al. (2022) explored the use of non-uniform label smoothing by mixing one-hot
labels with a normalized form of a confusion matrix, that encourages rare classes to be equally pre-
dicted, and thus countering bias for frequent classes. In our approach we also consider non-uniform
label smoothing, but rely on similarities between class prototypes in backbone feature space, rather
than based on classification scores (of which there are few for rare classes). Moreover, we modulate
the (soft) target labels with a term that explicitly counters miscalibration of the confidence scores.
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3 ADAPTIVE LABEL SMOOTHING TO SET BETTER PREDICTION TARGETS

Training with the standard cross-entropy loss with one-hot (pseudo-)labels on a long tail dataset
presents several challenges that impede optimal learning and model performance. First, the training
signal is sparse, in particular for rare classes where only few labeled examples are present. Second,
pseudo-labels generated by the teacher can be noisy, and a one-hot encoding precludes transmission
of information of other classes that the teacher ranked highly, and which are likely to be semantically
similar (e.g., cats are more likely to confused with dogs than with, say, cars). Finally, a noticeable
correlation exists between the frequency of class instances in the training set and the model’s confi-
dence scores, leading to overconfidence in frequent classes and underconfidence in rare classes.

To address these issues we smooth the one-hot prediction targets for both teacher and student by
explicitly leveraging class similarities and score calibration. We introduce a class similarity-based
label smoothing approach for the teacher model’s supervised training phase. This technique is used
to have the best starting point possible before using semi-supervised learning. We develop a cal-
ibration correction approach for the student distillation phase, which is designed to correct the
misscalibration errors made by the teacher model.

3.1 LEVERAGING CLASS SIMILARITIES AND FREQUENCIES TO TRAIN A GOOD TEACHER

In its most basic form, label smoothing consists in mixing the one-hot prediction target with a uni-
form distribution (Szegedy et al., 2016; Müller et al., 2019). This, however, fails to leverage structure
in the label space. We improve upon uniform label smoothing by incorporating class similarity mea-
sures. By utilizing the model’s backbone as a feature extractor, we compute class similarities to
enrich the learning target with a more informative signal. Specifically, let B(·) denote the back-
bone network, and B(x) denote the feature embedding of an object instance x. We then compute a
prototype embedding pi for each class i by averaging the corresponding instance embeddings:

pi =
1

Ni

∑
n:yi

n=1

B(xn), (1)

where Ni represents the number of instances of class i, and yn ∈ {0, 1}C denotes the one-hot
class label associated with the instance xn, with C the number of classes. This average embed-
ding pi effectively encapsulates the collective feature characteristics of class i, thereby facilitating a
similarity-based smoothing approach within our model. We use the prototypes to construct a simi-
larity matrix S, with each elements Sij = pi ·pj/ (∥pi∥∥pj∥) given by the cosine similarity between
the prototype of class i and class j. To calibrate the confidence scores, in particular for rare classes,
we modulate the similarity scores depending on the number of instance for each class, Ni, akin to
temperature scaling, before normalizing them with a soft-max:

S′
ij = exp

(
Sij/N

γ
j

)
/

C∑
k=1

exp (Sik/N
γ
k ) , (2)

where γ controls to what extent the similarities are modulated with the class cardinalities Ni to
reinforce smoothing towards rare classes. The smoothed labels are then defined as

ỹ = (1− ϵ)y + ϵS′y, (3)

where ϵ ∈ [0, 1] is the mixing weight between the original one-hot label and the similarity-based dis-
tribution. In this manner, the label smoothing incorporates the intrinsic similarities between classes
and also adjusts for the disparity in class frequencies, promoting a more balanced learning signal.

3.2 CALIBRATION-CORRECTED PSEUDO-LABELS FOR BETTER DISTILLATION

Existing semi-supervised distillation approaches often use one-hot labels from the teacher model
as pseudo-labels, applying a threshold to filter out low-quality labels (Berrada et al., 2024; Filipiak
et al., 2022). This, however, overlooks the calibration of confidence scores, which can misrepresent
instance quality due to bias towards frequent classes. Moreover, naively using soft pseudo-labels
from the teacher leads the student model replicating its miscalibration. To address these issues, we
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define the class-conditional expected calibration error (CCECE), to capture per class the degree to
which a model is overconfident or underconfident, and define it as:

∆i =

B∑
b=1

Ni,b

Ni
(acci,b − confi,b), (4)

where B represents the number of bins in which the [0, 1] confidence interval has been split, Ni,b is
the number of samples in bin b for class i, as above Ni is the total number of samples for class i,
acci,b is the accuracy within bin b for class i, and confi,b is the average confidence in bin b for class i.
A negative CCECE for a given class means that the model tends to be overconfident, and vice-versa.
Building on the concept of Expected Calibration Error (ECE) introduced by Naeini et al. (2015),
our CCECE offers a nuanced perspective by assessing calibration errors for each class individually,
rather than in aggregate. Unlike ECE, CCECE does not apply an absolute value to the difference
between accuracy and confidence, thereby revealing the direction of miscalibration. We use the
CCECE to adjust the soft pseudo-labels produced by the teacher, yteacher, as

ỹteacher = yteacher + λ∆, (5)

where ∆ the the vector that concatenates all the per-class CCECE values ∆i, and λ is a tuning
parameter that controls the extent of calibration correction applied. By leveraging CCECE, we can
improve the calibration of the student model, thereby enhancing the knowledge distillation process
between the teacher and student models.

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL SETUP

Dataset. We conduct experiments on the LVIS v1.0 dataset (Gupta et al., 2019), which contains
instance-level segmentations of 1,203 categories. It has many rare classes, making it ideal for eval-
uation of models in long-tail distribution scenarios. For semi-supervised training experiments, we
complement LVIS with unlabeled images. In particular, we compute DINOv2 features (Oquab et al.,
2023) for object crops of rare classes in LVIS, and use these as queries to retrieve 64 neighbors with
the Faiss library (Douze et al., 2024) in a large internal dataset. After removing duplicates, this
results in approximately 200k unlabeled images which we add to the LVIS training set.

Evaluation protocol. We report results on the LVIS validation set, as evaluation on the LVIS (with-
held) test set labels is not longer supported. To avoid overfiting the validation set, we train our
models on 85% of the official train split, use the remaining 15% for validation, and report results on
the official validation set. We report the standard instance segmentation AP metric, and also include
the APr metric which evaluates the AP for “rare” classes with ten or less instances in the train set.

Architecture and training. We use Cascade Mask RCNN (Cai & Vasconcelos, 2019) as instance
segmentation model with an EVA-02 backbone (Fang et al., 2023). To train the teacher model, we
tune the class frequency scaling parameter γ and the teacher label smoothing parameter ϵ using the
15% of LVIS train that we have left out, and then retrain the model on the full training set with these
parameters. Once the teacher is pretrained, we similarly tune the student calibration parameter λ,
and the relative weight of the loss terms for supervised and unsupervised images for the student.
Using a small grid search leads us to set ϵ = 0.1, γ = 1.5, λ = 2, and equal weighting between
the loss for supervised and unsupervised images. The teacher is trained on two nodes of eight V100
GPUs each, and takes approximately 10 hours. During the semi-supervised learning step, we train
the teacher-student ensemble on one node with eight V100s, which takes approximately 24 hours.
We use a cosine learning rate schedule, with an initial rate of 4e-5, and a batch size of two per GPU.

4.2 EXPERIMENTAL RESULTS

We demonstrate the influence of our class similarity-based label smoothing and class correction for
the supervised pretraining of the teacher in Fig. 2. We train models using different percentages of
the labeled data to study robustness in low annotation settings. While uniform label smoothing does
not improve model performance, our class similarity-based label smoothing results in a large boost,
up to 10 points in AP and APr when using 1% of annotations. Adding the class correction term
further improves results, in particular for rare classes where it raises the APr by about 5 points.
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Figure 2:
Performance of
teacher pretraining
on supervised data
only in terms of AP
(left) and APr (right)
as a function of the
percentage of LVIS
training set used.

Model AP APr

EVA, extra data (Fang et al., 2023) 55.0 52.5
CO-DETR (Zong et al., 2023) 56.0 53.1

Supervised + non-unif. smooth. + class corr. 54.0 47.0
Semi-supervised baseline, one-hot labels 54.8 49.7
+ soft student targets 55.5 53.0
+ soft student target + calibration correction 56.8 57.3

Table 1: Comparisons to state-of-the-art
and ablations. EVA (Fang et al., 2023)
uses a backbone trained using dense an-
notations from COCO and Objects365,
and AP was computed using the top
1,000 instances. Our backbone was not
pretrained on dense annotations, and we
use 300 instances for AP computation.

In our ablations in Tab. 1 we observe boosts of +0.8 AP and +2.7 APr for our baseline semi-
supervised model compared to our best supervised teacher model. When we use soft labels for
distillation, the AP further improves by 0.7 points and APr by 3.3 points, showing the importance
of applying soft targets in both models. Finally, adding the class-conditional calibration correction
boost overall AP by another 1.3 points, and by 4.3 points for rare classes bringing it to 57.3 which
is a level comparable, and even slightly better, than the overall AP of 56.8 for this model.

Our results improve over state-of-the-art results also reported in Tab. 1. Note that unlike the back-
bone used by Fang et al. (2023), ours was not pretrained using external detection or segmentation
annotations, so that it can be directly compared to other models trained on LVIS only.

In Fig. 3 we analyse calibration of our teacher model (with class similarity smoothing and correction)
and our semi-supervised model with calibration correction. The plots show that the systematic
overconfidence observed in the teacher model is by and large corrected during distillation. This is
also reflected in the aggregate ECE metric which is 0.22 for the teacher and 0.07 for the student.

Figure 3: Calibration of
our supervised teacher
(left) and semi-supervised
student (right). While the
teacher model is consis-
tently overconfident, the
calibration correction in
the distillation alleviates
this for the student.

5 CONCLUSION

We present two successful strategies to improve the performance of instance segmentation in few-
shot learning. The first strategy is to enhance the teacher model’s pre-training using class-similarity
smoothing, amplification of smoothing towards rare class, and a targeted selection of unlabeled
images through similarity searches. The second strategy introduces a novel calibration correction
mechanism, which enables the student model to rectify calibration errors from the teacher model.
The resulting approach boosts the performance of rare classes, with ten image annotations or less,
to match the average performance across all classes on LVIS.
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APPENDIX

EVA open sources different backbones. In this work, we build on the ViT-L backbone
eva02 L pt m38m p14to16 trained only of masked image modeling on the ImageNet-21K,
CC12M, CC3M, Object365, COCO, ADE datasets, without using any bounding-box or segmen-
tation annotations. We also use this backbone to compute the prototypes embeddings.

In Fig. 4, we show the impact of our corrected semi-supervised approach on the accuracy average
per class. We note the strong AP improvement on the rare classes.

In Fig. 5, we display some qualitative examples or our results compared to the supervised pre-
trained teacher model. Rare object such as “pitcher”, “scissors”, “traffic light”, and “curtains” that
were missed by the teacher, are well segmented with our semi-supervised student model.

Our supervised pre-trained teacher model Our semi-supervised student model

Figure 4: Scatter plot of AP of rare, common and frequent classes as function of instance frequency.
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Original Our pre-trained teacher model Our semi-supervised student model

Figure 5: Qualitative example on the official LVIS val set.
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